b6606a17de748465eb437d7367c04e17aed82cbe
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41
42 /**
43  * Clear watchpoints for an ARM7/9 target.
44  *
45  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
46  * @return JTAG error status after executing queue
47  */
48 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
49 {
50         LOG_DEBUG("-");
51         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
52         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
53         arm7_9->sw_breakpoint_count = 0;
54         arm7_9->sw_breakpoints_added = 0;
55         arm7_9->wp0_used = 0;
56         arm7_9->wp1_used = arm7_9->wp1_used_default;
57         arm7_9->wp_available = arm7_9->wp_available_max;
58
59         return jtag_execute_queue();
60 }
61
62 /**
63  * Assign a watchpoint to one of the two available hardware comparators in an
64  * ARM7 or ARM9 target.
65  *
66  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
68  */
69 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
70 {
71         if (!arm7_9->wp0_used)
72         {
73                 arm7_9->wp0_used = 1;
74                 breakpoint->set = 1;
75                 arm7_9->wp_available--;
76         }
77         else if (!arm7_9->wp1_used)
78         {
79                 arm7_9->wp1_used = 1;
80                 breakpoint->set = 2;
81                 arm7_9->wp_available--;
82         }
83         else
84         {
85                 LOG_ERROR("BUG: no hardware comparator available");
86         }
87         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
88                           breakpoint->unique_id,
89                           breakpoint->address,
90                           breakpoint->set );
91 }
92
93 /**
94  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
95  *
96  * @param arm7_9 Pointer to common struct for ARM7/9 targets
97  * @return Error codes if there is a problem finding a watchpoint or the result
98  *         of executing the JTAG queue
99  */
100 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
101 {
102         if (arm7_9->sw_breakpoints_added)
103         {
104                 return ERROR_OK;
105         }
106         if (arm7_9->wp_available < 1)
107         {
108                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
109                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
110         }
111         arm7_9->wp_available--;
112
113         /* pick a breakpoint unit */
114         if (!arm7_9->wp0_used)
115         {
116                 arm7_9->sw_breakpoints_added = 1;
117                 arm7_9->wp0_used = 3;
118         } else if (!arm7_9->wp1_used)
119         {
120                 arm7_9->sw_breakpoints_added = 2;
121                 arm7_9->wp1_used = 3;
122         }
123         else
124         {
125                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
126                 return ERROR_FAIL;
127         }
128
129         if (arm7_9->sw_breakpoints_added == 1)
130         {
131                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
132                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
133                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
134                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
135                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
136         }
137         else if (arm7_9->sw_breakpoints_added == 2)
138         {
139                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
140                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
144         }
145         else
146         {
147                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
148                 return ERROR_FAIL;
149         }
150         LOG_DEBUG("SW BP using hw wp: %d",
151                           arm7_9->sw_breakpoints_added );
152
153         return jtag_execute_queue();
154 }
155
156 /**
157  * Setup the common pieces for an ARM7/9 target after reset or on startup.
158  *
159  * @param target Pointer to an ARM7/9 target to setup
160  * @return Result of clearing the watchpoints on the target
161  */
162 int arm7_9_setup(target_t *target)
163 {
164         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
165
166         return arm7_9_clear_watchpoints(arm7_9);
167 }
168
169 /**
170  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
171  * targets.  A return of ERROR_OK signifies that the target is a valid target
172  * and that the pointers have been set properly.
173  *
174  * @param target Pointer to the target device to get the pointers from
175  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
176  *                  targets
177  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
178  *                 targets
179  * @return ERROR_OK if successful
180  */
181 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
182 {
183         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
184         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
185
186         /* FIXME stop using this routine; just target_to_arm7_9() and
187          * verify the resulting pointer using a replacement routine
188          * that emits a usage message.
189          */
190         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
191                 return ERROR_TARGET_INVALID;
192
193         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
194                 return ERROR_TARGET_INVALID;
195
196         *armv4_5_p = armv4_5;
197         *arm7_9_p = arm7_9;
198
199         return ERROR_OK;
200 }
201
202 /**
203  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
204  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
205  * might have erased the values in Embedded ICE.
206  *
207  * @param target Pointer to the target device to set the breakpoints on
208  * @param breakpoint Pointer to the breakpoint to be set
209  * @return For hardware breakpoints, this is the result of executing the JTAG
210  *         queue.  For software breakpoints, this will be the status of the
211  *         required memory reads and writes
212  */
213 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
214 {
215         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
216         int retval = ERROR_OK;
217
218         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
219                           breakpoint->unique_id,
220                           breakpoint->address,
221                           breakpoint->type);
222
223         if (target->state != TARGET_HALTED)
224         {
225                 LOG_WARNING("target not halted");
226                 return ERROR_TARGET_NOT_HALTED;
227         }
228
229         if (breakpoint->type == BKPT_HARD)
230         {
231                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
232                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
233
234                 /* reassign a hw breakpoint */
235                 if (breakpoint->set == 0)
236                 {
237                         arm7_9_assign_wp(arm7_9, breakpoint);
238                 }
239
240                 if (breakpoint->set == 1)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else if (breakpoint->set == 2)
249                 {
250                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
251                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
252                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
253                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
254                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
255                 }
256                 else
257                 {
258                         LOG_ERROR("BUG: no hardware comparator available");
259                         return ERROR_OK;
260                 }
261
262                 retval = jtag_execute_queue();
263         }
264         else if (breakpoint->type == BKPT_SOFT)
265         {
266                 /* did we already set this breakpoint? */
267                 if (breakpoint->set)
268                         return ERROR_OK;
269
270                 if (breakpoint->length == 4)
271                 {
272                         uint32_t verify = 0xffffffff;
273                         /* keep the original instruction in target endianness */
274                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
275                         {
276                                 return retval;
277                         }
278                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
279                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
280                         {
281                                 return retval;
282                         }
283
284                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
285                         {
286                                 return retval;
287                         }
288                         if (verify != arm7_9->arm_bkpt)
289                         {
290                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
291                                 return ERROR_OK;
292                         }
293                 }
294                 else
295                 {
296                         uint16_t verify = 0xffff;
297                         /* keep the original instruction in target endianness */
298                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
299                         {
300                                 return retval;
301                         }
302                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
303                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
304                         {
305                                 return retval;
306                         }
307
308                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
309                         {
310                                 return retval;
311                         }
312                         if (verify != arm7_9->thumb_bkpt)
313                         {
314                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
315                                 return ERROR_OK;
316                         }
317                 }
318
319                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
320                         return retval;
321
322                 arm7_9->sw_breakpoint_count++;
323
324                 breakpoint->set = 1;
325         }
326
327         return retval;
328 }
329
330 /**
331  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
332  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
333  * will be updated.  Otherwise, the software breakpoint will be restored to its
334  * original instruction if it hasn't already been modified.
335  *
336  * @param target Pointer to ARM7/9 target to unset the breakpoint from
337  * @param breakpoint Pointer to breakpoint to be unset
338  * @return For hardware breakpoints, this is the result of executing the JTAG
339  *         queue.  For software breakpoints, this will be the status of the
340  *         required memory reads and writes
341  */
342 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
343 {
344         int retval = ERROR_OK;
345         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
346
347         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
348                           breakpoint->unique_id,
349                           breakpoint->address );
350
351         if (!breakpoint->set)
352         {
353                 LOG_WARNING("breakpoint not set");
354                 return ERROR_OK;
355         }
356
357         if (breakpoint->type == BKPT_HARD)
358         {
359                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
360                                   breakpoint->unique_id,
361                                   breakpoint->set );
362                 if (breakpoint->set == 1)
363                 {
364                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
365                         arm7_9->wp0_used = 0;
366                         arm7_9->wp_available++;
367                 }
368                 else if (breakpoint->set == 2)
369                 {
370                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
371                         arm7_9->wp1_used = 0;
372                         arm7_9->wp_available++;
373                 }
374                 retval = jtag_execute_queue();
375                 breakpoint->set = 0;
376         }
377         else
378         {
379                 /* restore original instruction (kept in target endianness) */
380                 if (breakpoint->length == 4)
381                 {
382                         uint32_t current_instr;
383                         /* check that user program as not modified breakpoint instruction */
384                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
385                         {
386                                 return retval;
387                         }
388                         if (current_instr == arm7_9->arm_bkpt)
389                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
390                                 {
391                                         return retval;
392                                 }
393                 }
394                 else
395                 {
396                         uint16_t current_instr;
397                         /* check that user program as not modified breakpoint instruction */
398                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
399                         {
400                                 return retval;
401                         }
402                         if (current_instr == arm7_9->thumb_bkpt)
403                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
404                                 {
405                                         return retval;
406                                 }
407                 }
408
409                 if (--arm7_9->sw_breakpoint_count==0)
410                 {
411                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
412                         if (arm7_9->sw_breakpoints_added == 1)
413                         {
414                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
415                         }
416                         else if (arm7_9->sw_breakpoints_added == 2)
417                         {
418                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
419                         }
420                 }
421
422                 breakpoint->set = 0;
423         }
424
425         return retval;
426 }
427
428 /**
429  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
430  * dangling breakpoints and that the desired breakpoint can be added.
431  *
432  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
433  * @param breakpoint Pointer to the breakpoint to be added
434  * @return An error status if there is a problem adding the breakpoint or the
435  *         result of setting the breakpoint
436  */
437 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
438 {
439         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
440
441         if (target->state != TARGET_HALTED)
442         {
443                 LOG_WARNING("target not halted");
444                 return ERROR_TARGET_NOT_HALTED;
445         }
446
447         if (arm7_9->breakpoint_count == 0)
448         {
449                 /* make sure we don't have any dangling breakpoints. This is vital upon
450                  * GDB connect/disconnect
451                  */
452                 arm7_9_clear_watchpoints(arm7_9);
453         }
454
455         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
456         {
457                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
458                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
459         }
460
461         if ((breakpoint->length != 2) && (breakpoint->length != 4))
462         {
463                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
464                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
465         }
466
467         if (breakpoint->type == BKPT_HARD)
468         {
469                 arm7_9_assign_wp(arm7_9, breakpoint);
470         }
471
472         arm7_9->breakpoint_count++;
473
474         return arm7_9_set_breakpoint(target, breakpoint);
475 }
476
477 /**
478  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
479  * dangling breakpoints and updates available watchpoints if it is a hardware
480  * breakpoint.
481  *
482  * @param target Pointer to the target to have a breakpoint removed
483  * @param breakpoint Pointer to the breakpoint to be removed
484  * @return Error status if there was a problem unsetting the breakpoint or the
485  *         watchpoints could not be cleared
486  */
487 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
488 {
489         int retval = ERROR_OK;
490         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
491
492         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
493         {
494                 return retval;
495         }
496
497         if (breakpoint->type == BKPT_HARD)
498                 arm7_9->wp_available++;
499
500         arm7_9->breakpoint_count--;
501         if (arm7_9->breakpoint_count == 0)
502         {
503                 /* make sure we don't have any dangling breakpoints */
504                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
505                 {
506                         return retval;
507                 }
508         }
509
510         return ERROR_OK;
511 }
512
513 /**
514  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
515  * considered a bug to call this function when there are no available watchpoint
516  * units.
517  *
518  * @param target Pointer to an ARM7/9 target to set a watchpoint on
519  * @param watchpoint Pointer to the watchpoint to be set
520  * @return Error status if watchpoint set fails or the result of executing the
521  *         JTAG queue
522  */
523 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
524 {
525         int retval = ERROR_OK;
526         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
527         int rw_mask = 1;
528         uint32_t mask;
529
530         mask = watchpoint->length - 1;
531
532         if (target->state != TARGET_HALTED)
533         {
534                 LOG_WARNING("target not halted");
535                 return ERROR_TARGET_NOT_HALTED;
536         }
537
538         if (watchpoint->rw == WPT_ACCESS)
539                 rw_mask = 0;
540         else
541                 rw_mask = 1;
542
543         if (!arm7_9->wp0_used)
544         {
545                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
546                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
547                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
548                 if (watchpoint->mask != 0xffffffffu)
549                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
552
553                 if ((retval = jtag_execute_queue()) != ERROR_OK)
554                 {
555                         return retval;
556                 }
557                 watchpoint->set = 1;
558                 arm7_9->wp0_used = 2;
559         }
560         else if (!arm7_9->wp1_used)
561         {
562                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
563                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
564                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
565                 if (watchpoint->mask != 0xffffffffu)
566                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
567                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
568                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
569
570                 if ((retval = jtag_execute_queue()) != ERROR_OK)
571                 {
572                         return retval;
573                 }
574                 watchpoint->set = 2;
575                 arm7_9->wp1_used = 2;
576         }
577         else
578         {
579                 LOG_ERROR("BUG: no hardware comparator available");
580                 return ERROR_OK;
581         }
582
583         return ERROR_OK;
584 }
585
586 /**
587  * Unset an existing watchpoint and clear the used watchpoint unit.
588  *
589  * @param target Pointer to the target to have the watchpoint removed
590  * @param watchpoint Pointer to the watchpoint to be removed
591  * @return Error status while trying to unset the watchpoint or the result of
592  *         executing the JTAG queue
593  */
594 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
595 {
596         int retval = ERROR_OK;
597         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
598
599         if (target->state != TARGET_HALTED)
600         {
601                 LOG_WARNING("target not halted");
602                 return ERROR_TARGET_NOT_HALTED;
603         }
604
605         if (!watchpoint->set)
606         {
607                 LOG_WARNING("breakpoint not set");
608                 return ERROR_OK;
609         }
610
611         if (watchpoint->set == 1)
612         {
613                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
614                 if ((retval = jtag_execute_queue()) != ERROR_OK)
615                 {
616                         return retval;
617                 }
618                 arm7_9->wp0_used = 0;
619         }
620         else if (watchpoint->set == 2)
621         {
622                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
623                 if ((retval = jtag_execute_queue()) != ERROR_OK)
624                 {
625                         return retval;
626                 }
627                 arm7_9->wp1_used = 0;
628         }
629         watchpoint->set = 0;
630
631         return ERROR_OK;
632 }
633
634 /**
635  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
636  * available, an error response is returned.
637  *
638  * @param target Pointer to the ARM7/9 target to add a watchpoint to
639  * @param watchpoint Pointer to the watchpoint to be added
640  * @return Error status while trying to add the watchpoint
641  */
642 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
643 {
644         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
645
646         if (target->state != TARGET_HALTED)
647         {
648                 LOG_WARNING("target not halted");
649                 return ERROR_TARGET_NOT_HALTED;
650         }
651
652         if (arm7_9->wp_available < 1)
653         {
654                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
655         }
656
657         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
658         {
659                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
660         }
661
662         arm7_9->wp_available--;
663
664         return ERROR_OK;
665 }
666
667 /**
668  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
669  * the used watchpoint unit will be reopened.
670  *
671  * @param target Pointer to the target to remove a watchpoint from
672  * @param watchpoint Pointer to the watchpoint to be removed
673  * @return Result of trying to unset the watchpoint
674  */
675 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
676 {
677         int retval = ERROR_OK;
678         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
679
680         if (watchpoint->set)
681         {
682                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
683                 {
684                         return retval;
685                 }
686         }
687
688         arm7_9->wp_available++;
689
690         return ERROR_OK;
691 }
692
693 /**
694  * Restarts the target by sending a RESTART instruction and moving the JTAG
695  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
696  * asserted by the processor.
697  *
698  * @param target Pointer to target to issue commands to
699  * @return Error status if there is a timeout or a problem while executing the
700  *         JTAG queue
701  */
702 int arm7_9_execute_sys_speed(struct target_s *target)
703 {
704         int retval;
705         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
706         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
707         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
708
709         /* set RESTART instruction */
710         jtag_set_end_state(TAP_IDLE);
711         if (arm7_9->need_bypass_before_restart) {
712                 arm7_9->need_bypass_before_restart = 0;
713                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
714         }
715         arm_jtag_set_instr(jtag_info, 0x4, NULL);
716
717         long long then = timeval_ms();
718         int timeout;
719         while (!(timeout = ((timeval_ms()-then) > 1000)))
720         {
721                 /* read debug status register */
722                 embeddedice_read_reg(dbg_stat);
723                 if ((retval = jtag_execute_queue()) != ERROR_OK)
724                         return retval;
725                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
726                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
727                         break;
728                 if (debug_level >= 3)
729                 {
730                         alive_sleep(100);
731                 } else
732                 {
733                         keep_alive();
734                 }
735         }
736         if (timeout)
737         {
738                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
739                 return ERROR_TARGET_TIMEOUT;
740         }
741
742         return ERROR_OK;
743 }
744
745 /**
746  * Restarts the target by sending a RESTART instruction and moving the JTAG
747  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
748  * waiting until they are.
749  *
750  * @param target Pointer to the target to issue commands to
751  * @return Always ERROR_OK
752  */
753 int arm7_9_execute_fast_sys_speed(struct target_s *target)
754 {
755         static int set = 0;
756         static uint8_t check_value[4], check_mask[4];
757
758         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
759         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
760         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
761
762         /* set RESTART instruction */
763         jtag_set_end_state(TAP_IDLE);
764         if (arm7_9->need_bypass_before_restart) {
765                 arm7_9->need_bypass_before_restart = 0;
766                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
767         }
768         arm_jtag_set_instr(jtag_info, 0x4, NULL);
769
770         if (!set)
771         {
772                 /* check for DBGACK and SYSCOMP set (others don't care) */
773
774                 /* NB! These are constants that must be available until after next jtag_execute() and
775                  * we evaluate the values upon first execution in lieu of setting up these constants
776                  * during early setup.
777                  * */
778                 buf_set_u32(check_value, 0, 32, 0x9);
779                 buf_set_u32(check_mask, 0, 32, 0x9);
780                 set = 1;
781         }
782
783         /* read debug status register */
784         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
785
786         return ERROR_OK;
787 }
788
789 /**
790  * Get some data from the ARM7/9 target.
791  *
792  * @param target Pointer to the ARM7/9 target to read data from
793  * @param size The number of 32bit words to be read
794  * @param buffer Pointer to the buffer that will hold the data
795  * @return The result of receiving data from the Embedded ICE unit
796  */
797 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
798 {
799         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
800         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
801         uint32_t *data;
802         int retval = ERROR_OK;
803         uint32_t i;
804
805         data = malloc(size * (sizeof(uint32_t)));
806
807         retval = embeddedice_receive(jtag_info, data, size);
808
809         /* return the 32-bit ints in the 8-bit array */
810         for (i = 0; i < size; i++)
811         {
812                 h_u32_to_le(buffer + (i * 4), data[i]);
813         }
814
815         free(data);
816
817         return retval;
818 }
819
820 /**
821  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
822  * target is running and the DCC control register has the W bit high, this will
823  * execute the request on the target.
824  *
825  * @param priv Void pointer expected to be a target_t pointer
826  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
827  *                  from the Embedded ICE unit
828  */
829 int arm7_9_handle_target_request(void *priv)
830 {
831         int retval = ERROR_OK;
832         target_t *target = priv;
833         if (!target_was_examined(target))
834                 return ERROR_OK;
835         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
836         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
837         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
838
839         if (!target->dbg_msg_enabled)
840                 return ERROR_OK;
841
842         if (target->state == TARGET_RUNNING)
843         {
844                 /* read DCC control register */
845                 embeddedice_read_reg(dcc_control);
846                 if ((retval = jtag_execute_queue()) != ERROR_OK)
847                 {
848                         return retval;
849                 }
850
851                 /* check W bit */
852                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
853                 {
854                         uint32_t request;
855
856                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
857                         {
858                                 return retval;
859                         }
860                         if ((retval = target_request(target, request)) != ERROR_OK)
861                         {
862                                 return retval;
863                         }
864                 }
865         }
866
867         return ERROR_OK;
868 }
869
870 /**
871  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
872  * is manipulated to the right halted state based on its current state.  This is
873  * what happens:
874  *
875  * <table>
876  *              <tr><th > State</th><th > Action</th></tr>
877  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
878  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
879  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
880  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
881  * </table>
882  *
883  * If the target does not end up in the halted state, a warning is produced.  If
884  * DBGACK is cleared, then the target is expected to either be running or
885  * running in debug.
886  *
887  * @param target Pointer to the ARM7/9 target to poll
888  * @return ERROR_OK or an error status if a command fails
889  */
890 int arm7_9_poll(target_t *target)
891 {
892         int retval;
893         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
894         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
895
896         /* read debug status register */
897         embeddedice_read_reg(dbg_stat);
898         if ((retval = jtag_execute_queue()) != ERROR_OK)
899         {
900                 return retval;
901         }
902
903         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
904         {
905 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
906                 if (target->state == TARGET_UNKNOWN)
907                 {
908                         /* Starting OpenOCD with target in debug-halt */
909                         target->state = TARGET_RUNNING;
910                         LOG_DEBUG("DBGACK already set during server startup.");
911                 }
912                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
913                 {
914                         int check_pc = 0;
915                         if (target->state == TARGET_RESET)
916                         {
917                                 if (target->reset_halt)
918                                 {
919                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
920                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
921                                         {
922                                                 check_pc = 1;
923                                         }
924                                 }
925                         }
926
927                         target->state = TARGET_HALTED;
928
929                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
930                                 return retval;
931
932                         if (check_pc)
933                         {
934                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
935                                 uint32_t t=*((uint32_t *)reg->value);
936                                 if (t != 0)
937                                 {
938                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
939                                 }
940                         }
941
942                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
943                         {
944                                 return retval;
945                         }
946                 }
947                 if (target->state == TARGET_DEBUG_RUNNING)
948                 {
949                         target->state = TARGET_HALTED;
950                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
951                                 return retval;
952
953                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
954                         {
955                                 return retval;
956                         }
957                 }
958                 if (target->state != TARGET_HALTED)
959                 {
960                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
961                 }
962         }
963         else
964         {
965                 if (target->state != TARGET_DEBUG_RUNNING)
966                         target->state = TARGET_RUNNING;
967         }
968
969         return ERROR_OK;
970 }
971
972 /**
973  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
974  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
975  * affected) completely stop the JTAG clock while the core is held in reset
976  * (SRST).  It isn't possible to program the halt condition once reset is
977  * asserted, hence a hook that allows the target to set up its reset-halt
978  * condition is setup prior to asserting reset.
979  *
980  * @param target Pointer to an ARM7/9 target to assert reset on
981  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
982  */
983 int arm7_9_assert_reset(target_t *target)
984 {
985         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
986
987         LOG_DEBUG("target->state: %s",
988                   target_state_name(target));
989
990         enum reset_types jtag_reset_config = jtag_get_reset_config();
991         if (!(jtag_reset_config & RESET_HAS_SRST))
992         {
993                 LOG_ERROR("Can't assert SRST");
994                 return ERROR_FAIL;
995         }
996
997         /* At this point trst has been asserted/deasserted once. We would
998          * like to program EmbeddedICE while SRST is asserted, instead of
999          * depending on SRST to leave that module alone.  However, many CPUs
1000          * gate the JTAG clock while SRST is asserted; or JTAG may need
1001          * clock stability guarantees (adaptive clocking might help).
1002          *
1003          * So we assume JTAG access during SRST is off the menu unless it's
1004          * been specifically enabled.
1005          */
1006         bool srst_asserted = false;
1007
1008         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
1009                         && (jtag_reset_config & RESET_SRST_NO_GATING))
1010         {
1011                 jtag_add_reset(0, 1);
1012                 srst_asserted = true;
1013         }
1014
1015         if (target->reset_halt)
1016         {
1017                 /*
1018                  * Some targets do not support communication while SRST is asserted. We need to
1019                  * set up the reset vector catch here.
1020                  *
1021                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1022                  * here is harmless.
1023                  */
1024                 if (arm7_9->has_vector_catch)
1025                 {
1026                         /* program vector catch register to catch reset vector */
1027                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1028
1029                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1030                         jtag_add_runtest(1, jtag_get_end_state());
1031                 }
1032                 else
1033                 {
1034                         /* program watchpoint unit to match on reset vector address */
1035                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1036                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1037                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1038                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1039                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1040                 }
1041         }
1042
1043         /* here we should issue an SRST only, but we may have to assert TRST as well */
1044         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1045         {
1046                 jtag_add_reset(1, 1);
1047         } else if (!srst_asserted)
1048         {
1049                 jtag_add_reset(0, 1);
1050         }
1051
1052         target->state = TARGET_RESET;
1053         jtag_add_sleep(50000);
1054
1055         armv4_5_invalidate_core_regs(target);
1056
1057         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1058         {
1059                 /* debug entry was already prepared in arm7_9_assert_reset() */
1060                 target->debug_reason = DBG_REASON_DBGRQ;
1061         }
1062
1063         return ERROR_OK;
1064 }
1065
1066 /**
1067  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1068  * and the target is being reset into a halt, a warning will be triggered
1069  * because it is not possible to reset into a halted mode in this case.  The
1070  * target is halted using the target's functions.
1071  *
1072  * @param target Pointer to the target to have the reset deasserted
1073  * @return ERROR_OK or an error from polling or halting the target
1074  */
1075 int arm7_9_deassert_reset(target_t *target)
1076 {
1077         int retval = ERROR_OK;
1078         LOG_DEBUG("target->state: %s",
1079                 target_state_name(target));
1080
1081         /* deassert reset lines */
1082         jtag_add_reset(0, 0);
1083
1084         enum reset_types jtag_reset_config = jtag_get_reset_config();
1085         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1086         {
1087                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1088                 /* set up embedded ice registers again */
1089                 if ((retval = target_examine_one(target)) != ERROR_OK)
1090                         return retval;
1091
1092                 if ((retval = target_poll(target)) != ERROR_OK)
1093                 {
1094                         return retval;
1095                 }
1096
1097                 if ((retval = target_halt(target)) != ERROR_OK)
1098                 {
1099                         return retval;
1100                 }
1101
1102         }
1103         return retval;
1104 }
1105
1106 /**
1107  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1108  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1109  * vector catch was used, it is restored.  Otherwise, the control value is
1110  * restored and the watchpoint unit is restored if it was in use.
1111  *
1112  * @param target Pointer to the ARM7/9 target to have halt cleared
1113  * @return Always ERROR_OK
1114  */
1115 int arm7_9_clear_halt(target_t *target)
1116 {
1117         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1118         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1119
1120         /* we used DBGRQ only if we didn't come out of reset */
1121         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1122         {
1123                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1124                  */
1125                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1126                 embeddedice_store_reg(dbg_ctrl);
1127         }
1128         else
1129         {
1130                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1131                 {
1132                         /* if we came out of reset, and vector catch is supported, we used
1133                          * vector catch to enter debug state
1134                          * restore the register in that case
1135                          */
1136                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1137                 }
1138                 else
1139                 {
1140                         /* restore registers if watchpoint unit 0 was in use
1141                          */
1142                         if (arm7_9->wp0_used)
1143                         {
1144                                 if (arm7_9->debug_entry_from_reset)
1145                                 {
1146                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1147                                 }
1148                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1149                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1150                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1151                         }
1152                         /* control value always has to be restored, as it was either disabled,
1153                          * or enabled with possibly different bits
1154                          */
1155                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1156                 }
1157         }
1158
1159         return ERROR_OK;
1160 }
1161
1162 /**
1163  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1164  * and then there is a wait until the processor shows the halt.  This wait can
1165  * timeout and results in an error being returned.  The software reset involves
1166  * clearing the halt, updating the debug control register, changing to ARM mode,
1167  * reset of the program counter, and reset of all of the registers.
1168  *
1169  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1170  * @return Error status if any of the commands fail, otherwise ERROR_OK
1171  */
1172 int arm7_9_soft_reset_halt(struct target_s *target)
1173 {
1174         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1175         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1176         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1177         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1178         int i;
1179         int retval;
1180
1181         /* FIX!!! replace some of this code with tcl commands
1182          *
1183          * halt # the halt command is synchronous
1184          * armv4_5 core_state arm
1185          *
1186          */
1187
1188         if ((retval = target_halt(target)) != ERROR_OK)
1189                 return retval;
1190
1191         long long then = timeval_ms();
1192         int timeout;
1193         while (!(timeout = ((timeval_ms()-then) > 1000)))
1194         {
1195                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1196                         break;
1197                 embeddedice_read_reg(dbg_stat);
1198                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1199                         return retval;
1200                 if (debug_level >= 3)
1201                 {
1202                         alive_sleep(100);
1203                 } else
1204                 {
1205                         keep_alive();
1206                 }
1207         }
1208         if (timeout)
1209         {
1210                 LOG_ERROR("Failed to halt CPU after 1 sec");
1211                 return ERROR_TARGET_TIMEOUT;
1212         }
1213         target->state = TARGET_HALTED;
1214
1215         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1216          * ensure that DBGRQ is cleared
1217          */
1218         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1219         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1220         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1221         embeddedice_store_reg(dbg_ctrl);
1222
1223         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1224         {
1225                 return retval;
1226         }
1227
1228         /* if the target is in Thumb state, change to ARM state */
1229         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1230         {
1231                 uint32_t r0_thumb, pc_thumb;
1232                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1233                 /* Entered debug from Thumb mode */
1234                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1235                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1236         }
1237
1238         /* all register content is now invalid */
1239         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1240         {
1241                 return retval;
1242         }
1243
1244         /* SVC, ARM state, IRQ and FIQ disabled */
1245         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1246         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1247         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1248
1249         /* start fetching from 0x0 */
1250         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1251         armv4_5->core_cache->reg_list[15].dirty = 1;
1252         armv4_5->core_cache->reg_list[15].valid = 1;
1253
1254         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1255         armv4_5->core_state = ARMV4_5_STATE_ARM;
1256
1257         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1258                 return ERROR_FAIL;
1259
1260         /* reset registers */
1261         for (i = 0; i <= 14; i++)
1262         {
1263                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1264                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1265                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1266         }
1267
1268         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1269         {
1270                 return retval;
1271         }
1272
1273         return ERROR_OK;
1274 }
1275
1276 /**
1277  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1278  * line or by programming a watchpoint to trigger on any address.  It is
1279  * considered a bug to call this function while the target is in the
1280  * TARGET_RESET state.
1281  *
1282  * @param target Pointer to the ARM7/9 target to be halted
1283  * @return Always ERROR_OK
1284  */
1285 int arm7_9_halt(target_t *target)
1286 {
1287         if (target->state == TARGET_RESET)
1288         {
1289                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1290                 return ERROR_OK;
1291         }
1292
1293         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1294         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1295
1296         LOG_DEBUG("target->state: %s",
1297                   target_state_name(target));
1298
1299         if (target->state == TARGET_HALTED)
1300         {
1301                 LOG_DEBUG("target was already halted");
1302                 return ERROR_OK;
1303         }
1304
1305         if (target->state == TARGET_UNKNOWN)
1306         {
1307                 LOG_WARNING("target was in unknown state when halt was requested");
1308         }
1309
1310         if (arm7_9->use_dbgrq)
1311         {
1312                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1313                  */
1314                 if (arm7_9->set_special_dbgrq) {
1315                         arm7_9->set_special_dbgrq(target);
1316                 } else {
1317                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1318                         embeddedice_store_reg(dbg_ctrl);
1319                 }
1320         }
1321         else
1322         {
1323                 /* program watchpoint unit to match on any address
1324                  */
1325                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1326                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1327                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1328                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1329         }
1330
1331         target->debug_reason = DBG_REASON_DBGRQ;
1332
1333         return ERROR_OK;
1334 }
1335
1336 /**
1337  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1338  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1339  * examined.  Once done, the target is verified to be halted and the processor
1340  * is forced into ARM mode.  The core registers are saved for the current core
1341  * mode and the program counter (register 15) is updated as needed.  The core
1342  * registers and CPSR and SPSR are saved for restoration later.
1343  *
1344  * @param target Pointer to target that is entering debug mode
1345  * @return Error code if anything fails, otherwise ERROR_OK
1346  */
1347 int arm7_9_debug_entry(target_t *target)
1348 {
1349         int i;
1350         uint32_t context[16];
1351         uint32_t* context_p[16];
1352         uint32_t r0_thumb, pc_thumb;
1353         uint32_t cpsr;
1354         int retval;
1355         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1356         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1357         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1358         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1359
1360 #ifdef _DEBUG_ARM7_9_
1361         LOG_DEBUG("-");
1362 #endif
1363
1364         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1365          * ensure that DBGRQ is cleared
1366          */
1367         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1368         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1369         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1370         embeddedice_store_reg(dbg_ctrl);
1371
1372         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1373         {
1374                 return retval;
1375         }
1376
1377         if ((retval = jtag_execute_queue()) != ERROR_OK)
1378         {
1379                 return retval;
1380         }
1381
1382         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1383                 return retval;
1384
1385
1386         if (target->state != TARGET_HALTED)
1387         {
1388                 LOG_WARNING("target not halted");
1389                 return ERROR_TARGET_NOT_HALTED;
1390         }
1391
1392         /* if the target is in Thumb state, change to ARM state */
1393         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1394         {
1395                 LOG_DEBUG("target entered debug from Thumb state");
1396                 /* Entered debug from Thumb mode */
1397                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1398                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1399                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1400         }
1401         else
1402         {
1403                 LOG_DEBUG("target entered debug from ARM state");
1404                 /* Entered debug from ARM mode */
1405                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1406         }
1407
1408         for (i = 0; i < 16; i++)
1409                 context_p[i] = &context[i];
1410         /* save core registers (r0 - r15 of current core mode) */
1411         arm7_9->read_core_regs(target, 0xffff, context_p);
1412
1413         arm7_9->read_xpsr(target, &cpsr, 0);
1414
1415         if ((retval = jtag_execute_queue()) != ERROR_OK)
1416                 return retval;
1417
1418         /* if the core has been executing in Thumb state, set the T bit */
1419         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1420                 cpsr |= 0x20;
1421
1422         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1423         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1424         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1425
1426         armv4_5->core_mode = cpsr & 0x1f;
1427
1428         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1429         {
1430                 target->state = TARGET_UNKNOWN;
1431                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1432                 return ERROR_TARGET_FAILURE;
1433         }
1434
1435         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1436
1437         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1438         {
1439                 LOG_DEBUG("thumb state, applying fixups");
1440                 context[0] = r0_thumb;
1441                 context[15] = pc_thumb;
1442         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1443         {
1444                 /* adjust value stored by STM */
1445                 context[15] -= 3 * 4;
1446         }
1447
1448         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1449                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1450         else
1451                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1452
1453         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1454                 return ERROR_FAIL;
1455
1456         for (i = 0; i <= 15; i++)
1457         {
1458                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1459                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1460                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1461                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1462         }
1463
1464         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1465
1466         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1467                 return ERROR_FAIL;
1468
1469         /* exceptions other than USR & SYS have a saved program status register */
1470         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1471         {
1472                 uint32_t spsr;
1473                 arm7_9->read_xpsr(target, &spsr, 1);
1474                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1475                 {
1476                         return retval;
1477                 }
1478                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1479                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1480                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1481         }
1482
1483         /* r0 and r15 (pc) have to be restored later */
1484         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1485         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1486
1487         if ((retval = jtag_execute_queue()) != ERROR_OK)
1488                 return retval;
1489
1490         if (arm7_9->post_debug_entry)
1491                 arm7_9->post_debug_entry(target);
1492
1493         return ERROR_OK;
1494 }
1495
1496 /**
1497  * Validate the full context for an ARM7/9 target in all processor modes.  If
1498  * there are any invalid registers for the target, they will all be read.  This
1499  * includes the PSR.
1500  *
1501  * @param target Pointer to the ARM7/9 target to capture the full context from
1502  * @return Error if the target is not halted, has an invalid core mode, or if
1503  *         the JTAG queue fails to execute
1504  */
1505 int arm7_9_full_context(target_t *target)
1506 {
1507         int i;
1508         int retval;
1509         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1510         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1511
1512         LOG_DEBUG("-");
1513
1514         if (target->state != TARGET_HALTED)
1515         {
1516                 LOG_WARNING("target not halted");
1517                 return ERROR_TARGET_NOT_HALTED;
1518         }
1519
1520         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1521                 return ERROR_FAIL;
1522
1523         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1524          * SYS shares registers with User, so we don't touch SYS
1525          */
1526         for (i = 0; i < 6; i++)
1527         {
1528                 uint32_t mask = 0;
1529                 uint32_t* reg_p[16];
1530                 int j;
1531                 int valid = 1;
1532
1533                 /* check if there are invalid registers in the current mode
1534                  */
1535                 for (j = 0; j <= 16; j++)
1536                 {
1537                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1538                                 valid = 0;
1539                 }
1540
1541                 if (!valid)
1542                 {
1543                         uint32_t tmp_cpsr;
1544
1545                         /* change processor mode (and mask T bit) */
1546                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1547                         tmp_cpsr |= armv4_5_number_to_mode(i);
1548                         tmp_cpsr &= ~0x20;
1549                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1550
1551                         for (j = 0; j < 15; j++)
1552                         {
1553                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1554                                 {
1555                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1556                                         mask |= 1 << j;
1557                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1558                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1559                                 }
1560                         }
1561
1562                         /* if only the PSR is invalid, mask is all zeroes */
1563                         if (mask)
1564                                 arm7_9->read_core_regs(target, mask, reg_p);
1565
1566                         /* check if the PSR has to be read */
1567                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1568                         {
1569                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1570                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1571                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1572                         }
1573                 }
1574         }
1575
1576         /* restore processor mode (mask T bit) */
1577         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1578
1579         if ((retval = jtag_execute_queue()) != ERROR_OK)
1580         {
1581                 return retval;
1582         }
1583         return ERROR_OK;
1584 }
1585
1586 /**
1587  * Restore the processor context on an ARM7/9 target.  The full processor
1588  * context is analyzed to see if any of the registers are dirty on this end, but
1589  * have a valid new value.  If this is the case, the processor is changed to the
1590  * appropriate mode and the new register values are written out to the
1591  * processor.  If there happens to be a dirty register with an invalid value, an
1592  * error will be logged.
1593  *
1594  * @param target Pointer to the ARM7/9 target to have its context restored
1595  * @return Error status if the target is not halted or the core mode in the
1596  *         armv4_5 struct is invalid.
1597  */
1598 int arm7_9_restore_context(target_t *target)
1599 {
1600         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1601         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1602         reg_t *reg;
1603         armv4_5_core_reg_t *reg_arch_info;
1604         enum armv4_5_mode current_mode = armv4_5->core_mode;
1605         int i, j;
1606         int dirty;
1607         int mode_change;
1608
1609         LOG_DEBUG("-");
1610
1611         if (target->state != TARGET_HALTED)
1612         {
1613                 LOG_WARNING("target not halted");
1614                 return ERROR_TARGET_NOT_HALTED;
1615         }
1616
1617         if (arm7_9->pre_restore_context)
1618                 arm7_9->pre_restore_context(target);
1619
1620         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1621                 return ERROR_FAIL;
1622
1623         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1624          * SYS shares registers with User, so we don't touch SYS
1625          */
1626         for (i = 0; i < 6; i++)
1627         {
1628                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1629                 dirty = 0;
1630                 mode_change = 0;
1631                 /* check if there are dirty registers in the current mode
1632                 */
1633                 for (j = 0; j <= 16; j++)
1634                 {
1635                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1636                         reg_arch_info = reg->arch_info;
1637                         if (reg->dirty == 1)
1638                         {
1639                                 if (reg->valid == 1)
1640                                 {
1641                                         dirty = 1;
1642                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1643                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1644                                                 && (reg_arch_info->mode != current_mode)
1645                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1646                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1647                                         {
1648                                                 mode_change = 1;
1649                                                 LOG_DEBUG("require mode change");
1650                                         }
1651                                 }
1652                                 else
1653                                 {
1654                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1655                                 }
1656                         }
1657                 }
1658
1659                 if (dirty)
1660                 {
1661                         uint32_t mask = 0x0;
1662                         int num_regs = 0;
1663                         uint32_t regs[16];
1664
1665                         if (mode_change)
1666                         {
1667                                 uint32_t tmp_cpsr;
1668
1669                                 /* change processor mode (mask T bit) */
1670                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1671                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1672                                 tmp_cpsr &= ~0x20;
1673                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1674                                 current_mode = armv4_5_number_to_mode(i);
1675                         }
1676
1677                         for (j = 0; j <= 14; j++)
1678                         {
1679                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1680                                 reg_arch_info = reg->arch_info;
1681
1682
1683                                 if (reg->dirty == 1)
1684                                 {
1685                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1686                                         mask |= 1 << j;
1687                                         num_regs++;
1688                                         reg->dirty = 0;
1689                                         reg->valid = 1;
1690                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1691                                 }
1692                         }
1693
1694                         if (mask)
1695                         {
1696                                 arm7_9->write_core_regs(target, mask, regs);
1697                         }
1698
1699                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1700                         reg_arch_info = reg->arch_info;
1701                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1702                         {
1703                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1704                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1705                         }
1706                 }
1707         }
1708
1709         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1710         {
1711                 /* restore processor mode (mask T bit) */
1712                 uint32_t tmp_cpsr;
1713
1714                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1715                 tmp_cpsr |= armv4_5_number_to_mode(i);
1716                 tmp_cpsr &= ~0x20;
1717                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1718                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1719         }
1720         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1721         {
1722                 /* CPSR has been changed, full restore necessary (mask T bit) */
1723                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1724                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1725                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1726                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1727         }
1728
1729         /* restore PC */
1730         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1731         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1732         armv4_5->core_cache->reg_list[15].dirty = 0;
1733
1734         if (arm7_9->post_restore_context)
1735                 arm7_9->post_restore_context(target);
1736
1737         return ERROR_OK;
1738 }
1739
1740 /**
1741  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1742  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1743  * restart.
1744  *
1745  * @param target Pointer to the ARM7/9 target to be restarted
1746  * @return Result of executing the JTAG queue
1747  */
1748 int arm7_9_restart_core(struct target_s *target)
1749 {
1750         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1751         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1752
1753         /* set RESTART instruction */
1754         jtag_set_end_state(TAP_IDLE);
1755         if (arm7_9->need_bypass_before_restart) {
1756                 arm7_9->need_bypass_before_restart = 0;
1757                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1758         }
1759         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1760
1761         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1762         return jtag_execute_queue();
1763 }
1764
1765 /**
1766  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1767  * iterated through and are set on the target if they aren't already set.
1768  *
1769  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1770  */
1771 void arm7_9_enable_watchpoints(struct target_s *target)
1772 {
1773         watchpoint_t *watchpoint = target->watchpoints;
1774
1775         while (watchpoint)
1776         {
1777                 if (watchpoint->set == 0)
1778                         arm7_9_set_watchpoint(target, watchpoint);
1779                 watchpoint = watchpoint->next;
1780         }
1781 }
1782
1783 /**
1784  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1785  * iterated through and are set on the target.
1786  *
1787  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1788  */
1789 void arm7_9_enable_breakpoints(struct target_s *target)
1790 {
1791         breakpoint_t *breakpoint = target->breakpoints;
1792
1793         /* set any pending breakpoints */
1794         while (breakpoint)
1795         {
1796                 arm7_9_set_breakpoint(target, breakpoint);
1797                 breakpoint = breakpoint->next;
1798         }
1799 }
1800
1801 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1802 {
1803         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1804         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1805         breakpoint_t *breakpoint = target->breakpoints;
1806         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1807         int err, retval = ERROR_OK;
1808
1809         LOG_DEBUG("-");
1810
1811         if (target->state != TARGET_HALTED)
1812         {
1813                 LOG_WARNING("target not halted");
1814                 return ERROR_TARGET_NOT_HALTED;
1815         }
1816
1817         if (!debug_execution)
1818         {
1819                 target_free_all_working_areas(target);
1820         }
1821
1822         /* current = 1: continue on current pc, otherwise continue at <address> */
1823         if (!current)
1824                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1825
1826         uint32_t current_pc;
1827         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1828
1829         /* the front-end may request us not to handle breakpoints */
1830         if (handle_breakpoints)
1831         {
1832                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1833                 {
1834                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1835                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1836                         {
1837                                 return retval;
1838                         }
1839
1840                         /* calculate PC of next instruction */
1841                         uint32_t next_pc;
1842                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1843                         {
1844                                 uint32_t current_opcode;
1845                                 target_read_u32(target, current_pc, &current_opcode);
1846                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1847                                 return retval;
1848                         }
1849
1850                         LOG_DEBUG("enable single-step");
1851                         arm7_9->enable_single_step(target, next_pc);
1852
1853                         target->debug_reason = DBG_REASON_SINGLESTEP;
1854
1855                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1856                         {
1857                                 return retval;
1858                         }
1859
1860                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1861                                 arm7_9->branch_resume(target);
1862                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1863                         {
1864                                 arm7_9->branch_resume_thumb(target);
1865                         }
1866                         else
1867                         {
1868                                 LOG_ERROR("unhandled core state");
1869                                 return ERROR_FAIL;
1870                         }
1871
1872                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1873                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1874                         err = arm7_9_execute_sys_speed(target);
1875
1876                         LOG_DEBUG("disable single-step");
1877                         arm7_9->disable_single_step(target);
1878
1879                         if (err != ERROR_OK)
1880                         {
1881                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1882                                 {
1883                                         return retval;
1884                                 }
1885                                 target->state = TARGET_UNKNOWN;
1886                                 return err;
1887                         }
1888
1889                         arm7_9_debug_entry(target);
1890                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1891
1892                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1893                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1894                         {
1895                                 return retval;
1896                         }
1897                 }
1898         }
1899
1900         /* enable any pending breakpoints and watchpoints */
1901         arm7_9_enable_breakpoints(target);
1902         arm7_9_enable_watchpoints(target);
1903
1904         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1905         {
1906                 return retval;
1907         }
1908
1909         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1910         {
1911                 arm7_9->branch_resume(target);
1912         }
1913         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1914         {
1915                 arm7_9->branch_resume_thumb(target);
1916         }
1917         else
1918         {
1919                 LOG_ERROR("unhandled core state");
1920                 return ERROR_FAIL;
1921         }
1922
1923         /* deassert DBGACK and INTDIS */
1924         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1925         /* INTDIS only when we really resume, not during debug execution */
1926         if (!debug_execution)
1927                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1928         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1929
1930         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1931         {
1932                 return retval;
1933         }
1934
1935         target->debug_reason = DBG_REASON_NOTHALTED;
1936
1937         if (!debug_execution)
1938         {
1939                 /* registers are now invalid */
1940                 armv4_5_invalidate_core_regs(target);
1941                 target->state = TARGET_RUNNING;
1942                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1943                 {
1944                         return retval;
1945                 }
1946         }
1947         else
1948         {
1949                 target->state = TARGET_DEBUG_RUNNING;
1950                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1951                 {
1952                         return retval;
1953                 }
1954         }
1955
1956         LOG_DEBUG("target resumed");
1957
1958         return ERROR_OK;
1959 }
1960
1961 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1962 {
1963         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
1964         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1965         uint32_t current_pc;
1966         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1967
1968         if (next_pc != current_pc)
1969         {
1970                 /* setup an inverse breakpoint on the current PC
1971                 * - comparator 1 matches the current address
1972                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1973                 * - comparator 0 matches any address, as long as rangein is low */
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1983         }
1984         else
1985         {
1986                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1987                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1988                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1989                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1990                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1991                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1992                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1993                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1994                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1995         }
1996 }
1997
1998 void arm7_9_disable_eice_step(target_t *target)
1999 {
2000         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2001
2002         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2003         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2004         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2005         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2006         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2007         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2008         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2009         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2010         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2011 }
2012
2013 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2014 {
2015         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2016         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2017         breakpoint_t *breakpoint = NULL;
2018         int err, retval;
2019
2020         if (target->state != TARGET_HALTED)
2021         {
2022                 LOG_WARNING("target not halted");
2023                 return ERROR_TARGET_NOT_HALTED;
2024         }
2025
2026         /* current = 1: continue on current pc, otherwise continue at <address> */
2027         if (!current)
2028                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2029
2030         uint32_t current_pc;
2031         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2032
2033         /* the front-end may request us not to handle breakpoints */
2034         if (handle_breakpoints)
2035                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2036                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2037                         {
2038                                 return retval;
2039                         }
2040
2041         target->debug_reason = DBG_REASON_SINGLESTEP;
2042
2043         /* calculate PC of next instruction */
2044         uint32_t next_pc;
2045         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2046         {
2047                 uint32_t current_opcode;
2048                 target_read_u32(target, current_pc, &current_opcode);
2049                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2050                 return retval;
2051         }
2052
2053         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2054         {
2055                 return retval;
2056         }
2057
2058         arm7_9->enable_single_step(target, next_pc);
2059
2060         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2061         {
2062                 arm7_9->branch_resume(target);
2063         }
2064         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2065         {
2066                 arm7_9->branch_resume_thumb(target);
2067         }
2068         else
2069         {
2070                 LOG_ERROR("unhandled core state");
2071                 return ERROR_FAIL;
2072         }
2073
2074         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2075         {
2076                 return retval;
2077         }
2078
2079         err = arm7_9_execute_sys_speed(target);
2080         arm7_9->disable_single_step(target);
2081
2082         /* registers are now invalid */
2083         armv4_5_invalidate_core_regs(target);
2084
2085         if (err != ERROR_OK)
2086         {
2087                 target->state = TARGET_UNKNOWN;
2088         } else {
2089                 arm7_9_debug_entry(target);
2090                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2091                 {
2092                         return retval;
2093                 }
2094                 LOG_DEBUG("target stepped");
2095         }
2096
2097         if (breakpoint)
2098                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2099                 {
2100                         return retval;
2101                 }
2102
2103         return err;
2104 }
2105
2106 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2107 {
2108         uint32_t* reg_p[16];
2109         uint32_t value;
2110         int retval;
2111         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2112         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2113
2114         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2115                 return ERROR_FAIL;
2116
2117         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2118
2119         if ((num < 0) || (num > 16))
2120                 return ERROR_INVALID_ARGUMENTS;
2121
2122         if ((mode != ARMV4_5_MODE_ANY)
2123                         && (mode != armv4_5->core_mode)
2124                         && (reg_mode != ARMV4_5_MODE_ANY))
2125         {
2126                 uint32_t tmp_cpsr;
2127
2128                 /* change processor mode (mask T bit) */
2129                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2130                 tmp_cpsr |= mode;
2131                 tmp_cpsr &= ~0x20;
2132                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2133         }
2134
2135         if ((num >= 0) && (num <= 15))
2136         {
2137                 /* read a normal core register */
2138                 reg_p[num] = &value;
2139
2140                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2141         }
2142         else
2143         {
2144                 /* read a program status register
2145                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2146                  */
2147                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2148                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2149
2150                 arm7_9->read_xpsr(target, &value, spsr);
2151         }
2152
2153         if ((retval = jtag_execute_queue()) != ERROR_OK)
2154         {
2155                 return retval;
2156         }
2157
2158         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2159         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2160         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2161
2162         if ((mode != ARMV4_5_MODE_ANY)
2163                         && (mode != armv4_5->core_mode)
2164                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2165                 /* restore processor mode (mask T bit) */
2166                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2167         }
2168
2169         return ERROR_OK;
2170 }
2171
2172 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2173 {
2174         uint32_t reg[16];
2175         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2176         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2177
2178         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2179                 return ERROR_FAIL;
2180
2181         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2182
2183         if ((num < 0) || (num > 16))
2184                 return ERROR_INVALID_ARGUMENTS;
2185
2186         if ((mode != ARMV4_5_MODE_ANY)
2187                         && (mode != armv4_5->core_mode)
2188                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2189                 uint32_t tmp_cpsr;
2190
2191                 /* change processor mode (mask T bit) */
2192                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2193                 tmp_cpsr |= mode;
2194                 tmp_cpsr &= ~0x20;
2195                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2196         }
2197
2198         if ((num >= 0) && (num <= 15))
2199         {
2200                 /* write a normal core register */
2201                 reg[num] = value;
2202
2203                 arm7_9->write_core_regs(target, 1 << num, reg);
2204         }
2205         else
2206         {
2207                 /* write a program status register
2208                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2209                 */
2210                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2211                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2212
2213                 /* if we're writing the CPSR, mask the T bit */
2214                 if (!spsr)
2215                         value &= ~0x20;
2216
2217                 arm7_9->write_xpsr(target, value, spsr);
2218         }
2219
2220         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2221         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2222
2223         if ((mode != ARMV4_5_MODE_ANY)
2224                         && (mode != armv4_5->core_mode)
2225                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2226                 /* restore processor mode (mask T bit) */
2227                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2228         }
2229
2230         return jtag_execute_queue();
2231 }
2232
2233 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2234 {
2235         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2236         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2237         uint32_t reg[16];
2238         uint32_t num_accesses = 0;
2239         int thisrun_accesses;
2240         int i;
2241         uint32_t cpsr;
2242         int retval;
2243         int last_reg = 0;
2244
2245         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2246
2247         if (target->state != TARGET_HALTED)
2248         {
2249                 LOG_WARNING("target not halted");
2250                 return ERROR_TARGET_NOT_HALTED;
2251         }
2252
2253         /* sanitize arguments */
2254         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2255                 return ERROR_INVALID_ARGUMENTS;
2256
2257         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2258                 return ERROR_TARGET_UNALIGNED_ACCESS;
2259
2260         /* load the base register with the address of the first word */
2261         reg[0] = address;
2262         arm7_9->write_core_regs(target, 0x1, reg);
2263
2264         int j = 0;
2265
2266         switch (size)
2267         {
2268                 case 4:
2269                         while (num_accesses < count)
2270                         {
2271                                 uint32_t reg_list;
2272                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2273                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2274
2275                                 if (last_reg <= thisrun_accesses)
2276                                         last_reg = thisrun_accesses;
2277
2278                                 arm7_9->load_word_regs(target, reg_list);
2279
2280                                 /* fast memory reads are only safe when the target is running
2281                                  * from a sufficiently high clock (32 kHz is usually too slow)
2282                                  */
2283                                 if (arm7_9->fast_memory_access)
2284                                         retval = arm7_9_execute_fast_sys_speed(target);
2285                                 else
2286                                         retval = arm7_9_execute_sys_speed(target);
2287                                 if (retval != ERROR_OK)
2288                                         return retval;
2289
2290                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2291
2292                                 /* advance buffer, count number of accesses */
2293                                 buffer += thisrun_accesses * 4;
2294                                 num_accesses += thisrun_accesses;
2295
2296                                 if ((j++%1024) == 0)
2297                                 {
2298                                         keep_alive();
2299                                 }
2300                         }
2301                         break;
2302                 case 2:
2303                         while (num_accesses < count)
2304                         {
2305                                 uint32_t reg_list;
2306                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2307                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2308
2309                                 for (i = 1; i <= thisrun_accesses; i++)
2310                                 {
2311                                         if (i > last_reg)
2312                                                 last_reg = i;
2313                                         arm7_9->load_hword_reg(target, i);
2314                                         /* fast memory reads are only safe when the target is running
2315                                          * from a sufficiently high clock (32 kHz is usually too slow)
2316                                          */
2317                                         if (arm7_9->fast_memory_access)
2318                                                 retval = arm7_9_execute_fast_sys_speed(target);
2319                                         else
2320                                                 retval = arm7_9_execute_sys_speed(target);
2321                                         if (retval != ERROR_OK)
2322                                         {
2323                                                 return retval;
2324                                         }
2325
2326                                 }
2327
2328                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2329
2330                                 /* advance buffer, count number of accesses */
2331                                 buffer += thisrun_accesses * 2;
2332                                 num_accesses += thisrun_accesses;
2333
2334                                 if ((j++%1024) == 0)
2335                                 {
2336                                         keep_alive();
2337                                 }
2338                         }
2339                         break;
2340                 case 1:
2341                         while (num_accesses < count)
2342                         {
2343                                 uint32_t reg_list;
2344                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2345                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2346
2347                                 for (i = 1; i <= thisrun_accesses; i++)
2348                                 {
2349                                         if (i > last_reg)
2350                                                 last_reg = i;
2351                                         arm7_9->load_byte_reg(target, i);
2352                                         /* fast memory reads are only safe when the target is running
2353                                          * from a sufficiently high clock (32 kHz is usually too slow)
2354                                          */
2355                                         if (arm7_9->fast_memory_access)
2356                                                 retval = arm7_9_execute_fast_sys_speed(target);
2357                                         else
2358                                                 retval = arm7_9_execute_sys_speed(target);
2359                                         if (retval != ERROR_OK)
2360                                         {
2361                                                 return retval;
2362                                         }
2363                                 }
2364
2365                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2366
2367                                 /* advance buffer, count number of accesses */
2368                                 buffer += thisrun_accesses * 1;
2369                                 num_accesses += thisrun_accesses;
2370
2371                                 if ((j++%1024) == 0)
2372                                 {
2373                                         keep_alive();
2374                                 }
2375                         }
2376                         break;
2377                 default:
2378                         LOG_ERROR("BUG: we shouldn't get here");
2379                         exit(-1);
2380                         break;
2381         }
2382
2383         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2384                 return ERROR_FAIL;
2385
2386         for (i = 0; i <= last_reg; i++)
2387                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2388
2389         arm7_9->read_xpsr(target, &cpsr, 0);
2390         if ((retval = jtag_execute_queue()) != ERROR_OK)
2391         {
2392                 LOG_ERROR("JTAG error while reading cpsr");
2393                 return ERROR_TARGET_DATA_ABORT;
2394         }
2395
2396         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2397         {
2398                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2399
2400                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2401
2402                 return ERROR_TARGET_DATA_ABORT;
2403         }
2404
2405         return ERROR_OK;
2406 }
2407
2408 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2409 {
2410         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2411         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2412         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2413
2414         uint32_t reg[16];
2415         uint32_t num_accesses = 0;
2416         int thisrun_accesses;
2417         int i;
2418         uint32_t cpsr;
2419         int retval;
2420         int last_reg = 0;
2421
2422 #ifdef _DEBUG_ARM7_9_
2423         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2424 #endif
2425
2426         if (target->state != TARGET_HALTED)
2427         {
2428                 LOG_WARNING("target not halted");
2429                 return ERROR_TARGET_NOT_HALTED;
2430         }
2431
2432         /* sanitize arguments */
2433         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2434                 return ERROR_INVALID_ARGUMENTS;
2435
2436         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2437                 return ERROR_TARGET_UNALIGNED_ACCESS;
2438
2439         /* load the base register with the address of the first word */
2440         reg[0] = address;
2441         arm7_9->write_core_regs(target, 0x1, reg);
2442
2443         /* Clear DBGACK, to make sure memory fetches work as expected */
2444         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2445         embeddedice_store_reg(dbg_ctrl);
2446
2447         switch (size)
2448         {
2449                 case 4:
2450                         while (num_accesses < count)
2451                         {
2452                                 uint32_t reg_list;
2453                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2454                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2455
2456                                 for (i = 1; i <= thisrun_accesses; i++)
2457                                 {
2458                                         if (i > last_reg)
2459                                                 last_reg = i;
2460                                         reg[i] = target_buffer_get_u32(target, buffer);
2461                                         buffer += 4;
2462                                 }
2463
2464                                 arm7_9->write_core_regs(target, reg_list, reg);
2465
2466                                 arm7_9->store_word_regs(target, reg_list);
2467
2468                                 /* fast memory writes are only safe when the target is running
2469                                  * from a sufficiently high clock (32 kHz is usually too slow)
2470                                  */
2471                                 if (arm7_9->fast_memory_access)
2472                                         retval = arm7_9_execute_fast_sys_speed(target);
2473                                 else
2474                                         retval = arm7_9_execute_sys_speed(target);
2475                                 if (retval != ERROR_OK)
2476                                 {
2477                                         return retval;
2478                                 }
2479
2480                                 num_accesses += thisrun_accesses;
2481                         }
2482                         break;
2483                 case 2:
2484                         while (num_accesses < count)
2485                         {
2486                                 uint32_t reg_list;
2487                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2488                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2489
2490                                 for (i = 1; i <= thisrun_accesses; i++)
2491                                 {
2492                                         if (i > last_reg)
2493                                                 last_reg = i;
2494                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2495                                         buffer += 2;
2496                                 }
2497
2498                                 arm7_9->write_core_regs(target, reg_list, reg);
2499
2500                                 for (i = 1; i <= thisrun_accesses; i++)
2501                                 {
2502                                         arm7_9->store_hword_reg(target, i);
2503
2504                                         /* fast memory writes are only safe when the target is running
2505                                          * from a sufficiently high clock (32 kHz is usually too slow)
2506                                          */
2507                                         if (arm7_9->fast_memory_access)
2508                                                 retval = arm7_9_execute_fast_sys_speed(target);
2509                                         else
2510                                                 retval = arm7_9_execute_sys_speed(target);
2511                                         if (retval != ERROR_OK)
2512                                         {
2513                                                 return retval;
2514                                         }
2515                                 }
2516
2517                                 num_accesses += thisrun_accesses;
2518                         }
2519                         break;
2520                 case 1:
2521                         while (num_accesses < count)
2522                         {
2523                                 uint32_t reg_list;
2524                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2525                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2526
2527                                 for (i = 1; i <= thisrun_accesses; i++)
2528                                 {
2529                                         if (i > last_reg)
2530                                                 last_reg = i;
2531                                         reg[i] = *buffer++ & 0xff;
2532                                 }
2533
2534                                 arm7_9->write_core_regs(target, reg_list, reg);
2535
2536                                 for (i = 1; i <= thisrun_accesses; i++)
2537                                 {
2538                                         arm7_9->store_byte_reg(target, i);
2539                                         /* fast memory writes are only safe when the target is running
2540                                          * from a sufficiently high clock (32 kHz is usually too slow)
2541                                          */
2542                                         if (arm7_9->fast_memory_access)
2543                                                 retval = arm7_9_execute_fast_sys_speed(target);
2544                                         else
2545                                                 retval = arm7_9_execute_sys_speed(target);
2546                                         if (retval != ERROR_OK)
2547                                         {
2548                                                 return retval;
2549                                         }
2550
2551                                 }
2552
2553                                 num_accesses += thisrun_accesses;
2554                         }
2555                         break;
2556                 default:
2557                         LOG_ERROR("BUG: we shouldn't get here");
2558                         exit(-1);
2559                         break;
2560         }
2561
2562         /* Re-Set DBGACK */
2563         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2564         embeddedice_store_reg(dbg_ctrl);
2565
2566         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2567                 return ERROR_FAIL;
2568
2569         for (i = 0; i <= last_reg; i++)
2570                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2571
2572         arm7_9->read_xpsr(target, &cpsr, 0);
2573         if ((retval = jtag_execute_queue()) != ERROR_OK)
2574         {
2575                 LOG_ERROR("JTAG error while reading cpsr");
2576                 return ERROR_TARGET_DATA_ABORT;
2577         }
2578
2579         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2580         {
2581                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2582
2583                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2584
2585                 return ERROR_TARGET_DATA_ABORT;
2586         }
2587
2588         return ERROR_OK;
2589 }
2590
2591 static int dcc_count;
2592 static uint8_t *dcc_buffer;
2593
2594 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2595 {
2596         int retval = ERROR_OK;
2597         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2598
2599         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2600                 return retval;
2601
2602         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2603         int count = dcc_count;
2604         uint8_t *buffer = dcc_buffer;
2605         if (count > 2)
2606         {
2607                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2608                  * core function repeated. */
2609                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2610                 buffer += 4;
2611
2612                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2613                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2614                 jtag_tap_t *tap;
2615                 tap = ice_reg->jtag_info->tap;
2616
2617                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2618                 buffer += (count-2)*4;
2619
2620                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2621         } else
2622         {
2623                 int i;
2624                 for (i = 0; i < count; i++)
2625                 {
2626                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2627                         buffer += 4;
2628                 }
2629         }
2630
2631         if ((retval = target_halt(target))!= ERROR_OK)
2632         {
2633                 return retval;
2634         }
2635         return target_wait_state(target, TARGET_HALTED, 500);
2636 }
2637
2638 static const uint32_t dcc_code[] =
2639 {
2640         /* r0 == input, points to memory buffer
2641          * r1 == scratch
2642          */
2643
2644         /* spin until DCC control (c0) reports data arrived */
2645         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2646         0xe3110001,     /*    tst r1, #1              */
2647         0x0afffffc,     /*    bne w                   */
2648
2649         /* read word from DCC (c1), write to memory */
2650         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2651         0xe4801004,     /*    str r1, [r0], #4        */
2652
2653         /* repeat */
2654         0xeafffff9      /*    b   w                   */
2655 };
2656
2657 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2658
2659 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2660 {
2661         int retval;
2662         struct arm7_9_common_s *arm7_9 = target_to_arm7_9(target);
2663         int i;
2664
2665         if (!arm7_9->dcc_downloads)
2666                 return target_write_memory(target, address, 4, count, buffer);
2667
2668         /* regrab previously allocated working_area, or allocate a new one */
2669         if (!arm7_9->dcc_working_area)
2670         {
2671                 uint8_t dcc_code_buf[6 * 4];
2672
2673                 /* make sure we have a working area */
2674                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2675                 {
2676                         LOG_INFO("no working area available, falling back to memory writes");
2677                         return target_write_memory(target, address, 4, count, buffer);
2678                 }
2679
2680                 /* copy target instructions to target endianness */
2681                 for (i = 0; i < 6; i++)
2682                 {
2683                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2684                 }
2685
2686                 /* write DCC code to working area */
2687                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2688                 {
2689                         return retval;
2690                 }
2691         }
2692
2693         armv4_5_algorithm_t armv4_5_info;
2694         reg_param_t reg_params[1];
2695
2696         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2697         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2698         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2699
2700         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2701
2702         buf_set_u32(reg_params[0].value, 0, 32, address);
2703
2704         dcc_count = count;
2705         dcc_buffer = buffer;
2706         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2707                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2708
2709         if (retval == ERROR_OK)
2710         {
2711                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2712                 if (endaddress != (address + count*4))
2713                 {
2714                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2715                         retval = ERROR_FAIL;
2716                 }
2717         }
2718
2719         destroy_reg_param(&reg_params[0]);
2720
2721         return retval;
2722 }
2723
2724 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2725 {
2726         working_area_t *crc_algorithm;
2727         armv4_5_algorithm_t armv4_5_info;
2728         reg_param_t reg_params[2];
2729         int retval;
2730
2731         static const uint32_t arm7_9_crc_code[] = {
2732                 0xE1A02000,                             /* mov          r2, r0 */
2733                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2734                 0xE1A03001,                             /* mov          r3, r1 */
2735                 0xE3A04000,                             /* mov          r4, #0 */
2736                 0xEA00000B,                             /* b            ncomp */
2737                                                                 /* nbyte: */
2738                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2739                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2740                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2741                 0xE3A05000,                             /* mov          r5, #0 */
2742                                                                 /* loop: */
2743                 0xE3500000,                             /* cmp          r0, #0 */
2744                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2745                 0xE2855001,                             /* add          r5, r5, #1 */
2746                 0xE1A00006,                             /* mov          r0, r6 */
2747                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2748                 0xE3550008,                             /* cmp          r5, #8 */
2749                 0x1AFFFFF8,                             /* bne          loop */
2750                 0xE2844001,                             /* add          r4, r4, #1 */
2751                                                                 /* ncomp: */
2752                 0xE1540003,                             /* cmp          r4, r3 */
2753                 0x1AFFFFF1,                             /* bne          nbyte */
2754                                                                 /* end: */
2755                 0xEAFFFFFE,                             /* b            end */
2756                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2757         };
2758
2759         uint32_t i;
2760
2761         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2762         {
2763                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2764         }
2765
2766         /* convert flash writing code into a buffer in target endianness */
2767         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2768         {
2769                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2770                 {
2771                         return retval;
2772                 }
2773         }
2774
2775         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2776         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2777         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2778
2779         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2780         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2781
2782         buf_set_u32(reg_params[0].value, 0, 32, address);
2783         buf_set_u32(reg_params[1].value, 0, 32, count);
2784
2785         /* 20 second timeout/megabyte */
2786         int timeout = 20000 * (1 + (count / (1024*1024)));
2787
2788         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2789                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), timeout, &armv4_5_info)) != ERROR_OK)
2790         {
2791                 LOG_ERROR("error executing arm7_9 crc algorithm");
2792                 destroy_reg_param(&reg_params[0]);
2793                 destroy_reg_param(&reg_params[1]);
2794                 target_free_working_area(target, crc_algorithm);
2795                 return retval;
2796         }
2797
2798         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2799
2800         destroy_reg_param(&reg_params[0]);
2801         destroy_reg_param(&reg_params[1]);
2802
2803         target_free_working_area(target, crc_algorithm);
2804
2805         return ERROR_OK;
2806 }
2807
2808 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2809 {
2810         working_area_t *erase_check_algorithm;
2811         reg_param_t reg_params[3];
2812         armv4_5_algorithm_t armv4_5_info;
2813         int retval;
2814         uint32_t i;
2815
2816         static const uint32_t erase_check_code[] =
2817         {
2818                 /* loop: */
2819                 0xe4d03001,             /* ldrb r3, [r0], #1 */
2820                 0xe0022003,             /* and r2, r2, r3    */
2821                 0xe2511001,             /* subs r1, r1, #1   */
2822                 0x1afffffb,             /* bne loop          */
2823                 /* end: */
2824                 0xeafffffe              /* b end             */
2825         };
2826
2827         /* make sure we have a working area */
2828         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2829         {
2830                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2831         }
2832
2833         /* convert flash writing code into a buffer in target endianness */
2834         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2835                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2836                 {
2837                         return retval;
2838                 }
2839
2840         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2841         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2842         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2843
2844         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2845         buf_set_u32(reg_params[0].value, 0, 32, address);
2846
2847         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2848         buf_set_u32(reg_params[1].value, 0, 32, count);
2849
2850         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2851         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2852
2853         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2854                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2855         {
2856                 destroy_reg_param(&reg_params[0]);
2857                 destroy_reg_param(&reg_params[1]);
2858                 destroy_reg_param(&reg_params[2]);
2859                 target_free_working_area(target, erase_check_algorithm);
2860                 return 0;
2861         }
2862
2863         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2864
2865         destroy_reg_param(&reg_params[0]);
2866         destroy_reg_param(&reg_params[1]);
2867         destroy_reg_param(&reg_params[2]);
2868
2869         target_free_working_area(target, erase_check_algorithm);
2870
2871         return ERROR_OK;
2872 }
2873
2874 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2875 {
2876         uint32_t value;
2877         int spsr;
2878         int retval;
2879         target_t *target = get_current_target(cmd_ctx);
2880         armv4_5_common_t *armv4_5;
2881         arm7_9_common_t *arm7_9;
2882
2883         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2884         {
2885                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2886                 return ERROR_OK;
2887         }
2888
2889         if (target->state != TARGET_HALTED)
2890         {
2891                 command_print(cmd_ctx, "can't write registers while running");
2892                 return ERROR_OK;
2893         }
2894
2895         if (argc < 2)
2896         {
2897                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2898                 return ERROR_OK;
2899         }
2900
2901         COMMAND_PARSE_NUMBER(u32, args[0], value);
2902         COMMAND_PARSE_NUMBER(int, args[1], spsr);
2903
2904         /* if we're writing the CPSR, mask the T bit */
2905         if (!spsr)
2906                 value &= ~0x20;
2907
2908         arm7_9->write_xpsr(target, value, spsr);
2909         if ((retval = jtag_execute_queue()) != ERROR_OK)
2910         {
2911                 LOG_ERROR("JTAG error while writing to xpsr");
2912                 return retval;
2913         }
2914
2915         return ERROR_OK;
2916 }
2917
2918 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2919 {
2920         uint32_t value;
2921         int rotate;
2922         int spsr;
2923         int retval;
2924         target_t *target = get_current_target(cmd_ctx);
2925         armv4_5_common_t *armv4_5;
2926         arm7_9_common_t *arm7_9;
2927
2928         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2929         {
2930                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2931                 return ERROR_OK;
2932         }
2933
2934         if (target->state != TARGET_HALTED)
2935         {
2936                 command_print(cmd_ctx, "can't write registers while running");
2937                 return ERROR_OK;
2938         }
2939
2940         if (argc < 3)
2941         {
2942                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2943                 return ERROR_OK;
2944         }
2945
2946         COMMAND_PARSE_NUMBER(u32, args[0], value);
2947         COMMAND_PARSE_NUMBER(int, args[1], rotate);
2948         COMMAND_PARSE_NUMBER(int, args[2], spsr);
2949
2950         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2951         if ((retval = jtag_execute_queue()) != ERROR_OK)
2952         {
2953                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2954                 return retval;
2955         }
2956
2957         return ERROR_OK;
2958 }
2959
2960 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2961 {
2962         uint32_t value;
2963         uint32_t mode;
2964         int num;
2965         target_t *target = get_current_target(cmd_ctx);
2966         armv4_5_common_t *armv4_5;
2967         arm7_9_common_t *arm7_9;
2968
2969         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2970         {
2971                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2972                 return ERROR_OK;
2973         }
2974
2975         if (target->state != TARGET_HALTED)
2976         {
2977                 command_print(cmd_ctx, "can't write registers while running");
2978                 return ERROR_OK;
2979         }
2980
2981         if (argc < 3)
2982         {
2983                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2984                 return ERROR_OK;
2985         }
2986
2987         COMMAND_PARSE_NUMBER(int, args[0], num);
2988         COMMAND_PARSE_NUMBER(u32, args[1], mode);
2989         COMMAND_PARSE_NUMBER(u32, args[2], value);
2990
2991         return arm7_9_write_core_reg(target, num, mode, value);
2992 }
2993
2994 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2995 {
2996         target_t *target = get_current_target(cmd_ctx);
2997         armv4_5_common_t *armv4_5;
2998         arm7_9_common_t *arm7_9;
2999
3000         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3001         {
3002                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3003                 return ERROR_OK;
3004         }
3005
3006         if (argc > 0)
3007         {
3008                 if (strcmp("enable", args[0]) == 0)
3009                 {
3010                         arm7_9->use_dbgrq = 1;
3011                 }
3012                 else if (strcmp("disable", args[0]) == 0)
3013                 {
3014                         arm7_9->use_dbgrq = 0;
3015                 }
3016                 else
3017                 {
3018                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3019                 }
3020         }
3021
3022         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3023
3024         return ERROR_OK;
3025 }
3026
3027 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3028 {
3029         target_t *target = get_current_target(cmd_ctx);
3030         armv4_5_common_t *armv4_5;
3031         arm7_9_common_t *arm7_9;
3032
3033         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3034         {
3035                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3036                 return ERROR_OK;
3037         }
3038
3039         if (argc > 0)
3040         {
3041                 if (strcmp("enable", args[0]) == 0)
3042                 {
3043                         arm7_9->fast_memory_access = 1;
3044                 }
3045                 else if (strcmp("disable", args[0]) == 0)
3046                 {
3047                         arm7_9->fast_memory_access = 0;
3048                 }
3049                 else
3050                 {
3051                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3052                 }
3053         }
3054
3055         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3056
3057         return ERROR_OK;
3058 }
3059
3060 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3061 {
3062         target_t *target = get_current_target(cmd_ctx);
3063         armv4_5_common_t *armv4_5;
3064         arm7_9_common_t *arm7_9;
3065
3066         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3067         {
3068                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3069                 return ERROR_OK;
3070         }
3071
3072         if (argc > 0)
3073         {
3074                 if (strcmp("enable", args[0]) == 0)
3075                 {
3076                         arm7_9->dcc_downloads = 1;
3077                 }
3078                 else if (strcmp("disable", args[0]) == 0)
3079                 {
3080                         arm7_9->dcc_downloads = 0;
3081                 }
3082                 else
3083                 {
3084                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3085                 }
3086         }
3087
3088         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3089
3090         return ERROR_OK;
3091 }
3092
3093 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3094 {
3095         int retval = ERROR_OK;
3096         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3097
3098         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3099
3100         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3101                 return retval;
3102
3103         /* caller must have allocated via calloc(), so everything's zeroed */
3104
3105         arm7_9->wp_available_max = 2;
3106
3107         arm7_9->fast_memory_access = fast_and_dangerous;
3108         arm7_9->dcc_downloads = fast_and_dangerous;
3109
3110         armv4_5->arch_info = arm7_9;
3111         armv4_5->read_core_reg = arm7_9_read_core_reg;
3112         armv4_5->write_core_reg = arm7_9_write_core_reg;
3113         armv4_5->full_context = arm7_9_full_context;
3114
3115         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3116                 return retval;
3117
3118         return target_register_timer_callback(arm7_9_handle_target_request,
3119                         1, 1, target);
3120 }
3121
3122 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
3123 {
3124         command_t *arm7_9_cmd;
3125
3126         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
3127                         NULL, COMMAND_ANY, "arm7/9 specific commands");
3128
3129         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr",
3130                         handle_arm7_9_write_xpsr_command, COMMAND_EXEC,
3131                         "write program status register <value> <not cpsr | spsr>");
3132         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8",
3133                         handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC,
3134                         "write program status register "
3135                         "<8bit immediate> <rotate> <not cpsr | spsr>");
3136
3137         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg",
3138                         handle_arm7_9_write_core_reg_command, COMMAND_EXEC,
3139                         "write core register <num> <mode> <value>");
3140
3141         register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
3142                         handle_arm7_9_dbgrq_command, COMMAND_ANY,
3143                         "use EmbeddedICE dbgrq instead of breakpoint "
3144                         "for target halt requests <enable | disable>");
3145         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
3146                         handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
3147                         "use fast memory accesses instead of slower "
3148                         "but potentially safer accesses <enable | disable>");
3149         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
3150                         handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
3151                         "use DCC downloads for larger memory writes <enable | disable>");
3152
3153         armv4_5_register_commands(cmd_ctx);
3154
3155         etm_register_commands(cmd_ctx);
3156
3157         return ERROR_OK;
3158 }