Ensure Cortex-M reset wakes device from sleep (wfi/wfe)
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
30  ***************************************************************************/
31
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "embeddedice.h"
38 #include "target_request.h"
39 #include "etm.h"
40 #include <helper/time_support.h>
41 #include "arm_simulator.h"
42 #include "arm_semihosting.h"
43 #include "algorithm.h"
44 #include "register.h"
45 #include "armv4_5.h"
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used) {
97                 arm7_9->wp0_used = 1;
98                 breakpoint->set = 1;
99                 arm7_9->wp_available--;
100         } else if (!arm7_9->wp1_used) {
101                 arm7_9->wp1_used = 1;
102                 breakpoint->set = 2;
103                 arm7_9->wp_available--;
104         } else
105                 LOG_ERROR("BUG: no hardware comparator available");
106         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
107                         breakpoint->unique_id,
108                         breakpoint->address,
109                         breakpoint->set);
110 }
111
112 /**
113  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
114  *
115  * @param arm7_9 Pointer to common struct for ARM7/9 targets
116  * @return Error codes if there is a problem finding a watchpoint or the result
117  * of executing the JTAG queue
118  */
119 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
120 {
121         if (arm7_9->sw_breakpoints_added)
122                 return ERROR_OK;
123         if (arm7_9->wp_available < 1) {
124                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
125                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
126         }
127         arm7_9->wp_available--;
128
129         /* pick a breakpoint unit */
130         if (!arm7_9->wp0_used) {
131                 arm7_9->sw_breakpoints_added = 1;
132                 arm7_9->wp0_used = 3;
133         } else if (!arm7_9->wp1_used) {
134                 arm7_9->sw_breakpoints_added = 2;
135                 arm7_9->wp1_used = 3;
136         } else {
137                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
138                 return ERROR_FAIL;
139         }
140
141         if (arm7_9->sw_breakpoints_added == 1) {
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
147         } else if (arm7_9->sw_breakpoints_added == 2) {
148                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
153         } else {
154                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
155                 return ERROR_FAIL;
156         }
157         LOG_DEBUG("SW BP using hw wp: %d",
158                 arm7_9->sw_breakpoints_added);
159
160         return jtag_execute_queue();
161 }
162
163 /**
164  * Setup the common pieces for an ARM7/9 target after reset or on startup.
165  *
166  * @param target Pointer to an ARM7/9 target to setup
167  * @return Result of clearing the watchpoints on the target
168  */
169 static int arm7_9_setup(struct target *target)
170 {
171         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
172
173         return arm7_9_clear_watchpoints(arm7_9);
174 }
175
176 /**
177  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
178  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
179  * might have erased the values in Embedded ICE.
180  *
181  * @param target Pointer to the target device to set the breakpoints on
182  * @param breakpoint Pointer to the breakpoint to be set
183  * @return For hardware breakpoints, this is the result of executing the JTAG
184  * queue.  For software breakpoints, this will be the status of the
185  * required memory reads and writes
186  */
187 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190         int retval = ERROR_OK;
191
192         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d",
193                 breakpoint->unique_id,
194                 breakpoint->address,
195                 breakpoint->type);
196
197         if (target->state != TARGET_HALTED) {
198                 LOG_WARNING("target not halted");
199                 return ERROR_TARGET_NOT_HALTED;
200         }
201
202         if (breakpoint->type == BKPT_HARD) {
203                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
204                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
205
206                 /* reassign a hw breakpoint */
207                 if (breakpoint->set == 0)
208                         arm7_9_assign_wp(arm7_9, breakpoint);
209
210                 if (breakpoint->set == 1) {
211                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
212                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
213                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
214                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
215                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
216                 } else if (breakpoint->set == 2) {
217                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
218                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
219                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
220                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
221                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
222                 } else {
223                         LOG_ERROR("BUG: no hardware comparator available");
224                         return ERROR_OK;
225                 }
226
227                 retval = jtag_execute_queue();
228         } else if (breakpoint->type == BKPT_SOFT) {
229                 /* did we already set this breakpoint? */
230                 if (breakpoint->set)
231                         return ERROR_OK;
232
233                 if (breakpoint->length == 4) {
234                         uint32_t verify = 0xffffffff;
235                         /* keep the original instruction in target endianness */
236                         retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
237                         if (retval != ERROR_OK)
238                                 return retval;
239                         /* write the breakpoint instruction in target
240                          * endianness (arm7_9->arm_bkpt is host endian) */
241                         retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
242                         if (retval != ERROR_OK)
243                                 return retval;
244
245                         retval = target_read_u32(target, breakpoint->address, &verify);
246                         if (retval != ERROR_OK)
247                                 return retval;
248                         if (verify != arm7_9->arm_bkpt) {
249                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
250                                                 " - check that memory is read/writable", breakpoint->address);
251                                 return ERROR_OK;
252                         }
253                 } else {
254                         uint16_t verify = 0xffff;
255                         /* keep the original instruction in target endianness */
256                         retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
257                         if (retval != ERROR_OK)
258                                 return retval;
259                         /* write the breakpoint instruction in target
260                          * endianness (arm7_9->thumb_bkpt is host endian) */
261                         retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
262                         if (retval != ERROR_OK)
263                                 return retval;
264
265                         retval = target_read_u16(target, breakpoint->address, &verify);
266                         if (retval != ERROR_OK)
267                                 return retval;
268                         if (verify != arm7_9->thumb_bkpt) {
269                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
270                                                 " - check that memory is read/writable", breakpoint->address);
271                                 return ERROR_OK;
272                         }
273                 }
274
275                 retval = arm7_9_set_software_breakpoints(arm7_9);
276                 if (retval != ERROR_OK)
277                         return retval;
278
279                 arm7_9->sw_breakpoint_count++;
280
281                 breakpoint->set = 1;
282         }
283
284         return retval;
285 }
286
287 /**
288  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
289  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
290  * will be updated.  Otherwise, the software breakpoint will be restored to its
291  * original instruction if it hasn't already been modified.
292  *
293  * @param target Pointer to ARM7/9 target to unset the breakpoint from
294  * @param breakpoint Pointer to breakpoint to be unset
295  * @return For hardware breakpoints, this is the result of executing the JTAG
296  * queue.  For software breakpoints, this will be the status of the
297  * required memory reads and writes
298  */
299 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
300 {
301         int retval = ERROR_OK;
302         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
303
304         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
305                 breakpoint->unique_id,
306                 breakpoint->address);
307
308         if (!breakpoint->set) {
309                 LOG_WARNING("breakpoint not set");
310                 return ERROR_OK;
311         }
312
313         if (breakpoint->type == BKPT_HARD) {
314                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
315                         breakpoint->unique_id,
316                         breakpoint->set);
317                 if (breakpoint->set == 1) {
318                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
319                         arm7_9->wp0_used = 0;
320                         arm7_9->wp_available++;
321                 } else if (breakpoint->set == 2) {
322                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
323                         arm7_9->wp1_used = 0;
324                         arm7_9->wp_available++;
325                 }
326                 retval = jtag_execute_queue();
327                 breakpoint->set = 0;
328         } else {
329                 /* restore original instruction (kept in target endianness) */
330                 if (breakpoint->length == 4) {
331                         uint32_t current_instr;
332                         /* check that user program as not modified breakpoint instruction */
333                         retval = target_read_memory(target,
334                                         breakpoint->address, 4, 1, (uint8_t *)&current_instr);
335                         if (retval != ERROR_OK)
336                                 return retval;
337                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
338                         if (current_instr == arm7_9->arm_bkpt) {
339                                 retval = target_write_memory(target,
340                                                 breakpoint->address, 4, 1, breakpoint->orig_instr);
341                                 if (retval != ERROR_OK)
342                                         return retval;
343                         }
344
345                 } else {
346                         uint16_t current_instr;
347                         /* check that user program as not modified breakpoint instruction */
348                         retval = target_read_memory(target,
349                                         breakpoint->address, 2, 1, (uint8_t *)&current_instr);
350                         if (retval != ERROR_OK)
351                                 return retval;
352                         current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
353                         if (current_instr == arm7_9->thumb_bkpt)
354                                 retval = target_write_memory(target,
355                                                 breakpoint->address, 2, 1, breakpoint->orig_instr);
356                                 if (retval != ERROR_OK)
357                                         return retval;
358
359                 }
360
361                 if (--arm7_9->sw_breakpoint_count == 0) {
362                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used
363                          *to implement it */
364                         if (arm7_9->sw_breakpoints_added == 1)
365                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
366                                                 EICE_W0_CONTROL_VALUE], 0);
367                         else if (arm7_9->sw_breakpoints_added == 2)
368                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
369                                                 EICE_W1_CONTROL_VALUE], 0);
370                 }
371
372                 breakpoint->set = 0;
373         }
374
375         return retval;
376 }
377
378 /**
379  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
380  * dangling breakpoints and that the desired breakpoint can be added.
381  *
382  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
383  * @param breakpoint Pointer to the breakpoint to be added
384  * @return An error status if there is a problem adding the breakpoint or the
385  * result of setting the breakpoint
386  */
387 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
388 {
389         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
390
391         if (arm7_9->breakpoint_count == 0) {
392                 /* make sure we don't have any dangling breakpoints. This is vital upon
393                  * GDB connect/disconnect
394                  */
395                 arm7_9_clear_watchpoints(arm7_9);
396         }
397
398         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
399                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
400                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
401         }
402
403         if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
404                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
405                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
406         }
407
408         if (breakpoint->type == BKPT_HARD)
409                 arm7_9_assign_wp(arm7_9, breakpoint);
410
411         arm7_9->breakpoint_count++;
412
413         return arm7_9_set_breakpoint(target, breakpoint);
414 }
415
416 /**
417  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
418  * dangling breakpoints and updates available watchpoints if it is a hardware
419  * breakpoint.
420  *
421  * @param target Pointer to the target to have a breakpoint removed
422  * @param breakpoint Pointer to the breakpoint to be removed
423  * @return Error status if there was a problem unsetting the breakpoint or the
424  * watchpoints could not be cleared
425  */
426 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
427 {
428         int retval = ERROR_OK;
429         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
430
431         retval = arm7_9_unset_breakpoint(target, breakpoint);
432         if (retval != ERROR_OK)
433                 return retval;
434
435         if (breakpoint->type == BKPT_HARD)
436                 arm7_9->wp_available++;
437
438         arm7_9->breakpoint_count--;
439         if (arm7_9->breakpoint_count == 0) {
440                 /* make sure we don't have any dangling breakpoints */
441                 retval = arm7_9_clear_watchpoints(arm7_9);
442                 if (retval != ERROR_OK)
443                         return retval;
444         }
445
446         return ERROR_OK;
447 }
448
449 /**
450  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
451  * considered a bug to call this function when there are no available watchpoint
452  * units.
453  *
454  * @param target Pointer to an ARM7/9 target to set a watchpoint on
455  * @param watchpoint Pointer to the watchpoint to be set
456  * @return Error status if watchpoint set fails or the result of executing the
457  * JTAG queue
458  */
459 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
460 {
461         int retval = ERROR_OK;
462         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
463         int rw_mask = 1;
464         uint32_t mask;
465
466         mask = watchpoint->length - 1;
467
468         if (target->state != TARGET_HALTED) {
469                 LOG_WARNING("target not halted");
470                 return ERROR_TARGET_NOT_HALTED;
471         }
472
473         if (watchpoint->rw == WPT_ACCESS)
474                 rw_mask = 0;
475         else
476                 rw_mask = 1;
477
478         if (!arm7_9->wp0_used) {
479                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
480                         watchpoint->address);
481                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
482                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
483                         watchpoint->mask);
484                 if (watchpoint->mask != 0xffffffffu)
485                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
486                                 watchpoint->value);
487                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
488                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
489                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
490                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
491
492                 retval = jtag_execute_queue();
493                 if (retval != ERROR_OK)
494                         return retval;
495                 watchpoint->set = 1;
496                 arm7_9->wp0_used = 2;
497         } else if (!arm7_9->wp1_used) {
498                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
499                         watchpoint->address);
500                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
501                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
502                         watchpoint->mask);
503                 if (watchpoint->mask != 0xffffffffu)
504                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
505                                 watchpoint->value);
506                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
507                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
508                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
509                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
510
511                 retval = jtag_execute_queue();
512                 if (retval != ERROR_OK)
513                         return retval;
514                 watchpoint->set = 2;
515                 arm7_9->wp1_used = 2;
516         } else {
517                 LOG_ERROR("BUG: no hardware comparator available");
518                 return ERROR_OK;
519         }
520
521         return ERROR_OK;
522 }
523
524 /**
525  * Unset an existing watchpoint and clear the used watchpoint unit.
526  *
527  * @param target Pointer to the target to have the watchpoint removed
528  * @param watchpoint Pointer to the watchpoint to be removed
529  * @return Error status while trying to unset the watchpoint or the result of
530  *         executing the JTAG queue
531  */
532 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
533 {
534         int retval = ERROR_OK;
535         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
536
537         if (target->state != TARGET_HALTED) {
538                 LOG_WARNING("target not halted");
539                 return ERROR_TARGET_NOT_HALTED;
540         }
541
542         if (!watchpoint->set) {
543                 LOG_WARNING("breakpoint not set");
544                 return ERROR_OK;
545         }
546
547         if (watchpoint->set == 1) {
548                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
549                 retval = jtag_execute_queue();
550                 if (retval != ERROR_OK)
551                         return retval;
552                 arm7_9->wp0_used = 0;
553         } else if (watchpoint->set == 2) {
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
555                 retval = jtag_execute_queue();
556                 if (retval != ERROR_OK)
557                         return retval;
558                 arm7_9->wp1_used = 0;
559         }
560         watchpoint->set = 0;
561
562         return ERROR_OK;
563 }
564
565 /**
566  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
567  * available, an error response is returned.
568  *
569  * @param target Pointer to the ARM7/9 target to add a watchpoint to
570  * @param watchpoint Pointer to the watchpoint to be added
571  * @return Error status while trying to add the watchpoint
572  */
573 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
574 {
575         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
576
577         if (arm7_9->wp_available < 1)
578                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
579
580         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
581                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
582
583         arm7_9->wp_available--;
584
585         return ERROR_OK;
586 }
587
588 /**
589  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
590  * the used watchpoint unit will be reopened.
591  *
592  * @param target Pointer to the target to remove a watchpoint from
593  * @param watchpoint Pointer to the watchpoint to be removed
594  * @return Result of trying to unset the watchpoint
595  */
596 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
597 {
598         int retval = ERROR_OK;
599         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
600
601         if (watchpoint->set) {
602                 retval = arm7_9_unset_watchpoint(target, watchpoint);
603                 if (retval != ERROR_OK)
604                         return retval;
605         }
606
607         arm7_9->wp_available++;
608
609         return ERROR_OK;
610 }
611
612 /**
613  * Restarts the target by sending a RESTART instruction and moving the JTAG
614  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
615  * asserted by the processor.
616  *
617  * @param target Pointer to target to issue commands to
618  * @return Error status if there is a timeout or a problem while executing the
619  * JTAG queue
620  */
621 int arm7_9_execute_sys_speed(struct target *target)
622 {
623         int retval;
624         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
625         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
626         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
627
628         /* set RESTART instruction */
629         if (arm7_9->need_bypass_before_restart) {
630                 arm7_9->need_bypass_before_restart = 0;
631                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
632                 if (retval != ERROR_OK)
633                         return retval;
634         }
635         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
636         if (retval != ERROR_OK)
637                 return retval;
638
639         long long then = timeval_ms();
640         int timeout;
641         while (!(timeout = ((timeval_ms()-then) > 1000))) {
642                 /* read debug status register */
643                 embeddedice_read_reg(dbg_stat);
644                 retval = jtag_execute_queue();
645                 if (retval != ERROR_OK)
646                         return retval;
647                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
648                                 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
649                         break;
650                 if (debug_level >= 3)
651                         alive_sleep(100);
652                 else
653                         keep_alive();
654         }
655         if (timeout) {
656                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
657                         buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
658                 return ERROR_TARGET_TIMEOUT;
659         }
660
661         return ERROR_OK;
662 }
663
664 /**
665  * Restarts the target by sending a RESTART instruction and moving the JTAG
666  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
667  * waiting until they are.
668  *
669  * @param target Pointer to the target to issue commands to
670  * @return Always ERROR_OK
671  */
672 static int arm7_9_execute_fast_sys_speed(struct target *target)
673 {
674         static int set;
675         static uint8_t check_value[4], check_mask[4];
676
677         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
678         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
679         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
680         int retval;
681
682         /* set RESTART instruction */
683         if (arm7_9->need_bypass_before_restart) {
684                 arm7_9->need_bypass_before_restart = 0;
685                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
686                 if (retval != ERROR_OK)
687                         return retval;
688         }
689         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
690         if (retval != ERROR_OK)
691                 return retval;
692
693         if (!set) {
694                 /* check for DBGACK and SYSCOMP set (others don't care) */
695
696                 /* NB! These are constants that must be available until after next jtag_execute() and
697                  * we evaluate the values upon first execution in lieu of setting up these constants
698                  * during early setup.
699                  * */
700                 buf_set_u32(check_value, 0, 32, 0x9);
701                 buf_set_u32(check_mask, 0, 32, 0x9);
702                 set = 1;
703         }
704
705         /* read debug status register */
706         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
707
708         return ERROR_OK;
709 }
710
711 /**
712  * Get some data from the ARM7/9 target.
713  *
714  * @param target Pointer to the ARM7/9 target to read data from
715  * @param size The number of 32bit words to be read
716  * @param buffer Pointer to the buffer that will hold the data
717  * @return The result of receiving data from the Embedded ICE unit
718  */
719 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
720 {
721         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
722         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
723         uint32_t *data;
724         int retval = ERROR_OK;
725         uint32_t i;
726
727         data = malloc(size * (sizeof(uint32_t)));
728
729         retval = embeddedice_receive(jtag_info, data, size);
730
731         /* return the 32-bit ints in the 8-bit array */
732         for (i = 0; i < size; i++)
733                 h_u32_to_le(buffer + (i * 4), data[i]);
734
735         free(data);
736
737         return retval;
738 }
739
740 /**
741  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
742  * target is running and the DCC control register has the W bit high, this will
743  * execute the request on the target.
744  *
745  * @param priv Void pointer expected to be a struct target pointer
746  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
747  * from the Embedded ICE unit
748  */
749 static int arm7_9_handle_target_request(void *priv)
750 {
751         int retval = ERROR_OK;
752         struct target *target = priv;
753         if (!target_was_examined(target))
754                 return ERROR_OK;
755         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
756         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
757         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
758
759         if (!target->dbg_msg_enabled)
760                 return ERROR_OK;
761
762         if (target->state == TARGET_RUNNING) {
763                 /* read DCC control register */
764                 embeddedice_read_reg(dcc_control);
765                 retval = jtag_execute_queue();
766                 if (retval != ERROR_OK)
767                         return retval;
768
769                 /* check W bit */
770                 if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
771                         uint32_t request;
772
773                         retval = embeddedice_receive(jtag_info, &request, 1);
774                         if (retval != ERROR_OK)
775                                 return retval;
776                         retval = target_request(target, request);
777                         if (retval != ERROR_OK)
778                                 return retval;
779                 }
780         }
781
782         return ERROR_OK;
783 }
784
785 /**
786  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
787  * is manipulated to the right halted state based on its current state.  This is
788  * what happens:
789  *
790  * <table>
791  *   <tr><th > State</th><th > Action</th></tr>
792  *   <tr><td > TARGET_RUNNING | TARGET_RESET</td>
793  *     <td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
794  *   <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
795  *   <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
796  *   <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
797  * </table>
798  *
799  * If the target does not end up in the halted state, a warning is produced.  If
800  * DBGACK is cleared, then the target is expected to either be running or
801  * running in debug.
802  *
803  * @param target Pointer to the ARM7/9 target to poll
804  * @return ERROR_OK or an error status if a command fails
805  */
806 int arm7_9_poll(struct target *target)
807 {
808         int retval;
809         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
810         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
811
812         /* read debug status register */
813         embeddedice_read_reg(dbg_stat);
814         retval = jtag_execute_queue();
815         if (retval != ERROR_OK)
816                 return retval;
817
818         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
819                 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
820                 if (target->state == TARGET_UNKNOWN) {
821                         /* Starting OpenOCD with target in debug-halt */
822                         target->state = TARGET_RUNNING;
823                         LOG_DEBUG("DBGACK already set during server startup.");
824                 }
825                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
826                         target->state = TARGET_HALTED;
827
828                         retval = arm7_9_debug_entry(target);
829                         if (retval != ERROR_OK)
830                                 return retval;
831
832                         if (arm_semihosting(target, &retval) != 0)
833                                 return retval;
834
835                         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
836                         if (retval != ERROR_OK)
837                                 return retval;
838                 }
839                 if (target->state == TARGET_DEBUG_RUNNING) {
840                         target->state = TARGET_HALTED;
841                         retval = arm7_9_debug_entry(target);
842                         if (retval != ERROR_OK)
843                                 return retval;
844
845                         retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
846                         if (retval != ERROR_OK)
847                                 return retval;
848                 }
849                 if (target->state != TARGET_HALTED)
850                         LOG_WARNING(
851                                 "DBGACK set, but the target did not end up in the halted state %d",
852                                 target->state);
853         } else {
854                 if (target->state != TARGET_DEBUG_RUNNING)
855                         target->state = TARGET_RUNNING;
856         }
857
858         return ERROR_OK;
859 }
860
861 /**
862  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
863  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
864  * affected) completely stop the JTAG clock while the core is held in reset
865  * (SRST).  It isn't possible to program the halt condition once reset is
866  * asserted, hence a hook that allows the target to set up its reset-halt
867  * condition is setup prior to asserting reset.
868  *
869  * @param target Pointer to an ARM7/9 target to assert reset on
870  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
871  */
872 int arm7_9_assert_reset(struct target *target)
873 {
874         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
875         enum reset_types jtag_reset_config = jtag_get_reset_config();
876         bool use_event = false;
877
878         LOG_DEBUG("target->state: %s", target_state_name(target));
879
880         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
881                 use_event = true;
882         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
883                 LOG_ERROR("%s: how to reset?", target_name(target));
884                 return ERROR_FAIL;
885         }
886
887         /* At this point trst has been asserted/deasserted once. We would
888          * like to program EmbeddedICE while SRST is asserted, instead of
889          * depending on SRST to leave that module alone.  However, many CPUs
890          * gate the JTAG clock while SRST is asserted; or JTAG may need
891          * clock stability guarantees (adaptive clocking might help).
892          *
893          * So we assume JTAG access during SRST is off the menu unless it's
894          * been specifically enabled.
895          */
896         bool srst_asserted = false;
897
898         if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
899                         && (jtag_reset_config & RESET_SRST_NO_GATING)) {
900                 jtag_add_reset(0, 1);
901                 srst_asserted = true;
902         }
903
904         if (target->reset_halt) {
905                 /*
906                  * For targets that don't support communication while SRST is
907                  * asserted, we need to set up the reset vector catch first.
908                  *
909                  * When we use TRST+SRST and that's equivalent to a power-up
910                  * reset, these settings may well be reset anyway; so setting
911                  * them here won't matter.
912                  */
913                 if (arm7_9->has_vector_catch) {
914                         /* program vector catch register to catch reset */
915                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
916
917                         /* extra runtest added as issues were found with
918                          * certain ARM9 cores (maybe more) - AT91SAM9260
919                          * and STR9
920                          */
921                         jtag_add_runtest(1, TAP_IDLE);
922                 } else {
923                         /* program watchpoint unit to match on reset vector
924                          * address
925                          */
926                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
927                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
928                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
929                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
930                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
931                 }
932         }
933
934         if (use_event)
935                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
936         else {
937                 /* If we use SRST ... we'd like to issue just SRST, but the
938                  * board or chip may be set up so we have to assert TRST as
939                  * well.  On some chips that combination is equivalent to a
940                  * power-up reset, and generally clobbers EICE state.
941                  */
942                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
943                         jtag_add_reset(1, 1);
944                 else if (!srst_asserted)
945                         jtag_add_reset(0, 1);
946                 jtag_add_sleep(50000);
947         }
948
949         target->state = TARGET_RESET;
950         register_cache_invalidate(arm7_9->arm.core_cache);
951
952         /* REVISIT why isn't standard debug entry logic sufficient?? */
953         if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
954                 /* debug entry was prepared above */
955                 target->debug_reason = DBG_REASON_DBGRQ;
956         }
957
958         return ERROR_OK;
959 }
960
961 /**
962  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
963  * and the target is being reset into a halt, a warning will be triggered
964  * because it is not possible to reset into a halted mode in this case.  The
965  * target is halted using the target's functions.
966  *
967  * @param target Pointer to the target to have the reset deasserted
968  * @return ERROR_OK or an error from polling or halting the target
969  */
970 int arm7_9_deassert_reset(struct target *target)
971 {
972         int retval = ERROR_OK;
973         LOG_DEBUG("target->state: %s", target_state_name(target));
974
975         /* deassert reset lines */
976         jtag_add_reset(0, 0);
977
978         /* In case polling is disabled, we need to examine the
979          * target and poll here for this target to work correctly.
980          *
981          * Otherwise, e.g. halt will fail afterwards with bogus
982          * error messages as halt will believe that reset is
983          * still in effect.
984          */
985         retval = target_examine_one(target);
986         if (retval != ERROR_OK)
987                 return retval;
988
989         retval = target_poll(target);
990         if (retval != ERROR_OK)
991                 return retval;
992
993         enum reset_types jtag_reset_config = jtag_get_reset_config();
994         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
995                 LOG_WARNING(
996                         "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
997                 retval = target_halt(target);
998                 if (retval != ERROR_OK)
999                         return retval;
1000         }
1001         return retval;
1002 }
1003
1004 /**
1005  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1006  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1007  * vector catch was used, it is restored.  Otherwise, the control value is
1008  * restored and the watchpoint unit is restored if it was in use.
1009  *
1010  * @param target Pointer to the ARM7/9 target to have halt cleared
1011  * @return Always ERROR_OK
1012  */
1013 static int arm7_9_clear_halt(struct target *target)
1014 {
1015         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1016         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1017
1018         /* we used DBGRQ only if we didn't come out of reset */
1019         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1020                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1021                  */
1022                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1023                 embeddedice_store_reg(dbg_ctrl);
1024         } else {
1025                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1026                         /* if we came out of reset, and vector catch is supported, we used
1027                          * vector catch to enter debug state
1028                          * restore the register in that case
1029                          */
1030                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1031                 } else {
1032                         /* restore registers if watchpoint unit 0 was in use
1033                          */
1034                         if (arm7_9->wp0_used) {
1035                                 if (arm7_9->debug_entry_from_reset)
1036                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1037                                                         EICE_W0_ADDR_VALUE]);
1038                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1039                                                 EICE_W0_ADDR_MASK]);
1040                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1041                                                 EICE_W0_DATA_MASK]);
1042                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1043                                                 EICE_W0_CONTROL_MASK]);
1044                         }
1045                         /* control value always has to be restored, as it was either disabled,
1046                          * or enabled with possibly different bits
1047                          */
1048                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1049                 }
1050         }
1051
1052         return ERROR_OK;
1053 }
1054
1055 /**
1056  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1057  * and then there is a wait until the processor shows the halt.  This wait can
1058  * timeout and results in an error being returned.  The software reset involves
1059  * clearing the halt, updating the debug control register, changing to ARM mode,
1060  * reset of the program counter, and reset of all of the registers.
1061  *
1062  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1063  * @return Error status if any of the commands fail, otherwise ERROR_OK
1064  */
1065 int arm7_9_soft_reset_halt(struct target *target)
1066 {
1067         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1068         struct arm *arm = &arm7_9->arm;
1069         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1070         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1071         int i;
1072         int retval;
1073
1074         /* FIX!!! replace some of this code with tcl commands
1075          *
1076          * halt # the halt command is synchronous
1077          * armv4_5 core_state arm
1078          *
1079          */
1080
1081         retval = target_halt(target);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084
1085         long long then = timeval_ms();
1086         int timeout;
1087         while (!(timeout = ((timeval_ms()-then) > 1000))) {
1088                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1089                         break;
1090                 embeddedice_read_reg(dbg_stat);
1091                 retval = jtag_execute_queue();
1092                 if (retval != ERROR_OK)
1093                         return retval;
1094                 if (debug_level >= 3)
1095                         alive_sleep(100);
1096                 else
1097                         keep_alive();
1098         }
1099         if (timeout) {
1100                 LOG_ERROR("Failed to halt CPU after 1 sec");
1101                 return ERROR_TARGET_TIMEOUT;
1102         }
1103         target->state = TARGET_HALTED;
1104
1105         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1106          * ensure that DBGRQ is cleared
1107          */
1108         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1109         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1110         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1111         embeddedice_store_reg(dbg_ctrl);
1112
1113         retval = arm7_9_clear_halt(target);
1114         if (retval != ERROR_OK)
1115                 return retval;
1116
1117         /* if the target is in Thumb state, change to ARM state */
1118         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1119                 uint32_t r0_thumb, pc_thumb;
1120                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1121                 /* Entered debug from Thumb mode */
1122                 arm->core_state = ARM_STATE_THUMB;
1123                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1124         }
1125
1126         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1127
1128         /* all register content is now invalid */
1129         register_cache_invalidate(arm->core_cache);
1130
1131         /* SVC, ARM state, IRQ and FIQ disabled */
1132         uint32_t cpsr;
1133
1134         cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1135         cpsr &= ~0xff;
1136         cpsr |= 0xd3;
1137         arm_set_cpsr(arm, cpsr);
1138         arm->cpsr->dirty = 1;
1139
1140         /* start fetching from 0x0 */
1141         buf_set_u32(arm->pc->value, 0, 32, 0x0);
1142         arm->pc->dirty = 1;
1143         arm->pc->valid = 1;
1144
1145         /* reset registers */
1146         for (i = 0; i <= 14; i++) {
1147                 struct reg *r = arm_reg_current(arm, i);
1148
1149                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1150                 r->dirty = 1;
1151                 r->valid = 1;
1152         }
1153
1154         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1155         if (retval != ERROR_OK)
1156                 return retval;
1157
1158         return ERROR_OK;
1159 }
1160
1161 /**
1162  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1163  * line or by programming a watchpoint to trigger on any address.  It is
1164  * considered a bug to call this function while the target is in the
1165  * TARGET_RESET state.
1166  *
1167  * @param target Pointer to the ARM7/9 target to be halted
1168  * @return Always ERROR_OK
1169  */
1170 int arm7_9_halt(struct target *target)
1171 {
1172         if (target->state == TARGET_RESET) {
1173                 LOG_ERROR(
1174                         "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1175                 return ERROR_OK;
1176         }
1177
1178         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1179         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1180
1181         LOG_DEBUG("target->state: %s",
1182                 target_state_name(target));
1183
1184         if (target->state == TARGET_HALTED) {
1185                 LOG_DEBUG("target was already halted");
1186                 return ERROR_OK;
1187         }
1188
1189         if (target->state == TARGET_UNKNOWN)
1190                 LOG_WARNING("target was in unknown state when halt was requested");
1191
1192         if (arm7_9->use_dbgrq) {
1193                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1194                  */
1195                 if (arm7_9->set_special_dbgrq)
1196                         arm7_9->set_special_dbgrq(target);
1197                 else {
1198                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1199                         embeddedice_store_reg(dbg_ctrl);
1200                 }
1201         } else {
1202                 /* program watchpoint unit to match on any address
1203                  */
1204                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1205                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1206                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1207                         EICE_W_CTRL_ENABLE);
1208                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1209                         ~EICE_W_CTRL_nOPC & 0xff);
1210         }
1211
1212         target->debug_reason = DBG_REASON_DBGRQ;
1213
1214         return ERROR_OK;
1215 }
1216
1217 /**
1218  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1219  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1220  * examined.  Once done, the target is verified to be halted and the processor
1221  * is forced into ARM mode.  The core registers are saved for the current core
1222  * mode and the program counter (register 15) is updated as needed.  The core
1223  * registers and CPSR and SPSR are saved for restoration later.
1224  *
1225  * @param target Pointer to target that is entering debug mode
1226  * @return Error code if anything fails, otherwise ERROR_OK
1227  */
1228 static int arm7_9_debug_entry(struct target *target)
1229 {
1230         int i;
1231         uint32_t context[16];
1232         uint32_t *context_p[16];
1233         uint32_t r0_thumb, pc_thumb;
1234         uint32_t cpsr, cpsr_mask = 0;
1235         int retval;
1236         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1237         struct arm *arm = &arm7_9->arm;
1238         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1239         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1240
1241 #ifdef _DEBUG_ARM7_9_
1242         LOG_DEBUG("-");
1243 #endif
1244
1245         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1246          * ensure that DBGRQ is cleared
1247          */
1248         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1249         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1250         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1251         embeddedice_store_reg(dbg_ctrl);
1252
1253         retval = arm7_9_clear_halt(target);
1254         if (retval != ERROR_OK)
1255                 return retval;
1256
1257         retval = jtag_execute_queue();
1258         if (retval != ERROR_OK)
1259                 return retval;
1260
1261         retval = arm7_9->examine_debug_reason(target);
1262         if (retval != ERROR_OK)
1263                 return retval;
1264
1265         if (target->state != TARGET_HALTED) {
1266                 LOG_WARNING("target not halted");
1267                 return ERROR_TARGET_NOT_HALTED;
1268         }
1269
1270         /* if the target is in Thumb state, change to ARM state */
1271         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1272                 LOG_DEBUG("target entered debug from Thumb state");
1273                 /* Entered debug from Thumb mode */
1274                 arm->core_state = ARM_STATE_THUMB;
1275                 cpsr_mask = 1 << 5;
1276                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1277                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1278                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1279         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1280                 /* \todo Get some vaguely correct handling of Jazelle, if
1281                  * anyone ever uses it and full info becomes available.
1282                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1283                  * B.7.3 for the reverse.  That'd be the bare minimum...
1284                  */
1285                 LOG_DEBUG("target entered debug from Jazelle state");
1286                 arm->core_state = ARM_STATE_JAZELLE;
1287                 cpsr_mask = 1 << 24;
1288                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1289         } else {
1290                 LOG_DEBUG("target entered debug from ARM state");
1291                 /* Entered debug from ARM mode */
1292                 arm->core_state = ARM_STATE_ARM;
1293         }
1294
1295         for (i = 0; i < 16; i++)
1296                 context_p[i] = &context[i];
1297         /* save core registers (r0 - r15 of current core mode) */
1298         arm7_9->read_core_regs(target, 0xffff, context_p);
1299
1300         arm7_9->read_xpsr(target, &cpsr, 0);
1301
1302         retval = jtag_execute_queue();
1303         if (retval != ERROR_OK)
1304                 return retval;
1305
1306         /* Sync our CPSR copy with J or T bits EICE reported, but
1307          * which we then erased by putting the core into ARM mode.
1308          */
1309         arm_set_cpsr(arm, cpsr | cpsr_mask);
1310
1311         if (!is_arm_mode(arm->core_mode)) {
1312                 target->state = TARGET_UNKNOWN;
1313                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1314                 return ERROR_TARGET_FAILURE;
1315         }
1316
1317         LOG_DEBUG("target entered debug state in %s mode",
1318                 arm_mode_name(arm->core_mode));
1319
1320         if (arm->core_state == ARM_STATE_THUMB) {
1321                 LOG_DEBUG("thumb state, applying fixups");
1322                 context[0] = r0_thumb;
1323                 context[15] = pc_thumb;
1324         } else if (arm->core_state == ARM_STATE_ARM) {
1325                 /* adjust value stored by STM */
1326                 context[15] -= 3 * 4;
1327         }
1328
1329         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1330                 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1331         else
1332                 context[15] -= arm7_9->dbgreq_adjust_pc *
1333                         ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1334
1335         for (i = 0; i <= 15; i++) {
1336                 struct reg *r = arm_reg_current(arm, i);
1337
1338                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1339
1340                 buf_set_u32(r->value, 0, 32, context[i]);
1341                 /* r0 and r15 (pc) have to be restored later */
1342                 r->dirty = (i == 0) || (i == 15);
1343                 r->valid = 1;
1344         }
1345
1346         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1347
1348         /* exceptions other than USR & SYS have a saved program status register */
1349         if (arm->spsr) {
1350                 uint32_t spsr;
1351                 arm7_9->read_xpsr(target, &spsr, 1);
1352                 retval = jtag_execute_queue();
1353                 if (retval != ERROR_OK)
1354                         return retval;
1355                 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1356                 arm->spsr->dirty = 0;
1357                 arm->spsr->valid = 1;
1358         }
1359
1360         retval = jtag_execute_queue();
1361         if (retval != ERROR_OK)
1362                 return retval;
1363
1364         if (arm7_9->post_debug_entry) {
1365                 retval = arm7_9->post_debug_entry(target);
1366                 if (retval != ERROR_OK)
1367                         return retval;
1368         }
1369
1370         return ERROR_OK;
1371 }
1372
1373 /**
1374  * Validate the full context for an ARM7/9 target in all processor modes.  If
1375  * there are any invalid registers for the target, they will all be read.  This
1376  * includes the PSR.
1377  *
1378  * @param target Pointer to the ARM7/9 target to capture the full context from
1379  * @return Error if the target is not halted, has an invalid core mode, or if
1380  *         the JTAG queue fails to execute
1381  */
1382 static int arm7_9_full_context(struct target *target)
1383 {
1384         int i;
1385         int retval;
1386         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1387         struct arm *arm = &arm7_9->arm;
1388
1389         LOG_DEBUG("-");
1390
1391         if (target->state != TARGET_HALTED) {
1392                 LOG_WARNING("target not halted");
1393                 return ERROR_TARGET_NOT_HALTED;
1394         }
1395
1396         if (!is_arm_mode(arm->core_mode)) {
1397                 LOG_ERROR("not a valid arm core mode - communication failure?");
1398                 return ERROR_FAIL;
1399         }
1400
1401         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1402          * SYS shares registers with User, so we don't touch SYS
1403          */
1404         for (i = 0; i < 6; i++) {
1405                 uint32_t mask = 0;
1406                 uint32_t *reg_p[16];
1407                 int j;
1408                 int valid = 1;
1409
1410                 /* check if there are invalid registers in the current mode
1411                  */
1412                 for (j = 0; j <= 16; j++) {
1413                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1414                                 valid = 0;
1415                 }
1416
1417                 if (!valid) {
1418                         uint32_t tmp_cpsr;
1419
1420                         /* change processor mode (and mask T bit) */
1421                         tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1422                                 & 0xe0;
1423                         tmp_cpsr |= armv4_5_number_to_mode(i);
1424                         tmp_cpsr &= ~0x20;
1425                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1426
1427                         for (j = 0; j < 15; j++) {
1428                                 if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
1429                                                 armv4_5_number_to_mode(i), j).valid == 0) {
1430                                         reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1431                                                         arm->core_cache,
1432                                                         armv4_5_number_to_mode(i),
1433                                                         j).value;
1434                                         mask |= 1 << j;
1435                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1436                                                 armv4_5_number_to_mode(i),
1437                                                 j).valid = 1;
1438                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1439                                                 armv4_5_number_to_mode(i),
1440                                                 j).dirty = 0;
1441                                 }
1442                         }
1443
1444                         /* if only the PSR is invalid, mask is all zeroes */
1445                         if (mask)
1446                                 arm7_9->read_core_regs(target, mask, reg_p);
1447
1448                         /* check if the PSR has to be read */
1449                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1450                                         16).valid == 0) {
1451                                 arm7_9->read_xpsr(target,
1452                                         (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1453                                                 armv4_5_number_to_mode(i), 16).value, 1);
1454                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1455                                         16).valid = 1;
1456                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1457                                         16).dirty = 0;
1458                         }
1459                 }
1460         }
1461
1462         /* restore processor mode (mask T bit) */
1463         arm7_9->write_xpsr_im8(target,
1464                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1465
1466         retval = jtag_execute_queue();
1467         if (retval != ERROR_OK)
1468                 return retval;
1469         return ERROR_OK;
1470 }
1471
1472 /**
1473  * Restore the processor context on an ARM7/9 target.  The full processor
1474  * context is analyzed to see if any of the registers are dirty on this end, but
1475  * have a valid new value.  If this is the case, the processor is changed to the
1476  * appropriate mode and the new register values are written out to the
1477  * processor.  If there happens to be a dirty register with an invalid value, an
1478  * error will be logged.
1479  *
1480  * @param target Pointer to the ARM7/9 target to have its context restored
1481  * @return Error status if the target is not halted or the core mode in the
1482  * armv4_5 struct is invalid.
1483  */
1484 static int arm7_9_restore_context(struct target *target)
1485 {
1486         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1487         struct arm *arm = &arm7_9->arm;
1488         struct reg *reg;
1489         enum arm_mode current_mode = arm->core_mode;
1490         int i, j;
1491         int dirty;
1492         int mode_change;
1493
1494         LOG_DEBUG("-");
1495
1496         if (target->state != TARGET_HALTED) {
1497                 LOG_WARNING("target not halted");
1498                 return ERROR_TARGET_NOT_HALTED;
1499         }
1500
1501         if (arm7_9->pre_restore_context)
1502                 arm7_9->pre_restore_context(target);
1503
1504         if (!is_arm_mode(arm->core_mode)) {
1505                 LOG_ERROR("not a valid arm core mode - communication failure?");
1506                 return ERROR_FAIL;
1507         }
1508
1509         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1510          * SYS shares registers with User, so we don't touch SYS
1511          */
1512         for (i = 0; i < 6; i++) {
1513                 LOG_DEBUG("examining %s mode",
1514                         arm_mode_name(arm->core_mode));
1515                 dirty = 0;
1516                 mode_change = 0;
1517                 /* check if there are dirty registers in the current mode
1518                 */
1519                 for (j = 0; j <= 16; j++) {
1520                         reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1521                         if (reg->dirty == 1) {
1522                                 if (reg->valid == 1) {
1523                                         dirty = 1;
1524                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1525                                         struct arm_reg *reg_arch_info;
1526                                         reg_arch_info = reg->arch_info;
1527                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1528                                                         && (reg_arch_info->mode != current_mode)
1529                                                         && !((reg_arch_info->mode == ARM_MODE_USR)
1530                                                         && (arm->core_mode == ARM_MODE_SYS))
1531                                                         && !((reg_arch_info->mode == ARM_MODE_SYS)
1532                                                         && (arm->core_mode == ARM_MODE_USR))) {
1533                                                 mode_change = 1;
1534                                                 LOG_DEBUG("require mode change");
1535                                         }
1536                                 } else
1537                                         LOG_ERROR("BUG: dirty register '%s', but no valid data",
1538                                                 reg->name);
1539                         }
1540                 }
1541
1542                 if (dirty) {
1543                         uint32_t mask = 0x0;
1544                         int num_regs = 0;
1545                         uint32_t regs[16];
1546
1547                         if (mode_change) {
1548                                 uint32_t tmp_cpsr;
1549
1550                                 /* change processor mode (mask T bit) */
1551                                 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1552                                                 0, 8) & 0xe0;
1553                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1554                                 tmp_cpsr &= ~0x20;
1555                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1556                                 current_mode = armv4_5_number_to_mode(i);
1557                         }
1558
1559                         for (j = 0; j <= 14; j++) {
1560                                 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1561                                                 armv4_5_number_to_mode(i),
1562                                                 j);
1563
1564                                 if (reg->dirty == 1) {
1565                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1566                                         mask |= 1 << j;
1567                                         num_regs++;
1568                                         reg->dirty = 0;
1569                                         reg->valid = 1;
1570                                         LOG_DEBUG("writing register %i mode %s "
1571                                                 "with value 0x%8.8" PRIx32, j,
1572                                                 arm_mode_name(arm->core_mode),
1573                                                 regs[j]);
1574                                 }
1575                         }
1576
1577                         if (mask)
1578                                 arm7_9->write_core_regs(target, mask, regs);
1579
1580                         reg =
1581                                 &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1582                                                 i), 16);
1583                         struct arm_reg *reg_arch_info;
1584                         reg_arch_info = reg->arch_info;
1585                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1586                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1587                                         i,
1588                                         buf_get_u32(reg->value, 0, 32));
1589                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1590                         }
1591                 }
1592         }
1593
1594         if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1595                 /* restore processor mode (mask T bit) */
1596                 uint32_t tmp_cpsr;
1597
1598                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1599                 tmp_cpsr |= armv4_5_number_to_mode(i);
1600                 tmp_cpsr &= ~0x20;
1601                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1602                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1603
1604         } else if (arm->cpsr->dirty) {
1605                 /* CPSR has been changed, full restore necessary (mask T bit) */
1606                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1607                         buf_get_u32(arm->cpsr->value, 0, 32));
1608                 arm7_9->write_xpsr(target,
1609                         buf_get_u32(arm->cpsr->value, 0, 32)
1610                         & ~0x20, 0);
1611                 arm->cpsr->dirty = 0;
1612                 arm->cpsr->valid = 1;
1613         }
1614
1615         /* restore PC */
1616         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1617                 buf_get_u32(arm->pc->value, 0, 32));
1618         arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1619         arm->pc->dirty = 0;
1620
1621         return ERROR_OK;
1622 }
1623
1624 /**
1625  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1626  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1627  * restart.
1628  *
1629  * @param target Pointer to the ARM7/9 target to be restarted
1630  * @return Result of executing the JTAG queue
1631  */
1632 static int arm7_9_restart_core(struct target *target)
1633 {
1634         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1635         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1636         int retval;
1637
1638         /* set RESTART instruction */
1639         if (arm7_9->need_bypass_before_restart) {
1640                 arm7_9->need_bypass_before_restart = 0;
1641
1642                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1643                 if (retval != ERROR_OK)
1644                         return retval;
1645         }
1646         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1647         if (retval != ERROR_OK)
1648                 return retval;
1649
1650         jtag_add_runtest(1, TAP_IDLE);
1651         return jtag_execute_queue();
1652 }
1653
1654 /**
1655  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1656  * iterated through and are set on the target if they aren't already set.
1657  *
1658  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1659  */
1660 static void arm7_9_enable_watchpoints(struct target *target)
1661 {
1662         struct watchpoint *watchpoint = target->watchpoints;
1663
1664         while (watchpoint) {
1665                 if (watchpoint->set == 0)
1666                         arm7_9_set_watchpoint(target, watchpoint);
1667                 watchpoint = watchpoint->next;
1668         }
1669 }
1670
1671 /**
1672  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1673  * iterated through and are set on the target.
1674  *
1675  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1676  */
1677 static void arm7_9_enable_breakpoints(struct target *target)
1678 {
1679         struct breakpoint *breakpoint = target->breakpoints;
1680
1681         /* set any pending breakpoints */
1682         while (breakpoint) {
1683                 arm7_9_set_breakpoint(target, breakpoint);
1684                 breakpoint = breakpoint->next;
1685         }
1686 }
1687
1688 int arm7_9_resume(struct target *target,
1689         int current,
1690         uint32_t address,
1691         int handle_breakpoints,
1692         int debug_execution)
1693 {
1694         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1695         struct arm *arm = &arm7_9->arm;
1696         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1697         int err, retval = ERROR_OK;
1698
1699         LOG_DEBUG("-");
1700
1701         if (target->state != TARGET_HALTED) {
1702                 LOG_WARNING("target not halted");
1703                 return ERROR_TARGET_NOT_HALTED;
1704         }
1705
1706         if (!debug_execution)
1707                 target_free_all_working_areas(target);
1708
1709         /* current = 1: continue on current pc, otherwise continue at <address> */
1710         if (!current)
1711                 buf_set_u32(arm->pc->value, 0, 32, address);
1712
1713         uint32_t current_pc;
1714         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1715
1716         /* the front-end may request us not to handle breakpoints */
1717         if (handle_breakpoints) {
1718                 struct breakpoint *breakpoint;
1719                 breakpoint = breakpoint_find(target,
1720                                 buf_get_u32(arm->pc->value, 0, 32));
1721                 if (breakpoint != NULL) {
1722                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)",
1723                                 breakpoint->address,
1724                                 breakpoint->unique_id);
1725                         retval = arm7_9_unset_breakpoint(target, breakpoint);
1726                         if (retval != ERROR_OK)
1727                                 return retval;
1728
1729                         /* calculate PC of next instruction */
1730                         uint32_t next_pc;
1731                         retval = arm_simulate_step(target, &next_pc);
1732                         if (retval != ERROR_OK) {
1733                                 uint32_t current_opcode;
1734                                 target_read_u32(target, current_pc, &current_opcode);
1735                                 LOG_ERROR(
1736                                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1737                                         current_opcode);
1738                                 return retval;
1739                         }
1740
1741                         LOG_DEBUG("enable single-step");
1742                         arm7_9->enable_single_step(target, next_pc);
1743
1744                         target->debug_reason = DBG_REASON_SINGLESTEP;
1745
1746                         retval = arm7_9_restore_context(target);
1747                         if (retval != ERROR_OK)
1748                                 return retval;
1749
1750                         if (arm->core_state == ARM_STATE_ARM)
1751                                 arm7_9->branch_resume(target);
1752                         else if (arm->core_state == ARM_STATE_THUMB)
1753                                 arm7_9->branch_resume_thumb(target);
1754                         else {
1755                                 LOG_ERROR("unhandled core state");
1756                                 return ERROR_FAIL;
1757                         }
1758
1759                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1760                         embeddedice_write_reg(dbg_ctrl,
1761                                 buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1762                         err = arm7_9_execute_sys_speed(target);
1763
1764                         LOG_DEBUG("disable single-step");
1765                         arm7_9->disable_single_step(target);
1766
1767                         if (err != ERROR_OK) {
1768                                 retval = arm7_9_set_breakpoint(target, breakpoint);
1769                                 if (retval != ERROR_OK)
1770                                         return retval;
1771                                 target->state = TARGET_UNKNOWN;
1772                                 return err;
1773                         }
1774
1775                         retval = arm7_9_debug_entry(target);
1776                         if (retval != ERROR_OK)
1777                                 return retval;
1778                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1779                                 buf_get_u32(arm->pc->value, 0, 32));
1780
1781                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1782                         retval = arm7_9_set_breakpoint(target, breakpoint);
1783                         if (retval != ERROR_OK)
1784                                 return retval;
1785                 }
1786         }
1787
1788         /* enable any pending breakpoints and watchpoints */
1789         arm7_9_enable_breakpoints(target);
1790         arm7_9_enable_watchpoints(target);
1791
1792         retval = arm7_9_restore_context(target);
1793         if (retval != ERROR_OK)
1794                 return retval;
1795
1796         if (arm->core_state == ARM_STATE_ARM)
1797                 arm7_9->branch_resume(target);
1798         else if (arm->core_state == ARM_STATE_THUMB)
1799                 arm7_9->branch_resume_thumb(target);
1800         else {
1801                 LOG_ERROR("unhandled core state");
1802                 return ERROR_FAIL;
1803         }
1804
1805         /* deassert DBGACK and INTDIS */
1806         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1807         /* INTDIS only when we really resume, not during debug execution */
1808         if (!debug_execution)
1809                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1810         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1811
1812         retval = arm7_9_restart_core(target);
1813         if (retval != ERROR_OK)
1814                 return retval;
1815
1816         target->debug_reason = DBG_REASON_NOTHALTED;
1817
1818         if (!debug_execution) {
1819                 /* registers are now invalid */
1820                 register_cache_invalidate(arm->core_cache);
1821                 target->state = TARGET_RUNNING;
1822                 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1823                 if (retval != ERROR_OK)
1824                         return retval;
1825         } else {
1826                 target->state = TARGET_DEBUG_RUNNING;
1827                 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1828                 if (retval != ERROR_OK)
1829                         return retval;
1830         }
1831
1832         LOG_DEBUG("target resumed");
1833
1834         return ERROR_OK;
1835 }
1836
1837 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1838 {
1839         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1840         struct arm *arm = &arm7_9->arm;
1841         uint32_t current_pc;
1842         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1843
1844         if (next_pc != current_pc) {
1845                 /* setup an inverse breakpoint on the current PC
1846                 * - comparator 1 matches the current address
1847                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1848                 * - comparator 0 matches any address, as long as rangein is low */
1849                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1850                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1851                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1852                         EICE_W_CTRL_ENABLE);
1853                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1854                         ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1855                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1856                         current_pc);
1857                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1858                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1859                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1860                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1861                         ~EICE_W_CTRL_nOPC & 0xff);
1862         } else {
1863                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1864                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1865                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1866                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1867                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1868                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1869                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1870                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1871                         EICE_W_CTRL_ENABLE);
1872                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1873                         ~EICE_W_CTRL_nOPC & 0xff);
1874         }
1875 }
1876
1877 void arm7_9_disable_eice_step(struct target *target)
1878 {
1879         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1880
1881         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1882         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1883         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1884         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1885         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1886         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1887         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1888         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1889         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1890 }
1891
1892 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1893 {
1894         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1895         struct arm *arm = &arm7_9->arm;
1896         struct breakpoint *breakpoint = NULL;
1897         int err, retval;
1898
1899         if (target->state != TARGET_HALTED) {
1900                 LOG_WARNING("target not halted");
1901                 return ERROR_TARGET_NOT_HALTED;
1902         }
1903
1904         /* current = 1: continue on current pc, otherwise continue at <address> */
1905         if (!current)
1906                 buf_set_u32(arm->pc->value, 0, 32, address);
1907
1908         uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1909
1910         /* the front-end may request us not to handle breakpoints */
1911         if (handle_breakpoints)
1912                 breakpoint = breakpoint_find(target, current_pc);
1913         if (breakpoint != NULL) {
1914                 retval = arm7_9_unset_breakpoint(target, breakpoint);
1915                 if (retval != ERROR_OK)
1916                         return retval;
1917         }
1918
1919         target->debug_reason = DBG_REASON_SINGLESTEP;
1920
1921         /* calculate PC of next instruction */
1922         uint32_t next_pc;
1923         retval = arm_simulate_step(target, &next_pc);
1924         if (retval != ERROR_OK) {
1925                 uint32_t current_opcode;
1926                 target_read_u32(target, current_pc, &current_opcode);
1927                 LOG_ERROR(
1928                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1929                         current_opcode);
1930                 return retval;
1931         }
1932
1933         retval = arm7_9_restore_context(target);
1934         if (retval != ERROR_OK)
1935                 return retval;
1936
1937         arm7_9->enable_single_step(target, next_pc);
1938
1939         if (arm->core_state == ARM_STATE_ARM)
1940                 arm7_9->branch_resume(target);
1941         else if (arm->core_state == ARM_STATE_THUMB)
1942                 arm7_9->branch_resume_thumb(target);
1943         else {
1944                 LOG_ERROR("unhandled core state");
1945                 return ERROR_FAIL;
1946         }
1947
1948         retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1949         if (retval != ERROR_OK)
1950                 return retval;
1951
1952         err = arm7_9_execute_sys_speed(target);
1953         arm7_9->disable_single_step(target);
1954
1955         /* registers are now invalid */
1956         register_cache_invalidate(arm->core_cache);
1957
1958         if (err != ERROR_OK)
1959                 target->state = TARGET_UNKNOWN;
1960         else {
1961                 retval = arm7_9_debug_entry(target);
1962                 if (retval != ERROR_OK)
1963                         return retval;
1964                 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1965                 if (retval != ERROR_OK)
1966                         return retval;
1967                 LOG_DEBUG("target stepped");
1968         }
1969
1970         if (breakpoint) {
1971                 retval = arm7_9_set_breakpoint(target, breakpoint);
1972                 if (retval != ERROR_OK)
1973                         return retval;
1974         }
1975
1976         return err;
1977 }
1978
1979 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
1980         int num, enum arm_mode mode)
1981 {
1982         uint32_t *reg_p[16];
1983         int retval;
1984         struct arm_reg *areg = r->arch_info;
1985         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1986         struct arm *arm = &arm7_9->arm;
1987
1988         if (!is_arm_mode(arm->core_mode))
1989                 return ERROR_FAIL;
1990         if ((num < 0) || (num > 16))
1991                 return ERROR_COMMAND_SYNTAX_ERROR;
1992
1993         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
1994                         && (areg->mode != ARM_MODE_ANY)) {
1995                 uint32_t tmp_cpsr;
1996
1997                 /* change processor mode (mask T bit) */
1998                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1999                 tmp_cpsr |= mode;
2000                 tmp_cpsr &= ~0x20;
2001                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2002         }
2003
2004         uint32_t value = 0;
2005         if ((num >= 0) && (num <= 15)) {
2006                 /* read a normal core register */
2007                 reg_p[num] = &value;
2008
2009                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2010         } else {
2011                 /* read a program status register
2012                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2013                  */
2014                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2015         }
2016
2017         retval = jtag_execute_queue();
2018         if (retval != ERROR_OK)
2019                 return retval;
2020
2021         r->valid = 1;
2022         r->dirty = 0;
2023         buf_set_u32(r->value, 0, 32, value);
2024
2025         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2026                         && (areg->mode != ARM_MODE_ANY)) {
2027                 /* restore processor mode (mask T bit) */
2028                 arm7_9->write_xpsr_im8(target,
2029                         buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2030         }
2031
2032         return ERROR_OK;
2033 }
2034
2035 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2036         int num, enum arm_mode mode, uint32_t value)
2037 {
2038         uint32_t reg[16];
2039         struct arm_reg *areg = r->arch_info;
2040         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2041         struct arm *arm = &arm7_9->arm;
2042
2043         if (!is_arm_mode(arm->core_mode))
2044                 return ERROR_FAIL;
2045         if ((num < 0) || (num > 16))
2046                 return ERROR_COMMAND_SYNTAX_ERROR;
2047
2048         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2049                         && (areg->mode != ARM_MODE_ANY)) {
2050                 uint32_t tmp_cpsr;
2051
2052                 /* change processor mode (mask T bit) */
2053                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2054                 tmp_cpsr |= mode;
2055                 tmp_cpsr &= ~0x20;
2056                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2057         }
2058
2059         if ((num >= 0) && (num <= 15)) {
2060                 /* write a normal core register */
2061                 reg[num] = value;
2062
2063                 arm7_9->write_core_regs(target, 1 << num, reg);
2064         } else {
2065                 /* write a program status register
2066                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2067                 */
2068                 int spsr = (areg->mode != ARM_MODE_ANY);
2069
2070                 /* if we're writing the CPSR, mask the T bit */
2071                 if (!spsr)
2072                         value &= ~0x20;
2073
2074                 arm7_9->write_xpsr(target, value, spsr);
2075         }
2076
2077         r->valid = 1;
2078         r->dirty = 0;
2079
2080         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2081                         && (areg->mode != ARM_MODE_ANY)) {
2082                 /* restore processor mode (mask T bit) */
2083                 arm7_9->write_xpsr_im8(target,
2084                                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2085         }
2086
2087         return jtag_execute_queue();
2088 }
2089
2090 int arm7_9_read_memory(struct target *target,
2091         uint32_t address,
2092         uint32_t size,
2093         uint32_t count,
2094         uint8_t *buffer)
2095 {
2096         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2097         struct arm *arm = &arm7_9->arm;
2098         uint32_t reg[16];
2099         uint32_t num_accesses = 0;
2100         int thisrun_accesses;
2101         int i;
2102         uint32_t cpsr;
2103         int retval;
2104         int last_reg = 0;
2105
2106         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2107                 address, size, count);
2108
2109         if (target->state != TARGET_HALTED) {
2110                 LOG_WARNING("target not halted");
2111                 return ERROR_TARGET_NOT_HALTED;
2112         }
2113
2114         /* sanitize arguments */
2115         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2116                 return ERROR_COMMAND_SYNTAX_ERROR;
2117
2118         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2119                 return ERROR_TARGET_UNALIGNED_ACCESS;
2120
2121         /* load the base register with the address of the first word */
2122         reg[0] = address;
2123         arm7_9->write_core_regs(target, 0x1, reg);
2124
2125         int j = 0;
2126
2127         switch (size) {
2128                 case 4:
2129                         while (num_accesses < count) {
2130                                 uint32_t reg_list;
2131                                 thisrun_accesses =
2132                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2133                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2134
2135                                 if (last_reg <= thisrun_accesses)
2136                                         last_reg = thisrun_accesses;
2137
2138                                 arm7_9->load_word_regs(target, reg_list);
2139
2140                                 /* fast memory reads are only safe when the target is running
2141                                  * from a sufficiently high clock (32 kHz is usually too slow)
2142                                  */
2143                                 if (arm7_9->fast_memory_access)
2144                                         retval = arm7_9_execute_fast_sys_speed(target);
2145                                 else
2146                                         retval = arm7_9_execute_sys_speed(target);
2147                                 if (retval != ERROR_OK)
2148                                         return retval;
2149
2150                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2151
2152                                 /* advance buffer, count number of accesses */
2153                                 buffer += thisrun_accesses * 4;
2154                                 num_accesses += thisrun_accesses;
2155
2156                                 if ((j++%1024) == 0)
2157                                         keep_alive();
2158                         }
2159                         break;
2160                 case 2:
2161                         while (num_accesses < count) {
2162                                 uint32_t reg_list;
2163                                 thisrun_accesses =
2164                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2165                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2166
2167                                 for (i = 1; i <= thisrun_accesses; i++) {
2168                                         if (i > last_reg)
2169                                             last_reg = i;
2170                                         arm7_9->load_hword_reg(target, i);
2171                                         /* fast memory reads are only safe when the target is running
2172                                          * from a sufficiently high clock (32 kHz is usually too slow)
2173                                          */
2174                                         if (arm7_9->fast_memory_access)
2175                                                 retval = arm7_9_execute_fast_sys_speed(target);
2176                                         else
2177                                                 retval = arm7_9_execute_sys_speed(target);
2178                                         if (retval != ERROR_OK)
2179                                                 return retval;
2180
2181                                 }
2182
2183                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2184
2185                                 /* advance buffer, count number of accesses */
2186                                 buffer += thisrun_accesses * 2;
2187                                 num_accesses += thisrun_accesses;
2188
2189                                 if ((j++%1024) == 0)
2190                                         keep_alive();
2191                         }
2192                         break;
2193                 case 1:
2194                         while (num_accesses < count) {
2195                                 uint32_t reg_list;
2196                                 thisrun_accesses =
2197                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2198                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2199
2200                                 for (i = 1; i <= thisrun_accesses; i++) {
2201                                         if (i > last_reg)
2202                                                 last_reg = i;
2203                                         arm7_9->load_byte_reg(target, i);
2204                                         /* fast memory reads are only safe when the target is running
2205                                          * from a sufficiently high clock (32 kHz is usually too slow)
2206                                          */
2207                                         if (arm7_9->fast_memory_access)
2208                                                 retval = arm7_9_execute_fast_sys_speed(target);
2209                                         else
2210                                                 retval = arm7_9_execute_sys_speed(target);
2211                                         if (retval != ERROR_OK)
2212                                                 return retval;
2213                                 }
2214
2215                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2216
2217                                 /* advance buffer, count number of accesses */
2218                                 buffer += thisrun_accesses * 1;
2219                                 num_accesses += thisrun_accesses;
2220
2221                                 if ((j++%1024) == 0)
2222                                         keep_alive();
2223                         }
2224                         break;
2225         }
2226
2227         if (!is_arm_mode(arm->core_mode))
2228                 return ERROR_FAIL;
2229
2230         for (i = 0; i <= last_reg; i++) {
2231                 struct reg *r = arm_reg_current(arm, i);
2232                 r->dirty = r->valid;
2233         }
2234
2235         arm7_9->read_xpsr(target, &cpsr, 0);
2236         retval = jtag_execute_queue();
2237         if (retval != ERROR_OK) {
2238                 LOG_ERROR("JTAG error while reading cpsr");
2239                 return ERROR_TARGET_DATA_ABORT;
2240         }
2241
2242         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2243                 LOG_WARNING(
2244                         "memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2245                         address,
2246                         size,
2247                         count);
2248
2249                 arm7_9->write_xpsr_im8(target,
2250                         buf_get_u32(arm->cpsr->value, 0, 8)
2251                         & ~0x20, 0, 0);
2252
2253                 return ERROR_TARGET_DATA_ABORT;
2254         }
2255
2256         return ERROR_OK;
2257 }
2258
2259 int arm7_9_write_memory(struct target *target,
2260         uint32_t address,
2261         uint32_t size,
2262         uint32_t count,
2263         const uint8_t *buffer)
2264 {
2265         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2266         struct arm *arm = &arm7_9->arm;
2267         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2268
2269         uint32_t reg[16];
2270         uint32_t num_accesses = 0;
2271         int thisrun_accesses;
2272         int i;
2273         uint32_t cpsr;
2274         int retval;
2275         int last_reg = 0;
2276
2277 #ifdef _DEBUG_ARM7_9_
2278         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2279 #endif
2280
2281         if (target->state != TARGET_HALTED) {
2282                 LOG_WARNING("target not halted");
2283                 return ERROR_TARGET_NOT_HALTED;
2284         }
2285
2286         /* sanitize arguments */
2287         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2288                 return ERROR_COMMAND_SYNTAX_ERROR;
2289
2290         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2291                 return ERROR_TARGET_UNALIGNED_ACCESS;
2292
2293         /* load the base register with the address of the first word */
2294         reg[0] = address;
2295         arm7_9->write_core_regs(target, 0x1, reg);
2296
2297         /* Clear DBGACK, to make sure memory fetches work as expected */
2298         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2299         embeddedice_store_reg(dbg_ctrl);
2300
2301         switch (size) {
2302                 case 4:
2303                         while (num_accesses < count) {
2304                                 uint32_t reg_list;
2305                                 thisrun_accesses =
2306                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2307                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2308
2309                                 for (i = 1; i <= thisrun_accesses; i++) {
2310                                         if (i > last_reg)
2311                                                 last_reg = i;
2312                                         reg[i] = target_buffer_get_u32(target, buffer);
2313                                         buffer += 4;
2314                                 }
2315
2316                                 arm7_9->write_core_regs(target, reg_list, reg);
2317
2318                                 arm7_9->store_word_regs(target, reg_list);
2319
2320                                 /* fast memory writes are only safe when the target is running
2321                                  * from a sufficiently high clock (32 kHz is usually too slow)
2322                                  */
2323                                 if (arm7_9->fast_memory_access)
2324                                         retval = arm7_9_execute_fast_sys_speed(target);
2325                                 else {
2326                                         retval = arm7_9_execute_sys_speed(target);
2327
2328                                         /*
2329                                          * if memory writes are made when the clock is running slow
2330                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2331                                          * processor operations after a "reset halt" or "reset init",
2332                                          * need to immediately stroke the keep alive or will end up with
2333                                          * gdb "keep alive not sent error message" problem.
2334                                          */
2335
2336                                         keep_alive();
2337                                 }
2338
2339                                 if (retval != ERROR_OK)
2340                                         return retval;
2341
2342                                 num_accesses += thisrun_accesses;
2343                         }
2344                         break;
2345                 case 2:
2346                         while (num_accesses < count) {
2347                                 uint32_t reg_list;
2348                                 thisrun_accesses =
2349                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2350                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2351
2352                                 for (i = 1; i <= thisrun_accesses; i++) {
2353                                         if (i > last_reg)
2354                                                 last_reg = i;
2355                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2356                                         buffer += 2;
2357                                 }
2358
2359                                 arm7_9->write_core_regs(target, reg_list, reg);
2360
2361                                 for (i = 1; i <= thisrun_accesses; i++) {
2362                                         arm7_9->store_hword_reg(target, i);
2363
2364                                         /* fast memory writes are only safe when the target is running
2365                                          * from a sufficiently high clock (32 kHz is usually too slow)
2366                                          */
2367                                         if (arm7_9->fast_memory_access)
2368                                                 retval = arm7_9_execute_fast_sys_speed(target);
2369                                         else {
2370                                                 retval = arm7_9_execute_sys_speed(target);
2371
2372                                                 /*
2373                                                  * if memory writes are made when the clock is running slow
2374                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2375                                                  * processor operations after a "reset halt" or "reset init",
2376                                                  * need to immediately stroke the keep alive or will end up with
2377                                                  * gdb "keep alive not sent error message" problem.
2378                                                  */
2379
2380                                                 keep_alive();
2381                                         }
2382
2383                                         if (retval != ERROR_OK)
2384                                                 return retval;
2385                                 }
2386
2387                                 num_accesses += thisrun_accesses;
2388                         }
2389                         break;
2390                 case 1:
2391                         while (num_accesses < count) {
2392                                 uint32_t reg_list;
2393                                 thisrun_accesses =
2394                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2395                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2396
2397                                 for (i = 1; i <= thisrun_accesses; i++) {
2398                                         if (i > last_reg)
2399                                                 last_reg = i;
2400                                         reg[i] = *buffer++ & 0xff;
2401                                 }
2402
2403                                 arm7_9->write_core_regs(target, reg_list, reg);
2404
2405                                 for (i = 1; i <= thisrun_accesses; i++) {
2406                                         arm7_9->store_byte_reg(target, i);
2407                                         /* fast memory writes are only safe when the target is running
2408                                          * from a sufficiently high clock (32 kHz is usually too slow)
2409                                          */
2410                                         if (arm7_9->fast_memory_access)
2411                                                 retval = arm7_9_execute_fast_sys_speed(target);
2412                                         else {
2413                                                 retval = arm7_9_execute_sys_speed(target);
2414
2415                                                 /*
2416                                                  * if memory writes are made when the clock is running slow
2417                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2418                                                  * processor operations after a "reset halt" or "reset init",
2419                                                  * need to immediately stroke the keep alive or will end up with
2420                                                  * gdb "keep alive not sent error message" problem.
2421                                                  */
2422
2423                                                 keep_alive();
2424                                         }
2425
2426                                         if (retval != ERROR_OK)
2427                                                 return retval;
2428
2429                                 }
2430
2431                                 num_accesses += thisrun_accesses;
2432                         }
2433                         break;
2434         }
2435
2436         /* Re-Set DBGACK */
2437         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2438         embeddedice_store_reg(dbg_ctrl);
2439
2440         if (!is_arm_mode(arm->core_mode))
2441                 return ERROR_FAIL;
2442
2443         for (i = 0; i <= last_reg; i++) {
2444                 struct reg *r = arm_reg_current(arm, i);
2445                 r->dirty = r->valid;
2446         }
2447
2448         arm7_9->read_xpsr(target, &cpsr, 0);
2449         retval = jtag_execute_queue();
2450         if (retval != ERROR_OK) {
2451                 LOG_ERROR("JTAG error while reading cpsr");
2452                 return ERROR_TARGET_DATA_ABORT;
2453         }
2454
2455         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2456                 LOG_WARNING(
2457                         "memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2458                         address,
2459                         size,
2460                         count);
2461
2462                 arm7_9->write_xpsr_im8(target,
2463                         buf_get_u32(arm->cpsr->value, 0, 8)
2464                         & ~0x20, 0, 0);
2465
2466                 return ERROR_TARGET_DATA_ABORT;
2467         }
2468
2469         return ERROR_OK;
2470 }
2471
2472 static int dcc_count;
2473 static const uint8_t *dcc_buffer;
2474
2475 static int arm7_9_dcc_completion(struct target *target,
2476         uint32_t exit_point,
2477         int timeout_ms,
2478         void *arch_info)
2479 {
2480         int retval = ERROR_OK;
2481         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2482
2483         retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2484         if (retval != ERROR_OK)
2485                 return retval;
2486
2487         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2488         int count = dcc_count;
2489         const uint8_t *buffer = dcc_buffer;
2490         if (count > 2) {
2491                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2492                  * core function repeated. */
2493                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2494                         fast_target_buffer_get_u32(buffer, little));
2495                 buffer += 4;
2496
2497                 struct embeddedice_reg *ice_reg =
2498                         arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2499                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2500                 struct jtag_tap *tap;
2501                 tap = ice_reg->jtag_info->tap;
2502
2503                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2504                 buffer += (count-2)*4;
2505
2506                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2507                         fast_target_buffer_get_u32(buffer, little));
2508         } else {
2509                 int i;
2510                 for (i = 0; i < count; i++) {
2511                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2512                                 fast_target_buffer_get_u32(buffer, little));
2513                         buffer += 4;
2514                 }
2515         }
2516
2517         retval = target_halt(target);
2518         if (retval != ERROR_OK)
2519                 return retval;
2520         return target_wait_state(target, TARGET_HALTED, 500);
2521 }
2522
2523 static const uint32_t dcc_code[] = {
2524         /* r0 == input, points to memory buffer
2525          * r1 == scratch
2526          */
2527
2528         /* spin until DCC control (c0) reports data arrived */
2529         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2530         0xe3110001,     /*    tst r1, #1              */
2531         0x0afffffc,     /*    bne w                   */
2532
2533         /* read word from DCC (c1), write to memory */
2534         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2535         0xe4801004,     /*    str r1, [r0], #4        */
2536
2537         /* repeat */
2538         0xeafffff9      /*    b   w                   */
2539 };
2540
2541 int arm7_9_bulk_write_memory(struct target *target,
2542         uint32_t address,
2543         uint32_t count,
2544         const uint8_t *buffer)
2545 {
2546         int retval;
2547         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2548         int i;
2549
2550         if (!arm7_9->dcc_downloads)
2551                 return target_write_memory(target, address, 4, count, buffer);
2552
2553         /* regrab previously allocated working_area, or allocate a new one */
2554         if (!arm7_9->dcc_working_area) {
2555                 uint8_t dcc_code_buf[6 * 4];
2556
2557                 /* make sure we have a working area */
2558                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2559                         LOG_INFO("no working area available, falling back to memory writes");
2560                         return target_write_memory(target, address, 4, count, buffer);
2561                 }
2562
2563                 /* copy target instructions to target endianness */
2564                 for (i = 0; i < 6; i++)
2565                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2566
2567                 /* write DCC code to working area */
2568                 retval = target_write_memory(target,
2569                                 arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2570                 if (retval != ERROR_OK)
2571                         return retval;
2572         }
2573
2574         struct arm_algorithm arm_algo;
2575         struct reg_param reg_params[1];
2576
2577         arm_algo.common_magic = ARM_COMMON_MAGIC;
2578         arm_algo.core_mode = ARM_MODE_SVC;
2579         arm_algo.core_state = ARM_STATE_ARM;
2580
2581         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2582
2583         buf_set_u32(reg_params[0].value, 0, 32, address);
2584
2585         dcc_count = count;
2586         dcc_buffer = buffer;
2587         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2588                         arm7_9->dcc_working_area->address,
2589                         arm7_9->dcc_working_area->address + 6*4,
2590                         20*1000, &arm_algo, arm7_9_dcc_completion);
2591
2592         if (retval == ERROR_OK) {
2593                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2594                 if (endaddress != (address + count*4)) {
2595                         LOG_ERROR(
2596                                 "DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "",
2597                                 (address + count*4),
2598                                 endaddress);
2599                         retval = ERROR_FAIL;
2600                 }
2601         }
2602
2603         destroy_reg_param(&reg_params[0]);
2604
2605         return retval;
2606 }
2607
2608 /**
2609  * Perform per-target setup that requires JTAG access.
2610  */
2611 int arm7_9_examine(struct target *target)
2612 {
2613         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2614         int retval;
2615
2616         if (!target_was_examined(target)) {
2617                 struct reg_cache *t, **cache_p;
2618
2619                 t = embeddedice_build_reg_cache(target, arm7_9);
2620                 if (t == NULL)
2621                         return ERROR_FAIL;
2622
2623                 cache_p = register_get_last_cache_p(&target->reg_cache);
2624                 (*cache_p) = t;
2625                 arm7_9->eice_cache = (*cache_p);
2626
2627                 if (arm7_9->arm.etm)
2628                         (*cache_p)->next = etm_build_reg_cache(target,
2629                                         &arm7_9->jtag_info,
2630                                         arm7_9->arm.etm);
2631
2632                 target_set_examined(target);
2633         }
2634
2635         retval = embeddedice_setup(target);
2636         if (retval == ERROR_OK)
2637                 retval = arm7_9_setup(target);
2638         if (retval == ERROR_OK && arm7_9->arm.etm)
2639                 retval = etm_setup(target);
2640         return retval;
2641 }
2642
2643
2644 int arm7_9_check_reset(struct target *target)
2645 {
2646         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2647
2648         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2649                 LOG_WARNING(
2650                         "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2651
2652         if (get_target_reset_nag() && (target->working_area_size == 0))
2653                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2654
2655         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2656                 LOG_WARNING(
2657                         "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2658
2659         return ERROR_OK;
2660 }
2661
2662 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2663                 jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2664                 jtag_callback_data_t i_flip)
2665 {
2666         uint8_t *in = (uint8_t *)pu8_in;
2667         int size = (int)i_size;
2668         int be = (int)i_be;
2669         int flip = (int)i_flip;
2670         uint32_t readback;
2671
2672         switch (size) {
2673         case 4:
2674                 readback = le_to_h_u32(in);
2675                 if (flip)
2676                         readback = flip_u32(readback, 32);
2677                 if (be)
2678                         h_u32_to_be(in, readback);
2679                 else
2680                         h_u32_to_le(in, readback);
2681                 break;
2682         case 2:
2683                 readback = le_to_h_u16(in);
2684                 if (flip)
2685                         readback = flip_u32(readback, 16);
2686                 if (be)
2687                         h_u16_to_be(in, readback & 0xffff);
2688                 else
2689                         h_u16_to_le(in, readback & 0xffff);
2690                 break;
2691         case 1:
2692                 readback = *in;
2693                 if (flip)
2694                         readback = flip_u32(readback, 8);
2695                 *in = readback & 0xff;
2696                 break;
2697         }
2698
2699         return ERROR_OK;
2700 }
2701
2702 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2703 {
2704         struct target *target = get_current_target(CMD_CTX);
2705         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2706
2707         if (!is_arm7_9(arm7_9)) {
2708                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2709                 return ERROR_TARGET_INVALID;
2710         }
2711
2712         if (CMD_ARGC > 0)
2713                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2714
2715         command_print(CMD_CTX,
2716                 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2717                 (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2718
2719         return ERROR_OK;
2720 }
2721
2722 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2723 {
2724         struct target *target = get_current_target(CMD_CTX);
2725         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2726
2727         if (!is_arm7_9(arm7_9)) {
2728                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2729                 return ERROR_TARGET_INVALID;
2730         }
2731
2732         if (CMD_ARGC > 0)
2733                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2734
2735         command_print(CMD_CTX,
2736                 "fast memory access is %s",
2737                 (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2738
2739         return ERROR_OK;
2740 }
2741
2742 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2743 {
2744         struct target *target = get_current_target(CMD_CTX);
2745         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2746
2747         if (!is_arm7_9(arm7_9)) {
2748                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2749                 return ERROR_TARGET_INVALID;
2750         }
2751
2752         if (CMD_ARGC > 0)
2753                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2754
2755         command_print(CMD_CTX,
2756                 "dcc downloads are %s",
2757                 (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2758
2759         return ERROR_OK;
2760 }
2761
2762 static int arm7_9_setup_semihosting(struct target *target, int enable)
2763 {
2764         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2765
2766         if (!is_arm7_9(arm7_9)) {
2767                 LOG_USER("current target isn't an ARM7/ARM9 target");
2768                 return ERROR_TARGET_INVALID;
2769         }
2770
2771         if (arm7_9->has_vector_catch) {
2772                 struct reg *vector_catch = &arm7_9->eice_cache
2773                         ->reg_list[EICE_VEC_CATCH];
2774
2775                 if (!vector_catch->valid)
2776                         embeddedice_read_reg(vector_catch);
2777                 buf_set_u32(vector_catch->value, 2, 1, enable);
2778                 embeddedice_store_reg(vector_catch);
2779         } else {
2780                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2781                 if (enable)
2782                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2783                 else
2784                         breakpoint_remove(target, 8);
2785         }
2786
2787         return ERROR_OK;
2788 }
2789
2790 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2791 {
2792         int retval = ERROR_OK;
2793         struct arm *arm = &arm7_9->arm;
2794
2795         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2796
2797         retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2798         if (retval != ERROR_OK)
2799                 return retval;
2800
2801         /* caller must have allocated via calloc(), so everything's zeroed */
2802
2803         arm7_9->wp_available_max = 2;
2804
2805         arm7_9->fast_memory_access = false;
2806         arm7_9->dcc_downloads = false;
2807
2808         arm->arch_info = arm7_9;
2809         arm->read_core_reg = arm7_9_read_core_reg;
2810         arm->write_core_reg = arm7_9_write_core_reg;
2811         arm->full_context = arm7_9_full_context;
2812         arm->setup_semihosting = arm7_9_setup_semihosting;
2813
2814         retval = arm_init_arch_info(target, arm);
2815         if (retval != ERROR_OK)
2816                 return retval;
2817
2818         return target_register_timer_callback(arm7_9_handle_target_request,
2819                 1, 1, target);
2820 }
2821
2822 static const struct command_registration arm7_9_any_command_handlers[] = {
2823         {
2824                 "dbgrq",
2825                 .handler = handle_arm7_9_dbgrq_command,
2826                 .mode = COMMAND_ANY,
2827                 .usage = "['enable'|'disable']",
2828                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2829                         "for target halt requests",
2830         },
2831         {
2832                 "fast_memory_access",
2833                 .handler = handle_arm7_9_fast_memory_access_command,
2834                 .mode = COMMAND_ANY,
2835                 .usage = "['enable'|'disable']",
2836                 .help = "use fast memory accesses instead of slower "
2837                         "but potentially safer accesses",
2838         },
2839         {
2840                 "dcc_downloads",
2841                 .handler = handle_arm7_9_dcc_downloads_command,
2842                 .mode = COMMAND_ANY,
2843                 .usage = "['enable'|'disable']",
2844                 .help = "use DCC downloads for larger memory writes",
2845         },
2846         COMMAND_REGISTRATION_DONE
2847 };
2848 const struct command_registration arm7_9_command_handlers[] = {
2849         {
2850                 .chain = arm_command_handlers,
2851         },
2852         {
2853                 .chain = etm_command_handlers,
2854         },
2855         {
2856                 .name = "arm7_9",
2857                 .mode = COMMAND_ANY,
2858                 .help = "arm7/9 specific commands",
2859                 .usage = "",
2860                 .chain = arm7_9_any_command_handlers,
2861         },
2862         COMMAND_REGISTRATION_DONE
2863 };