no longer use jtag_add_xxx() to set end state to TAP_IDLE. Same must be done for...
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
42
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52
53 /**
54  * Clear watchpoints for an ARM7/9 target.
55  *
56  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57  * @return JTAG error status after executing queue
58  */
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
60 {
61         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
62         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
63         arm7_9->sw_breakpoints_added = 0;
64         arm7_9->wp0_used = 0;
65         arm7_9->wp1_used = arm7_9->wp1_used_default;
66         arm7_9->wp_available = arm7_9->wp_available_max;
67
68         return jtag_execute_queue();
69 }
70
71 /**
72  * Assign a watchpoint to one of the two available hardware comparators in an
73  * ARM7 or ARM9 target.
74  *
75  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
76  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
77  */
78 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
79 {
80         if (!arm7_9->wp0_used)
81         {
82                 arm7_9->wp0_used = 1;
83                 breakpoint->set = 1;
84                 arm7_9->wp_available--;
85         }
86         else if (!arm7_9->wp1_used)
87         {
88                 arm7_9->wp1_used = 1;
89                 breakpoint->set = 2;
90                 arm7_9->wp_available--;
91         }
92         else
93         {
94                 LOG_ERROR("BUG: no hardware comparator available");
95         }
96 }
97
98 /**
99  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
100  *
101  * @param arm7_9 Pointer to common struct for ARM7/9 targets
102  * @return Error codes if there is a problem finding a watchpoint or the result
103  *         of executing the JTAG queue
104  */
105 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
106 {
107         if (arm7_9->sw_breakpoints_added)
108         {
109                 return ERROR_OK;
110         }
111         if (arm7_9->wp_available < 1)
112         {
113                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
114                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
115         }
116         arm7_9->wp_available--;
117
118         /* pick a breakpoint unit */
119         if (!arm7_9->wp0_used)
120         {
121                 arm7_9->sw_breakpoints_added=1;
122                 arm7_9->wp0_used = 3;
123         } else if (!arm7_9->wp1_used)
124         {
125                 arm7_9->sw_breakpoints_added=2;
126                 arm7_9->wp1_used = 3;
127         }
128         else
129         {
130                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
131                 return ERROR_FAIL;
132         }
133
134         if (arm7_9->sw_breakpoints_added==1)
135         {
136                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
137                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
138                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
139                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
140                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
141         }
142         else if (arm7_9->sw_breakpoints_added==2)
143         {
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
147                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
148                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
149         }
150         else
151         {
152                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
153                 return ERROR_FAIL;
154         }
155
156         return jtag_execute_queue();
157 }
158
159 /**
160  * Setup the common pieces for an ARM7/9 target after reset or on startup.
161  *
162  * @param target Pointer to an ARM7/9 target to setup
163  * @return Result of clearing the watchpoints on the target
164  */
165 int arm7_9_setup(target_t *target)
166 {
167         armv4_5_common_t *armv4_5 = target->arch_info;
168         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
169
170         return arm7_9_clear_watchpoints(arm7_9);
171 }
172
173 /**
174  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
175  * targets.  A return of ERROR_OK signifies that the target is a valid target
176  * and that the pointers have been set properly.
177  *
178  * @param target Pointer to the target device to get the pointers from
179  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
180  *                  targets
181  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
182  *                 targets
183  * @return ERROR_OK if successful
184  */
185 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
186 {
187         armv4_5_common_t *armv4_5 = target->arch_info;
188         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
189
190         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
191         {
192                 return -1;
193         }
194
195         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
196         {
197                 return -1;
198         }
199
200         *armv4_5_p = armv4_5;
201         *arm7_9_p = arm7_9;
202
203         return ERROR_OK;
204 }
205
206 /**
207  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
208  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
209  * might have erased the values in Embedded ICE.
210  *
211  * @param target Pointer to the target device to set the breakpoints on
212  * @param breakpoint Pointer to the breakpoint to be set
213  * @return For hardware breakpoints, this is the result of executing the JTAG
214  *         queue.  For software breakpoints, this will be the status of the
215  *         required memory reads and writes
216  */
217 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
218 {
219         armv4_5_common_t *armv4_5 = target->arch_info;
220         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
221         int retval=ERROR_OK;
222
223         if (target->state != TARGET_HALTED)
224         {
225                 LOG_WARNING("target not halted");
226                 return ERROR_TARGET_NOT_HALTED;
227         }
228
229         if (breakpoint->type == BKPT_HARD)
230         {
231                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
232                 u32 mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
233
234                 /* reassign a hw breakpoint */
235                 if (breakpoint->set==0)
236                 {
237                         arm7_9_assign_wp(arm7_9, breakpoint);
238                 }
239
240                 if (breakpoint->set==1)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else if (breakpoint->set==2)
249                 {
250                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
251                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
252                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
253                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
254                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
255                 }
256                 else
257                 {
258                         LOG_ERROR("BUG: no hardware comparator available");
259                         return ERROR_OK;
260                 }
261
262                 retval=jtag_execute_queue();
263         }
264         else if (breakpoint->type == BKPT_SOFT)
265         {
266                 if ((retval=arm7_9_set_software_breakpoints(arm7_9))!=ERROR_OK)
267                         return retval;
268
269                 /* did we already set this breakpoint? */
270                 if (breakpoint->set)
271                         return ERROR_OK;
272
273                 if (breakpoint->length == 4)
274                 {
275                         u32 verify = 0xffffffff;
276                         /* keep the original instruction in target endianness */
277                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
278                         {
279                                 return retval;
280                         }
281                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
282                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
283                         {
284                                 return retval;
285                         }
286
287                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
288                         {
289                                 return retval;
290                         }
291                         if (verify != arm7_9->arm_bkpt)
292                         {
293                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08x - check that memory is read/writable", breakpoint->address);
294                                 return ERROR_OK;
295                         }
296                 }
297                 else
298                 {
299                         u16 verify = 0xffff;
300                         /* keep the original instruction in target endianness */
301                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
302                         {
303                                 return retval;
304                         }
305                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
306                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
307                         {
308                                 return retval;
309                         }
310
311                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
312                         {
313                                 return retval;
314                         }
315                         if (verify != arm7_9->thumb_bkpt)
316                         {
317                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08x - check that memory is read/writable", breakpoint->address);
318                                 return ERROR_OK;
319                         }
320                 }
321                 breakpoint->set = 1;
322         }
323
324         return retval;
325 }
326
327 /**
328  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
329  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
330  * will be updated.  Otherwise, the software breakpoint will be restored to its
331  * original instruction if it hasn't already been modified.
332  *
333  * @param target Pointer to ARM7/9 target to unset the breakpoint from
334  * @param breakpoint Pointer to breakpoint to be unset
335  * @return For hardware breakpoints, this is the result of executing the JTAG
336  *         queue.  For software breakpoints, this will be the status of the
337  *         required memory reads and writes
338  */
339 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
340 {
341         int retval = ERROR_OK;
342
343         armv4_5_common_t *armv4_5 = target->arch_info;
344         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
345
346         if (!breakpoint->set)
347         {
348                 LOG_WARNING("breakpoint not set");
349                 return ERROR_OK;
350         }
351
352         if (breakpoint->type == BKPT_HARD)
353         {
354                 if (breakpoint->set == 1)
355                 {
356                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357                         arm7_9->wp0_used = 0;
358                         arm7_9->wp_available++;
359                 }
360                 else if (breakpoint->set == 2)
361                 {
362                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363                         arm7_9->wp1_used = 0;
364                         arm7_9->wp_available++;
365                 }
366                 retval = jtag_execute_queue();
367                 breakpoint->set = 0;
368         }
369         else
370         {
371                 /* restore original instruction (kept in target endianness) */
372                 if (breakpoint->length == 4)
373                 {
374                         u32 current_instr;
375                         /* check that user program as not modified breakpoint instruction */
376                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (u8*)&current_instr)) != ERROR_OK)
377                         {
378                                 return retval;
379                         }
380                         if (current_instr==arm7_9->arm_bkpt)
381                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
382                                 {
383                                         return retval;
384                                 }
385                 }
386                 else
387                 {
388                         u16 current_instr;
389                         /* check that user program as not modified breakpoint instruction */
390                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (u8*)&current_instr)) != ERROR_OK)
391                         {
392                                 return retval;
393                         }
394                         if (current_instr==arm7_9->thumb_bkpt)
395                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
396                                 {
397                                         return retval;
398                                 }
399                 }
400                 breakpoint->set = 0;
401         }
402
403         return retval;
404 }
405
406 /**
407  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
408  * dangling breakpoints and that the desired breakpoint can be added.
409  *
410  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
411  * @param breakpoint Pointer to the breakpoint to be added
412  * @return An error status if there is a problem adding the breakpoint or the
413  *         result of setting the breakpoint
414  */
415 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
416 {
417         armv4_5_common_t *armv4_5 = target->arch_info;
418         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
419
420         if (target->state != TARGET_HALTED)
421         {
422                 LOG_WARNING("target not halted");
423                 return ERROR_TARGET_NOT_HALTED;
424         }
425
426         if (arm7_9->breakpoint_count==0)
427         {
428                 /* make sure we don't have any dangling breakpoints. This is vital upon
429                  * GDB connect/disconnect
430                  */
431                 arm7_9_clear_watchpoints(arm7_9);
432         }
433
434         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
435         {
436                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
437                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
438         }
439
440         if ((breakpoint->length != 2) && (breakpoint->length != 4))
441         {
442                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
443                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
444         }
445
446         if (breakpoint->type == BKPT_HARD)
447         {
448                 arm7_9_assign_wp(arm7_9, breakpoint);
449         }
450
451         arm7_9->breakpoint_count++;
452
453         return arm7_9_set_breakpoint(target, breakpoint);
454 }
455
456 /**
457  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
458  * dangling breakpoints and updates available watchpoints if it is a hardware
459  * breakpoint.
460  *
461  * @param target Pointer to the target to have a breakpoint removed
462  * @param breakpoint Pointer to the breakpoint to be removed
463  * @return Error status if there was a problem unsetting the breakpoint or the
464  *         watchpoints could not be cleared
465  */
466 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
467 {
468         int retval = ERROR_OK;
469         armv4_5_common_t *armv4_5 = target->arch_info;
470         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
471
472         if((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
473         {
474                 return retval;
475         }
476
477         if (breakpoint->type == BKPT_HARD)
478                 arm7_9->wp_available++;
479
480         arm7_9->breakpoint_count--;
481         if (arm7_9->breakpoint_count==0)
482         {
483                 /* make sure we don't have any dangling breakpoints */
484                 if((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
485                 {
486                         return retval;
487                 }
488         }
489
490         return ERROR_OK;
491 }
492
493 /**
494  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
495  * considered a bug to call this function when there are no available watchpoint
496  * units.
497  *
498  * @param target Pointer to an ARM7/9 target to set a watchpoint on
499  * @param watchpoint Pointer to the watchpoint to be set
500  * @return Error status if watchpoint set fails or the result of executing the
501  *         JTAG queue
502  */
503 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
504 {
505         int retval = ERROR_OK;
506         armv4_5_common_t *armv4_5 = target->arch_info;
507         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
508         int rw_mask = 1;
509         u32 mask;
510
511         mask = watchpoint->length - 1;
512
513         if (target->state != TARGET_HALTED)
514         {
515                 LOG_WARNING("target not halted");
516                 return ERROR_TARGET_NOT_HALTED;
517         }
518
519         if (watchpoint->rw == WPT_ACCESS)
520                 rw_mask = 0;
521         else
522                 rw_mask = 1;
523
524         if (!arm7_9->wp0_used)
525         {
526                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
527                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
528                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
529                 if( watchpoint->mask != 0xffffffffu )
530                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
531                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
533
534                 if((retval = jtag_execute_queue()) != ERROR_OK)
535                 {
536                         return retval;
537                 }
538                 watchpoint->set = 1;
539                 arm7_9->wp0_used = 2;
540         }
541         else if (!arm7_9->wp1_used)
542         {
543                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
544                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
545                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
546                 if( watchpoint->mask != 0xffffffffu )
547                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
548                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
550
551                 if((retval = jtag_execute_queue()) != ERROR_OK)
552                 {
553                         return retval;
554                 }
555                 watchpoint->set = 2;
556                 arm7_9->wp1_used = 2;
557         }
558         else
559         {
560                 LOG_ERROR("BUG: no hardware comparator available");
561                 return ERROR_OK;
562         }
563
564         return ERROR_OK;
565 }
566
567 /**
568  * Unset an existing watchpoint and clear the used watchpoint unit.
569  *
570  * @param target Pointer to the target to have the watchpoint removed
571  * @param watchpoint Pointer to the watchpoint to be removed
572  * @return Error status while trying to unset the watchpoint or the result of
573  *         executing the JTAG queue
574  */
575 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
576 {
577         int retval = ERROR_OK;
578         armv4_5_common_t *armv4_5 = target->arch_info;
579         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
580
581         if (target->state != TARGET_HALTED)
582         {
583                 LOG_WARNING("target not halted");
584                 return ERROR_TARGET_NOT_HALTED;
585         }
586
587         if (!watchpoint->set)
588         {
589                 LOG_WARNING("breakpoint not set");
590                 return ERROR_OK;
591         }
592
593         if (watchpoint->set == 1)
594         {
595                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
596                 if((retval = jtag_execute_queue()) != ERROR_OK)
597                 {
598                         return retval;
599                 }
600                 arm7_9->wp0_used = 0;
601         }
602         else if (watchpoint->set == 2)
603         {
604                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
605                 if((retval = jtag_execute_queue()) != ERROR_OK)
606                 {
607                         return retval;
608                 }
609                 arm7_9->wp1_used = 0;
610         }
611         watchpoint->set = 0;
612
613         return ERROR_OK;
614 }
615
616 /**
617  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
618  * available, an error response is returned.
619  *
620  * @param target Pointer to the ARM7/9 target to add a watchpoint to
621  * @param watchpoint Pointer to the watchpoint to be added
622  * @return Error status while trying to add the watchpoint
623  */
624 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
625 {
626         armv4_5_common_t *armv4_5 = target->arch_info;
627         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
628
629         if (target->state != TARGET_HALTED)
630         {
631                 LOG_WARNING("target not halted");
632                 return ERROR_TARGET_NOT_HALTED;
633         }
634
635         if (arm7_9->wp_available < 1)
636         {
637                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
638         }
639
640         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
641         {
642                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643         }
644
645         arm7_9->wp_available--;
646
647         return ERROR_OK;
648 }
649
650 /**
651  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
652  * the used watchpoint unit will be reopened.
653  *
654  * @param target Pointer to the target to remove a watchpoint from
655  * @param watchpoint Pointer to the watchpoint to be removed
656  * @return Result of trying to unset the watchpoint
657  */
658 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
659 {
660         int retval = ERROR_OK;
661         armv4_5_common_t *armv4_5 = target->arch_info;
662         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
663
664         if (watchpoint->set)
665         {
666                 if((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
667                 {
668                         return retval;
669                 }
670         }
671
672         arm7_9->wp_available++;
673
674         return ERROR_OK;
675 }
676
677 /**
678  * Restarts the target by sending a RESTART instruction and moving the JTAG
679  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
680  * asserted by the processor.
681  *
682  * @param target Pointer to target to issue commands to
683  * @return Error status if there is a timeout or a problem while executing the
684  *         JTAG queue
685  */
686 int arm7_9_execute_sys_speed(struct target_s *target)
687 {
688         int retval;
689
690         armv4_5_common_t *armv4_5 = target->arch_info;
691         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
692         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
693         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
694
695         /* set RESTART instruction */
696         jtag_add_end_state(TAP_IDLE);
697         if (arm7_9->need_bypass_before_restart) {
698                 arm7_9->need_bypass_before_restart = 0;
699                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
700         }
701         arm_jtag_set_instr(jtag_info, 0x4, NULL);
702
703         long long then=timeval_ms();
704         int timeout;
705         while (!(timeout=((timeval_ms()-then)>1000)))
706         {
707                 /* read debug status register */
708                 embeddedice_read_reg(dbg_stat);
709                 if ((retval = jtag_execute_queue()) != ERROR_OK)
710                         return retval;
711                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
712                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
713                         break;
714                 if (debug_level>=3)
715                 {
716                         alive_sleep(100);
717                 } else
718                 {
719                         keep_alive();
720                 }
721         }
722         if (timeout)
723         {
724                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %x", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
725                 return ERROR_TARGET_TIMEOUT;
726         }
727
728         return ERROR_OK;
729 }
730
731 /**
732  * Restarts the target by sending a RESTART instruction and moving the JTAG
733  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
734  * waiting until they are.
735  *
736  * @param target Pointer to the target to issue commands to
737  * @return Always ERROR_OK
738  */
739 int arm7_9_execute_fast_sys_speed(struct target_s *target)
740 {
741         static int set=0;
742         static u8 check_value[4], check_mask[4];
743
744         armv4_5_common_t *armv4_5 = target->arch_info;
745         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
746         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
747         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
748
749         /* set RESTART instruction */
750         jtag_add_end_state(TAP_IDLE);
751         if (arm7_9->need_bypass_before_restart) {
752                 arm7_9->need_bypass_before_restart = 0;
753                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
754         }
755         arm_jtag_set_instr(jtag_info, 0x4, NULL);
756
757         if (!set)
758         {
759                 /* check for DBGACK and SYSCOMP set (others don't care) */
760
761                 /* NB! These are constants that must be available until after next jtag_execute() and
762                  * we evaluate the values upon first execution in lieu of setting up these constants
763                  * during early setup.
764                  * */
765                 buf_set_u32(check_value, 0, 32, 0x9);
766                 buf_set_u32(check_mask, 0, 32, 0x9);
767                 set=1;
768         }
769
770         /* read debug status register */
771         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
772
773         return ERROR_OK;
774 }
775
776 /**
777  * Get some data from the ARM7/9 target.
778  *
779  * @param target Pointer to the ARM7/9 target to read data from
780  * @param size The number of 32bit words to be read
781  * @param buffer Pointer to the buffer that will hold the data
782  * @return The result of receiving data from the Embedded ICE unit
783  */
784 int arm7_9_target_request_data(target_t *target, u32 size, u8 *buffer)
785 {
786         armv4_5_common_t *armv4_5 = target->arch_info;
787         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
788         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
789         u32 *data;
790         int retval = ERROR_OK;
791         u32 i;
792
793         data = malloc(size * (sizeof(u32)));
794
795         retval = embeddedice_receive(jtag_info, data, size);
796
797         /* return the 32-bit ints in the 8-bit array */
798         for (i = 0; i < size; i++)
799         {
800                 h_u32_to_le(buffer + (i * 4), data[i]);
801         }
802
803         free(data);
804
805         return retval;
806 }
807
808 /**
809  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
810  * target is running and the DCC control register has the W bit high, this will
811  * execute the request on the target.
812  *
813  * @param priv Void pointer expected to be a target_t pointer
814  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815  *                  from the Embedded ICE unit
816  */
817 int arm7_9_handle_target_request(void *priv)
818 {
819         int retval = ERROR_OK;
820         target_t *target = priv;
821         if (!target_was_examined(target))
822                 return ERROR_OK;
823         armv4_5_common_t *armv4_5 = target->arch_info;
824         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
825         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
826         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
827
828         if (!target->dbg_msg_enabled)
829                 return ERROR_OK;
830
831         if (target->state == TARGET_RUNNING)
832         {
833                 /* read DCC control register */
834                 embeddedice_read_reg(dcc_control);
835                 if ((retval = jtag_execute_queue()) != ERROR_OK)
836                 {
837                         return retval;
838                 }
839
840                 /* check W bit */
841                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
842                 {
843                         u32 request;
844
845                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
846                         {
847                                 return retval;
848                         }
849                         if ((retval = target_request(target, request)) != ERROR_OK)
850                         {
851                                 return retval;
852                         }
853                 }
854         }
855
856         return ERROR_OK;
857 }
858
859 /**
860  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
861  * is manipulated to the right halted state based on its current state.  This is
862  * what happens:
863  *
864  * <table>
865  *              <tr><th>State</th><th>Action</th></tr>
866  *              <tr><td>TARGET_RUNNING | TARGET_RESET</td><td>Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
867  *              <tr><td>TARGET_UNKNOWN</td><td>Warning is logged</td></tr>
868  *              <tr><td>TARGET_DEBUG_RUNNING</td><td>Enters debug mode</td></tr>
869  *              <tr><td>TARGET_HALTED</td><td>Nothing</td></tr>
870  * </table>
871  *
872  * If the target does not end up in the halted state, a warning is produced.  If
873  * DBGACK is cleared, then the target is expected to either be running or
874  * running in debug.
875  *
876  * @param target Pointer to the ARM7/9 target to poll
877  * @return ERROR_OK or an error status if a command fails
878  */
879 int arm7_9_poll(target_t *target)
880 {
881         int retval;
882         armv4_5_common_t *armv4_5 = target->arch_info;
883         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
884         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
885
886         /* read debug status register */
887         embeddedice_read_reg(dbg_stat);
888         if ((retval = jtag_execute_queue()) != ERROR_OK)
889         {
890                 return retval;
891         }
892
893         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
894         {
895 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
896                 if (target->state == TARGET_UNKNOWN)
897                 {
898                         target->state = TARGET_RUNNING;
899                         LOG_WARNING("DBGACK set while target was in unknown state. Reset or initialize target.");
900                 }
901                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
902                 {
903                         int check_pc=0;
904                         if (target->state == TARGET_RESET)
905                         {
906                                 if (target->reset_halt)
907                                 {
908                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
909                                         {
910                                                 check_pc = 1;
911                                         }
912                                 }
913                         }
914
915                         target->state = TARGET_HALTED;
916
917                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918                                 return retval;
919
920                         if (check_pc)
921                         {
922                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
923                                 u32 t=*((u32 *)reg->value);
924                                 if (t!=0)
925                                 {
926                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
927                                 }
928                         }
929
930                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
931                         {
932                                 return retval;
933                         }
934                 }
935                 if (target->state == TARGET_DEBUG_RUNNING)
936                 {
937                         target->state = TARGET_HALTED;
938                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939                                 return retval;
940
941                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
942                         {
943                                 return retval;
944                         }
945                 }
946                 if (target->state != TARGET_HALTED)
947                 {
948                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
949                 }
950         }
951         else
952         {
953                 if (target->state != TARGET_DEBUG_RUNNING)
954                         target->state = TARGET_RUNNING;
955         }
956
957         return ERROR_OK;
958 }
959
960 /**
961  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
962  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963  * affected) completely stop the JTAG clock while the core is held in reset
964  * (SRST).  It isn't possible to program the halt condition once reset is
965  * asserted, hence a hook that allows the target to set up its reset-halt
966  * condition is setup prior to asserting reset.
967  *
968  * @param target Pointer to an ARM7/9 target to assert reset on
969  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
970  */
971 int arm7_9_assert_reset(target_t *target)
972 {
973         armv4_5_common_t *armv4_5 = target->arch_info;
974         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
975         LOG_DEBUG("target->state: %s",
976                   Jim_Nvp_value2name_simple( nvp_target_state,target->state)->name);
977
978         if (!(jtag_reset_config & RESET_HAS_SRST))
979         {
980                 LOG_ERROR("Can't assert SRST");
981                 return ERROR_FAIL;
982         }
983
984         if (target->reset_halt)
985         {
986                 /*
987                  * Some targets do not support communication while SRST is asserted. We need to
988                  * set up the reset vector catch here.
989                  *
990                  * If TRST is asserted, then these settings will be reset anyway, so setting them
991                  * here is harmless.
992                  */
993                 if (arm7_9->has_vector_catch)
994                 {
995                         /* program vector catch register to catch reset vector */
996                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
997                 }
998                 else
999                 {
1000                         /* program watchpoint unit to match on reset vector address */
1001                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1002                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1003                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1004                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1005                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1006                 }
1007         }
1008
1009         /* here we should issue an SRST only, but we may have to assert TRST as well */
1010         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1011         {
1012                 jtag_add_reset(1, 1);
1013         } else
1014         {
1015                 jtag_add_reset(0, 1);
1016         }
1017
1018         target->state = TARGET_RESET;
1019         jtag_add_sleep(50000);
1020
1021         armv4_5_invalidate_core_regs(target);
1022
1023         if ((target->reset_halt)&&((jtag_reset_config & RESET_SRST_PULLS_TRST)==0))
1024         {
1025                 /* debug entry was already prepared in arm7_9_assert_reset() */
1026                 target->debug_reason = DBG_REASON_DBGRQ;
1027         }
1028
1029         return ERROR_OK;
1030 }
1031
1032 /**
1033  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1034  * and the target is being reset into a halt, a warning will be triggered
1035  * because it is not possible to reset into a halted mode in this case.  The
1036  * target is halted using the target's functions.
1037  *
1038  * @param target Pointer to the target to have the reset deasserted
1039  * @return ERROR_OK or an error from polling or halting the target
1040  */
1041 int arm7_9_deassert_reset(target_t *target)
1042 {
1043         int retval=ERROR_OK;
1044         LOG_DEBUG("target->state: %s",
1045                 Jim_Nvp_value2name_simple( nvp_target_state,target->state)->name);
1046
1047         /* deassert reset lines */
1048         jtag_add_reset(0, 0);
1049
1050         if (target->reset_halt&&(jtag_reset_config & RESET_SRST_PULLS_TRST)!=0)
1051         {
1052                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1053                 /* set up embedded ice registers again */
1054                 if ((retval = target_examine_one(target)) != ERROR_OK)
1055                         return retval;
1056
1057                 if ((retval=target_poll(target))!=ERROR_OK)
1058                 {
1059                         return retval;
1060                 }
1061
1062                 if ((retval=target_halt(target))!=ERROR_OK)
1063                 {
1064                         return retval;
1065                 }
1066
1067         }
1068         return retval;
1069 }
1070
1071 /**
1072  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1073  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1074  * vector catch was used, it is restored.  Otherwise, the control value is
1075  * restored and the watchpoint unit is restored if it was in use.
1076  *
1077  * @param target Pointer to the ARM7/9 target to have halt cleared
1078  * @return Always ERROR_OK
1079  */
1080 int arm7_9_clear_halt(target_t *target)
1081 {
1082         armv4_5_common_t *armv4_5 = target->arch_info;
1083         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1084         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1085
1086         /* we used DBGRQ only if we didn't come out of reset */
1087         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1088         {
1089                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1090                  */
1091                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1092                 embeddedice_store_reg(dbg_ctrl);
1093         }
1094         else
1095         {
1096                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1097                 {
1098                         /* if we came out of reset, and vector catch is supported, we used
1099                          * vector catch to enter debug state
1100                          * restore the register in that case
1101                          */
1102                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1103                 }
1104                 else
1105                 {
1106                         /* restore registers if watchpoint unit 0 was in use
1107                          */
1108                         if (arm7_9->wp0_used)
1109                         {
1110                                 if (arm7_9->debug_entry_from_reset)
1111                                 {
1112                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1113                                 }
1114                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1115                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1116                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1117                         }
1118                         /* control value always has to be restored, as it was either disabled,
1119                          * or enabled with possibly different bits
1120                          */
1121                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1122                 }
1123         }
1124
1125         return ERROR_OK;
1126 }
1127
1128 /**
1129  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1130  * and then there is a wait until the processor shows the halt.  This wait can
1131  * timeout and results in an error being returned.  The software reset involves
1132  * clearing the halt, updating the debug control register, changing to ARM mode,
1133  * reset of the program counter, and reset of all of the registers.
1134  *
1135  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1136  * @return Error status if any of the commands fail, otherwise ERROR_OK
1137  */
1138 int arm7_9_soft_reset_halt(struct target_s *target)
1139 {
1140         armv4_5_common_t *armv4_5 = target->arch_info;
1141         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1142         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1143         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1144         int i;
1145         int retval;
1146
1147         if ((retval=target_halt(target))!=ERROR_OK)
1148                 return retval;
1149
1150         long long then=timeval_ms();
1151         int timeout;
1152         while (!(timeout=((timeval_ms()-then)>1000)))
1153         {
1154                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1155                         break;
1156                 embeddedice_read_reg(dbg_stat);
1157                 if ((retval=jtag_execute_queue())!=ERROR_OK)
1158                         return retval;
1159                 if (debug_level>=3)
1160                 {
1161                         alive_sleep(100);
1162                 } else
1163                 {
1164                         keep_alive();
1165                 }
1166         }
1167         if (timeout)
1168         {
1169                 LOG_ERROR("Failed to halt CPU after 1 sec");
1170                 return ERROR_TARGET_TIMEOUT;
1171         }
1172         target->state = TARGET_HALTED;
1173
1174         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1175          * ensure that DBGRQ is cleared
1176          */
1177         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1178         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1179         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1180         embeddedice_store_reg(dbg_ctrl);
1181
1182         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1183         {
1184                 return retval;
1185         }
1186
1187         /* if the target is in Thumb state, change to ARM state */
1188         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1189         {
1190                 u32 r0_thumb, pc_thumb;
1191                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1192                 /* Entered debug from Thumb mode */
1193                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1194                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1195         }
1196
1197         /* all register content is now invalid */
1198         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1199         {
1200                 return retval;
1201         }
1202
1203         /* SVC, ARM state, IRQ and FIQ disabled */
1204         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1205         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1206         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1207
1208         /* start fetching from 0x0 */
1209         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1210         armv4_5->core_cache->reg_list[15].dirty = 1;
1211         armv4_5->core_cache->reg_list[15].valid = 1;
1212
1213         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1214         armv4_5->core_state = ARMV4_5_STATE_ARM;
1215
1216         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1217                 return ERROR_FAIL;
1218
1219         /* reset registers */
1220         for (i = 0; i <= 14; i++)
1221         {
1222                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1223                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1224                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1225         }
1226
1227         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1228         {
1229                 return retval;
1230         }
1231
1232         return ERROR_OK;
1233 }
1234
1235 /**
1236  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1237  * line or by programming a watchpoint to trigger on any address.  It is
1238  * considered a bug to call this function while the target is in the
1239  * TARGET_RESET state.
1240  *
1241  * @param target Pointer to the ARM7/9 target to be halted
1242  * @return Always ERROR_OK
1243  */
1244 int arm7_9_halt(target_t *target)
1245 {
1246         if (target->state==TARGET_RESET)
1247         {
1248                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1249                 return ERROR_OK;
1250         }
1251
1252         armv4_5_common_t *armv4_5 = target->arch_info;
1253         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1254         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1255
1256         LOG_DEBUG("target->state: %s",
1257                   Jim_Nvp_value2name_simple( nvp_target_state,target->state)->name);
1258
1259         if (target->state == TARGET_HALTED)
1260         {
1261                 LOG_DEBUG("target was already halted");
1262                 return ERROR_OK;
1263         }
1264
1265         if (target->state == TARGET_UNKNOWN)
1266         {
1267                 LOG_WARNING("target was in unknown state when halt was requested");
1268         }
1269
1270         if (arm7_9->use_dbgrq)
1271         {
1272                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1273                  */
1274                 if (arm7_9->set_special_dbgrq) {
1275                         arm7_9->set_special_dbgrq(target);
1276                 } else {
1277                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1278                         embeddedice_store_reg(dbg_ctrl);
1279                 }
1280         }
1281         else
1282         {
1283                 /* program watchpoint unit to match on any address
1284                  */
1285                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1286                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1287                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1288                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1289         }
1290
1291         target->debug_reason = DBG_REASON_DBGRQ;
1292
1293         return ERROR_OK;
1294 }
1295
1296 /**
1297  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1298  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1299  * examined.  Once done, the target is verified to be halted and the processor
1300  * is forced into ARM mode.  The core registers are saved for the current core
1301  * mode and the program counter (register 15) is updated as needed.  The core
1302  * registers and CPSR and SPSR are saved for restoration later.
1303  *
1304  * @param target Pointer to target that is entering debug mode
1305  * @return Error code if anything fails, otherwise ERROR_OK
1306  */
1307 int arm7_9_debug_entry(target_t *target)
1308 {
1309         int i;
1310         u32 context[16];
1311         u32* context_p[16];
1312         u32 r0_thumb, pc_thumb;
1313         u32 cpsr;
1314         int retval;
1315         /* get pointers to arch-specific information */
1316         armv4_5_common_t *armv4_5 = target->arch_info;
1317         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1318         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1319         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1320
1321 #ifdef _DEBUG_ARM7_9_
1322         LOG_DEBUG("-");
1323 #endif
1324
1325         if (arm7_9->pre_debug_entry)
1326                 arm7_9->pre_debug_entry(target);
1327
1328         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1329          * ensure that DBGRQ is cleared
1330          */
1331         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1332         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1333         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1334         embeddedice_store_reg(dbg_ctrl);
1335
1336         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1337         {
1338                 return retval;
1339         }
1340
1341         if ((retval = jtag_execute_queue()) != ERROR_OK)
1342         {
1343                 return retval;
1344         }
1345
1346         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1347                 return retval;
1348
1349
1350         if (target->state != TARGET_HALTED)
1351         {
1352                 LOG_WARNING("target not halted");
1353                 return ERROR_TARGET_NOT_HALTED;
1354         }
1355
1356         /* if the target is in Thumb state, change to ARM state */
1357         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1358         {
1359                 LOG_DEBUG("target entered debug from Thumb state");
1360                 /* Entered debug from Thumb mode */
1361                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1362                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1363                 LOG_DEBUG("r0_thumb: 0x%8.8x, pc_thumb: 0x%8.8x", r0_thumb, pc_thumb);
1364         }
1365         else
1366         {
1367                 LOG_DEBUG("target entered debug from ARM state");
1368                 /* Entered debug from ARM mode */
1369                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1370         }
1371
1372         for (i = 0; i < 16; i++)
1373                 context_p[i] = &context[i];
1374         /* save core registers (r0 - r15 of current core mode) */
1375         arm7_9->read_core_regs(target, 0xffff, context_p);
1376
1377         arm7_9->read_xpsr(target, &cpsr, 0);
1378
1379         if ((retval = jtag_execute_queue()) != ERROR_OK)
1380                 return retval;
1381
1382         /* if the core has been executing in Thumb state, set the T bit */
1383         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1384                 cpsr |= 0x20;
1385
1386         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1387         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1388         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1389
1390         armv4_5->core_mode = cpsr & 0x1f;
1391
1392         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1393         {
1394                 target->state = TARGET_UNKNOWN;
1395                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1396                 return ERROR_TARGET_FAILURE;
1397         }
1398
1399         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1400
1401         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1402         {
1403                 LOG_DEBUG("thumb state, applying fixups");
1404                 context[0] = r0_thumb;
1405                 context[15] = pc_thumb;
1406         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1407         {
1408                 /* adjust value stored by STM */
1409                 context[15] -= 3 * 4;
1410         }
1411
1412         if ((target->debug_reason == DBG_REASON_BREAKPOINT)
1413                         || (target->debug_reason == DBG_REASON_SINGLESTEP)
1414                         || (target->debug_reason == DBG_REASON_WATCHPOINT)
1415                         || (target->debug_reason == DBG_REASON_WPTANDBKPT)
1416                         || ((target->debug_reason == DBG_REASON_DBGRQ) && (arm7_9->use_dbgrq == 0)))
1417                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1418         else if (target->debug_reason == DBG_REASON_DBGRQ)
1419                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1420         else
1421         {
1422                 LOG_ERROR("unknown debug reason: %i", target->debug_reason);
1423         }
1424
1425         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1426                 return ERROR_FAIL;
1427
1428         for (i=0; i<=15; i++)
1429         {
1430                 LOG_DEBUG("r%i: 0x%8.8x", i, context[i]);
1431                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1432                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1433                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1434         }
1435
1436         LOG_DEBUG("entered debug state at PC 0x%x", context[15]);
1437
1438         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1439                 return ERROR_FAIL;
1440
1441         /* exceptions other than USR & SYS have a saved program status register */
1442         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1443         {
1444                 u32 spsr;
1445                 arm7_9->read_xpsr(target, &spsr, 1);
1446                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1447                 {
1448                         return retval;
1449                 }
1450                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1451                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1452                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1453         }
1454
1455         /* r0 and r15 (pc) have to be restored later */
1456         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1457         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1458
1459         if ((retval = jtag_execute_queue()) != ERROR_OK)
1460                 return retval;
1461
1462         if (arm7_9->post_debug_entry)
1463                 arm7_9->post_debug_entry(target);
1464
1465         return ERROR_OK;
1466 }
1467
1468 /**
1469  * Validate the full context for an ARM7/9 target in all processor modes.  If
1470  * there are any invalid registers for the target, they will all be read.  This
1471  * includes the PSR.
1472  *
1473  * @param target Pointer to the ARM7/9 target to capture the full context from
1474  * @return Error if the target is not halted, has an invalid core mode, or if
1475  *         the JTAG queue fails to execute
1476  */
1477 int arm7_9_full_context(target_t *target)
1478 {
1479         int i;
1480         int retval;
1481         armv4_5_common_t *armv4_5 = target->arch_info;
1482         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1483
1484         LOG_DEBUG("-");
1485
1486         if (target->state != TARGET_HALTED)
1487         {
1488                 LOG_WARNING("target not halted");
1489                 return ERROR_TARGET_NOT_HALTED;
1490         }
1491
1492         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1493                 return ERROR_FAIL;
1494
1495         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1496          * SYS shares registers with User, so we don't touch SYS
1497          */
1498         for (i = 0; i < 6; i++)
1499         {
1500                 u32 mask = 0;
1501                 u32* reg_p[16];
1502                 int j;
1503                 int valid = 1;
1504
1505                 /* check if there are invalid registers in the current mode
1506                  */
1507                 for (j = 0; j <= 16; j++)
1508                 {
1509                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1510                                 valid = 0;
1511                 }
1512
1513                 if (!valid)
1514                 {
1515                         u32 tmp_cpsr;
1516
1517                         /* change processor mode (and mask T bit) */
1518                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1519                         tmp_cpsr |= armv4_5_number_to_mode(i);
1520                         tmp_cpsr &= ~0x20;
1521                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1522
1523                         for (j = 0; j < 15; j++)
1524                         {
1525                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1526                                 {
1527                                         reg_p[j] = (u32*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1528                                         mask |= 1 << j;
1529                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1530                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1531                                 }
1532                         }
1533
1534                         /* if only the PSR is invalid, mask is all zeroes */
1535                         if (mask)
1536                                 arm7_9->read_core_regs(target, mask, reg_p);
1537
1538                         /* check if the PSR has to be read */
1539                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1540                         {
1541                                 arm7_9->read_xpsr(target, (u32*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1542                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1543                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1544                         }
1545                 }
1546         }
1547
1548         /* restore processor mode (mask T bit) */
1549         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1550
1551         if ((retval = jtag_execute_queue()) != ERROR_OK)
1552         {
1553                 return retval;
1554         }
1555         return ERROR_OK;
1556 }
1557
1558 /**
1559  * Restore the processor context on an ARM7/9 target.  The full processor
1560  * context is analyzed to see if any of the registers are dirty on this end, but
1561  * have a valid new value.  If this is the case, the processor is changed to the
1562  * appropriate mode and the new register values are written out to the
1563  * processor.  If there happens to be a dirty register with an invalid value, an
1564  * error will be logged.
1565  *
1566  * @param target Pointer to the ARM7/9 target to have its context restored
1567  * @return Error status if the target is not halted or the core mode in the
1568  *         armv4_5 struct is invalid.
1569  */
1570 int arm7_9_restore_context(target_t *target)
1571 {
1572         armv4_5_common_t *armv4_5 = target->arch_info;
1573         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1574         reg_t *reg;
1575         armv4_5_core_reg_t *reg_arch_info;
1576         enum armv4_5_mode current_mode = armv4_5->core_mode;
1577         int i, j;
1578         int dirty;
1579         int mode_change;
1580
1581         LOG_DEBUG("-");
1582
1583         if (target->state != TARGET_HALTED)
1584         {
1585                 LOG_WARNING("target not halted");
1586                 return ERROR_TARGET_NOT_HALTED;
1587         }
1588
1589         if (arm7_9->pre_restore_context)
1590                 arm7_9->pre_restore_context(target);
1591
1592         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1593                 return ERROR_FAIL;
1594
1595         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1596          * SYS shares registers with User, so we don't touch SYS
1597          */
1598         for (i = 0; i < 6; i++)
1599         {
1600                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1601                 dirty = 0;
1602                 mode_change = 0;
1603                 /* check if there are dirty registers in the current mode
1604                 */
1605                 for (j = 0; j <= 16; j++)
1606                 {
1607                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1608                         reg_arch_info = reg->arch_info;
1609                         if (reg->dirty == 1)
1610                         {
1611                                 if (reg->valid == 1)
1612                                 {
1613                                         dirty = 1;
1614                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1615                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1616                                                 && (reg_arch_info->mode != current_mode)
1617                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1618                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1619                                         {
1620                                                 mode_change = 1;
1621                                                 LOG_DEBUG("require mode change");
1622                                         }
1623                                 }
1624                                 else
1625                                 {
1626                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1627                                 }
1628                         }
1629                 }
1630
1631                 if (dirty)
1632                 {
1633                         u32 mask = 0x0;
1634                         int num_regs = 0;
1635                         u32 regs[16];
1636
1637                         if (mode_change)
1638                         {
1639                                 u32 tmp_cpsr;
1640
1641                                 /* change processor mode (mask T bit) */
1642                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1643                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1644                                 tmp_cpsr &= ~0x20;
1645                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1646                                 current_mode = armv4_5_number_to_mode(i);
1647                         }
1648
1649                         for (j = 0; j <= 14; j++)
1650                         {
1651                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1652                                 reg_arch_info = reg->arch_info;
1653
1654
1655                                 if (reg->dirty == 1)
1656                                 {
1657                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1658                                         mask |= 1 << j;
1659                                         num_regs++;
1660                                         reg->dirty = 0;
1661                                         reg->valid = 1;
1662                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8x", j, armv4_5_mode_strings[i], regs[j]);
1663                                 }
1664                         }
1665
1666                         if (mask)
1667                         {
1668                                 arm7_9->write_core_regs(target, mask, regs);
1669                         }
1670
1671                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1672                         reg_arch_info = reg->arch_info;
1673                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1674                         {
1675                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8x", i, buf_get_u32(reg->value, 0, 32));
1676                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1677                         }
1678                 }
1679         }
1680
1681         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1682         {
1683                 /* restore processor mode (mask T bit) */
1684                 u32 tmp_cpsr;
1685
1686                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1687                 tmp_cpsr |= armv4_5_number_to_mode(i);
1688                 tmp_cpsr &= ~0x20;
1689                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", tmp_cpsr);
1690                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1691         }
1692         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1693         {
1694                 /* CPSR has been changed, full restore necessary (mask T bit) */
1695                 LOG_DEBUG("writing cpsr with value 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1696                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1697                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1698                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1699         }
1700
1701         /* restore PC */
1702         LOG_DEBUG("writing PC with value 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1703         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1704         armv4_5->core_cache->reg_list[15].dirty = 0;
1705
1706         if (arm7_9->post_restore_context)
1707                 arm7_9->post_restore_context(target);
1708
1709         return ERROR_OK;
1710 }
1711
1712 /**
1713  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1714  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1715  * restart.
1716  *
1717  * @param target Pointer to the ARM7/9 target to be restarted
1718  * @return Result of executing the JTAG queue
1719  */
1720 int arm7_9_restart_core(struct target_s *target)
1721 {
1722         armv4_5_common_t *armv4_5 = target->arch_info;
1723         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1724         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1725
1726         /* set RESTART instruction */
1727         jtag_add_end_state(TAP_IDLE);
1728         if (arm7_9->need_bypass_before_restart) {
1729                 arm7_9->need_bypass_before_restart = 0;
1730                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1731         }
1732         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1733
1734         jtag_add_runtest(1, jtag_add_end_state(TAP_IDLE));
1735         return jtag_execute_queue();
1736 }
1737
1738 /**
1739  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1740  * iterated through and are set on the target if they aren't already set.
1741  *
1742  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1743  */
1744 void arm7_9_enable_watchpoints(struct target_s *target)
1745 {
1746         watchpoint_t *watchpoint = target->watchpoints;
1747
1748         while (watchpoint)
1749         {
1750                 if (watchpoint->set == 0)
1751                         arm7_9_set_watchpoint(target, watchpoint);
1752                 watchpoint = watchpoint->next;
1753         }
1754 }
1755
1756 /**
1757  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1758  * iterated through and are set on the target.
1759  *
1760  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1761  */
1762 void arm7_9_enable_breakpoints(struct target_s *target)
1763 {
1764         breakpoint_t *breakpoint = target->breakpoints;
1765
1766         /* set any pending breakpoints */
1767         while (breakpoint)
1768         {
1769                 arm7_9_set_breakpoint(target, breakpoint);
1770                 breakpoint = breakpoint->next;
1771         }
1772 }
1773
1774 int arm7_9_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
1775 {
1776         armv4_5_common_t *armv4_5 = target->arch_info;
1777         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1778         breakpoint_t *breakpoint = target->breakpoints;
1779         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1780         int err, retval = ERROR_OK;
1781
1782         LOG_DEBUG("-");
1783
1784         if (target->state != TARGET_HALTED)
1785         {
1786                 LOG_WARNING("target not halted");
1787                 return ERROR_TARGET_NOT_HALTED;
1788         }
1789
1790         if (!debug_execution)
1791         {
1792                 target_free_all_working_areas(target);
1793         }
1794
1795         /* current = 1: continue on current pc, otherwise continue at <address> */
1796         if (!current)
1797                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1798
1799         u32 current_pc;
1800         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1801
1802         /* the front-end may request us not to handle breakpoints */
1803         if (handle_breakpoints)
1804         {
1805                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1806                 {
1807                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1808                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1809                         {
1810                                 return retval;
1811                         }
1812
1813                         /* calculate PC of next instruction */
1814                         u32 next_pc;
1815                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1816                         {
1817                                 u32 current_opcode;
1818                                 target_read_u32(target, current_pc, &current_opcode);
1819                                 LOG_ERROR("BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8x", current_opcode);
1820                                 return retval;
1821                         }
1822
1823                         LOG_DEBUG("enable single-step");
1824                         arm7_9->enable_single_step(target, next_pc);
1825
1826                         target->debug_reason = DBG_REASON_SINGLESTEP;
1827
1828                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1829                         {
1830                                 return retval;
1831                         }
1832
1833                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1834                                 arm7_9->branch_resume(target);
1835                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1836                         {
1837                                 arm7_9->branch_resume_thumb(target);
1838                         }
1839                         else
1840                         {
1841                                 LOG_ERROR("unhandled core state");
1842                                 return ERROR_FAIL;
1843                         }
1844
1845                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1846                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1847                         err = arm7_9_execute_sys_speed(target);
1848
1849                         LOG_DEBUG("disable single-step");
1850                         arm7_9->disable_single_step(target);
1851
1852                         if (err != ERROR_OK)
1853                         {
1854                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1855                                 {
1856                                         return retval;
1857                                 }
1858                                 target->state = TARGET_UNKNOWN;
1859                                 return err;
1860                         }
1861
1862                         arm7_9_debug_entry(target);
1863                         LOG_DEBUG("new PC after step: 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1864
1865                         LOG_DEBUG("set breakpoint at 0x%8.8x", breakpoint->address);
1866                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1867                         {
1868                                 return retval;
1869                         }
1870                 }
1871         }
1872
1873         /* enable any pending breakpoints and watchpoints */
1874         arm7_9_enable_breakpoints(target);
1875         arm7_9_enable_watchpoints(target);
1876
1877         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1878         {
1879                 return retval;
1880         }
1881
1882         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1883         {
1884                 arm7_9->branch_resume(target);
1885         }
1886         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1887         {
1888                 arm7_9->branch_resume_thumb(target);
1889         }
1890         else
1891         {
1892                 LOG_ERROR("unhandled core state");
1893                 return ERROR_FAIL;
1894         }
1895
1896         /* deassert DBGACK and INTDIS */
1897         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1898         /* INTDIS only when we really resume, not during debug execution */
1899         if (!debug_execution)
1900                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1901         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1902
1903         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1904         {
1905                 return retval;
1906         }
1907
1908         target->debug_reason = DBG_REASON_NOTHALTED;
1909
1910         if (!debug_execution)
1911         {
1912                 /* registers are now invalid */
1913                 armv4_5_invalidate_core_regs(target);
1914                 target->state = TARGET_RUNNING;
1915                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1916                 {
1917                         return retval;
1918                 }
1919         }
1920         else
1921         {
1922                 target->state = TARGET_DEBUG_RUNNING;
1923                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1924                 {
1925                         return retval;
1926                 }
1927         }
1928
1929         LOG_DEBUG("target resumed");
1930
1931         return ERROR_OK;
1932 }
1933
1934 void arm7_9_enable_eice_step(target_t *target, u32 next_pc)
1935 {
1936         armv4_5_common_t *armv4_5 = target->arch_info;
1937         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1938
1939         u32 current_pc;
1940         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1941
1942         if(next_pc != current_pc)
1943         {
1944                 /* setup an inverse breakpoint on the current PC
1945                 * - comparator 1 matches the current address
1946                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1947                 * - comparator 0 matches any address, as long as rangein is low */
1948                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1949                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1950                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1951                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE|EICE_W_CTRL_nOPC) & 0xff);
1952                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1953                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1954                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1955                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1956                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1957         }
1958         else
1959         {
1960                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1961                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1962                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1963                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1964                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1968                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1969         }
1970 }
1971
1972 void arm7_9_disable_eice_step(target_t *target)
1973 {
1974         armv4_5_common_t *armv4_5 = target->arch_info;
1975         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1976
1977         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1978         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1979         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1980         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1981         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1982         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1983         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1984         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1985         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1986 }
1987
1988 int arm7_9_step(struct target_s *target, int current, u32 address, int handle_breakpoints)
1989 {
1990         armv4_5_common_t *armv4_5 = target->arch_info;
1991         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1992         breakpoint_t *breakpoint = NULL;
1993         int err, retval;
1994
1995         if (target->state != TARGET_HALTED)
1996         {
1997                 LOG_WARNING("target not halted");
1998                 return ERROR_TARGET_NOT_HALTED;
1999         }
2000
2001         /* current = 1: continue on current pc, otherwise continue at <address> */
2002         if (!current)
2003                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2004
2005         u32 current_pc;
2006         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2007
2008         /* the front-end may request us not to handle breakpoints */
2009         if (handle_breakpoints)
2010                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2011                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2012                         {
2013                                 return retval;
2014                         }
2015
2016         target->debug_reason = DBG_REASON_SINGLESTEP;
2017
2018         /* calculate PC of next instruction */
2019         u32 next_pc;
2020         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2021         {
2022                 u32 current_opcode;
2023                 target_read_u32(target, current_pc, &current_opcode);
2024                 LOG_ERROR("BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8x", current_opcode);
2025                 return retval;
2026         }
2027
2028         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2029         {
2030                 return retval;
2031         }
2032
2033         arm7_9->enable_single_step(target, next_pc);
2034
2035         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2036         {
2037                 arm7_9->branch_resume(target);
2038         }
2039         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2040         {
2041                 arm7_9->branch_resume_thumb(target);
2042         }
2043         else
2044         {
2045                 LOG_ERROR("unhandled core state");
2046                 return ERROR_FAIL;
2047         }
2048
2049         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2050         {
2051                 return retval;
2052         }
2053
2054         err = arm7_9_execute_sys_speed(target);
2055         arm7_9->disable_single_step(target);
2056
2057         /* registers are now invalid */
2058         armv4_5_invalidate_core_regs(target);
2059
2060         if (err != ERROR_OK)
2061         {
2062                 target->state = TARGET_UNKNOWN;
2063         } else {
2064                 arm7_9_debug_entry(target);
2065                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2066                 {
2067                         return retval;
2068                 }
2069                 LOG_DEBUG("target stepped");
2070         }
2071
2072         if (breakpoint)
2073                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2074                 {
2075                         return retval;
2076                 }
2077
2078         return err;
2079 }
2080
2081 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2082 {
2083         u32* reg_p[16];
2084         u32 value;
2085         int retval;
2086         armv4_5_common_t *armv4_5 = target->arch_info;
2087         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2088
2089         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2090                 return ERROR_FAIL;
2091
2092         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2093
2094         if ((num < 0) || (num > 16))
2095                 return ERROR_INVALID_ARGUMENTS;
2096
2097         if ((mode != ARMV4_5_MODE_ANY)
2098                         && (mode != armv4_5->core_mode)
2099                         && (reg_mode != ARMV4_5_MODE_ANY))
2100         {
2101                 u32 tmp_cpsr;
2102
2103                 /* change processor mode (mask T bit) */
2104                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2105                 tmp_cpsr |= mode;
2106                 tmp_cpsr &= ~0x20;
2107                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2108         }
2109
2110         if ((num >= 0) && (num <= 15))
2111         {
2112                 /* read a normal core register */
2113                 reg_p[num] = &value;
2114
2115                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2116         }
2117         else
2118         {
2119                 /* read a program status register
2120                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2121                  */
2122                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2123                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2124
2125                 arm7_9->read_xpsr(target, &value, spsr);
2126         }
2127
2128         if ((retval = jtag_execute_queue()) != ERROR_OK)
2129         {
2130                 return retval;
2131         }
2132
2133         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2134         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2135         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2136
2137         if ((mode != ARMV4_5_MODE_ANY)
2138                         && (mode != armv4_5->core_mode)
2139                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2140                 /* restore processor mode (mask T bit) */
2141                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2142         }
2143
2144         return ERROR_OK;
2145 }
2146
2147 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, u32 value)
2148 {
2149         u32 reg[16];
2150         armv4_5_common_t *armv4_5 = target->arch_info;
2151         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2152
2153         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2154                 return ERROR_FAIL;
2155
2156         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2157
2158         if ((num < 0) || (num > 16))
2159                 return ERROR_INVALID_ARGUMENTS;
2160
2161         if ((mode != ARMV4_5_MODE_ANY)
2162                         && (mode != armv4_5->core_mode)
2163                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2164                 u32 tmp_cpsr;
2165
2166                 /* change processor mode (mask T bit) */
2167                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2168                 tmp_cpsr |= mode;
2169                 tmp_cpsr &= ~0x20;
2170                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2171         }
2172
2173         if ((num >= 0) && (num <= 15))
2174         {
2175                 /* write a normal core register */
2176                 reg[num] = value;
2177
2178                 arm7_9->write_core_regs(target, 1 << num, reg);
2179         }
2180         else
2181         {
2182                 /* write a program status register
2183                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2184                 */
2185                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2186                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2187
2188                 /* if we're writing the CPSR, mask the T bit */
2189                 if (!spsr)
2190                         value &= ~0x20;
2191
2192                 arm7_9->write_xpsr(target, value, spsr);
2193         }
2194
2195         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2196         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2197
2198         if ((mode != ARMV4_5_MODE_ANY)
2199                         && (mode != armv4_5->core_mode)
2200                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2201                 /* restore processor mode (mask T bit) */
2202                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2203         }
2204
2205         return jtag_execute_queue();
2206 }
2207
2208 int arm7_9_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
2209 {
2210         armv4_5_common_t *armv4_5 = target->arch_info;
2211         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2212
2213         u32 reg[16];
2214         u32 num_accesses = 0;
2215         int thisrun_accesses;
2216         int i;
2217         u32 cpsr;
2218         int retval;
2219         int last_reg = 0;
2220
2221         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2222
2223         if (target->state != TARGET_HALTED)
2224         {
2225                 LOG_WARNING("target not halted");
2226                 return ERROR_TARGET_NOT_HALTED;
2227         }
2228
2229         /* sanitize arguments */
2230         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2231                 return ERROR_INVALID_ARGUMENTS;
2232
2233         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2234                 return ERROR_TARGET_UNALIGNED_ACCESS;
2235
2236         /* load the base register with the address of the first word */
2237         reg[0] = address;
2238         arm7_9->write_core_regs(target, 0x1, reg);
2239
2240         int j=0;
2241
2242         switch (size)
2243         {
2244                 case 4:
2245                         while (num_accesses < count)
2246                         {
2247                                 u32 reg_list;
2248                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2249                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2250
2251                                 if (last_reg <= thisrun_accesses)
2252                                         last_reg = thisrun_accesses;
2253
2254                                 arm7_9->load_word_regs(target, reg_list);
2255
2256                                 /* fast memory reads are only safe when the target is running
2257                                  * from a sufficiently high clock (32 kHz is usually too slow)
2258                                  */
2259                                 if (arm7_9->fast_memory_access)
2260                                         retval = arm7_9_execute_fast_sys_speed(target);
2261                                 else
2262                                         retval = arm7_9_execute_sys_speed(target);
2263                                 if (retval != ERROR_OK)
2264                                         return retval;
2265
2266                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2267
2268                                 /* advance buffer, count number of accesses */
2269                                 buffer += thisrun_accesses * 4;
2270                                 num_accesses += thisrun_accesses;
2271
2272                                 if ((j++%1024)==0)
2273                                 {
2274                                         keep_alive();
2275                                 }
2276                         }
2277                         break;
2278                 case 2:
2279                         while (num_accesses < count)
2280                         {
2281                                 u32 reg_list;
2282                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2283                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2284
2285                                 for (i = 1; i <= thisrun_accesses; i++)
2286                                 {
2287                                         if (i > last_reg)
2288                                                 last_reg = i;
2289                                         arm7_9->load_hword_reg(target, i);
2290                                         /* fast memory reads are only safe when the target is running
2291                                          * from a sufficiently high clock (32 kHz is usually too slow)
2292                                          */
2293                                         if (arm7_9->fast_memory_access)
2294                                                 retval = arm7_9_execute_fast_sys_speed(target);
2295                                         else
2296                                                 retval = arm7_9_execute_sys_speed(target);
2297                                         if(retval != ERROR_OK)
2298                                         {
2299                                                 return retval;
2300                                         }
2301
2302                                 }
2303
2304                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2305
2306                                 /* advance buffer, count number of accesses */
2307                                 buffer += thisrun_accesses * 2;
2308                                 num_accesses += thisrun_accesses;
2309
2310                                 if ((j++%1024)==0)
2311                                 {
2312                                         keep_alive();
2313                                 }
2314                         }
2315                         break;
2316                 case 1:
2317                         while (num_accesses < count)
2318                         {
2319                                 u32 reg_list;
2320                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2321                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2322
2323                                 for (i = 1; i <= thisrun_accesses; i++)
2324                                 {
2325                                         if (i > last_reg)
2326                                                 last_reg = i;
2327                                         arm7_9->load_byte_reg(target, i);
2328                                         /* fast memory reads are only safe when the target is running
2329                                          * from a sufficiently high clock (32 kHz is usually too slow)
2330                                          */
2331                                         if (arm7_9->fast_memory_access)
2332                                                 retval = arm7_9_execute_fast_sys_speed(target);
2333                                         else
2334                                                 retval = arm7_9_execute_sys_speed(target);
2335                                         if(retval != ERROR_OK)
2336                                         {
2337                                                 return retval;
2338                                         }
2339                                 }
2340
2341                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2342
2343                                 /* advance buffer, count number of accesses */
2344                                 buffer += thisrun_accesses * 1;
2345                                 num_accesses += thisrun_accesses;
2346
2347                                 if ((j++%1024)==0)
2348                                 {
2349                                         keep_alive();
2350                                 }
2351                         }
2352                         break;
2353                 default:
2354                         LOG_ERROR("BUG: we shouldn't get here");
2355                         exit(-1);
2356                         break;
2357         }
2358
2359         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2360                 return ERROR_FAIL;
2361
2362         for (i=0; i<=last_reg; i++)
2363                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2364
2365         arm7_9->read_xpsr(target, &cpsr, 0);
2366         if ((retval = jtag_execute_queue()) != ERROR_OK)
2367         {
2368                 LOG_ERROR("JTAG error while reading cpsr");
2369                 return ERROR_TARGET_DATA_ABORT;
2370         }
2371
2372         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2373         {
2374                 LOG_WARNING("memory read caused data abort (address: 0x%8.8x, size: 0x%x, count: 0x%x)", address, size, count);
2375
2376                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2377
2378                 return ERROR_TARGET_DATA_ABORT;
2379         }
2380
2381         return ERROR_OK;
2382 }
2383
2384 int arm7_9_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
2385 {
2386         armv4_5_common_t *armv4_5 = target->arch_info;
2387         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2388         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2389
2390         u32 reg[16];
2391         u32 num_accesses = 0;
2392         int thisrun_accesses;
2393         int i;
2394         u32 cpsr;
2395         int retval;
2396         int last_reg = 0;
2397
2398 #ifdef _DEBUG_ARM7_9_
2399         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2400 #endif
2401
2402         if (target->state != TARGET_HALTED)
2403         {
2404                 LOG_WARNING("target not halted");
2405                 return ERROR_TARGET_NOT_HALTED;
2406         }
2407
2408         /* sanitize arguments */
2409         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2410                 return ERROR_INVALID_ARGUMENTS;
2411
2412         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2413                 return ERROR_TARGET_UNALIGNED_ACCESS;
2414
2415         /* load the base register with the address of the first word */
2416         reg[0] = address;
2417         arm7_9->write_core_regs(target, 0x1, reg);
2418
2419         /* Clear DBGACK, to make sure memory fetches work as expected */
2420         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2421         embeddedice_store_reg(dbg_ctrl);
2422
2423         switch (size)
2424         {
2425                 case 4:
2426                         while (num_accesses < count)
2427                         {
2428                                 u32 reg_list;
2429                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2430                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2431
2432                                 for (i = 1; i <= thisrun_accesses; i++)
2433                                 {
2434                                         if (i > last_reg)
2435                                                 last_reg = i;
2436                                         reg[i] = target_buffer_get_u32(target, buffer);
2437                                         buffer += 4;
2438                                 }
2439
2440                                 arm7_9->write_core_regs(target, reg_list, reg);
2441
2442                                 arm7_9->store_word_regs(target, reg_list);
2443
2444                                 /* fast memory writes are only safe when the target is running
2445                                  * from a sufficiently high clock (32 kHz is usually too slow)
2446                                  */
2447                                 if (arm7_9->fast_memory_access)
2448                                         retval = arm7_9_execute_fast_sys_speed(target);
2449                                 else
2450                                         retval = arm7_9_execute_sys_speed(target);
2451                                 if(retval != ERROR_OK)
2452                                 {
2453                                         return retval;
2454                                 }
2455
2456                                 num_accesses += thisrun_accesses;
2457                         }
2458                         break;
2459                 case 2:
2460                         while (num_accesses < count)
2461                         {
2462                                 u32 reg_list;
2463                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2464                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2465
2466                                 for (i = 1; i <= thisrun_accesses; i++)
2467                                 {
2468                                         if (i > last_reg)
2469                                                 last_reg = i;
2470                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2471                                         buffer += 2;
2472                                 }
2473
2474                                 arm7_9->write_core_regs(target, reg_list, reg);
2475
2476                                 for (i = 1; i <= thisrun_accesses; i++)
2477                                 {
2478                                         arm7_9->store_hword_reg(target, i);
2479
2480                                         /* fast memory writes are only safe when the target is running
2481                                          * from a sufficiently high clock (32 kHz is usually too slow)
2482                                          */
2483                                         if (arm7_9->fast_memory_access)
2484                                                 retval = arm7_9_execute_fast_sys_speed(target);
2485                                         else
2486                                                 retval = arm7_9_execute_sys_speed(target);
2487                                         if(retval != ERROR_OK)
2488                                         {
2489                                                 return retval;
2490                                         }
2491                                 }
2492
2493                                 num_accesses += thisrun_accesses;
2494                         }
2495                         break;
2496                 case 1:
2497                         while (num_accesses < count)
2498                         {
2499                                 u32 reg_list;
2500                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2501                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2502
2503                                 for (i = 1; i <= thisrun_accesses; i++)
2504                                 {
2505                                         if (i > last_reg)
2506                                                 last_reg = i;
2507                                         reg[i] = *buffer++ & 0xff;
2508                                 }
2509
2510                                 arm7_9->write_core_regs(target, reg_list, reg);
2511
2512                                 for (i = 1; i <= thisrun_accesses; i++)
2513                                 {
2514                                         arm7_9->store_byte_reg(target, i);
2515                                         /* fast memory writes are only safe when the target is running
2516                                          * from a sufficiently high clock (32 kHz is usually too slow)
2517                                          */
2518                                         if (arm7_9->fast_memory_access)
2519                                                 retval = arm7_9_execute_fast_sys_speed(target);
2520                                         else
2521                                                 retval = arm7_9_execute_sys_speed(target);
2522                                         if(retval != ERROR_OK)
2523                                         {
2524                                                 return retval;
2525                                         }
2526
2527                                 }
2528
2529                                 num_accesses += thisrun_accesses;
2530                         }
2531                         break;
2532                 default:
2533                         LOG_ERROR("BUG: we shouldn't get here");
2534                         exit(-1);
2535                         break;
2536         }
2537
2538         /* Re-Set DBGACK */
2539         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2540         embeddedice_store_reg(dbg_ctrl);
2541
2542         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2543                 return ERROR_FAIL;
2544
2545         for (i=0; i<=last_reg; i++)
2546                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2547
2548         arm7_9->read_xpsr(target, &cpsr, 0);
2549         if ((retval = jtag_execute_queue()) != ERROR_OK)
2550         {
2551                 LOG_ERROR("JTAG error while reading cpsr");
2552                 return ERROR_TARGET_DATA_ABORT;
2553         }
2554
2555         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2556         {
2557                 LOG_WARNING("memory write caused data abort (address: 0x%8.8x, size: 0x%x, count: 0x%x)", address, size, count);
2558
2559                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2560
2561                 return ERROR_TARGET_DATA_ABORT;
2562         }
2563
2564         return ERROR_OK;
2565 }
2566
2567 static int dcc_count;
2568 static u8 *dcc_buffer;
2569
2570 static int arm7_9_dcc_completion(struct target_s *target, u32 exit_point, int timeout_ms, void *arch_info)
2571 {
2572         int retval = ERROR_OK;
2573         armv4_5_common_t *armv4_5 = target->arch_info;
2574         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2575
2576         if ((retval=target_wait_state(target, TARGET_DEBUG_RUNNING, 500))!=ERROR_OK)
2577                 return retval;
2578
2579         int little=target->endianness==TARGET_LITTLE_ENDIAN;
2580         int count=dcc_count;
2581         u8 *buffer=dcc_buffer;
2582         if (count>2)
2583         {
2584                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2585                  * core function repeated. */
2586                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2587                 buffer+=4;
2588
2589                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2590                 u8 reg_addr = ice_reg->addr & 0x1f;
2591                 jtag_tap_t *tap;
2592                 tap = ice_reg->jtag_info->tap;
2593
2594                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2595                 buffer += (count-2)*4;
2596
2597                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2598         } else
2599         {
2600                 int i;
2601                 for (i = 0; i < count; i++)
2602                 {
2603                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2604                         buffer += 4;
2605                 }
2606         }
2607
2608         if((retval = target_halt(target))!= ERROR_OK)
2609         {
2610                 return retval;
2611         }
2612         return target_wait_state(target, TARGET_HALTED, 500);
2613 }
2614
2615 static const u32 dcc_code[] =
2616 {
2617         /* MRC      TST         BNE         MRC         STR         B */
2618         0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
2619 };
2620
2621 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, u32 exit_point, int timeout_ms, void *arch_info));
2622
2623 int arm7_9_bulk_write_memory(target_t *target, u32 address, u32 count, u8 *buffer)
2624 {
2625         int retval;
2626         armv4_5_common_t *armv4_5 = target->arch_info;
2627         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2628         int i;
2629
2630         if (!arm7_9->dcc_downloads)
2631                 return target_write_memory(target, address, 4, count, buffer);
2632
2633         /* regrab previously allocated working_area, or allocate a new one */
2634         if (!arm7_9->dcc_working_area)
2635         {
2636                 u8 dcc_code_buf[6 * 4];
2637
2638                 /* make sure we have a working area */
2639                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2640                 {
2641                         LOG_INFO("no working area available, falling back to memory writes");
2642                         return target_write_memory(target, address, 4, count, buffer);
2643                 }
2644
2645                 /* copy target instructions to target endianness */
2646                 for (i = 0; i < 6; i++)
2647                 {
2648                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2649                 }
2650
2651                 /* write DCC code to working area */
2652                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2653                 {
2654                         return retval;
2655                 }
2656         }
2657
2658         armv4_5_algorithm_t armv4_5_info;
2659         reg_param_t reg_params[1];
2660
2661         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2662         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2663         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2664
2665         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2666
2667         buf_set_u32(reg_params[0].value, 0, 32, address);
2668
2669         dcc_count=count;
2670         dcc_buffer=buffer;
2671         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2672                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address+6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2673
2674         if (retval==ERROR_OK)
2675         {
2676                 u32 endaddress=buf_get_u32(reg_params[0].value, 0, 32);
2677                 if (endaddress!=(address+count*4))
2678                 {
2679                         LOG_ERROR("DCC write failed, expected end address 0x%08x got 0x%0x", (address+count*4), endaddress);
2680                         retval=ERROR_FAIL;
2681                 }
2682         }
2683
2684         destroy_reg_param(&reg_params[0]);
2685
2686         return retval;
2687 }
2688
2689 int arm7_9_checksum_memory(struct target_s *target, u32 address, u32 count, u32* checksum)
2690 {
2691         working_area_t *crc_algorithm;
2692         armv4_5_algorithm_t armv4_5_info;
2693         reg_param_t reg_params[2];
2694         int retval;
2695
2696         u32 arm7_9_crc_code[] = {
2697                 0xE1A02000,                             /* mov          r2, r0 */
2698                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2699                 0xE1A03001,                             /* mov          r3, r1 */
2700                 0xE3A04000,                             /* mov          r4, #0 */
2701                 0xEA00000B,                             /* b            ncomp */
2702                                                                 /* nbyte: */
2703                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2704                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2705                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2706                 0xE3A05000,                             /* mov          r5, #0 */
2707                                                                 /* loop: */
2708                 0xE3500000,                             /* cmp          r0, #0 */
2709                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2710                 0xE2855001,                             /* add          r5, r5, #1 */
2711                 0xE1A00006,                             /* mov          r0, r6 */
2712                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2713                 0xE3550008,                             /* cmp          r5, #8 */
2714                 0x1AFFFFF8,                             /* bne          loop */
2715                 0xE2844001,                             /* add          r4, r4, #1 */
2716                                                                 /* ncomp: */
2717                 0xE1540003,                             /* cmp          r4, r3 */
2718                 0x1AFFFFF1,                             /* bne          nbyte */
2719                                                                 /* end: */
2720                 0xEAFFFFFE,                             /* b            end */
2721                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2722         };
2723
2724         u32 i;
2725
2726         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2727         {
2728                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2729         }
2730
2731         /* convert flash writing code into a buffer in target endianness */
2732         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(u32)); i++)
2733         {
2734                 if ((retval=target_write_u32(target, crc_algorithm->address + i*sizeof(u32), arm7_9_crc_code[i]))!=ERROR_OK)
2735                 {
2736                         return retval;
2737                 }
2738         }
2739
2740         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2741         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2742         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2743
2744         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2745         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2746
2747         buf_set_u32(reg_params[0].value, 0, 32, address);
2748         buf_set_u32(reg_params[1].value, 0, 32, count);
2749
2750         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2751                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), 20000, &armv4_5_info)) != ERROR_OK)
2752         {
2753                 LOG_ERROR("error executing arm7_9 crc algorithm");
2754                 destroy_reg_param(&reg_params[0]);
2755                 destroy_reg_param(&reg_params[1]);
2756                 target_free_working_area(target, crc_algorithm);
2757                 return retval;
2758         }
2759
2760         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2761
2762         destroy_reg_param(&reg_params[0]);
2763         destroy_reg_param(&reg_params[1]);
2764
2765         target_free_working_area(target, crc_algorithm);
2766
2767         return ERROR_OK;
2768 }
2769
2770 int arm7_9_blank_check_memory(struct target_s *target, u32 address, u32 count, u32* blank)
2771 {
2772         working_area_t *erase_check_algorithm;
2773         reg_param_t reg_params[3];
2774         armv4_5_algorithm_t armv4_5_info;
2775         int retval;
2776         u32 i;
2777
2778         u32 erase_check_code[] =
2779         {
2780                                                 /* loop: */
2781                 0xe4d03001,             /* ldrb r3, [r0], #1    */
2782                 0xe0022003,             /* and r2, r2, r3               */
2783                 0xe2511001,     /* subs r1, r1, #1              */
2784                 0x1afffffb,             /* bne loop                             */
2785                                                 /* end: */
2786                 0xeafffffe              /* b end                                */
2787         };
2788
2789         /* make sure we have a working area */
2790         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2791         {
2792                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2793         }
2794
2795         /* convert flash writing code into a buffer in target endianness */
2796         for (i = 0; i < (sizeof(erase_check_code)/sizeof(u32)); i++)
2797                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(u32), erase_check_code[i])) != ERROR_OK)
2798                 {
2799                         return retval;
2800                 }
2801
2802         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2803         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2804         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2805
2806         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2807         buf_set_u32(reg_params[0].value, 0, 32, address);
2808
2809         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2810         buf_set_u32(reg_params[1].value, 0, 32, count);
2811
2812         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2813         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2814
2815         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2816                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2817         {
2818                 destroy_reg_param(&reg_params[0]);
2819                 destroy_reg_param(&reg_params[1]);
2820                 destroy_reg_param(&reg_params[2]);
2821                 target_free_working_area(target, erase_check_algorithm);
2822                 return 0;
2823         }
2824
2825         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2826
2827         destroy_reg_param(&reg_params[0]);
2828         destroy_reg_param(&reg_params[1]);
2829         destroy_reg_param(&reg_params[2]);
2830
2831         target_free_working_area(target, erase_check_algorithm);
2832
2833         return ERROR_OK;
2834 }
2835
2836 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2837 {
2838         command_t *arm7_9_cmd;
2839
2840         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2841
2842         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr|spsr>");
2843         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr|spsr>");
2844
2845         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2846
2847         register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2848                 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable|disable>");
2849         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2850                  COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable|disable>");
2851         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2852                 COMMAND_ANY, "use DCC downloads for larger memory writes <enable|disable>");
2853
2854         armv4_5_register_commands(cmd_ctx);
2855
2856         etm_register_commands(cmd_ctx);
2857
2858         return ERROR_OK;
2859 }
2860
2861 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2862 {
2863         u32 value;
2864         int spsr;
2865         int retval;
2866         target_t *target = get_current_target(cmd_ctx);
2867         armv4_5_common_t *armv4_5;
2868         arm7_9_common_t *arm7_9;
2869
2870         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2871         {
2872                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2873                 return ERROR_OK;
2874         }
2875
2876         if (target->state != TARGET_HALTED)
2877         {
2878                 command_print(cmd_ctx, "can't write registers while running");
2879                 return ERROR_OK;
2880         }
2881
2882         if (argc < 2)
2883         {
2884                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr|spsr>");
2885                 return ERROR_OK;
2886         }
2887
2888         value = strtoul(args[0], NULL, 0);
2889         spsr = strtol(args[1], NULL, 0);
2890
2891         /* if we're writing the CPSR, mask the T bit */
2892         if (!spsr)
2893                 value &= ~0x20;
2894
2895         arm7_9->write_xpsr(target, value, spsr);
2896         if ((retval = jtag_execute_queue()) != ERROR_OK)
2897         {
2898                 LOG_ERROR("JTAG error while writing to xpsr");
2899                 return retval;
2900         }
2901
2902         return ERROR_OK;
2903 }
2904
2905 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2906 {
2907         u32 value;
2908         int rotate;
2909         int spsr;
2910         int retval;
2911         target_t *target = get_current_target(cmd_ctx);
2912         armv4_5_common_t *armv4_5;
2913         arm7_9_common_t *arm7_9;
2914
2915         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2916         {
2917                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2918                 return ERROR_OK;
2919         }
2920
2921         if (target->state != TARGET_HALTED)
2922         {
2923                 command_print(cmd_ctx, "can't write registers while running");
2924                 return ERROR_OK;
2925         }
2926
2927         if (argc < 3)
2928         {
2929                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr|spsr>");
2930                 return ERROR_OK;
2931         }
2932
2933         value = strtoul(args[0], NULL, 0);
2934         rotate = strtol(args[1], NULL, 0);
2935         spsr = strtol(args[2], NULL, 0);
2936
2937         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2938         if ((retval = jtag_execute_queue()) != ERROR_OK)
2939         {
2940                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2941                 return retval;
2942         }
2943
2944         return ERROR_OK;
2945 }
2946
2947 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2948 {
2949         u32 value;
2950         u32 mode;
2951         int num;
2952         target_t *target = get_current_target(cmd_ctx);
2953         armv4_5_common_t *armv4_5;
2954         arm7_9_common_t *arm7_9;
2955
2956         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2957         {
2958                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2959                 return ERROR_OK;
2960         }
2961
2962         if (target->state != TARGET_HALTED)
2963         {
2964                 command_print(cmd_ctx, "can't write registers while running");
2965                 return ERROR_OK;
2966         }
2967
2968         if (argc < 3)
2969         {
2970                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2971                 return ERROR_OK;
2972         }
2973
2974         num = strtol(args[0], NULL, 0);
2975         mode = strtoul(args[1], NULL, 0);
2976         value = strtoul(args[2], NULL, 0);
2977
2978         return arm7_9_write_core_reg(target, num, mode, value);
2979 }
2980
2981 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2982 {
2983         target_t *target = get_current_target(cmd_ctx);
2984         armv4_5_common_t *armv4_5;
2985         arm7_9_common_t *arm7_9;
2986
2987         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2988         {
2989                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2990                 return ERROR_OK;
2991         }
2992
2993         if (argc > 0)
2994         {
2995                 if (strcmp("enable", args[0]) == 0)
2996                 {
2997                         arm7_9->use_dbgrq = 1;
2998                 }
2999                 else if (strcmp("disable", args[0]) == 0)
3000                 {
3001                         arm7_9->use_dbgrq = 0;
3002                 }
3003                 else
3004                 {
3005                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable|disable>");
3006                 }
3007         }
3008
3009         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3010
3011         return ERROR_OK;
3012 }
3013
3014 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3015 {
3016         target_t *target = get_current_target(cmd_ctx);
3017         armv4_5_common_t *armv4_5;
3018         arm7_9_common_t *arm7_9;
3019
3020         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3021         {
3022                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3023                 return ERROR_OK;
3024         }
3025
3026         if (argc > 0)
3027         {
3028                 if (strcmp("enable", args[0]) == 0)
3029                 {
3030                         arm7_9->fast_memory_access = 1;
3031                 }
3032                 else if (strcmp("disable", args[0]) == 0)
3033                 {
3034                         arm7_9->fast_memory_access = 0;
3035                 }
3036                 else
3037                 {
3038                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable|disable>");
3039                 }
3040         }
3041
3042         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3043
3044         return ERROR_OK;
3045 }
3046
3047 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3048 {
3049         target_t *target = get_current_target(cmd_ctx);
3050         armv4_5_common_t *armv4_5;
3051         arm7_9_common_t *arm7_9;
3052
3053         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3054         {
3055                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3056                 return ERROR_OK;
3057         }
3058
3059         if (argc > 0)
3060         {
3061                 if (strcmp("enable", args[0]) == 0)
3062                 {
3063                         arm7_9->dcc_downloads = 1;
3064                 }
3065                 else if (strcmp("disable", args[0]) == 0)
3066                 {
3067                         arm7_9->dcc_downloads = 0;
3068                 }
3069                 else
3070                 {
3071                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable|disable>");
3072                 }
3073         }
3074
3075         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3076
3077         return ERROR_OK;
3078 }
3079
3080 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3081 {
3082         int retval = ERROR_OK;
3083         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3084
3085         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3086
3087         if((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3088         {
3089                 return retval;
3090         }
3091
3092         arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3093         arm7_9->wp_available_max = 2;
3094         arm7_9->sw_breakpoints_added = 0;
3095         arm7_9->breakpoint_count = 0;
3096         arm7_9->wp0_used = 0;
3097         arm7_9->wp1_used = 0;
3098         arm7_9->wp1_used_default = 0;
3099         arm7_9->use_dbgrq = 0;
3100
3101         arm7_9->etm_ctx = NULL;
3102         arm7_9->has_single_step = 0;
3103         arm7_9->has_monitor_mode = 0;
3104         arm7_9->has_vector_catch = 0;
3105
3106         arm7_9->debug_entry_from_reset = 0;
3107
3108         arm7_9->dcc_working_area = NULL;
3109
3110         arm7_9->fast_memory_access = fast_and_dangerous;
3111         arm7_9->dcc_downloads = fast_and_dangerous;
3112
3113         arm7_9->need_bypass_before_restart = 0;
3114
3115         armv4_5->arch_info = arm7_9;
3116         armv4_5->read_core_reg = arm7_9_read_core_reg;
3117         armv4_5->write_core_reg = arm7_9_write_core_reg;
3118         armv4_5->full_context = arm7_9_full_context;
3119
3120         if((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3121         {
3122                 return retval;
3123         }
3124
3125         if((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3126         {
3127                 return retval;
3128         }
3129
3130         return ERROR_OK;
3131 }