ARM: other code uses the new inheritance/nesting scheme
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
42
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52
53 /**
54  * Clear watchpoints for an ARM7/9 target.
55  *
56  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57  * @return JTAG error status after executing queue
58  */
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
60 {
61         LOG_DEBUG("-");
62         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
63         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
64         arm7_9->sw_breakpoint_count = 0;
65         arm7_9->sw_breakpoints_added = 0;
66         arm7_9->wp0_used = 0;
67         arm7_9->wp1_used = arm7_9->wp1_used_default;
68         arm7_9->wp_available = arm7_9->wp_available_max;
69
70         return jtag_execute_queue();
71 }
72
73 /**
74  * Assign a watchpoint to one of the two available hardware comparators in an
75  * ARM7 or ARM9 target.
76  *
77  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
78  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
79  */
80 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
81 {
82         if (!arm7_9->wp0_used)
83         {
84                 arm7_9->wp0_used = 1;
85                 breakpoint->set = 1;
86                 arm7_9->wp_available--;
87         }
88         else if (!arm7_9->wp1_used)
89         {
90                 arm7_9->wp1_used = 1;
91                 breakpoint->set = 2;
92                 arm7_9->wp_available--;
93         }
94         else
95         {
96                 LOG_ERROR("BUG: no hardware comparator available");
97         }
98         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
99                           breakpoint->unique_id,
100                           breakpoint->address,
101                           breakpoint->set );
102 }
103
104 /**
105  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
106  *
107  * @param arm7_9 Pointer to common struct for ARM7/9 targets
108  * @return Error codes if there is a problem finding a watchpoint or the result
109  *         of executing the JTAG queue
110  */
111 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
112 {
113         if (arm7_9->sw_breakpoints_added)
114         {
115                 return ERROR_OK;
116         }
117         if (arm7_9->wp_available < 1)
118         {
119                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
120                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
121         }
122         arm7_9->wp_available--;
123
124         /* pick a breakpoint unit */
125         if (!arm7_9->wp0_used)
126         {
127                 arm7_9->sw_breakpoints_added = 1;
128                 arm7_9->wp0_used = 3;
129         } else if (!arm7_9->wp1_used)
130         {
131                 arm7_9->sw_breakpoints_added = 2;
132                 arm7_9->wp1_used = 3;
133         }
134         else
135         {
136                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137                 return ERROR_FAIL;
138         }
139
140         if (arm7_9->sw_breakpoints_added == 1)
141         {
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
147         }
148         else if (arm7_9->sw_breakpoints_added == 2)
149         {
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
155         }
156         else
157         {
158                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
159                 return ERROR_FAIL;
160         }
161         LOG_DEBUG("SW BP using hw wp: %d",
162                           arm7_9->sw_breakpoints_added );
163
164         return jtag_execute_queue();
165 }
166
167 /**
168  * Setup the common pieces for an ARM7/9 target after reset or on startup.
169  *
170  * @param target Pointer to an ARM7/9 target to setup
171  * @return Result of clearing the watchpoints on the target
172  */
173 int arm7_9_setup(target_t *target)
174 {
175         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
176
177         return arm7_9_clear_watchpoints(arm7_9);
178 }
179
180 /**
181  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
182  * targets.  A return of ERROR_OK signifies that the target is a valid target
183  * and that the pointers have been set properly.
184  *
185  * @param target Pointer to the target device to get the pointers from
186  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
187  *                  targets
188  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
189  *                 targets
190  * @return ERROR_OK if successful
191  */
192 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
193 {
194         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
195         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
196
197         /* FIXME stop using this routine; just target_to_arm7_9() and
198          * verify the resulting pointer using a replacement routine
199          * that emits a usage message.
200          */
201         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
202                 return ERROR_TARGET_INVALID;
203
204         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
205                 return ERROR_TARGET_INVALID;
206
207         *armv4_5_p = armv4_5;
208         *arm7_9_p = arm7_9;
209
210         return ERROR_OK;
211 }
212
213 /**
214  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
215  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
216  * might have erased the values in Embedded ICE.
217  *
218  * @param target Pointer to the target device to set the breakpoints on
219  * @param breakpoint Pointer to the breakpoint to be set
220  * @return For hardware breakpoints, this is the result of executing the JTAG
221  *         queue.  For software breakpoints, this will be the status of the
222  *         required memory reads and writes
223  */
224 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
225 {
226         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
227         int retval = ERROR_OK;
228
229         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
230                           breakpoint->unique_id,
231                           breakpoint->address,
232                           breakpoint->type);
233
234         if (target->state != TARGET_HALTED)
235         {
236                 LOG_WARNING("target not halted");
237                 return ERROR_TARGET_NOT_HALTED;
238         }
239
240         if (breakpoint->type == BKPT_HARD)
241         {
242                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
243                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
244
245                 /* reassign a hw breakpoint */
246                 if (breakpoint->set == 0)
247                 {
248                         arm7_9_assign_wp(arm7_9, breakpoint);
249                 }
250
251                 if (breakpoint->set == 1)
252                 {
253                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
254                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
255                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
256                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
257                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
258                 }
259                 else if (breakpoint->set == 2)
260                 {
261                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
262                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
263                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
264                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
265                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
266                 }
267                 else
268                 {
269                         LOG_ERROR("BUG: no hardware comparator available");
270                         return ERROR_OK;
271                 }
272
273                 retval = jtag_execute_queue();
274         }
275         else if (breakpoint->type == BKPT_SOFT)
276         {
277                 /* did we already set this breakpoint? */
278                 if (breakpoint->set)
279                         return ERROR_OK;
280
281                 if (breakpoint->length == 4)
282                 {
283                         uint32_t verify = 0xffffffff;
284                         /* keep the original instruction in target endianness */
285                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
286                         {
287                                 return retval;
288                         }
289                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
290                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
291                         {
292                                 return retval;
293                         }
294
295                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
296                         {
297                                 return retval;
298                         }
299                         if (verify != arm7_9->arm_bkpt)
300                         {
301                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
302                                 return ERROR_OK;
303                         }
304                 }
305                 else
306                 {
307                         uint16_t verify = 0xffff;
308                         /* keep the original instruction in target endianness */
309                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
310                         {
311                                 return retval;
312                         }
313                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
314                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
315                         {
316                                 return retval;
317                         }
318
319                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
320                         {
321                                 return retval;
322                         }
323                         if (verify != arm7_9->thumb_bkpt)
324                         {
325                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
326                                 return ERROR_OK;
327                         }
328                 }
329
330                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
331                         return retval;
332
333                 arm7_9->sw_breakpoint_count++;
334
335                 breakpoint->set = 1;
336         }
337
338         return retval;
339 }
340
341 /**
342  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
343  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
344  * will be updated.  Otherwise, the software breakpoint will be restored to its
345  * original instruction if it hasn't already been modified.
346  *
347  * @param target Pointer to ARM7/9 target to unset the breakpoint from
348  * @param breakpoint Pointer to breakpoint to be unset
349  * @return For hardware breakpoints, this is the result of executing the JTAG
350  *         queue.  For software breakpoints, this will be the status of the
351  *         required memory reads and writes
352  */
353 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
354 {
355         int retval = ERROR_OK;
356         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
357
358         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
359                           breakpoint->unique_id,
360                           breakpoint->address );
361
362         if (!breakpoint->set)
363         {
364                 LOG_WARNING("breakpoint not set");
365                 return ERROR_OK;
366         }
367
368         if (breakpoint->type == BKPT_HARD)
369         {
370                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
371                                   breakpoint->unique_id,
372                                   breakpoint->set );
373                 if (breakpoint->set == 1)
374                 {
375                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
376                         arm7_9->wp0_used = 0;
377                         arm7_9->wp_available++;
378                 }
379                 else if (breakpoint->set == 2)
380                 {
381                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
382                         arm7_9->wp1_used = 0;
383                         arm7_9->wp_available++;
384                 }
385                 retval = jtag_execute_queue();
386                 breakpoint->set = 0;
387         }
388         else
389         {
390                 /* restore original instruction (kept in target endianness) */
391                 if (breakpoint->length == 4)
392                 {
393                         uint32_t current_instr;
394                         /* check that user program as not modified breakpoint instruction */
395                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
396                         {
397                                 return retval;
398                         }
399                         if (current_instr == arm7_9->arm_bkpt)
400                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
401                                 {
402                                         return retval;
403                                 }
404                 }
405                 else
406                 {
407                         uint16_t current_instr;
408                         /* check that user program as not modified breakpoint instruction */
409                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
410                         {
411                                 return retval;
412                         }
413                         if (current_instr == arm7_9->thumb_bkpt)
414                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
415                                 {
416                                         return retval;
417                                 }
418                 }
419
420                 if (--arm7_9->sw_breakpoint_count==0)
421                 {
422                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
423                         if (arm7_9->sw_breakpoints_added == 1)
424                         {
425                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
426                         }
427                         else if (arm7_9->sw_breakpoints_added == 2)
428                         {
429                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
430                         }
431                 }
432
433                 breakpoint->set = 0;
434         }
435
436         return retval;
437 }
438
439 /**
440  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
441  * dangling breakpoints and that the desired breakpoint can be added.
442  *
443  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
444  * @param breakpoint Pointer to the breakpoint to be added
445  * @return An error status if there is a problem adding the breakpoint or the
446  *         result of setting the breakpoint
447  */
448 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
449 {
450         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
451
452         if (target->state != TARGET_HALTED)
453         {
454                 LOG_WARNING("target not halted");
455                 return ERROR_TARGET_NOT_HALTED;
456         }
457
458         if (arm7_9->breakpoint_count == 0)
459         {
460                 /* make sure we don't have any dangling breakpoints. This is vital upon
461                  * GDB connect/disconnect
462                  */
463                 arm7_9_clear_watchpoints(arm7_9);
464         }
465
466         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
467         {
468                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
469                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
470         }
471
472         if ((breakpoint->length != 2) && (breakpoint->length != 4))
473         {
474                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
475                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
476         }
477
478         if (breakpoint->type == BKPT_HARD)
479         {
480                 arm7_9_assign_wp(arm7_9, breakpoint);
481         }
482
483         arm7_9->breakpoint_count++;
484
485         return arm7_9_set_breakpoint(target, breakpoint);
486 }
487
488 /**
489  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
490  * dangling breakpoints and updates available watchpoints if it is a hardware
491  * breakpoint.
492  *
493  * @param target Pointer to the target to have a breakpoint removed
494  * @param breakpoint Pointer to the breakpoint to be removed
495  * @return Error status if there was a problem unsetting the breakpoint or the
496  *         watchpoints could not be cleared
497  */
498 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
499 {
500         int retval = ERROR_OK;
501         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
502
503         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
504         {
505                 return retval;
506         }
507
508         if (breakpoint->type == BKPT_HARD)
509                 arm7_9->wp_available++;
510
511         arm7_9->breakpoint_count--;
512         if (arm7_9->breakpoint_count == 0)
513         {
514                 /* make sure we don't have any dangling breakpoints */
515                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
516                 {
517                         return retval;
518                 }
519         }
520
521         return ERROR_OK;
522 }
523
524 /**
525  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
526  * considered a bug to call this function when there are no available watchpoint
527  * units.
528  *
529  * @param target Pointer to an ARM7/9 target to set a watchpoint on
530  * @param watchpoint Pointer to the watchpoint to be set
531  * @return Error status if watchpoint set fails or the result of executing the
532  *         JTAG queue
533  */
534 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
535 {
536         int retval = ERROR_OK;
537         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
538         int rw_mask = 1;
539         uint32_t mask;
540
541         mask = watchpoint->length - 1;
542
543         if (target->state != TARGET_HALTED)
544         {
545                 LOG_WARNING("target not halted");
546                 return ERROR_TARGET_NOT_HALTED;
547         }
548
549         if (watchpoint->rw == WPT_ACCESS)
550                 rw_mask = 0;
551         else
552                 rw_mask = 1;
553
554         if (!arm7_9->wp0_used)
555         {
556                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
557                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
558                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
559                 if (watchpoint->mask != 0xffffffffu)
560                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
561                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
562                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
563
564                 if ((retval = jtag_execute_queue()) != ERROR_OK)
565                 {
566                         return retval;
567                 }
568                 watchpoint->set = 1;
569                 arm7_9->wp0_used = 2;
570         }
571         else if (!arm7_9->wp1_used)
572         {
573                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
574                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
575                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
576                 if (watchpoint->mask != 0xffffffffu)
577                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
578                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
579                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
580
581                 if ((retval = jtag_execute_queue()) != ERROR_OK)
582                 {
583                         return retval;
584                 }
585                 watchpoint->set = 2;
586                 arm7_9->wp1_used = 2;
587         }
588         else
589         {
590                 LOG_ERROR("BUG: no hardware comparator available");
591                 return ERROR_OK;
592         }
593
594         return ERROR_OK;
595 }
596
597 /**
598  * Unset an existing watchpoint and clear the used watchpoint unit.
599  *
600  * @param target Pointer to the target to have the watchpoint removed
601  * @param watchpoint Pointer to the watchpoint to be removed
602  * @return Error status while trying to unset the watchpoint or the result of
603  *         executing the JTAG queue
604  */
605 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
606 {
607         int retval = ERROR_OK;
608         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
609
610         if (target->state != TARGET_HALTED)
611         {
612                 LOG_WARNING("target not halted");
613                 return ERROR_TARGET_NOT_HALTED;
614         }
615
616         if (!watchpoint->set)
617         {
618                 LOG_WARNING("breakpoint not set");
619                 return ERROR_OK;
620         }
621
622         if (watchpoint->set == 1)
623         {
624                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
625                 if ((retval = jtag_execute_queue()) != ERROR_OK)
626                 {
627                         return retval;
628                 }
629                 arm7_9->wp0_used = 0;
630         }
631         else if (watchpoint->set == 2)
632         {
633                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
634                 if ((retval = jtag_execute_queue()) != ERROR_OK)
635                 {
636                         return retval;
637                 }
638                 arm7_9->wp1_used = 0;
639         }
640         watchpoint->set = 0;
641
642         return ERROR_OK;
643 }
644
645 /**
646  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
647  * available, an error response is returned.
648  *
649  * @param target Pointer to the ARM7/9 target to add a watchpoint to
650  * @param watchpoint Pointer to the watchpoint to be added
651  * @return Error status while trying to add the watchpoint
652  */
653 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
654 {
655         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
656
657         if (target->state != TARGET_HALTED)
658         {
659                 LOG_WARNING("target not halted");
660                 return ERROR_TARGET_NOT_HALTED;
661         }
662
663         if (arm7_9->wp_available < 1)
664         {
665                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
666         }
667
668         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
669         {
670                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
671         }
672
673         arm7_9->wp_available--;
674
675         return ERROR_OK;
676 }
677
678 /**
679  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
680  * the used watchpoint unit will be reopened.
681  *
682  * @param target Pointer to the target to remove a watchpoint from
683  * @param watchpoint Pointer to the watchpoint to be removed
684  * @return Result of trying to unset the watchpoint
685  */
686 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
687 {
688         int retval = ERROR_OK;
689         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
690
691         if (watchpoint->set)
692         {
693                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
694                 {
695                         return retval;
696                 }
697         }
698
699         arm7_9->wp_available++;
700
701         return ERROR_OK;
702 }
703
704 /**
705  * Restarts the target by sending a RESTART instruction and moving the JTAG
706  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
707  * asserted by the processor.
708  *
709  * @param target Pointer to target to issue commands to
710  * @return Error status if there is a timeout or a problem while executing the
711  *         JTAG queue
712  */
713 int arm7_9_execute_sys_speed(struct target_s *target)
714 {
715         int retval;
716         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
717         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
718         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
719
720         /* set RESTART instruction */
721         jtag_set_end_state(TAP_IDLE);
722         if (arm7_9->need_bypass_before_restart) {
723                 arm7_9->need_bypass_before_restart = 0;
724                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
725         }
726         arm_jtag_set_instr(jtag_info, 0x4, NULL);
727
728         long long then = timeval_ms();
729         int timeout;
730         while (!(timeout = ((timeval_ms()-then) > 1000)))
731         {
732                 /* read debug status register */
733                 embeddedice_read_reg(dbg_stat);
734                 if ((retval = jtag_execute_queue()) != ERROR_OK)
735                         return retval;
736                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
737                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
738                         break;
739                 if (debug_level >= 3)
740                 {
741                         alive_sleep(100);
742                 } else
743                 {
744                         keep_alive();
745                 }
746         }
747         if (timeout)
748         {
749                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
750                 return ERROR_TARGET_TIMEOUT;
751         }
752
753         return ERROR_OK;
754 }
755
756 /**
757  * Restarts the target by sending a RESTART instruction and moving the JTAG
758  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
759  * waiting until they are.
760  *
761  * @param target Pointer to the target to issue commands to
762  * @return Always ERROR_OK
763  */
764 int arm7_9_execute_fast_sys_speed(struct target_s *target)
765 {
766         static int set = 0;
767         static uint8_t check_value[4], check_mask[4];
768
769         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
770         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
771         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
772
773         /* set RESTART instruction */
774         jtag_set_end_state(TAP_IDLE);
775         if (arm7_9->need_bypass_before_restart) {
776                 arm7_9->need_bypass_before_restart = 0;
777                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
778         }
779         arm_jtag_set_instr(jtag_info, 0x4, NULL);
780
781         if (!set)
782         {
783                 /* check for DBGACK and SYSCOMP set (others don't care) */
784
785                 /* NB! These are constants that must be available until after next jtag_execute() and
786                  * we evaluate the values upon first execution in lieu of setting up these constants
787                  * during early setup.
788                  * */
789                 buf_set_u32(check_value, 0, 32, 0x9);
790                 buf_set_u32(check_mask, 0, 32, 0x9);
791                 set = 1;
792         }
793
794         /* read debug status register */
795         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
796
797         return ERROR_OK;
798 }
799
800 /**
801  * Get some data from the ARM7/9 target.
802  *
803  * @param target Pointer to the ARM7/9 target to read data from
804  * @param size The number of 32bit words to be read
805  * @param buffer Pointer to the buffer that will hold the data
806  * @return The result of receiving data from the Embedded ICE unit
807  */
808 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
809 {
810         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
811         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
812         uint32_t *data;
813         int retval = ERROR_OK;
814         uint32_t i;
815
816         data = malloc(size * (sizeof(uint32_t)));
817
818         retval = embeddedice_receive(jtag_info, data, size);
819
820         /* return the 32-bit ints in the 8-bit array */
821         for (i = 0; i < size; i++)
822         {
823                 h_u32_to_le(buffer + (i * 4), data[i]);
824         }
825
826         free(data);
827
828         return retval;
829 }
830
831 /**
832  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
833  * target is running and the DCC control register has the W bit high, this will
834  * execute the request on the target.
835  *
836  * @param priv Void pointer expected to be a target_t pointer
837  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
838  *                  from the Embedded ICE unit
839  */
840 int arm7_9_handle_target_request(void *priv)
841 {
842         int retval = ERROR_OK;
843         target_t *target = priv;
844         if (!target_was_examined(target))
845                 return ERROR_OK;
846         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
847         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
848         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
849
850         if (!target->dbg_msg_enabled)
851                 return ERROR_OK;
852
853         if (target->state == TARGET_RUNNING)
854         {
855                 /* read DCC control register */
856                 embeddedice_read_reg(dcc_control);
857                 if ((retval = jtag_execute_queue()) != ERROR_OK)
858                 {
859                         return retval;
860                 }
861
862                 /* check W bit */
863                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
864                 {
865                         uint32_t request;
866
867                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
868                         {
869                                 return retval;
870                         }
871                         if ((retval = target_request(target, request)) != ERROR_OK)
872                         {
873                                 return retval;
874                         }
875                 }
876         }
877
878         return ERROR_OK;
879 }
880
881 /**
882  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
883  * is manipulated to the right halted state based on its current state.  This is
884  * what happens:
885  *
886  * <table>
887  *              <tr><th > State</th><th > Action</th></tr>
888  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
889  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
890  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
891  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
892  * </table>
893  *
894  * If the target does not end up in the halted state, a warning is produced.  If
895  * DBGACK is cleared, then the target is expected to either be running or
896  * running in debug.
897  *
898  * @param target Pointer to the ARM7/9 target to poll
899  * @return ERROR_OK or an error status if a command fails
900  */
901 int arm7_9_poll(target_t *target)
902 {
903         int retval;
904         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
905         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
906
907         /* read debug status register */
908         embeddedice_read_reg(dbg_stat);
909         if ((retval = jtag_execute_queue()) != ERROR_OK)
910         {
911                 return retval;
912         }
913
914         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
915         {
916 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
917                 if (target->state == TARGET_UNKNOWN)
918                 {
919                         /* Starting OpenOCD with target in debug-halt */
920                         target->state = TARGET_RUNNING;
921                         LOG_DEBUG("DBGACK already set during server startup.");
922                 }
923                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
924                 {
925                         int check_pc = 0;
926                         if (target->state == TARGET_RESET)
927                         {
928                                 if (target->reset_halt)
929                                 {
930                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
931                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
932                                         {
933                                                 check_pc = 1;
934                                         }
935                                 }
936                         }
937
938                         target->state = TARGET_HALTED;
939
940                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
941                                 return retval;
942
943                         if (check_pc)
944                         {
945                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
946                                 uint32_t t=*((uint32_t *)reg->value);
947                                 if (t != 0)
948                                 {
949                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
950                                 }
951                         }
952
953                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
954                         {
955                                 return retval;
956                         }
957                 }
958                 if (target->state == TARGET_DEBUG_RUNNING)
959                 {
960                         target->state = TARGET_HALTED;
961                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
962                                 return retval;
963
964                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
965                         {
966                                 return retval;
967                         }
968                 }
969                 if (target->state != TARGET_HALTED)
970                 {
971                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
972                 }
973         }
974         else
975         {
976                 if (target->state != TARGET_DEBUG_RUNNING)
977                         target->state = TARGET_RUNNING;
978         }
979
980         return ERROR_OK;
981 }
982
983 /**
984  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
985  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
986  * affected) completely stop the JTAG clock while the core is held in reset
987  * (SRST).  It isn't possible to program the halt condition once reset is
988  * asserted, hence a hook that allows the target to set up its reset-halt
989  * condition is setup prior to asserting reset.
990  *
991  * @param target Pointer to an ARM7/9 target to assert reset on
992  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
993  */
994 int arm7_9_assert_reset(target_t *target)
995 {
996         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
997
998         LOG_DEBUG("target->state: %s",
999                   target_state_name(target));
1000
1001         enum reset_types jtag_reset_config = jtag_get_reset_config();
1002         if (!(jtag_reset_config & RESET_HAS_SRST))
1003         {
1004                 LOG_ERROR("Can't assert SRST");
1005                 return ERROR_FAIL;
1006         }
1007
1008         /* At this point trst has been asserted/deasserted once. We would
1009          * like to program EmbeddedICE while SRST is asserted, instead of
1010          * depending on SRST to leave that module alone.  However, many CPUs
1011          * gate the JTAG clock while SRST is asserted; or JTAG may need
1012          * clock stability guarantees (adaptive clocking might help).
1013          *
1014          * So we assume JTAG access during SRST is off the menu unless it's
1015          * been specifically enabled.
1016          */
1017         bool srst_asserted = false;
1018
1019         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
1020                         && (jtag_reset_config & RESET_SRST_NO_GATING))
1021         {
1022                 jtag_add_reset(0, 1);
1023                 srst_asserted = true;
1024         }
1025
1026         if (target->reset_halt)
1027         {
1028                 /*
1029                  * Some targets do not support communication while SRST is asserted. We need to
1030                  * set up the reset vector catch here.
1031                  *
1032                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1033                  * here is harmless.
1034                  */
1035                 if (arm7_9->has_vector_catch)
1036                 {
1037                         /* program vector catch register to catch reset vector */
1038                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1039
1040                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1041                         jtag_add_runtest(1, jtag_get_end_state());
1042                 }
1043                 else
1044                 {
1045                         /* program watchpoint unit to match on reset vector address */
1046                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1047                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1048                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1049                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1050                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1051                 }
1052         }
1053
1054         /* here we should issue an SRST only, but we may have to assert TRST as well */
1055         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1056         {
1057                 jtag_add_reset(1, 1);
1058         } else if (!srst_asserted)
1059         {
1060                 jtag_add_reset(0, 1);
1061         }
1062
1063         target->state = TARGET_RESET;
1064         jtag_add_sleep(50000);
1065
1066         armv4_5_invalidate_core_regs(target);
1067
1068         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1069         {
1070                 /* debug entry was already prepared in arm7_9_assert_reset() */
1071                 target->debug_reason = DBG_REASON_DBGRQ;
1072         }
1073
1074         return ERROR_OK;
1075 }
1076
1077 /**
1078  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1079  * and the target is being reset into a halt, a warning will be triggered
1080  * because it is not possible to reset into a halted mode in this case.  The
1081  * target is halted using the target's functions.
1082  *
1083  * @param target Pointer to the target to have the reset deasserted
1084  * @return ERROR_OK or an error from polling or halting the target
1085  */
1086 int arm7_9_deassert_reset(target_t *target)
1087 {
1088         int retval = ERROR_OK;
1089         LOG_DEBUG("target->state: %s",
1090                 target_state_name(target));
1091
1092         /* deassert reset lines */
1093         jtag_add_reset(0, 0);
1094
1095         enum reset_types jtag_reset_config = jtag_get_reset_config();
1096         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1097         {
1098                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1099                 /* set up embedded ice registers again */
1100                 if ((retval = target_examine_one(target)) != ERROR_OK)
1101                         return retval;
1102
1103                 if ((retval = target_poll(target)) != ERROR_OK)
1104                 {
1105                         return retval;
1106                 }
1107
1108                 if ((retval = target_halt(target)) != ERROR_OK)
1109                 {
1110                         return retval;
1111                 }
1112
1113         }
1114         return retval;
1115 }
1116
1117 /**
1118  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1119  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1120  * vector catch was used, it is restored.  Otherwise, the control value is
1121  * restored and the watchpoint unit is restored if it was in use.
1122  *
1123  * @param target Pointer to the ARM7/9 target to have halt cleared
1124  * @return Always ERROR_OK
1125  */
1126 int arm7_9_clear_halt(target_t *target)
1127 {
1128         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1129         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1130
1131         /* we used DBGRQ only if we didn't come out of reset */
1132         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1133         {
1134                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1135                  */
1136                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1137                 embeddedice_store_reg(dbg_ctrl);
1138         }
1139         else
1140         {
1141                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1142                 {
1143                         /* if we came out of reset, and vector catch is supported, we used
1144                          * vector catch to enter debug state
1145                          * restore the register in that case
1146                          */
1147                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1148                 }
1149                 else
1150                 {
1151                         /* restore registers if watchpoint unit 0 was in use
1152                          */
1153                         if (arm7_9->wp0_used)
1154                         {
1155                                 if (arm7_9->debug_entry_from_reset)
1156                                 {
1157                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1158                                 }
1159                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1160                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1161                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1162                         }
1163                         /* control value always has to be restored, as it was either disabled,
1164                          * or enabled with possibly different bits
1165                          */
1166                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1167                 }
1168         }
1169
1170         return ERROR_OK;
1171 }
1172
1173 /**
1174  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1175  * and then there is a wait until the processor shows the halt.  This wait can
1176  * timeout and results in an error being returned.  The software reset involves
1177  * clearing the halt, updating the debug control register, changing to ARM mode,
1178  * reset of the program counter, and reset of all of the registers.
1179  *
1180  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1181  * @return Error status if any of the commands fail, otherwise ERROR_OK
1182  */
1183 int arm7_9_soft_reset_halt(struct target_s *target)
1184 {
1185         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1186         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1187         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1188         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1189         int i;
1190         int retval;
1191
1192         /* FIX!!! replace some of this code with tcl commands
1193          *
1194          * halt # the halt command is synchronous
1195          * armv4_5 core_state arm
1196          *
1197          */
1198
1199         if ((retval = target_halt(target)) != ERROR_OK)
1200                 return retval;
1201
1202         long long then = timeval_ms();
1203         int timeout;
1204         while (!(timeout = ((timeval_ms()-then) > 1000)))
1205         {
1206                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1207                         break;
1208                 embeddedice_read_reg(dbg_stat);
1209                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1210                         return retval;
1211                 if (debug_level >= 3)
1212                 {
1213                         alive_sleep(100);
1214                 } else
1215                 {
1216                         keep_alive();
1217                 }
1218         }
1219         if (timeout)
1220         {
1221                 LOG_ERROR("Failed to halt CPU after 1 sec");
1222                 return ERROR_TARGET_TIMEOUT;
1223         }
1224         target->state = TARGET_HALTED;
1225
1226         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1227          * ensure that DBGRQ is cleared
1228          */
1229         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1230         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1231         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1232         embeddedice_store_reg(dbg_ctrl);
1233
1234         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1235         {
1236                 return retval;
1237         }
1238
1239         /* if the target is in Thumb state, change to ARM state */
1240         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1241         {
1242                 uint32_t r0_thumb, pc_thumb;
1243                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1244                 /* Entered debug from Thumb mode */
1245                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1246                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1247         }
1248
1249         /* all register content is now invalid */
1250         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1251         {
1252                 return retval;
1253         }
1254
1255         /* SVC, ARM state, IRQ and FIQ disabled */
1256         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1257         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1258         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1259
1260         /* start fetching from 0x0 */
1261         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1262         armv4_5->core_cache->reg_list[15].dirty = 1;
1263         armv4_5->core_cache->reg_list[15].valid = 1;
1264
1265         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1266         armv4_5->core_state = ARMV4_5_STATE_ARM;
1267
1268         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1269                 return ERROR_FAIL;
1270
1271         /* reset registers */
1272         for (i = 0; i <= 14; i++)
1273         {
1274                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1275                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1276                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1277         }
1278
1279         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1280         {
1281                 return retval;
1282         }
1283
1284         return ERROR_OK;
1285 }
1286
1287 /**
1288  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1289  * line or by programming a watchpoint to trigger on any address.  It is
1290  * considered a bug to call this function while the target is in the
1291  * TARGET_RESET state.
1292  *
1293  * @param target Pointer to the ARM7/9 target to be halted
1294  * @return Always ERROR_OK
1295  */
1296 int arm7_9_halt(target_t *target)
1297 {
1298         if (target->state == TARGET_RESET)
1299         {
1300                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1301                 return ERROR_OK;
1302         }
1303
1304         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1305         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1306
1307         LOG_DEBUG("target->state: %s",
1308                   target_state_name(target));
1309
1310         if (target->state == TARGET_HALTED)
1311         {
1312                 LOG_DEBUG("target was already halted");
1313                 return ERROR_OK;
1314         }
1315
1316         if (target->state == TARGET_UNKNOWN)
1317         {
1318                 LOG_WARNING("target was in unknown state when halt was requested");
1319         }
1320
1321         if (arm7_9->use_dbgrq)
1322         {
1323                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1324                  */
1325                 if (arm7_9->set_special_dbgrq) {
1326                         arm7_9->set_special_dbgrq(target);
1327                 } else {
1328                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1329                         embeddedice_store_reg(dbg_ctrl);
1330                 }
1331         }
1332         else
1333         {
1334                 /* program watchpoint unit to match on any address
1335                  */
1336                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1337                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1338                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1339                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1340         }
1341
1342         target->debug_reason = DBG_REASON_DBGRQ;
1343
1344         return ERROR_OK;
1345 }
1346
1347 /**
1348  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1349  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1350  * examined.  Once done, the target is verified to be halted and the processor
1351  * is forced into ARM mode.  The core registers are saved for the current core
1352  * mode and the program counter (register 15) is updated as needed.  The core
1353  * registers and CPSR and SPSR are saved for restoration later.
1354  *
1355  * @param target Pointer to target that is entering debug mode
1356  * @return Error code if anything fails, otherwise ERROR_OK
1357  */
1358 int arm7_9_debug_entry(target_t *target)
1359 {
1360         int i;
1361         uint32_t context[16];
1362         uint32_t* context_p[16];
1363         uint32_t r0_thumb, pc_thumb;
1364         uint32_t cpsr;
1365         int retval;
1366         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1367         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1368         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1369         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1370
1371 #ifdef _DEBUG_ARM7_9_
1372         LOG_DEBUG("-");
1373 #endif
1374
1375         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1376          * ensure that DBGRQ is cleared
1377          */
1378         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1379         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1380         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1381         embeddedice_store_reg(dbg_ctrl);
1382
1383         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1384         {
1385                 return retval;
1386         }
1387
1388         if ((retval = jtag_execute_queue()) != ERROR_OK)
1389         {
1390                 return retval;
1391         }
1392
1393         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1394                 return retval;
1395
1396
1397         if (target->state != TARGET_HALTED)
1398         {
1399                 LOG_WARNING("target not halted");
1400                 return ERROR_TARGET_NOT_HALTED;
1401         }
1402
1403         /* if the target is in Thumb state, change to ARM state */
1404         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1405         {
1406                 LOG_DEBUG("target entered debug from Thumb state");
1407                 /* Entered debug from Thumb mode */
1408                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1409                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1410                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1411         }
1412         else
1413         {
1414                 LOG_DEBUG("target entered debug from ARM state");
1415                 /* Entered debug from ARM mode */
1416                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1417         }
1418
1419         for (i = 0; i < 16; i++)
1420                 context_p[i] = &context[i];
1421         /* save core registers (r0 - r15 of current core mode) */
1422         arm7_9->read_core_regs(target, 0xffff, context_p);
1423
1424         arm7_9->read_xpsr(target, &cpsr, 0);
1425
1426         if ((retval = jtag_execute_queue()) != ERROR_OK)
1427                 return retval;
1428
1429         /* if the core has been executing in Thumb state, set the T bit */
1430         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1431                 cpsr |= 0x20;
1432
1433         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1434         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1435         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1436
1437         armv4_5->core_mode = cpsr & 0x1f;
1438
1439         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1440         {
1441                 target->state = TARGET_UNKNOWN;
1442                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1443                 return ERROR_TARGET_FAILURE;
1444         }
1445
1446         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1447
1448         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1449         {
1450                 LOG_DEBUG("thumb state, applying fixups");
1451                 context[0] = r0_thumb;
1452                 context[15] = pc_thumb;
1453         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1454         {
1455                 /* adjust value stored by STM */
1456                 context[15] -= 3 * 4;
1457         }
1458
1459         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1460                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1461         else
1462                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1463
1464         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1465                 return ERROR_FAIL;
1466
1467         for (i = 0; i <= 15; i++)
1468         {
1469                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1470                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1471                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1472                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1473         }
1474
1475         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1476
1477         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1478                 return ERROR_FAIL;
1479
1480         /* exceptions other than USR & SYS have a saved program status register */
1481         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1482         {
1483                 uint32_t spsr;
1484                 arm7_9->read_xpsr(target, &spsr, 1);
1485                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1486                 {
1487                         return retval;
1488                 }
1489                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1490                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1491                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1492         }
1493
1494         /* r0 and r15 (pc) have to be restored later */
1495         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1496         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1497
1498         if ((retval = jtag_execute_queue()) != ERROR_OK)
1499                 return retval;
1500
1501         if (arm7_9->post_debug_entry)
1502                 arm7_9->post_debug_entry(target);
1503
1504         return ERROR_OK;
1505 }
1506
1507 /**
1508  * Validate the full context for an ARM7/9 target in all processor modes.  If
1509  * there are any invalid registers for the target, they will all be read.  This
1510  * includes the PSR.
1511  *
1512  * @param target Pointer to the ARM7/9 target to capture the full context from
1513  * @return Error if the target is not halted, has an invalid core mode, or if
1514  *         the JTAG queue fails to execute
1515  */
1516 int arm7_9_full_context(target_t *target)
1517 {
1518         int i;
1519         int retval;
1520         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1521         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1522
1523         LOG_DEBUG("-");
1524
1525         if (target->state != TARGET_HALTED)
1526         {
1527                 LOG_WARNING("target not halted");
1528                 return ERROR_TARGET_NOT_HALTED;
1529         }
1530
1531         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1532                 return ERROR_FAIL;
1533
1534         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1535          * SYS shares registers with User, so we don't touch SYS
1536          */
1537         for (i = 0; i < 6; i++)
1538         {
1539                 uint32_t mask = 0;
1540                 uint32_t* reg_p[16];
1541                 int j;
1542                 int valid = 1;
1543
1544                 /* check if there are invalid registers in the current mode
1545                  */
1546                 for (j = 0; j <= 16; j++)
1547                 {
1548                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1549                                 valid = 0;
1550                 }
1551
1552                 if (!valid)
1553                 {
1554                         uint32_t tmp_cpsr;
1555
1556                         /* change processor mode (and mask T bit) */
1557                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1558                         tmp_cpsr |= armv4_5_number_to_mode(i);
1559                         tmp_cpsr &= ~0x20;
1560                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1561
1562                         for (j = 0; j < 15; j++)
1563                         {
1564                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1565                                 {
1566                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1567                                         mask |= 1 << j;
1568                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1569                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1570                                 }
1571                         }
1572
1573                         /* if only the PSR is invalid, mask is all zeroes */
1574                         if (mask)
1575                                 arm7_9->read_core_regs(target, mask, reg_p);
1576
1577                         /* check if the PSR has to be read */
1578                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1579                         {
1580                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1581                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1582                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1583                         }
1584                 }
1585         }
1586
1587         /* restore processor mode (mask T bit) */
1588         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1589
1590         if ((retval = jtag_execute_queue()) != ERROR_OK)
1591         {
1592                 return retval;
1593         }
1594         return ERROR_OK;
1595 }
1596
1597 /**
1598  * Restore the processor context on an ARM7/9 target.  The full processor
1599  * context is analyzed to see if any of the registers are dirty on this end, but
1600  * have a valid new value.  If this is the case, the processor is changed to the
1601  * appropriate mode and the new register values are written out to the
1602  * processor.  If there happens to be a dirty register with an invalid value, an
1603  * error will be logged.
1604  *
1605  * @param target Pointer to the ARM7/9 target to have its context restored
1606  * @return Error status if the target is not halted or the core mode in the
1607  *         armv4_5 struct is invalid.
1608  */
1609 int arm7_9_restore_context(target_t *target)
1610 {
1611         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1612         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1613         reg_t *reg;
1614         armv4_5_core_reg_t *reg_arch_info;
1615         enum armv4_5_mode current_mode = armv4_5->core_mode;
1616         int i, j;
1617         int dirty;
1618         int mode_change;
1619
1620         LOG_DEBUG("-");
1621
1622         if (target->state != TARGET_HALTED)
1623         {
1624                 LOG_WARNING("target not halted");
1625                 return ERROR_TARGET_NOT_HALTED;
1626         }
1627
1628         if (arm7_9->pre_restore_context)
1629                 arm7_9->pre_restore_context(target);
1630
1631         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1632                 return ERROR_FAIL;
1633
1634         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1635          * SYS shares registers with User, so we don't touch SYS
1636          */
1637         for (i = 0; i < 6; i++)
1638         {
1639                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1640                 dirty = 0;
1641                 mode_change = 0;
1642                 /* check if there are dirty registers in the current mode
1643                 */
1644                 for (j = 0; j <= 16; j++)
1645                 {
1646                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1647                         reg_arch_info = reg->arch_info;
1648                         if (reg->dirty == 1)
1649                         {
1650                                 if (reg->valid == 1)
1651                                 {
1652                                         dirty = 1;
1653                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1654                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1655                                                 && (reg_arch_info->mode != current_mode)
1656                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1657                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1658                                         {
1659                                                 mode_change = 1;
1660                                                 LOG_DEBUG("require mode change");
1661                                         }
1662                                 }
1663                                 else
1664                                 {
1665                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1666                                 }
1667                         }
1668                 }
1669
1670                 if (dirty)
1671                 {
1672                         uint32_t mask = 0x0;
1673                         int num_regs = 0;
1674                         uint32_t regs[16];
1675
1676                         if (mode_change)
1677                         {
1678                                 uint32_t tmp_cpsr;
1679
1680                                 /* change processor mode (mask T bit) */
1681                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1682                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1683                                 tmp_cpsr &= ~0x20;
1684                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1685                                 current_mode = armv4_5_number_to_mode(i);
1686                         }
1687
1688                         for (j = 0; j <= 14; j++)
1689                         {
1690                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1691                                 reg_arch_info = reg->arch_info;
1692
1693
1694                                 if (reg->dirty == 1)
1695                                 {
1696                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1697                                         mask |= 1 << j;
1698                                         num_regs++;
1699                                         reg->dirty = 0;
1700                                         reg->valid = 1;
1701                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1702                                 }
1703                         }
1704
1705                         if (mask)
1706                         {
1707                                 arm7_9->write_core_regs(target, mask, regs);
1708                         }
1709
1710                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1711                         reg_arch_info = reg->arch_info;
1712                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1713                         {
1714                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1715                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1716                         }
1717                 }
1718         }
1719
1720         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1721         {
1722                 /* restore processor mode (mask T bit) */
1723                 uint32_t tmp_cpsr;
1724
1725                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1726                 tmp_cpsr |= armv4_5_number_to_mode(i);
1727                 tmp_cpsr &= ~0x20;
1728                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1729                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1730         }
1731         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1732         {
1733                 /* CPSR has been changed, full restore necessary (mask T bit) */
1734                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1735                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1736                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1737                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1738         }
1739
1740         /* restore PC */
1741         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1742         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1743         armv4_5->core_cache->reg_list[15].dirty = 0;
1744
1745         if (arm7_9->post_restore_context)
1746                 arm7_9->post_restore_context(target);
1747
1748         return ERROR_OK;
1749 }
1750
1751 /**
1752  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1753  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1754  * restart.
1755  *
1756  * @param target Pointer to the ARM7/9 target to be restarted
1757  * @return Result of executing the JTAG queue
1758  */
1759 int arm7_9_restart_core(struct target_s *target)
1760 {
1761         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1762         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1763
1764         /* set RESTART instruction */
1765         jtag_set_end_state(TAP_IDLE);
1766         if (arm7_9->need_bypass_before_restart) {
1767                 arm7_9->need_bypass_before_restart = 0;
1768                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1769         }
1770         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1771
1772         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1773         return jtag_execute_queue();
1774 }
1775
1776 /**
1777  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1778  * iterated through and are set on the target if they aren't already set.
1779  *
1780  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1781  */
1782 void arm7_9_enable_watchpoints(struct target_s *target)
1783 {
1784         watchpoint_t *watchpoint = target->watchpoints;
1785
1786         while (watchpoint)
1787         {
1788                 if (watchpoint->set == 0)
1789                         arm7_9_set_watchpoint(target, watchpoint);
1790                 watchpoint = watchpoint->next;
1791         }
1792 }
1793
1794 /**
1795  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1796  * iterated through and are set on the target.
1797  *
1798  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1799  */
1800 void arm7_9_enable_breakpoints(struct target_s *target)
1801 {
1802         breakpoint_t *breakpoint = target->breakpoints;
1803
1804         /* set any pending breakpoints */
1805         while (breakpoint)
1806         {
1807                 arm7_9_set_breakpoint(target, breakpoint);
1808                 breakpoint = breakpoint->next;
1809         }
1810 }
1811
1812 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1813 {
1814         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1815         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1816         breakpoint_t *breakpoint = target->breakpoints;
1817         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1818         int err, retval = ERROR_OK;
1819
1820         LOG_DEBUG("-");
1821
1822         if (target->state != TARGET_HALTED)
1823         {
1824                 LOG_WARNING("target not halted");
1825                 return ERROR_TARGET_NOT_HALTED;
1826         }
1827
1828         if (!debug_execution)
1829         {
1830                 target_free_all_working_areas(target);
1831         }
1832
1833         /* current = 1: continue on current pc, otherwise continue at <address> */
1834         if (!current)
1835                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1836
1837         uint32_t current_pc;
1838         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1839
1840         /* the front-end may request us not to handle breakpoints */
1841         if (handle_breakpoints)
1842         {
1843                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1844                 {
1845                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1846                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1847                         {
1848                                 return retval;
1849                         }
1850
1851                         /* calculate PC of next instruction */
1852                         uint32_t next_pc;
1853                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1854                         {
1855                                 uint32_t current_opcode;
1856                                 target_read_u32(target, current_pc, &current_opcode);
1857                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1858                                 return retval;
1859                         }
1860
1861                         LOG_DEBUG("enable single-step");
1862                         arm7_9->enable_single_step(target, next_pc);
1863
1864                         target->debug_reason = DBG_REASON_SINGLESTEP;
1865
1866                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1867                         {
1868                                 return retval;
1869                         }
1870
1871                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1872                                 arm7_9->branch_resume(target);
1873                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1874                         {
1875                                 arm7_9->branch_resume_thumb(target);
1876                         }
1877                         else
1878                         {
1879                                 LOG_ERROR("unhandled core state");
1880                                 return ERROR_FAIL;
1881                         }
1882
1883                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1884                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1885                         err = arm7_9_execute_sys_speed(target);
1886
1887                         LOG_DEBUG("disable single-step");
1888                         arm7_9->disable_single_step(target);
1889
1890                         if (err != ERROR_OK)
1891                         {
1892                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1893                                 {
1894                                         return retval;
1895                                 }
1896                                 target->state = TARGET_UNKNOWN;
1897                                 return err;
1898                         }
1899
1900                         arm7_9_debug_entry(target);
1901                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1902
1903                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1904                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1905                         {
1906                                 return retval;
1907                         }
1908                 }
1909         }
1910
1911         /* enable any pending breakpoints and watchpoints */
1912         arm7_9_enable_breakpoints(target);
1913         arm7_9_enable_watchpoints(target);
1914
1915         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1916         {
1917                 return retval;
1918         }
1919
1920         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1921         {
1922                 arm7_9->branch_resume(target);
1923         }
1924         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1925         {
1926                 arm7_9->branch_resume_thumb(target);
1927         }
1928         else
1929         {
1930                 LOG_ERROR("unhandled core state");
1931                 return ERROR_FAIL;
1932         }
1933
1934         /* deassert DBGACK and INTDIS */
1935         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1936         /* INTDIS only when we really resume, not during debug execution */
1937         if (!debug_execution)
1938                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1939         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1940
1941         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1942         {
1943                 return retval;
1944         }
1945
1946         target->debug_reason = DBG_REASON_NOTHALTED;
1947
1948         if (!debug_execution)
1949         {
1950                 /* registers are now invalid */
1951                 armv4_5_invalidate_core_regs(target);
1952                 target->state = TARGET_RUNNING;
1953                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1954                 {
1955                         return retval;
1956                 }
1957         }
1958         else
1959         {
1960                 target->state = TARGET_DEBUG_RUNNING;
1961                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1962                 {
1963                         return retval;
1964                 }
1965         }
1966
1967         LOG_DEBUG("target resumed");
1968
1969         return ERROR_OK;
1970 }
1971
1972 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1973 {
1974         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1975         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1976         uint32_t current_pc;
1977         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1978
1979         if (next_pc != current_pc)
1980         {
1981                 /* setup an inverse breakpoint on the current PC
1982                 * - comparator 1 matches the current address
1983                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1984                 * - comparator 0 matches any address, as long as rangein is low */
1985                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1986                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1987                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1988                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1989                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1990                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1991                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1992                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1993                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1994         }
1995         else
1996         {
1997                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1998                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1999                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2000                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2001                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2002                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2003                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2004                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2005                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2006         }
2007 }
2008
2009 void arm7_9_disable_eice_step(target_t *target)
2010 {
2011         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2012
2013         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2014         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2015         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2016         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2017         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2018         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2019         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2020         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2021         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2022 }
2023
2024 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2025 {
2026         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2027         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2028         breakpoint_t *breakpoint = NULL;
2029         int err, retval;
2030
2031         if (target->state != TARGET_HALTED)
2032         {
2033                 LOG_WARNING("target not halted");
2034                 return ERROR_TARGET_NOT_HALTED;
2035         }
2036
2037         /* current = 1: continue on current pc, otherwise continue at <address> */
2038         if (!current)
2039                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2040
2041         uint32_t current_pc;
2042         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2043
2044         /* the front-end may request us not to handle breakpoints */
2045         if (handle_breakpoints)
2046                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2047                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2048                         {
2049                                 return retval;
2050                         }
2051
2052         target->debug_reason = DBG_REASON_SINGLESTEP;
2053
2054         /* calculate PC of next instruction */
2055         uint32_t next_pc;
2056         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2057         {
2058                 uint32_t current_opcode;
2059                 target_read_u32(target, current_pc, &current_opcode);
2060                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2061                 return retval;
2062         }
2063
2064         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2065         {
2066                 return retval;
2067         }
2068
2069         arm7_9->enable_single_step(target, next_pc);
2070
2071         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2072         {
2073                 arm7_9->branch_resume(target);
2074         }
2075         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2076         {
2077                 arm7_9->branch_resume_thumb(target);
2078         }
2079         else
2080         {
2081                 LOG_ERROR("unhandled core state");
2082                 return ERROR_FAIL;
2083         }
2084
2085         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2086         {
2087                 return retval;
2088         }
2089
2090         err = arm7_9_execute_sys_speed(target);
2091         arm7_9->disable_single_step(target);
2092
2093         /* registers are now invalid */
2094         armv4_5_invalidate_core_regs(target);
2095
2096         if (err != ERROR_OK)
2097         {
2098                 target->state = TARGET_UNKNOWN;
2099         } else {
2100                 arm7_9_debug_entry(target);
2101                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2102                 {
2103                         return retval;
2104                 }
2105                 LOG_DEBUG("target stepped");
2106         }
2107
2108         if (breakpoint)
2109                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2110                 {
2111                         return retval;
2112                 }
2113
2114         return err;
2115 }
2116
2117 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2118 {
2119         uint32_t* reg_p[16];
2120         uint32_t value;
2121         int retval;
2122         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2123         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2124
2125         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2126                 return ERROR_FAIL;
2127
2128         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2129
2130         if ((num < 0) || (num > 16))
2131                 return ERROR_INVALID_ARGUMENTS;
2132
2133         if ((mode != ARMV4_5_MODE_ANY)
2134                         && (mode != armv4_5->core_mode)
2135                         && (reg_mode != ARMV4_5_MODE_ANY))
2136         {
2137                 uint32_t tmp_cpsr;
2138
2139                 /* change processor mode (mask T bit) */
2140                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2141                 tmp_cpsr |= mode;
2142                 tmp_cpsr &= ~0x20;
2143                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2144         }
2145
2146         if ((num >= 0) && (num <= 15))
2147         {
2148                 /* read a normal core register */
2149                 reg_p[num] = &value;
2150
2151                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2152         }
2153         else
2154         {
2155                 /* read a program status register
2156                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2157                  */
2158                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2159                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2160
2161                 arm7_9->read_xpsr(target, &value, spsr);
2162         }
2163
2164         if ((retval = jtag_execute_queue()) != ERROR_OK)
2165         {
2166                 return retval;
2167         }
2168
2169         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2170         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2171         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2172
2173         if ((mode != ARMV4_5_MODE_ANY)
2174                         && (mode != armv4_5->core_mode)
2175                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2176                 /* restore processor mode (mask T bit) */
2177                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2178         }
2179
2180         return ERROR_OK;
2181 }
2182
2183 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2184 {
2185         uint32_t reg[16];
2186         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2187         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2188
2189         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2190                 return ERROR_FAIL;
2191
2192         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2193
2194         if ((num < 0) || (num > 16))
2195                 return ERROR_INVALID_ARGUMENTS;
2196
2197         if ((mode != ARMV4_5_MODE_ANY)
2198                         && (mode != armv4_5->core_mode)
2199                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2200                 uint32_t tmp_cpsr;
2201
2202                 /* change processor mode (mask T bit) */
2203                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2204                 tmp_cpsr |= mode;
2205                 tmp_cpsr &= ~0x20;
2206                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2207         }
2208
2209         if ((num >= 0) && (num <= 15))
2210         {
2211                 /* write a normal core register */
2212                 reg[num] = value;
2213
2214                 arm7_9->write_core_regs(target, 1 << num, reg);
2215         }
2216         else
2217         {
2218                 /* write a program status register
2219                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2220                 */
2221                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2222                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2223
2224                 /* if we're writing the CPSR, mask the T bit */
2225                 if (!spsr)
2226                         value &= ~0x20;
2227
2228                 arm7_9->write_xpsr(target, value, spsr);
2229         }
2230
2231         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2232         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2233
2234         if ((mode != ARMV4_5_MODE_ANY)
2235                         && (mode != armv4_5->core_mode)
2236                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2237                 /* restore processor mode (mask T bit) */
2238                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2239         }
2240
2241         return jtag_execute_queue();
2242 }
2243
2244 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2245 {
2246         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2247         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2248         uint32_t reg[16];
2249         uint32_t num_accesses = 0;
2250         int thisrun_accesses;
2251         int i;
2252         uint32_t cpsr;
2253         int retval;
2254         int last_reg = 0;
2255
2256         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2257
2258         if (target->state != TARGET_HALTED)
2259         {
2260                 LOG_WARNING("target not halted");
2261                 return ERROR_TARGET_NOT_HALTED;
2262         }
2263
2264         /* sanitize arguments */
2265         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2266                 return ERROR_INVALID_ARGUMENTS;
2267
2268         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2269                 return ERROR_TARGET_UNALIGNED_ACCESS;
2270
2271         /* load the base register with the address of the first word */
2272         reg[0] = address;
2273         arm7_9->write_core_regs(target, 0x1, reg);
2274
2275         int j = 0;
2276
2277         switch (size)
2278         {
2279                 case 4:
2280                         while (num_accesses < count)
2281                         {
2282                                 uint32_t reg_list;
2283                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2284                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2285
2286                                 if (last_reg <= thisrun_accesses)
2287                                         last_reg = thisrun_accesses;
2288
2289                                 arm7_9->load_word_regs(target, reg_list);
2290
2291                                 /* fast memory reads are only safe when the target is running
2292                                  * from a sufficiently high clock (32 kHz is usually too slow)
2293                                  */
2294                                 if (arm7_9->fast_memory_access)
2295                                         retval = arm7_9_execute_fast_sys_speed(target);
2296                                 else
2297                                         retval = arm7_9_execute_sys_speed(target);
2298                                 if (retval != ERROR_OK)
2299                                         return retval;
2300
2301                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2302
2303                                 /* advance buffer, count number of accesses */
2304                                 buffer += thisrun_accesses * 4;
2305                                 num_accesses += thisrun_accesses;
2306
2307                                 if ((j++%1024) == 0)
2308                                 {
2309                                         keep_alive();
2310                                 }
2311                         }
2312                         break;
2313                 case 2:
2314                         while (num_accesses < count)
2315                         {
2316                                 uint32_t reg_list;
2317                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2318                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2319
2320                                 for (i = 1; i <= thisrun_accesses; i++)
2321                                 {
2322                                         if (i > last_reg)
2323                                                 last_reg = i;
2324                                         arm7_9->load_hword_reg(target, i);
2325                                         /* fast memory reads are only safe when the target is running
2326                                          * from a sufficiently high clock (32 kHz is usually too slow)
2327                                          */
2328                                         if (arm7_9->fast_memory_access)
2329                                                 retval = arm7_9_execute_fast_sys_speed(target);
2330                                         else
2331                                                 retval = arm7_9_execute_sys_speed(target);
2332                                         if (retval != ERROR_OK)
2333                                         {
2334                                                 return retval;
2335                                         }
2336
2337                                 }
2338
2339                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2340
2341                                 /* advance buffer, count number of accesses */
2342                                 buffer += thisrun_accesses * 2;
2343                                 num_accesses += thisrun_accesses;
2344
2345                                 if ((j++%1024) == 0)
2346                                 {
2347                                         keep_alive();
2348                                 }
2349                         }
2350                         break;
2351                 case 1:
2352                         while (num_accesses < count)
2353                         {
2354                                 uint32_t reg_list;
2355                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2356                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2357
2358                                 for (i = 1; i <= thisrun_accesses; i++)
2359                                 {
2360                                         if (i > last_reg)
2361                                                 last_reg = i;
2362                                         arm7_9->load_byte_reg(target, i);
2363                                         /* fast memory reads are only safe when the target is running
2364                                          * from a sufficiently high clock (32 kHz is usually too slow)
2365                                          */
2366                                         if (arm7_9->fast_memory_access)
2367                                                 retval = arm7_9_execute_fast_sys_speed(target);
2368                                         else
2369                                                 retval = arm7_9_execute_sys_speed(target);
2370                                         if (retval != ERROR_OK)
2371                                         {
2372                                                 return retval;
2373                                         }
2374                                 }
2375
2376                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2377
2378                                 /* advance buffer, count number of accesses */
2379                                 buffer += thisrun_accesses * 1;
2380                                 num_accesses += thisrun_accesses;
2381
2382                                 if ((j++%1024) == 0)
2383                                 {
2384                                         keep_alive();
2385                                 }
2386                         }
2387                         break;
2388                 default:
2389                         LOG_ERROR("BUG: we shouldn't get here");
2390                         exit(-1);
2391                         break;
2392         }
2393
2394         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2395                 return ERROR_FAIL;
2396
2397         for (i = 0; i <= last_reg; i++)
2398                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2399
2400         arm7_9->read_xpsr(target, &cpsr, 0);
2401         if ((retval = jtag_execute_queue()) != ERROR_OK)
2402         {
2403                 LOG_ERROR("JTAG error while reading cpsr");
2404                 return ERROR_TARGET_DATA_ABORT;
2405         }
2406
2407         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2408         {
2409                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2410
2411                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2412
2413                 return ERROR_TARGET_DATA_ABORT;
2414         }
2415
2416         return ERROR_OK;
2417 }
2418
2419 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2420 {
2421         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2422         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2423         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2424
2425         uint32_t reg[16];
2426         uint32_t num_accesses = 0;
2427         int thisrun_accesses;
2428         int i;
2429         uint32_t cpsr;
2430         int retval;
2431         int last_reg = 0;
2432
2433 #ifdef _DEBUG_ARM7_9_
2434         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2435 #endif
2436
2437         if (target->state != TARGET_HALTED)
2438         {
2439                 LOG_WARNING("target not halted");
2440                 return ERROR_TARGET_NOT_HALTED;
2441         }
2442
2443         /* sanitize arguments */
2444         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2445                 return ERROR_INVALID_ARGUMENTS;
2446
2447         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2448                 return ERROR_TARGET_UNALIGNED_ACCESS;
2449
2450         /* load the base register with the address of the first word */
2451         reg[0] = address;
2452         arm7_9->write_core_regs(target, 0x1, reg);
2453
2454         /* Clear DBGACK, to make sure memory fetches work as expected */
2455         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2456         embeddedice_store_reg(dbg_ctrl);
2457
2458         switch (size)
2459         {
2460                 case 4:
2461                         while (num_accesses < count)
2462                         {
2463                                 uint32_t reg_list;
2464                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2465                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2466
2467                                 for (i = 1; i <= thisrun_accesses; i++)
2468                                 {
2469                                         if (i > last_reg)
2470                                                 last_reg = i;
2471                                         reg[i] = target_buffer_get_u32(target, buffer);
2472                                         buffer += 4;
2473                                 }
2474
2475                                 arm7_9->write_core_regs(target, reg_list, reg);
2476
2477                                 arm7_9->store_word_regs(target, reg_list);
2478
2479                                 /* fast memory writes are only safe when the target is running
2480                                  * from a sufficiently high clock (32 kHz is usually too slow)
2481                                  */
2482                                 if (arm7_9->fast_memory_access)
2483                                         retval = arm7_9_execute_fast_sys_speed(target);
2484                                 else
2485                                         retval = arm7_9_execute_sys_speed(target);
2486                                 if (retval != ERROR_OK)
2487                                 {
2488                                         return retval;
2489                                 }
2490
2491                                 num_accesses += thisrun_accesses;
2492                         }
2493                         break;
2494                 case 2:
2495                         while (num_accesses < count)
2496                         {
2497                                 uint32_t reg_list;
2498                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2499                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2500
2501                                 for (i = 1; i <= thisrun_accesses; i++)
2502                                 {
2503                                         if (i > last_reg)
2504                                                 last_reg = i;
2505                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2506                                         buffer += 2;
2507                                 }
2508
2509                                 arm7_9->write_core_regs(target, reg_list, reg);
2510
2511                                 for (i = 1; i <= thisrun_accesses; i++)
2512                                 {
2513                                         arm7_9->store_hword_reg(target, i);
2514
2515                                         /* fast memory writes are only safe when the target is running
2516                                          * from a sufficiently high clock (32 kHz is usually too slow)
2517                                          */
2518                                         if (arm7_9->fast_memory_access)
2519                                                 retval = arm7_9_execute_fast_sys_speed(target);
2520                                         else
2521                                                 retval = arm7_9_execute_sys_speed(target);
2522                                         if (retval != ERROR_OK)
2523                                         {
2524                                                 return retval;
2525                                         }
2526                                 }
2527
2528                                 num_accesses += thisrun_accesses;
2529                         }
2530                         break;
2531                 case 1:
2532                         while (num_accesses < count)
2533                         {
2534                                 uint32_t reg_list;
2535                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2536                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2537
2538                                 for (i = 1; i <= thisrun_accesses; i++)
2539                                 {
2540                                         if (i > last_reg)
2541                                                 last_reg = i;
2542                                         reg[i] = *buffer++ & 0xff;
2543                                 }
2544
2545                                 arm7_9->write_core_regs(target, reg_list, reg);
2546
2547                                 for (i = 1; i <= thisrun_accesses; i++)
2548                                 {
2549                                         arm7_9->store_byte_reg(target, i);
2550                                         /* fast memory writes are only safe when the target is running
2551                                          * from a sufficiently high clock (32 kHz is usually too slow)
2552                                          */
2553                                         if (arm7_9->fast_memory_access)
2554                                                 retval = arm7_9_execute_fast_sys_speed(target);
2555                                         else
2556                                                 retval = arm7_9_execute_sys_speed(target);
2557                                         if (retval != ERROR_OK)
2558                                         {
2559                                                 return retval;
2560                                         }
2561
2562                                 }
2563
2564                                 num_accesses += thisrun_accesses;
2565                         }
2566                         break;
2567                 default:
2568                         LOG_ERROR("BUG: we shouldn't get here");
2569                         exit(-1);
2570                         break;
2571         }
2572
2573         /* Re-Set DBGACK */
2574         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2575         embeddedice_store_reg(dbg_ctrl);
2576
2577         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2578                 return ERROR_FAIL;
2579
2580         for (i = 0; i <= last_reg; i++)
2581                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2582
2583         arm7_9->read_xpsr(target, &cpsr, 0);
2584         if ((retval = jtag_execute_queue()) != ERROR_OK)
2585         {
2586                 LOG_ERROR("JTAG error while reading cpsr");
2587                 return ERROR_TARGET_DATA_ABORT;
2588         }
2589
2590         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2591         {
2592                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2593
2594                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2595
2596                 return ERROR_TARGET_DATA_ABORT;
2597         }
2598
2599         return ERROR_OK;
2600 }
2601
2602 static int dcc_count;
2603 static uint8_t *dcc_buffer;
2604
2605 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2606 {
2607         int retval = ERROR_OK;
2608         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2609
2610         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2611                 return retval;
2612
2613         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2614         int count = dcc_count;
2615         uint8_t *buffer = dcc_buffer;
2616         if (count > 2)
2617         {
2618                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2619                  * core function repeated. */
2620                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2621                 buffer += 4;
2622
2623                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2624                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2625                 jtag_tap_t *tap;
2626                 tap = ice_reg->jtag_info->tap;
2627
2628                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2629                 buffer += (count-2)*4;
2630
2631                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2632         } else
2633         {
2634                 int i;
2635                 for (i = 0; i < count; i++)
2636                 {
2637                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2638                         buffer += 4;
2639                 }
2640         }
2641
2642         if ((retval = target_halt(target))!= ERROR_OK)
2643         {
2644                 return retval;
2645         }
2646         return target_wait_state(target, TARGET_HALTED, 500);
2647 }
2648
2649 static const uint32_t dcc_code[] =
2650 {
2651         /* r0 == input, points to memory buffer
2652          * r1 == scratch
2653          */
2654
2655         /* spin until DCC control (c0) reports data arrived */
2656         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2657         0xe3110001,     /*    tst r1, #1              */
2658         0x0afffffc,     /*    bne w                   */
2659
2660         /* read word from DCC (c1), write to memory */
2661         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2662         0xe4801004,     /*    str r1, [r0], #4        */
2663
2664         /* repeat */
2665         0xeafffff9      /*    b   w                   */
2666 };
2667
2668 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2669
2670 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2671 {
2672         int retval;
2673         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2674         int i;
2675
2676         if (!arm7_9->dcc_downloads)
2677                 return target_write_memory(target, address, 4, count, buffer);
2678
2679         /* regrab previously allocated working_area, or allocate a new one */
2680         if (!arm7_9->dcc_working_area)
2681         {
2682                 uint8_t dcc_code_buf[6 * 4];
2683
2684                 /* make sure we have a working area */
2685                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2686                 {
2687                         LOG_INFO("no working area available, falling back to memory writes");
2688                         return target_write_memory(target, address, 4, count, buffer);
2689                 }
2690
2691                 /* copy target instructions to target endianness */
2692                 for (i = 0; i < 6; i++)
2693                 {
2694                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2695                 }
2696
2697                 /* write DCC code to working area */
2698                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2699                 {
2700                         return retval;
2701                 }
2702         }
2703
2704         armv4_5_algorithm_t armv4_5_info;
2705         reg_param_t reg_params[1];
2706
2707         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2708         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2709         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2710
2711         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2712
2713         buf_set_u32(reg_params[0].value, 0, 32, address);
2714
2715         dcc_count = count;
2716         dcc_buffer = buffer;
2717         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2718                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2719
2720         if (retval == ERROR_OK)
2721         {
2722                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2723                 if (endaddress != (address + count*4))
2724                 {
2725                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2726                         retval = ERROR_FAIL;
2727                 }
2728         }
2729
2730         destroy_reg_param(&reg_params[0]);
2731
2732         return retval;
2733 }
2734
2735 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2736 {
2737         working_area_t *crc_algorithm;
2738         armv4_5_algorithm_t armv4_5_info;
2739         reg_param_t reg_params[2];
2740         int retval;
2741
2742         static const uint32_t arm7_9_crc_code[] = {
2743                 0xE1A02000,                             /* mov          r2, r0 */
2744                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2745                 0xE1A03001,                             /* mov          r3, r1 */
2746                 0xE3A04000,                             /* mov          r4, #0 */
2747                 0xEA00000B,                             /* b            ncomp */
2748                                                                 /* nbyte: */
2749                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2750                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2751                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2752                 0xE3A05000,                             /* mov          r5, #0 */
2753                                                                 /* loop: */
2754                 0xE3500000,                             /* cmp          r0, #0 */
2755                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2756                 0xE2855001,                             /* add          r5, r5, #1 */
2757                 0xE1A00006,                             /* mov          r0, r6 */
2758                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2759                 0xE3550008,                             /* cmp          r5, #8 */
2760                 0x1AFFFFF8,                             /* bne          loop */
2761                 0xE2844001,                             /* add          r4, r4, #1 */
2762                                                                 /* ncomp: */
2763                 0xE1540003,                             /* cmp          r4, r3 */
2764                 0x1AFFFFF1,                             /* bne          nbyte */
2765                                                                 /* end: */
2766                 0xEAFFFFFE,                             /* b            end */
2767                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2768         };
2769
2770         uint32_t i;
2771
2772         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2773         {
2774                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2775         }
2776
2777         /* convert flash writing code into a buffer in target endianness */
2778         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2779         {
2780                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2781                 {
2782                         return retval;
2783                 }
2784         }
2785
2786         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2787         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2788         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2789
2790         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2791         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2792
2793         buf_set_u32(reg_params[0].value, 0, 32, address);
2794         buf_set_u32(reg_params[1].value, 0, 32, count);
2795
2796         /* 20 second timeout/megabyte */
2797         int timeout = 20000 * (1 + (count / (1024*1024)));
2798
2799         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2800                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), timeout, &armv4_5_info)) != ERROR_OK)
2801         {
2802                 LOG_ERROR("error executing arm7_9 crc algorithm");
2803                 destroy_reg_param(&reg_params[0]);
2804                 destroy_reg_param(&reg_params[1]);
2805                 target_free_working_area(target, crc_algorithm);
2806                 return retval;
2807         }
2808
2809         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2810
2811         destroy_reg_param(&reg_params[0]);
2812         destroy_reg_param(&reg_params[1]);
2813
2814         target_free_working_area(target, crc_algorithm);
2815
2816         return ERROR_OK;
2817 }
2818
2819 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2820 {
2821         working_area_t *erase_check_algorithm;
2822         reg_param_t reg_params[3];
2823         armv4_5_algorithm_t armv4_5_info;
2824         int retval;
2825         uint32_t i;
2826
2827         static const uint32_t erase_check_code[] =
2828         {
2829                 /* loop: */
2830                 0xe4d03001,             /* ldrb r3, [r0], #1 */
2831                 0xe0022003,             /* and r2, r2, r3    */
2832                 0xe2511001,             /* subs r1, r1, #1   */
2833                 0x1afffffb,             /* bne loop          */
2834                 /* end: */
2835                 0xeafffffe              /* b end             */
2836         };
2837
2838         /* make sure we have a working area */
2839         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2840         {
2841                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2842         }
2843
2844         /* convert flash writing code into a buffer in target endianness */
2845         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2846                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2847                 {
2848                         return retval;
2849                 }
2850
2851         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2852         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2853         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2854
2855         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2856         buf_set_u32(reg_params[0].value, 0, 32, address);
2857
2858         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2859         buf_set_u32(reg_params[1].value, 0, 32, count);
2860
2861         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2862         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2863
2864         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2865                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2866         {
2867                 destroy_reg_param(&reg_params[0]);
2868                 destroy_reg_param(&reg_params[1]);
2869                 destroy_reg_param(&reg_params[2]);
2870                 target_free_working_area(target, erase_check_algorithm);
2871                 return 0;
2872         }
2873
2874         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2875
2876         destroy_reg_param(&reg_params[0]);
2877         destroy_reg_param(&reg_params[1]);
2878         destroy_reg_param(&reg_params[2]);
2879
2880         target_free_working_area(target, erase_check_algorithm);
2881
2882         return ERROR_OK;
2883 }
2884
2885 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2886 {
2887         command_t *arm7_9_cmd;
2888
2889         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2890
2891         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr | spsr>");
2892         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2893
2894         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2895
2896         register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2897                 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2898         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2899                  COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2900         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2901                 COMMAND_ANY, "use DCC downloads for larger memory writes <enable | disable>");
2902
2903         armv4_5_register_commands(cmd_ctx);
2904
2905         etm_register_commands(cmd_ctx);
2906
2907         return ERROR_OK;
2908 }
2909
2910 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2911 {
2912         uint32_t value;
2913         int spsr;
2914         int retval;
2915         target_t *target = get_current_target(cmd_ctx);
2916         armv4_5_common_t *armv4_5;
2917         arm7_9_common_t *arm7_9;
2918
2919         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2920         {
2921                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2922                 return ERROR_OK;
2923         }
2924
2925         if (target->state != TARGET_HALTED)
2926         {
2927                 command_print(cmd_ctx, "can't write registers while running");
2928                 return ERROR_OK;
2929         }
2930
2931         if (argc < 2)
2932         {
2933                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2934                 return ERROR_OK;
2935         }
2936
2937         COMMAND_PARSE_NUMBER(u32, args[0], value);
2938         COMMAND_PARSE_NUMBER(int, args[1], spsr);
2939
2940         /* if we're writing the CPSR, mask the T bit */
2941         if (!spsr)
2942                 value &= ~0x20;
2943
2944         arm7_9->write_xpsr(target, value, spsr);
2945         if ((retval = jtag_execute_queue()) != ERROR_OK)
2946         {
2947                 LOG_ERROR("JTAG error while writing to xpsr");
2948                 return retval;
2949         }
2950
2951         return ERROR_OK;
2952 }
2953
2954 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2955 {
2956         uint32_t value;
2957         int rotate;
2958         int spsr;
2959         int retval;
2960         target_t *target = get_current_target(cmd_ctx);
2961         armv4_5_common_t *armv4_5;
2962         arm7_9_common_t *arm7_9;
2963
2964         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2965         {
2966                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2967                 return ERROR_OK;
2968         }
2969
2970         if (target->state != TARGET_HALTED)
2971         {
2972                 command_print(cmd_ctx, "can't write registers while running");
2973                 return ERROR_OK;
2974         }
2975
2976         if (argc < 3)
2977         {
2978                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2979                 return ERROR_OK;
2980         }
2981
2982         COMMAND_PARSE_NUMBER(u32, args[0], value);
2983         COMMAND_PARSE_NUMBER(int, args[1], rotate);
2984         COMMAND_PARSE_NUMBER(int, args[2], spsr);
2985
2986         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2987         if ((retval = jtag_execute_queue()) != ERROR_OK)
2988         {
2989                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2990                 return retval;
2991         }
2992
2993         return ERROR_OK;
2994 }
2995
2996 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2997 {
2998         uint32_t value;
2999         uint32_t mode;
3000         int num;
3001         target_t *target = get_current_target(cmd_ctx);
3002         armv4_5_common_t *armv4_5;
3003         arm7_9_common_t *arm7_9;
3004
3005         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3006         {
3007                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3008                 return ERROR_OK;
3009         }
3010
3011         if (target->state != TARGET_HALTED)
3012         {
3013                 command_print(cmd_ctx, "can't write registers while running");
3014                 return ERROR_OK;
3015         }
3016
3017         if (argc < 3)
3018         {
3019                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
3020                 return ERROR_OK;
3021         }
3022
3023         COMMAND_PARSE_NUMBER(int, args[0], num);
3024         COMMAND_PARSE_NUMBER(u32, args[1], mode);
3025         COMMAND_PARSE_NUMBER(u32, args[2], value);
3026
3027         return arm7_9_write_core_reg(target, num, mode, value);
3028 }
3029
3030 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3031 {
3032         target_t *target = get_current_target(cmd_ctx);
3033         armv4_5_common_t *armv4_5;
3034         arm7_9_common_t *arm7_9;
3035
3036         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3037         {
3038                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3039                 return ERROR_OK;
3040         }
3041
3042         if (argc > 0)
3043         {
3044                 if (strcmp("enable", args[0]) == 0)
3045                 {
3046                         arm7_9->use_dbgrq = 1;
3047                 }
3048                 else if (strcmp("disable", args[0]) == 0)
3049                 {
3050                         arm7_9->use_dbgrq = 0;
3051                 }
3052                 else
3053                 {
3054                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3055                 }
3056         }
3057
3058         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3059
3060         return ERROR_OK;
3061 }
3062
3063 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3064 {
3065         target_t *target = get_current_target(cmd_ctx);
3066         armv4_5_common_t *armv4_5;
3067         arm7_9_common_t *arm7_9;
3068
3069         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3070         {
3071                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3072                 return ERROR_OK;
3073         }
3074
3075         if (argc > 0)
3076         {
3077                 if (strcmp("enable", args[0]) == 0)
3078                 {
3079                         arm7_9->fast_memory_access = 1;
3080                 }
3081                 else if (strcmp("disable", args[0]) == 0)
3082                 {
3083                         arm7_9->fast_memory_access = 0;
3084                 }
3085                 else
3086                 {
3087                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3088                 }
3089         }
3090
3091         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3092
3093         return ERROR_OK;
3094 }
3095
3096 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3097 {
3098         target_t *target = get_current_target(cmd_ctx);
3099         armv4_5_common_t *armv4_5;
3100         arm7_9_common_t *arm7_9;
3101
3102         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3103         {
3104                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3105                 return ERROR_OK;
3106         }
3107
3108         if (argc > 0)
3109         {
3110                 if (strcmp("enable", args[0]) == 0)
3111                 {
3112                         arm7_9->dcc_downloads = 1;
3113                 }
3114                 else if (strcmp("disable", args[0]) == 0)
3115                 {
3116                         arm7_9->dcc_downloads = 0;
3117                 }
3118                 else
3119                 {
3120                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3121                 }
3122         }
3123
3124         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3125
3126         return ERROR_OK;
3127 }
3128
3129 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3130 {
3131         int retval = ERROR_OK;
3132         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3133
3134         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3135
3136         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3137         {
3138                 return retval;
3139         }
3140
3141         arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3142         arm7_9->wp_available_max = 2;
3143         arm7_9->sw_breakpoints_added = 0;
3144         arm7_9->sw_breakpoint_count = 0;
3145         arm7_9->breakpoint_count = 0;
3146         arm7_9->wp0_used = 0;
3147         arm7_9->wp1_used = 0;
3148         arm7_9->wp1_used_default = 0;
3149         arm7_9->use_dbgrq = 0;
3150
3151         arm7_9->etm_ctx = NULL;
3152         arm7_9->has_single_step = 0;
3153         arm7_9->has_monitor_mode = 0;
3154         arm7_9->has_vector_catch = 0;
3155
3156         arm7_9->debug_entry_from_reset = 0;
3157
3158         arm7_9->dcc_working_area = NULL;
3159
3160         arm7_9->fast_memory_access = fast_and_dangerous;
3161         arm7_9->dcc_downloads = fast_and_dangerous;
3162
3163         arm7_9->need_bypass_before_restart = 0;
3164
3165         armv4_5->arch_info = arm7_9;
3166         armv4_5->read_core_reg = arm7_9_read_core_reg;
3167         armv4_5->write_core_reg = arm7_9_write_core_reg;
3168         armv4_5->full_context = arm7_9_full_context;
3169
3170         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3171         {
3172                 return retval;
3173         }
3174
3175         if ((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3176         {
3177                 return retval;
3178         }
3179
3180         return ERROR_OK;
3181 }