Updates for "reset_config":
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
42
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52
53 /**
54  * Clear watchpoints for an ARM7/9 target.
55  *
56  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57  * @return JTAG error status after executing queue
58  */
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
60 {
61         LOG_DEBUG("-");
62         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
63         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
64         arm7_9->sw_breakpoint_count = 0;
65         arm7_9->sw_breakpoints_added = 0;
66         arm7_9->wp0_used = 0;
67         arm7_9->wp1_used = arm7_9->wp1_used_default;
68         arm7_9->wp_available = arm7_9->wp_available_max;
69
70         return jtag_execute_queue();
71 }
72
73 /**
74  * Assign a watchpoint to one of the two available hardware comparators in an
75  * ARM7 or ARM9 target.
76  *
77  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
78  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
79  */
80 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
81 {
82         if (!arm7_9->wp0_used)
83         {
84                 arm7_9->wp0_used = 1;
85                 breakpoint->set = 1;
86                 arm7_9->wp_available--;
87         }
88         else if (!arm7_9->wp1_used)
89         {
90                 arm7_9->wp1_used = 1;
91                 breakpoint->set = 2;
92                 arm7_9->wp_available--;
93         }
94         else
95         {
96                 LOG_ERROR("BUG: no hardware comparator available");
97         }
98         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
99                           breakpoint->unique_id,
100                           breakpoint->address,
101                           breakpoint->set );
102 }
103
104 /**
105  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
106  *
107  * @param arm7_9 Pointer to common struct for ARM7/9 targets
108  * @return Error codes if there is a problem finding a watchpoint or the result
109  *         of executing the JTAG queue
110  */
111 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
112 {
113         if (arm7_9->sw_breakpoints_added)
114         {
115                 return ERROR_OK;
116         }
117         if (arm7_9->wp_available < 1)
118         {
119                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
120                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
121         }
122         arm7_9->wp_available--;
123
124         /* pick a breakpoint unit */
125         if (!arm7_9->wp0_used)
126         {
127                 arm7_9->sw_breakpoints_added = 1;
128                 arm7_9->wp0_used = 3;
129         } else if (!arm7_9->wp1_used)
130         {
131                 arm7_9->sw_breakpoints_added = 2;
132                 arm7_9->wp1_used = 3;
133         }
134         else
135         {
136                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137                 return ERROR_FAIL;
138         }
139
140         if (arm7_9->sw_breakpoints_added == 1)
141         {
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
147         }
148         else if (arm7_9->sw_breakpoints_added == 2)
149         {
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
155         }
156         else
157         {
158                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
159                 return ERROR_FAIL;
160         }
161         LOG_DEBUG("SW BP using hw wp: %d",
162                           arm7_9->sw_breakpoints_added );
163
164         return jtag_execute_queue();
165 }
166
167 /**
168  * Setup the common pieces for an ARM7/9 target after reset or on startup.
169  *
170  * @param target Pointer to an ARM7/9 target to setup
171  * @return Result of clearing the watchpoints on the target
172  */
173 int arm7_9_setup(target_t *target)
174 {
175         armv4_5_common_t *armv4_5 = target->arch_info;
176         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
177
178         return arm7_9_clear_watchpoints(arm7_9);
179 }
180
181 /**
182  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
183  * targets.  A return of ERROR_OK signifies that the target is a valid target
184  * and that the pointers have been set properly.
185  *
186  * @param target Pointer to the target device to get the pointers from
187  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
188  *                  targets
189  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
190  *                 targets
191  * @return ERROR_OK if successful
192  */
193 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
194 {
195         armv4_5_common_t *armv4_5 = target->arch_info;
196         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
197
198         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
199         {
200                 return -1;
201         }
202
203         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
204         {
205                 return -1;
206         }
207
208         *armv4_5_p = armv4_5;
209         *arm7_9_p = arm7_9;
210
211         return ERROR_OK;
212 }
213
214 /**
215  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
216  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
217  * might have erased the values in Embedded ICE.
218  *
219  * @param target Pointer to the target device to set the breakpoints on
220  * @param breakpoint Pointer to the breakpoint to be set
221  * @return For hardware breakpoints, this is the result of executing the JTAG
222  *         queue.  For software breakpoints, this will be the status of the
223  *         required memory reads and writes
224  */
225 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
226 {
227         armv4_5_common_t *armv4_5 = target->arch_info;
228         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
229         int retval = ERROR_OK;
230
231         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
232                           breakpoint->unique_id,
233                           breakpoint->address,
234                           breakpoint->type);
235
236         if (target->state != TARGET_HALTED)
237         {
238                 LOG_WARNING("target not halted");
239                 return ERROR_TARGET_NOT_HALTED;
240         }
241
242         if (breakpoint->type == BKPT_HARD)
243         {
244                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
245                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
246
247                 /* reassign a hw breakpoint */
248                 if (breakpoint->set == 0)
249                 {
250                         arm7_9_assign_wp(arm7_9, breakpoint);
251                 }
252
253                 if (breakpoint->set == 1)
254                 {
255                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
256                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
257                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
258                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
259                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
260                 }
261                 else if (breakpoint->set == 2)
262                 {
263                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
264                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
265                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
266                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
267                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
268                 }
269                 else
270                 {
271                         LOG_ERROR("BUG: no hardware comparator available");
272                         return ERROR_OK;
273                 }
274
275                 retval = jtag_execute_queue();
276         }
277         else if (breakpoint->type == BKPT_SOFT)
278         {
279                 /* did we already set this breakpoint? */
280                 if (breakpoint->set)
281                         return ERROR_OK;
282
283                 if (breakpoint->length == 4)
284                 {
285                         uint32_t verify = 0xffffffff;
286                         /* keep the original instruction in target endianness */
287                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
288                         {
289                                 return retval;
290                         }
291                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
292                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
293                         {
294                                 return retval;
295                         }
296
297                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
298                         {
299                                 return retval;
300                         }
301                         if (verify != arm7_9->arm_bkpt)
302                         {
303                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
304                                 return ERROR_OK;
305                         }
306                 }
307                 else
308                 {
309                         uint16_t verify = 0xffff;
310                         /* keep the original instruction in target endianness */
311                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
312                         {
313                                 return retval;
314                         }
315                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
316                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
317                         {
318                                 return retval;
319                         }
320
321                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
322                         {
323                                 return retval;
324                         }
325                         if (verify != arm7_9->thumb_bkpt)
326                         {
327                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
328                                 return ERROR_OK;
329                         }
330                 }
331
332                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
333                         return retval;
334
335                 arm7_9->sw_breakpoint_count++;
336
337                 breakpoint->set = 1;
338         }
339
340         return retval;
341 }
342
343 /**
344  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
345  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
346  * will be updated.  Otherwise, the software breakpoint will be restored to its
347  * original instruction if it hasn't already been modified.
348  *
349  * @param target Pointer to ARM7/9 target to unset the breakpoint from
350  * @param breakpoint Pointer to breakpoint to be unset
351  * @return For hardware breakpoints, this is the result of executing the JTAG
352  *         queue.  For software breakpoints, this will be the status of the
353  *         required memory reads and writes
354  */
355 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
356 {
357         int retval = ERROR_OK;
358
359         armv4_5_common_t *armv4_5 = target->arch_info;
360         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
361
362         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
363                           breakpoint->unique_id,
364                           breakpoint->address );
365
366         if (!breakpoint->set)
367         {
368                 LOG_WARNING("breakpoint not set");
369                 return ERROR_OK;
370         }
371
372         if (breakpoint->type == BKPT_HARD)
373         {
374                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
375                                   breakpoint->unique_id,
376                                   breakpoint->set );
377                 if (breakpoint->set == 1)
378                 {
379                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
380                         arm7_9->wp0_used = 0;
381                         arm7_9->wp_available++;
382                 }
383                 else if (breakpoint->set == 2)
384                 {
385                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
386                         arm7_9->wp1_used = 0;
387                         arm7_9->wp_available++;
388                 }
389                 retval = jtag_execute_queue();
390                 breakpoint->set = 0;
391         }
392         else
393         {
394                 /* restore original instruction (kept in target endianness) */
395                 if (breakpoint->length == 4)
396                 {
397                         uint32_t current_instr;
398                         /* check that user program as not modified breakpoint instruction */
399                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
400                         {
401                                 return retval;
402                         }
403                         if (current_instr == arm7_9->arm_bkpt)
404                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
405                                 {
406                                         return retval;
407                                 }
408                 }
409                 else
410                 {
411                         uint16_t current_instr;
412                         /* check that user program as not modified breakpoint instruction */
413                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
414                         {
415                                 return retval;
416                         }
417                         if (current_instr == arm7_9->thumb_bkpt)
418                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
419                                 {
420                                         return retval;
421                                 }
422                 }
423
424                 if (--arm7_9->sw_breakpoint_count==0)
425                 {
426                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
427                         if (arm7_9->sw_breakpoints_added == 1)
428                         {
429                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
430                         }
431                         else if (arm7_9->sw_breakpoints_added == 2)
432                         {
433                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
434                         }
435                 }
436
437                 breakpoint->set = 0;
438         }
439
440         return retval;
441 }
442
443 /**
444  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
445  * dangling breakpoints and that the desired breakpoint can be added.
446  *
447  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
448  * @param breakpoint Pointer to the breakpoint to be added
449  * @return An error status if there is a problem adding the breakpoint or the
450  *         result of setting the breakpoint
451  */
452 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
453 {
454         armv4_5_common_t *armv4_5 = target->arch_info;
455         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
456
457         if (target->state != TARGET_HALTED)
458         {
459                 LOG_WARNING("target not halted");
460                 return ERROR_TARGET_NOT_HALTED;
461         }
462
463         if (arm7_9->breakpoint_count == 0)
464         {
465                 /* make sure we don't have any dangling breakpoints. This is vital upon
466                  * GDB connect/disconnect
467                  */
468                 arm7_9_clear_watchpoints(arm7_9);
469         }
470
471         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
472         {
473                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
474                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
475         }
476
477         if ((breakpoint->length != 2) && (breakpoint->length != 4))
478         {
479                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
480                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
481         }
482
483         if (breakpoint->type == BKPT_HARD)
484         {
485                 arm7_9_assign_wp(arm7_9, breakpoint);
486         }
487
488         arm7_9->breakpoint_count++;
489
490         return arm7_9_set_breakpoint(target, breakpoint);
491 }
492
493 /**
494  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
495  * dangling breakpoints and updates available watchpoints if it is a hardware
496  * breakpoint.
497  *
498  * @param target Pointer to the target to have a breakpoint removed
499  * @param breakpoint Pointer to the breakpoint to be removed
500  * @return Error status if there was a problem unsetting the breakpoint or the
501  *         watchpoints could not be cleared
502  */
503 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
504 {
505         int retval = ERROR_OK;
506         armv4_5_common_t *armv4_5 = target->arch_info;
507         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
508
509         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
510         {
511                 return retval;
512         }
513
514         if (breakpoint->type == BKPT_HARD)
515                 arm7_9->wp_available++;
516
517         arm7_9->breakpoint_count--;
518         if (arm7_9->breakpoint_count == 0)
519         {
520                 /* make sure we don't have any dangling breakpoints */
521                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
522                 {
523                         return retval;
524                 }
525         }
526
527         return ERROR_OK;
528 }
529
530 /**
531  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
532  * considered a bug to call this function when there are no available watchpoint
533  * units.
534  *
535  * @param target Pointer to an ARM7/9 target to set a watchpoint on
536  * @param watchpoint Pointer to the watchpoint to be set
537  * @return Error status if watchpoint set fails or the result of executing the
538  *         JTAG queue
539  */
540 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
541 {
542         int retval = ERROR_OK;
543         armv4_5_common_t *armv4_5 = target->arch_info;
544         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
545         int rw_mask = 1;
546         uint32_t mask;
547
548         mask = watchpoint->length - 1;
549
550         if (target->state != TARGET_HALTED)
551         {
552                 LOG_WARNING("target not halted");
553                 return ERROR_TARGET_NOT_HALTED;
554         }
555
556         if (watchpoint->rw == WPT_ACCESS)
557                 rw_mask = 0;
558         else
559                 rw_mask = 1;
560
561         if (!arm7_9->wp0_used)
562         {
563                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
564                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
565                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
566                 if (watchpoint->mask != 0xffffffffu)
567                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
568                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
569                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
570
571                 if ((retval = jtag_execute_queue()) != ERROR_OK)
572                 {
573                         return retval;
574                 }
575                 watchpoint->set = 1;
576                 arm7_9->wp0_used = 2;
577         }
578         else if (!arm7_9->wp1_used)
579         {
580                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
581                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
582                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
583                 if (watchpoint->mask != 0xffffffffu)
584                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
585                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
586                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
587
588                 if ((retval = jtag_execute_queue()) != ERROR_OK)
589                 {
590                         return retval;
591                 }
592                 watchpoint->set = 2;
593                 arm7_9->wp1_used = 2;
594         }
595         else
596         {
597                 LOG_ERROR("BUG: no hardware comparator available");
598                 return ERROR_OK;
599         }
600
601         return ERROR_OK;
602 }
603
604 /**
605  * Unset an existing watchpoint and clear the used watchpoint unit.
606  *
607  * @param target Pointer to the target to have the watchpoint removed
608  * @param watchpoint Pointer to the watchpoint to be removed
609  * @return Error status while trying to unset the watchpoint or the result of
610  *         executing the JTAG queue
611  */
612 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
613 {
614         int retval = ERROR_OK;
615         armv4_5_common_t *armv4_5 = target->arch_info;
616         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
617
618         if (target->state != TARGET_HALTED)
619         {
620                 LOG_WARNING("target not halted");
621                 return ERROR_TARGET_NOT_HALTED;
622         }
623
624         if (!watchpoint->set)
625         {
626                 LOG_WARNING("breakpoint not set");
627                 return ERROR_OK;
628         }
629
630         if (watchpoint->set == 1)
631         {
632                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
633                 if ((retval = jtag_execute_queue()) != ERROR_OK)
634                 {
635                         return retval;
636                 }
637                 arm7_9->wp0_used = 0;
638         }
639         else if (watchpoint->set == 2)
640         {
641                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
642                 if ((retval = jtag_execute_queue()) != ERROR_OK)
643                 {
644                         return retval;
645                 }
646                 arm7_9->wp1_used = 0;
647         }
648         watchpoint->set = 0;
649
650         return ERROR_OK;
651 }
652
653 /**
654  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
655  * available, an error response is returned.
656  *
657  * @param target Pointer to the ARM7/9 target to add a watchpoint to
658  * @param watchpoint Pointer to the watchpoint to be added
659  * @return Error status while trying to add the watchpoint
660  */
661 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
662 {
663         armv4_5_common_t *armv4_5 = target->arch_info;
664         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
665
666         if (target->state != TARGET_HALTED)
667         {
668                 LOG_WARNING("target not halted");
669                 return ERROR_TARGET_NOT_HALTED;
670         }
671
672         if (arm7_9->wp_available < 1)
673         {
674                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
675         }
676
677         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
678         {
679                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
680         }
681
682         arm7_9->wp_available--;
683
684         return ERROR_OK;
685 }
686
687 /**
688  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
689  * the used watchpoint unit will be reopened.
690  *
691  * @param target Pointer to the target to remove a watchpoint from
692  * @param watchpoint Pointer to the watchpoint to be removed
693  * @return Result of trying to unset the watchpoint
694  */
695 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
696 {
697         int retval = ERROR_OK;
698         armv4_5_common_t *armv4_5 = target->arch_info;
699         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
700
701         if (watchpoint->set)
702         {
703                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
704                 {
705                         return retval;
706                 }
707         }
708
709         arm7_9->wp_available++;
710
711         return ERROR_OK;
712 }
713
714 /**
715  * Restarts the target by sending a RESTART instruction and moving the JTAG
716  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
717  * asserted by the processor.
718  *
719  * @param target Pointer to target to issue commands to
720  * @return Error status if there is a timeout or a problem while executing the
721  *         JTAG queue
722  */
723 int arm7_9_execute_sys_speed(struct target_s *target)
724 {
725         int retval;
726
727         armv4_5_common_t *armv4_5 = target->arch_info;
728         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
729         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
730         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
731
732         /* set RESTART instruction */
733         jtag_set_end_state(TAP_IDLE);
734         if (arm7_9->need_bypass_before_restart) {
735                 arm7_9->need_bypass_before_restart = 0;
736                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
737         }
738         arm_jtag_set_instr(jtag_info, 0x4, NULL);
739
740         long long then = timeval_ms();
741         int timeout;
742         while (!(timeout = ((timeval_ms()-then) > 1000)))
743         {
744                 /* read debug status register */
745                 embeddedice_read_reg(dbg_stat);
746                 if ((retval = jtag_execute_queue()) != ERROR_OK)
747                         return retval;
748                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
749                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
750                         break;
751                 if (debug_level >= 3)
752                 {
753                         alive_sleep(100);
754                 } else
755                 {
756                         keep_alive();
757                 }
758         }
759         if (timeout)
760         {
761                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
762                 return ERROR_TARGET_TIMEOUT;
763         }
764
765         return ERROR_OK;
766 }
767
768 /**
769  * Restarts the target by sending a RESTART instruction and moving the JTAG
770  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
771  * waiting until they are.
772  *
773  * @param target Pointer to the target to issue commands to
774  * @return Always ERROR_OK
775  */
776 int arm7_9_execute_fast_sys_speed(struct target_s *target)
777 {
778         static int set = 0;
779         static uint8_t check_value[4], check_mask[4];
780
781         armv4_5_common_t *armv4_5 = target->arch_info;
782         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
783         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
784         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
785
786         /* set RESTART instruction */
787         jtag_set_end_state(TAP_IDLE);
788         if (arm7_9->need_bypass_before_restart) {
789                 arm7_9->need_bypass_before_restart = 0;
790                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
791         }
792         arm_jtag_set_instr(jtag_info, 0x4, NULL);
793
794         if (!set)
795         {
796                 /* check for DBGACK and SYSCOMP set (others don't care) */
797
798                 /* NB! These are constants that must be available until after next jtag_execute() and
799                  * we evaluate the values upon first execution in lieu of setting up these constants
800                  * during early setup.
801                  * */
802                 buf_set_u32(check_value, 0, 32, 0x9);
803                 buf_set_u32(check_mask, 0, 32, 0x9);
804                 set = 1;
805         }
806
807         /* read debug status register */
808         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
809
810         return ERROR_OK;
811 }
812
813 /**
814  * Get some data from the ARM7/9 target.
815  *
816  * @param target Pointer to the ARM7/9 target to read data from
817  * @param size The number of 32bit words to be read
818  * @param buffer Pointer to the buffer that will hold the data
819  * @return The result of receiving data from the Embedded ICE unit
820  */
821 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
822 {
823         armv4_5_common_t *armv4_5 = target->arch_info;
824         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
825         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
826         uint32_t *data;
827         int retval = ERROR_OK;
828         uint32_t i;
829
830         data = malloc(size * (sizeof(uint32_t)));
831
832         retval = embeddedice_receive(jtag_info, data, size);
833
834         /* return the 32-bit ints in the 8-bit array */
835         for (i = 0; i < size; i++)
836         {
837                 h_u32_to_le(buffer + (i * 4), data[i]);
838         }
839
840         free(data);
841
842         return retval;
843 }
844
845 /**
846  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
847  * target is running and the DCC control register has the W bit high, this will
848  * execute the request on the target.
849  *
850  * @param priv Void pointer expected to be a target_t pointer
851  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
852  *                  from the Embedded ICE unit
853  */
854 int arm7_9_handle_target_request(void *priv)
855 {
856         int retval = ERROR_OK;
857         target_t *target = priv;
858         if (!target_was_examined(target))
859                 return ERROR_OK;
860         armv4_5_common_t *armv4_5 = target->arch_info;
861         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
862         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
863         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
864
865         if (!target->dbg_msg_enabled)
866                 return ERROR_OK;
867
868         if (target->state == TARGET_RUNNING)
869         {
870                 /* read DCC control register */
871                 embeddedice_read_reg(dcc_control);
872                 if ((retval = jtag_execute_queue()) != ERROR_OK)
873                 {
874                         return retval;
875                 }
876
877                 /* check W bit */
878                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
879                 {
880                         uint32_t request;
881
882                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
883                         {
884                                 return retval;
885                         }
886                         if ((retval = target_request(target, request)) != ERROR_OK)
887                         {
888                                 return retval;
889                         }
890                 }
891         }
892
893         return ERROR_OK;
894 }
895
896 /**
897  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
898  * is manipulated to the right halted state based on its current state.  This is
899  * what happens:
900  *
901  * <table>
902  *              <tr><th > State</th><th > Action</th></tr>
903  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
904  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
905  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
906  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
907  * </table>
908  *
909  * If the target does not end up in the halted state, a warning is produced.  If
910  * DBGACK is cleared, then the target is expected to either be running or
911  * running in debug.
912  *
913  * @param target Pointer to the ARM7/9 target to poll
914  * @return ERROR_OK or an error status if a command fails
915  */
916 int arm7_9_poll(target_t *target)
917 {
918         int retval;
919         armv4_5_common_t *armv4_5 = target->arch_info;
920         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
921         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
922
923         /* read debug status register */
924         embeddedice_read_reg(dbg_stat);
925         if ((retval = jtag_execute_queue()) != ERROR_OK)
926         {
927                 return retval;
928         }
929
930         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
931         {
932 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
933                 if (target->state == TARGET_UNKNOWN)
934                 {
935                         /* Starting OpenOCD with target in debug-halt */
936                         target->state = TARGET_RUNNING;
937                         LOG_DEBUG("DBGACK already set during server startup.");
938                 }
939                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
940                 {
941                         int check_pc = 0;
942                         if (target->state == TARGET_RESET)
943                         {
944                                 if (target->reset_halt)
945                                 {
946                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
947                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
948                                         {
949                                                 check_pc = 1;
950                                         }
951                                 }
952                         }
953
954                         target->state = TARGET_HALTED;
955
956                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
957                                 return retval;
958
959                         if (check_pc)
960                         {
961                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
962                                 uint32_t t=*((uint32_t *)reg->value);
963                                 if (t != 0)
964                                 {
965                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
966                                 }
967                         }
968
969                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
970                         {
971                                 return retval;
972                         }
973                 }
974                 if (target->state == TARGET_DEBUG_RUNNING)
975                 {
976                         target->state = TARGET_HALTED;
977                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
978                                 return retval;
979
980                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
981                         {
982                                 return retval;
983                         }
984                 }
985                 if (target->state != TARGET_HALTED)
986                 {
987                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
988                 }
989         }
990         else
991         {
992                 if (target->state != TARGET_DEBUG_RUNNING)
993                         target->state = TARGET_RUNNING;
994         }
995
996         return ERROR_OK;
997 }
998
999 /**
1000  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
1001  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
1002  * affected) completely stop the JTAG clock while the core is held in reset
1003  * (SRST).  It isn't possible to program the halt condition once reset is
1004  * asserted, hence a hook that allows the target to set up its reset-halt
1005  * condition is setup prior to asserting reset.
1006  *
1007  * @param target Pointer to an ARM7/9 target to assert reset on
1008  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
1009  */
1010 int arm7_9_assert_reset(target_t *target)
1011 {
1012         armv4_5_common_t *armv4_5 = target->arch_info;
1013         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1014         LOG_DEBUG("target->state: %s",
1015                   target_state_name(target));
1016
1017         enum reset_types jtag_reset_config = jtag_get_reset_config();
1018         if (!(jtag_reset_config & RESET_HAS_SRST))
1019         {
1020                 LOG_ERROR("Can't assert SRST");
1021                 return ERROR_FAIL;
1022         }
1023
1024         /* At this point trst has been asserted/deasserted once. We would
1025          * like to program EmbeddedICE while SRST is asserted, instead of
1026          * depending on SRST to leave that module alone.  However, many CPUs
1027          * gate the JTAG clock while SRST is asserted; or JTAG may need
1028          * clock stability guarantees (adaptive clocking might help).
1029          *
1030          * So we assume JTAG access during SRST is off the menu unless it's
1031          * been specifically enabled.
1032          */
1033         bool srst_asserted = false;
1034
1035         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
1036                         && (jtag_reset_config & RESET_SRST_NO_GATING))
1037         {
1038                 jtag_add_reset(0, 1);
1039                 srst_asserted = true;
1040         }
1041
1042         if (target->reset_halt)
1043         {
1044                 /*
1045                  * Some targets do not support communication while SRST is asserted. We need to
1046                  * set up the reset vector catch here.
1047                  *
1048                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1049                  * here is harmless.
1050                  */
1051                 if (arm7_9->has_vector_catch)
1052                 {
1053                         /* program vector catch register to catch reset vector */
1054                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1055
1056                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1057                         jtag_add_runtest(1, jtag_get_end_state());
1058                 }
1059                 else
1060                 {
1061                         /* program watchpoint unit to match on reset vector address */
1062                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1063                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1064                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1065                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1066                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1067                 }
1068         }
1069
1070         /* here we should issue an SRST only, but we may have to assert TRST as well */
1071         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1072         {
1073                 jtag_add_reset(1, 1);
1074         } else if (!srst_asserted)
1075         {
1076                 jtag_add_reset(0, 1);
1077         }
1078
1079         target->state = TARGET_RESET;
1080         jtag_add_sleep(50000);
1081
1082         armv4_5_invalidate_core_regs(target);
1083
1084         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1085         {
1086                 /* debug entry was already prepared in arm7_9_assert_reset() */
1087                 target->debug_reason = DBG_REASON_DBGRQ;
1088         }
1089
1090         return ERROR_OK;
1091 }
1092
1093 /**
1094  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1095  * and the target is being reset into a halt, a warning will be triggered
1096  * because it is not possible to reset into a halted mode in this case.  The
1097  * target is halted using the target's functions.
1098  *
1099  * @param target Pointer to the target to have the reset deasserted
1100  * @return ERROR_OK or an error from polling or halting the target
1101  */
1102 int arm7_9_deassert_reset(target_t *target)
1103 {
1104         int retval = ERROR_OK;
1105         LOG_DEBUG("target->state: %s",
1106                 target_state_name(target));
1107
1108         /* deassert reset lines */
1109         jtag_add_reset(0, 0);
1110
1111         enum reset_types jtag_reset_config = jtag_get_reset_config();
1112         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1113         {
1114                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1115                 /* set up embedded ice registers again */
1116                 if ((retval = target_examine_one(target)) != ERROR_OK)
1117                         return retval;
1118
1119                 if ((retval = target_poll(target)) != ERROR_OK)
1120                 {
1121                         return retval;
1122                 }
1123
1124                 if ((retval = target_halt(target)) != ERROR_OK)
1125                 {
1126                         return retval;
1127                 }
1128
1129         }
1130         return retval;
1131 }
1132
1133 /**
1134  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1135  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1136  * vector catch was used, it is restored.  Otherwise, the control value is
1137  * restored and the watchpoint unit is restored if it was in use.
1138  *
1139  * @param target Pointer to the ARM7/9 target to have halt cleared
1140  * @return Always ERROR_OK
1141  */
1142 int arm7_9_clear_halt(target_t *target)
1143 {
1144         armv4_5_common_t *armv4_5 = target->arch_info;
1145         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1146         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1147
1148         /* we used DBGRQ only if we didn't come out of reset */
1149         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1150         {
1151                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1152                  */
1153                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1154                 embeddedice_store_reg(dbg_ctrl);
1155         }
1156         else
1157         {
1158                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1159                 {
1160                         /* if we came out of reset, and vector catch is supported, we used
1161                          * vector catch to enter debug state
1162                          * restore the register in that case
1163                          */
1164                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1165                 }
1166                 else
1167                 {
1168                         /* restore registers if watchpoint unit 0 was in use
1169                          */
1170                         if (arm7_9->wp0_used)
1171                         {
1172                                 if (arm7_9->debug_entry_from_reset)
1173                                 {
1174                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1175                                 }
1176                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1177                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1178                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1179                         }
1180                         /* control value always has to be restored, as it was either disabled,
1181                          * or enabled with possibly different bits
1182                          */
1183                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1184                 }
1185         }
1186
1187         return ERROR_OK;
1188 }
1189
1190 /**
1191  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1192  * and then there is a wait until the processor shows the halt.  This wait can
1193  * timeout and results in an error being returned.  The software reset involves
1194  * clearing the halt, updating the debug control register, changing to ARM mode,
1195  * reset of the program counter, and reset of all of the registers.
1196  *
1197  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1198  * @return Error status if any of the commands fail, otherwise ERROR_OK
1199  */
1200 int arm7_9_soft_reset_halt(struct target_s *target)
1201 {
1202         armv4_5_common_t *armv4_5 = target->arch_info;
1203         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1204         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1205         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1206         int i;
1207         int retval;
1208
1209         /* FIX!!! replace some of this code with tcl commands
1210          *
1211          * halt # the halt command is synchronous
1212          * armv4_5 core_state arm
1213          *
1214          */
1215
1216         if ((retval = target_halt(target)) != ERROR_OK)
1217                 return retval;
1218
1219         long long then = timeval_ms();
1220         int timeout;
1221         while (!(timeout = ((timeval_ms()-then) > 1000)))
1222         {
1223                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1224                         break;
1225                 embeddedice_read_reg(dbg_stat);
1226                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1227                         return retval;
1228                 if (debug_level >= 3)
1229                 {
1230                         alive_sleep(100);
1231                 } else
1232                 {
1233                         keep_alive();
1234                 }
1235         }
1236         if (timeout)
1237         {
1238                 LOG_ERROR("Failed to halt CPU after 1 sec");
1239                 return ERROR_TARGET_TIMEOUT;
1240         }
1241         target->state = TARGET_HALTED;
1242
1243         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1244          * ensure that DBGRQ is cleared
1245          */
1246         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1247         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1248         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1249         embeddedice_store_reg(dbg_ctrl);
1250
1251         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1252         {
1253                 return retval;
1254         }
1255
1256         /* if the target is in Thumb state, change to ARM state */
1257         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1258         {
1259                 uint32_t r0_thumb, pc_thumb;
1260                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1261                 /* Entered debug from Thumb mode */
1262                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1263                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1264         }
1265
1266         /* all register content is now invalid */
1267         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1268         {
1269                 return retval;
1270         }
1271
1272         /* SVC, ARM state, IRQ and FIQ disabled */
1273         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1274         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1275         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1276
1277         /* start fetching from 0x0 */
1278         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1279         armv4_5->core_cache->reg_list[15].dirty = 1;
1280         armv4_5->core_cache->reg_list[15].valid = 1;
1281
1282         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1283         armv4_5->core_state = ARMV4_5_STATE_ARM;
1284
1285         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1286                 return ERROR_FAIL;
1287
1288         /* reset registers */
1289         for (i = 0; i <= 14; i++)
1290         {
1291                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1292                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1293                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1294         }
1295
1296         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1297         {
1298                 return retval;
1299         }
1300
1301         return ERROR_OK;
1302 }
1303
1304 /**
1305  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1306  * line or by programming a watchpoint to trigger on any address.  It is
1307  * considered a bug to call this function while the target is in the
1308  * TARGET_RESET state.
1309  *
1310  * @param target Pointer to the ARM7/9 target to be halted
1311  * @return Always ERROR_OK
1312  */
1313 int arm7_9_halt(target_t *target)
1314 {
1315         if (target->state == TARGET_RESET)
1316         {
1317                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1318                 return ERROR_OK;
1319         }
1320
1321         armv4_5_common_t *armv4_5 = target->arch_info;
1322         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1323         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1324
1325         LOG_DEBUG("target->state: %s",
1326                   target_state_name(target));
1327
1328         if (target->state == TARGET_HALTED)
1329         {
1330                 LOG_DEBUG("target was already halted");
1331                 return ERROR_OK;
1332         }
1333
1334         if (target->state == TARGET_UNKNOWN)
1335         {
1336                 LOG_WARNING("target was in unknown state when halt was requested");
1337         }
1338
1339         if (arm7_9->use_dbgrq)
1340         {
1341                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1342                  */
1343                 if (arm7_9->set_special_dbgrq) {
1344                         arm7_9->set_special_dbgrq(target);
1345                 } else {
1346                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1347                         embeddedice_store_reg(dbg_ctrl);
1348                 }
1349         }
1350         else
1351         {
1352                 /* program watchpoint unit to match on any address
1353                  */
1354                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1355                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1356                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1357                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1358         }
1359
1360         target->debug_reason = DBG_REASON_DBGRQ;
1361
1362         return ERROR_OK;
1363 }
1364
1365 /**
1366  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1367  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1368  * examined.  Once done, the target is verified to be halted and the processor
1369  * is forced into ARM mode.  The core registers are saved for the current core
1370  * mode and the program counter (register 15) is updated as needed.  The core
1371  * registers and CPSR and SPSR are saved for restoration later.
1372  *
1373  * @param target Pointer to target that is entering debug mode
1374  * @return Error code if anything fails, otherwise ERROR_OK
1375  */
1376 int arm7_9_debug_entry(target_t *target)
1377 {
1378         int i;
1379         uint32_t context[16];
1380         uint32_t* context_p[16];
1381         uint32_t r0_thumb, pc_thumb;
1382         uint32_t cpsr;
1383         int retval;
1384         /* get pointers to arch-specific information */
1385         armv4_5_common_t *armv4_5 = target->arch_info;
1386         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1387         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1388         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1389
1390 #ifdef _DEBUG_ARM7_9_
1391         LOG_DEBUG("-");
1392 #endif
1393
1394         if (arm7_9->pre_debug_entry)
1395                 arm7_9->pre_debug_entry(target);
1396
1397         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1398          * ensure that DBGRQ is cleared
1399          */
1400         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1401         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1402         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1403         embeddedice_store_reg(dbg_ctrl);
1404
1405         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1406         {
1407                 return retval;
1408         }
1409
1410         if ((retval = jtag_execute_queue()) != ERROR_OK)
1411         {
1412                 return retval;
1413         }
1414
1415         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1416                 return retval;
1417
1418
1419         if (target->state != TARGET_HALTED)
1420         {
1421                 LOG_WARNING("target not halted");
1422                 return ERROR_TARGET_NOT_HALTED;
1423         }
1424
1425         /* if the target is in Thumb state, change to ARM state */
1426         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1427         {
1428                 LOG_DEBUG("target entered debug from Thumb state");
1429                 /* Entered debug from Thumb mode */
1430                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1431                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1432                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1433         }
1434         else
1435         {
1436                 LOG_DEBUG("target entered debug from ARM state");
1437                 /* Entered debug from ARM mode */
1438                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1439         }
1440
1441         for (i = 0; i < 16; i++)
1442                 context_p[i] = &context[i];
1443         /* save core registers (r0 - r15 of current core mode) */
1444         arm7_9->read_core_regs(target, 0xffff, context_p);
1445
1446         arm7_9->read_xpsr(target, &cpsr, 0);
1447
1448         if ((retval = jtag_execute_queue()) != ERROR_OK)
1449                 return retval;
1450
1451         /* if the core has been executing in Thumb state, set the T bit */
1452         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1453                 cpsr |= 0x20;
1454
1455         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1456         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1457         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1458
1459         armv4_5->core_mode = cpsr & 0x1f;
1460
1461         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1462         {
1463                 target->state = TARGET_UNKNOWN;
1464                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1465                 return ERROR_TARGET_FAILURE;
1466         }
1467
1468         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1469
1470         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1471         {
1472                 LOG_DEBUG("thumb state, applying fixups");
1473                 context[0] = r0_thumb;
1474                 context[15] = pc_thumb;
1475         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1476         {
1477                 /* adjust value stored by STM */
1478                 context[15] -= 3 * 4;
1479         }
1480
1481         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1482                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1483         else
1484                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1485
1486         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1487                 return ERROR_FAIL;
1488
1489         for (i = 0; i <= 15; i++)
1490         {
1491                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1492                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1493                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1494                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1495         }
1496
1497         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1498
1499         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1500                 return ERROR_FAIL;
1501
1502         /* exceptions other than USR & SYS have a saved program status register */
1503         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1504         {
1505                 uint32_t spsr;
1506                 arm7_9->read_xpsr(target, &spsr, 1);
1507                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1508                 {
1509                         return retval;
1510                 }
1511                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1512                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1513                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1514         }
1515
1516         /* r0 and r15 (pc) have to be restored later */
1517         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1518         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1519
1520         if ((retval = jtag_execute_queue()) != ERROR_OK)
1521                 return retval;
1522
1523         if (arm7_9->post_debug_entry)
1524                 arm7_9->post_debug_entry(target);
1525
1526         return ERROR_OK;
1527 }
1528
1529 /**
1530  * Validate the full context for an ARM7/9 target in all processor modes.  If
1531  * there are any invalid registers for the target, they will all be read.  This
1532  * includes the PSR.
1533  *
1534  * @param target Pointer to the ARM7/9 target to capture the full context from
1535  * @return Error if the target is not halted, has an invalid core mode, or if
1536  *         the JTAG queue fails to execute
1537  */
1538 int arm7_9_full_context(target_t *target)
1539 {
1540         int i;
1541         int retval;
1542         armv4_5_common_t *armv4_5 = target->arch_info;
1543         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1544
1545         LOG_DEBUG("-");
1546
1547         if (target->state != TARGET_HALTED)
1548         {
1549                 LOG_WARNING("target not halted");
1550                 return ERROR_TARGET_NOT_HALTED;
1551         }
1552
1553         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1554                 return ERROR_FAIL;
1555
1556         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1557          * SYS shares registers with User, so we don't touch SYS
1558          */
1559         for (i = 0; i < 6; i++)
1560         {
1561                 uint32_t mask = 0;
1562                 uint32_t* reg_p[16];
1563                 int j;
1564                 int valid = 1;
1565
1566                 /* check if there are invalid registers in the current mode
1567                  */
1568                 for (j = 0; j <= 16; j++)
1569                 {
1570                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1571                                 valid = 0;
1572                 }
1573
1574                 if (!valid)
1575                 {
1576                         uint32_t tmp_cpsr;
1577
1578                         /* change processor mode (and mask T bit) */
1579                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1580                         tmp_cpsr |= armv4_5_number_to_mode(i);
1581                         tmp_cpsr &= ~0x20;
1582                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1583
1584                         for (j = 0; j < 15; j++)
1585                         {
1586                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1587                                 {
1588                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1589                                         mask |= 1 << j;
1590                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1591                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1592                                 }
1593                         }
1594
1595                         /* if only the PSR is invalid, mask is all zeroes */
1596                         if (mask)
1597                                 arm7_9->read_core_regs(target, mask, reg_p);
1598
1599                         /* check if the PSR has to be read */
1600                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1601                         {
1602                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1603                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1604                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1605                         }
1606                 }
1607         }
1608
1609         /* restore processor mode (mask T bit) */
1610         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1611
1612         if ((retval = jtag_execute_queue()) != ERROR_OK)
1613         {
1614                 return retval;
1615         }
1616         return ERROR_OK;
1617 }
1618
1619 /**
1620  * Restore the processor context on an ARM7/9 target.  The full processor
1621  * context is analyzed to see if any of the registers are dirty on this end, but
1622  * have a valid new value.  If this is the case, the processor is changed to the
1623  * appropriate mode and the new register values are written out to the
1624  * processor.  If there happens to be a dirty register with an invalid value, an
1625  * error will be logged.
1626  *
1627  * @param target Pointer to the ARM7/9 target to have its context restored
1628  * @return Error status if the target is not halted or the core mode in the
1629  *         armv4_5 struct is invalid.
1630  */
1631 int arm7_9_restore_context(target_t *target)
1632 {
1633         armv4_5_common_t *armv4_5 = target->arch_info;
1634         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1635         reg_t *reg;
1636         armv4_5_core_reg_t *reg_arch_info;
1637         enum armv4_5_mode current_mode = armv4_5->core_mode;
1638         int i, j;
1639         int dirty;
1640         int mode_change;
1641
1642         LOG_DEBUG("-");
1643
1644         if (target->state != TARGET_HALTED)
1645         {
1646                 LOG_WARNING("target not halted");
1647                 return ERROR_TARGET_NOT_HALTED;
1648         }
1649
1650         if (arm7_9->pre_restore_context)
1651                 arm7_9->pre_restore_context(target);
1652
1653         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1654                 return ERROR_FAIL;
1655
1656         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1657          * SYS shares registers with User, so we don't touch SYS
1658          */
1659         for (i = 0; i < 6; i++)
1660         {
1661                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1662                 dirty = 0;
1663                 mode_change = 0;
1664                 /* check if there are dirty registers in the current mode
1665                 */
1666                 for (j = 0; j <= 16; j++)
1667                 {
1668                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1669                         reg_arch_info = reg->arch_info;
1670                         if (reg->dirty == 1)
1671                         {
1672                                 if (reg->valid == 1)
1673                                 {
1674                                         dirty = 1;
1675                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1676                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1677                                                 && (reg_arch_info->mode != current_mode)
1678                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1679                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1680                                         {
1681                                                 mode_change = 1;
1682                                                 LOG_DEBUG("require mode change");
1683                                         }
1684                                 }
1685                                 else
1686                                 {
1687                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1688                                 }
1689                         }
1690                 }
1691
1692                 if (dirty)
1693                 {
1694                         uint32_t mask = 0x0;
1695                         int num_regs = 0;
1696                         uint32_t regs[16];
1697
1698                         if (mode_change)
1699                         {
1700                                 uint32_t tmp_cpsr;
1701
1702                                 /* change processor mode (mask T bit) */
1703                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1704                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1705                                 tmp_cpsr &= ~0x20;
1706                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1707                                 current_mode = armv4_5_number_to_mode(i);
1708                         }
1709
1710                         for (j = 0; j <= 14; j++)
1711                         {
1712                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1713                                 reg_arch_info = reg->arch_info;
1714
1715
1716                                 if (reg->dirty == 1)
1717                                 {
1718                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1719                                         mask |= 1 << j;
1720                                         num_regs++;
1721                                         reg->dirty = 0;
1722                                         reg->valid = 1;
1723                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1724                                 }
1725                         }
1726
1727                         if (mask)
1728                         {
1729                                 arm7_9->write_core_regs(target, mask, regs);
1730                         }
1731
1732                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1733                         reg_arch_info = reg->arch_info;
1734                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1735                         {
1736                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1737                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1738                         }
1739                 }
1740         }
1741
1742         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1743         {
1744                 /* restore processor mode (mask T bit) */
1745                 uint32_t tmp_cpsr;
1746
1747                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1748                 tmp_cpsr |= armv4_5_number_to_mode(i);
1749                 tmp_cpsr &= ~0x20;
1750                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1751                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1752         }
1753         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1754         {
1755                 /* CPSR has been changed, full restore necessary (mask T bit) */
1756                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1757                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1758                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1759                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1760         }
1761
1762         /* restore PC */
1763         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1764         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1765         armv4_5->core_cache->reg_list[15].dirty = 0;
1766
1767         if (arm7_9->post_restore_context)
1768                 arm7_9->post_restore_context(target);
1769
1770         return ERROR_OK;
1771 }
1772
1773 /**
1774  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1775  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1776  * restart.
1777  *
1778  * @param target Pointer to the ARM7/9 target to be restarted
1779  * @return Result of executing the JTAG queue
1780  */
1781 int arm7_9_restart_core(struct target_s *target)
1782 {
1783         armv4_5_common_t *armv4_5 = target->arch_info;
1784         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1785         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1786
1787         /* set RESTART instruction */
1788         jtag_set_end_state(TAP_IDLE);
1789         if (arm7_9->need_bypass_before_restart) {
1790                 arm7_9->need_bypass_before_restart = 0;
1791                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1792         }
1793         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1794
1795         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1796         return jtag_execute_queue();
1797 }
1798
1799 /**
1800  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1801  * iterated through and are set on the target if they aren't already set.
1802  *
1803  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1804  */
1805 void arm7_9_enable_watchpoints(struct target_s *target)
1806 {
1807         watchpoint_t *watchpoint = target->watchpoints;
1808
1809         while (watchpoint)
1810         {
1811                 if (watchpoint->set == 0)
1812                         arm7_9_set_watchpoint(target, watchpoint);
1813                 watchpoint = watchpoint->next;
1814         }
1815 }
1816
1817 /**
1818  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1819  * iterated through and are set on the target.
1820  *
1821  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1822  */
1823 void arm7_9_enable_breakpoints(struct target_s *target)
1824 {
1825         breakpoint_t *breakpoint = target->breakpoints;
1826
1827         /* set any pending breakpoints */
1828         while (breakpoint)
1829         {
1830                 arm7_9_set_breakpoint(target, breakpoint);
1831                 breakpoint = breakpoint->next;
1832         }
1833 }
1834
1835 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1836 {
1837         armv4_5_common_t *armv4_5 = target->arch_info;
1838         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1839         breakpoint_t *breakpoint = target->breakpoints;
1840         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1841         int err, retval = ERROR_OK;
1842
1843         LOG_DEBUG("-");
1844
1845         if (target->state != TARGET_HALTED)
1846         {
1847                 LOG_WARNING("target not halted");
1848                 return ERROR_TARGET_NOT_HALTED;
1849         }
1850
1851         if (!debug_execution)
1852         {
1853                 target_free_all_working_areas(target);
1854         }
1855
1856         /* current = 1: continue on current pc, otherwise continue at <address> */
1857         if (!current)
1858                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1859
1860         uint32_t current_pc;
1861         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1862
1863         /* the front-end may request us not to handle breakpoints */
1864         if (handle_breakpoints)
1865         {
1866                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1867                 {
1868                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1869                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1870                         {
1871                                 return retval;
1872                         }
1873
1874                         /* calculate PC of next instruction */
1875                         uint32_t next_pc;
1876                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1877                         {
1878                                 uint32_t current_opcode;
1879                                 target_read_u32(target, current_pc, &current_opcode);
1880                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1881                                 return retval;
1882                         }
1883
1884                         LOG_DEBUG("enable single-step");
1885                         arm7_9->enable_single_step(target, next_pc);
1886
1887                         target->debug_reason = DBG_REASON_SINGLESTEP;
1888
1889                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1890                         {
1891                                 return retval;
1892                         }
1893
1894                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1895                                 arm7_9->branch_resume(target);
1896                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1897                         {
1898                                 arm7_9->branch_resume_thumb(target);
1899                         }
1900                         else
1901                         {
1902                                 LOG_ERROR("unhandled core state");
1903                                 return ERROR_FAIL;
1904                         }
1905
1906                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1907                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1908                         err = arm7_9_execute_sys_speed(target);
1909
1910                         LOG_DEBUG("disable single-step");
1911                         arm7_9->disable_single_step(target);
1912
1913                         if (err != ERROR_OK)
1914                         {
1915                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1916                                 {
1917                                         return retval;
1918                                 }
1919                                 target->state = TARGET_UNKNOWN;
1920                                 return err;
1921                         }
1922
1923                         arm7_9_debug_entry(target);
1924                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1925
1926                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1927                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1928                         {
1929                                 return retval;
1930                         }
1931                 }
1932         }
1933
1934         /* enable any pending breakpoints and watchpoints */
1935         arm7_9_enable_breakpoints(target);
1936         arm7_9_enable_watchpoints(target);
1937
1938         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1939         {
1940                 return retval;
1941         }
1942
1943         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1944         {
1945                 arm7_9->branch_resume(target);
1946         }
1947         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1948         {
1949                 arm7_9->branch_resume_thumb(target);
1950         }
1951         else
1952         {
1953                 LOG_ERROR("unhandled core state");
1954                 return ERROR_FAIL;
1955         }
1956
1957         /* deassert DBGACK and INTDIS */
1958         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1959         /* INTDIS only when we really resume, not during debug execution */
1960         if (!debug_execution)
1961                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1962         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1963
1964         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1965         {
1966                 return retval;
1967         }
1968
1969         target->debug_reason = DBG_REASON_NOTHALTED;
1970
1971         if (!debug_execution)
1972         {
1973                 /* registers are now invalid */
1974                 armv4_5_invalidate_core_regs(target);
1975                 target->state = TARGET_RUNNING;
1976                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1977                 {
1978                         return retval;
1979                 }
1980         }
1981         else
1982         {
1983                 target->state = TARGET_DEBUG_RUNNING;
1984                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1985                 {
1986                         return retval;
1987                 }
1988         }
1989
1990         LOG_DEBUG("target resumed");
1991
1992         return ERROR_OK;
1993 }
1994
1995 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1996 {
1997         armv4_5_common_t *armv4_5 = target->arch_info;
1998         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1999
2000         uint32_t current_pc;
2001         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2002
2003         if (next_pc != current_pc)
2004         {
2005                 /* setup an inverse breakpoint on the current PC
2006                 * - comparator 1 matches the current address
2007                 * - rangeout from comparator 1 is connected to comparator 0 rangein
2008                 * - comparator 0 matches any address, as long as rangein is low */
2009                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2010                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2011                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2012                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
2013                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
2014                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2015                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2016                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
2017                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2018         }
2019         else
2020         {
2021                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2022                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2023                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2024                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2025                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2026                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2027                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2028                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2029                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2030         }
2031 }
2032
2033 void arm7_9_disable_eice_step(target_t *target)
2034 {
2035         armv4_5_common_t *armv4_5 = target->arch_info;
2036         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2037
2038         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2039         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2040         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2041         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2042         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2043         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2044         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2045         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2046         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2047 }
2048
2049 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2050 {
2051         armv4_5_common_t *armv4_5 = target->arch_info;
2052         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2053         breakpoint_t *breakpoint = NULL;
2054         int err, retval;
2055
2056         if (target->state != TARGET_HALTED)
2057         {
2058                 LOG_WARNING("target not halted");
2059                 return ERROR_TARGET_NOT_HALTED;
2060         }
2061
2062         /* current = 1: continue on current pc, otherwise continue at <address> */
2063         if (!current)
2064                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2065
2066         uint32_t current_pc;
2067         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2068
2069         /* the front-end may request us not to handle breakpoints */
2070         if (handle_breakpoints)
2071                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2072                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2073                         {
2074                                 return retval;
2075                         }
2076
2077         target->debug_reason = DBG_REASON_SINGLESTEP;
2078
2079         /* calculate PC of next instruction */
2080         uint32_t next_pc;
2081         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2082         {
2083                 uint32_t current_opcode;
2084                 target_read_u32(target, current_pc, &current_opcode);
2085                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2086                 return retval;
2087         }
2088
2089         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2090         {
2091                 return retval;
2092         }
2093
2094         arm7_9->enable_single_step(target, next_pc);
2095
2096         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2097         {
2098                 arm7_9->branch_resume(target);
2099         }
2100         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2101         {
2102                 arm7_9->branch_resume_thumb(target);
2103         }
2104         else
2105         {
2106                 LOG_ERROR("unhandled core state");
2107                 return ERROR_FAIL;
2108         }
2109
2110         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2111         {
2112                 return retval;
2113         }
2114
2115         err = arm7_9_execute_sys_speed(target);
2116         arm7_9->disable_single_step(target);
2117
2118         /* registers are now invalid */
2119         armv4_5_invalidate_core_regs(target);
2120
2121         if (err != ERROR_OK)
2122         {
2123                 target->state = TARGET_UNKNOWN;
2124         } else {
2125                 arm7_9_debug_entry(target);
2126                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2127                 {
2128                         return retval;
2129                 }
2130                 LOG_DEBUG("target stepped");
2131         }
2132
2133         if (breakpoint)
2134                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2135                 {
2136                         return retval;
2137                 }
2138
2139         return err;
2140 }
2141
2142 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2143 {
2144         uint32_t* reg_p[16];
2145         uint32_t value;
2146         int retval;
2147         armv4_5_common_t *armv4_5 = target->arch_info;
2148         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2149
2150         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2151                 return ERROR_FAIL;
2152
2153         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2154
2155         if ((num < 0) || (num > 16))
2156                 return ERROR_INVALID_ARGUMENTS;
2157
2158         if ((mode != ARMV4_5_MODE_ANY)
2159                         && (mode != armv4_5->core_mode)
2160                         && (reg_mode != ARMV4_5_MODE_ANY))
2161         {
2162                 uint32_t tmp_cpsr;
2163
2164                 /* change processor mode (mask T bit) */
2165                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2166                 tmp_cpsr |= mode;
2167                 tmp_cpsr &= ~0x20;
2168                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2169         }
2170
2171         if ((num >= 0) && (num <= 15))
2172         {
2173                 /* read a normal core register */
2174                 reg_p[num] = &value;
2175
2176                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2177         }
2178         else
2179         {
2180                 /* read a program status register
2181                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2182                  */
2183                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2184                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2185
2186                 arm7_9->read_xpsr(target, &value, spsr);
2187         }
2188
2189         if ((retval = jtag_execute_queue()) != ERROR_OK)
2190         {
2191                 return retval;
2192         }
2193
2194         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2195         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2196         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2197
2198         if ((mode != ARMV4_5_MODE_ANY)
2199                         && (mode != armv4_5->core_mode)
2200                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2201                 /* restore processor mode (mask T bit) */
2202                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2203         }
2204
2205         return ERROR_OK;
2206 }
2207
2208 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2209 {
2210         uint32_t reg[16];
2211         armv4_5_common_t *armv4_5 = target->arch_info;
2212         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2213
2214         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2215                 return ERROR_FAIL;
2216
2217         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2218
2219         if ((num < 0) || (num > 16))
2220                 return ERROR_INVALID_ARGUMENTS;
2221
2222         if ((mode != ARMV4_5_MODE_ANY)
2223                         && (mode != armv4_5->core_mode)
2224                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2225                 uint32_t tmp_cpsr;
2226
2227                 /* change processor mode (mask T bit) */
2228                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2229                 tmp_cpsr |= mode;
2230                 tmp_cpsr &= ~0x20;
2231                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2232         }
2233
2234         if ((num >= 0) && (num <= 15))
2235         {
2236                 /* write a normal core register */
2237                 reg[num] = value;
2238
2239                 arm7_9->write_core_regs(target, 1 << num, reg);
2240         }
2241         else
2242         {
2243                 /* write a program status register
2244                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2245                 */
2246                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2247                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2248
2249                 /* if we're writing the CPSR, mask the T bit */
2250                 if (!spsr)
2251                         value &= ~0x20;
2252
2253                 arm7_9->write_xpsr(target, value, spsr);
2254         }
2255
2256         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2257         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2258
2259         if ((mode != ARMV4_5_MODE_ANY)
2260                         && (mode != armv4_5->core_mode)
2261                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2262                 /* restore processor mode (mask T bit) */
2263                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2264         }
2265
2266         return jtag_execute_queue();
2267 }
2268
2269 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2270 {
2271         armv4_5_common_t *armv4_5 = target->arch_info;
2272         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2273
2274         uint32_t reg[16];
2275         uint32_t num_accesses = 0;
2276         int thisrun_accesses;
2277         int i;
2278         uint32_t cpsr;
2279         int retval;
2280         int last_reg = 0;
2281
2282         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2283
2284         if (target->state != TARGET_HALTED)
2285         {
2286                 LOG_WARNING("target not halted");
2287                 return ERROR_TARGET_NOT_HALTED;
2288         }
2289
2290         /* sanitize arguments */
2291         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2292                 return ERROR_INVALID_ARGUMENTS;
2293
2294         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2295                 return ERROR_TARGET_UNALIGNED_ACCESS;
2296
2297         /* load the base register with the address of the first word */
2298         reg[0] = address;
2299         arm7_9->write_core_regs(target, 0x1, reg);
2300
2301         int j = 0;
2302
2303         switch (size)
2304         {
2305                 case 4:
2306                         while (num_accesses < count)
2307                         {
2308                                 uint32_t reg_list;
2309                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2310                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2311
2312                                 if (last_reg <= thisrun_accesses)
2313                                         last_reg = thisrun_accesses;
2314
2315                                 arm7_9->load_word_regs(target, reg_list);
2316
2317                                 /* fast memory reads are only safe when the target is running
2318                                  * from a sufficiently high clock (32 kHz is usually too slow)
2319                                  */
2320                                 if (arm7_9->fast_memory_access)
2321                                         retval = arm7_9_execute_fast_sys_speed(target);
2322                                 else
2323                                         retval = arm7_9_execute_sys_speed(target);
2324                                 if (retval != ERROR_OK)
2325                                         return retval;
2326
2327                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2328
2329                                 /* advance buffer, count number of accesses */
2330                                 buffer += thisrun_accesses * 4;
2331                                 num_accesses += thisrun_accesses;
2332
2333                                 if ((j++%1024) == 0)
2334                                 {
2335                                         keep_alive();
2336                                 }
2337                         }
2338                         break;
2339                 case 2:
2340                         while (num_accesses < count)
2341                         {
2342                                 uint32_t reg_list;
2343                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2344                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2345
2346                                 for (i = 1; i <= thisrun_accesses; i++)
2347                                 {
2348                                         if (i > last_reg)
2349                                                 last_reg = i;
2350                                         arm7_9->load_hword_reg(target, i);
2351                                         /* fast memory reads are only safe when the target is running
2352                                          * from a sufficiently high clock (32 kHz is usually too slow)
2353                                          */
2354                                         if (arm7_9->fast_memory_access)
2355                                                 retval = arm7_9_execute_fast_sys_speed(target);
2356                                         else
2357                                                 retval = arm7_9_execute_sys_speed(target);
2358                                         if (retval != ERROR_OK)
2359                                         {
2360                                                 return retval;
2361                                         }
2362
2363                                 }
2364
2365                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2366
2367                                 /* advance buffer, count number of accesses */
2368                                 buffer += thisrun_accesses * 2;
2369                                 num_accesses += thisrun_accesses;
2370
2371                                 if ((j++%1024) == 0)
2372                                 {
2373                                         keep_alive();
2374                                 }
2375                         }
2376                         break;
2377                 case 1:
2378                         while (num_accesses < count)
2379                         {
2380                                 uint32_t reg_list;
2381                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2382                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2383
2384                                 for (i = 1; i <= thisrun_accesses; i++)
2385                                 {
2386                                         if (i > last_reg)
2387                                                 last_reg = i;
2388                                         arm7_9->load_byte_reg(target, i);
2389                                         /* fast memory reads are only safe when the target is running
2390                                          * from a sufficiently high clock (32 kHz is usually too slow)
2391                                          */
2392                                         if (arm7_9->fast_memory_access)
2393                                                 retval = arm7_9_execute_fast_sys_speed(target);
2394                                         else
2395                                                 retval = arm7_9_execute_sys_speed(target);
2396                                         if (retval != ERROR_OK)
2397                                         {
2398                                                 return retval;
2399                                         }
2400                                 }
2401
2402                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2403
2404                                 /* advance buffer, count number of accesses */
2405                                 buffer += thisrun_accesses * 1;
2406                                 num_accesses += thisrun_accesses;
2407
2408                                 if ((j++%1024) == 0)
2409                                 {
2410                                         keep_alive();
2411                                 }
2412                         }
2413                         break;
2414                 default:
2415                         LOG_ERROR("BUG: we shouldn't get here");
2416                         exit(-1);
2417                         break;
2418         }
2419
2420         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2421                 return ERROR_FAIL;
2422
2423         for (i = 0; i <= last_reg; i++)
2424                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2425
2426         arm7_9->read_xpsr(target, &cpsr, 0);
2427         if ((retval = jtag_execute_queue()) != ERROR_OK)
2428         {
2429                 LOG_ERROR("JTAG error while reading cpsr");
2430                 return ERROR_TARGET_DATA_ABORT;
2431         }
2432
2433         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2434         {
2435                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2436
2437                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2438
2439                 return ERROR_TARGET_DATA_ABORT;
2440         }
2441
2442         return ERROR_OK;
2443 }
2444
2445 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2446 {
2447         armv4_5_common_t *armv4_5 = target->arch_info;
2448         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2449         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2450
2451         uint32_t reg[16];
2452         uint32_t num_accesses = 0;
2453         int thisrun_accesses;
2454         int i;
2455         uint32_t cpsr;
2456         int retval;
2457         int last_reg = 0;
2458
2459 #ifdef _DEBUG_ARM7_9_
2460         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2461 #endif
2462
2463         if (target->state != TARGET_HALTED)
2464         {
2465                 LOG_WARNING("target not halted");
2466                 return ERROR_TARGET_NOT_HALTED;
2467         }
2468
2469         /* sanitize arguments */
2470         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2471                 return ERROR_INVALID_ARGUMENTS;
2472
2473         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2474                 return ERROR_TARGET_UNALIGNED_ACCESS;
2475
2476         /* load the base register with the address of the first word */
2477         reg[0] = address;
2478         arm7_9->write_core_regs(target, 0x1, reg);
2479
2480         /* Clear DBGACK, to make sure memory fetches work as expected */
2481         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2482         embeddedice_store_reg(dbg_ctrl);
2483
2484         switch (size)
2485         {
2486                 case 4:
2487                         while (num_accesses < count)
2488                         {
2489                                 uint32_t reg_list;
2490                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2491                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2492
2493                                 for (i = 1; i <= thisrun_accesses; i++)
2494                                 {
2495                                         if (i > last_reg)
2496                                                 last_reg = i;
2497                                         reg[i] = target_buffer_get_u32(target, buffer);
2498                                         buffer += 4;
2499                                 }
2500
2501                                 arm7_9->write_core_regs(target, reg_list, reg);
2502
2503                                 arm7_9->store_word_regs(target, reg_list);
2504
2505                                 /* fast memory writes are only safe when the target is running
2506                                  * from a sufficiently high clock (32 kHz is usually too slow)
2507                                  */
2508                                 if (arm7_9->fast_memory_access)
2509                                         retval = arm7_9_execute_fast_sys_speed(target);
2510                                 else
2511                                         retval = arm7_9_execute_sys_speed(target);
2512                                 if (retval != ERROR_OK)
2513                                 {
2514                                         return retval;
2515                                 }
2516
2517                                 num_accesses += thisrun_accesses;
2518                         }
2519                         break;
2520                 case 2:
2521                         while (num_accesses < count)
2522                         {
2523                                 uint32_t reg_list;
2524                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2525                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2526
2527                                 for (i = 1; i <= thisrun_accesses; i++)
2528                                 {
2529                                         if (i > last_reg)
2530                                                 last_reg = i;
2531                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2532                                         buffer += 2;
2533                                 }
2534
2535                                 arm7_9->write_core_regs(target, reg_list, reg);
2536
2537                                 for (i = 1; i <= thisrun_accesses; i++)
2538                                 {
2539                                         arm7_9->store_hword_reg(target, i);
2540
2541                                         /* fast memory writes are only safe when the target is running
2542                                          * from a sufficiently high clock (32 kHz is usually too slow)
2543                                          */
2544                                         if (arm7_9->fast_memory_access)
2545                                                 retval = arm7_9_execute_fast_sys_speed(target);
2546                                         else
2547                                                 retval = arm7_9_execute_sys_speed(target);
2548                                         if (retval != ERROR_OK)
2549                                         {
2550                                                 return retval;
2551                                         }
2552                                 }
2553
2554                                 num_accesses += thisrun_accesses;
2555                         }
2556                         break;
2557                 case 1:
2558                         while (num_accesses < count)
2559                         {
2560                                 uint32_t reg_list;
2561                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2562                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2563
2564                                 for (i = 1; i <= thisrun_accesses; i++)
2565                                 {
2566                                         if (i > last_reg)
2567                                                 last_reg = i;
2568                                         reg[i] = *buffer++ & 0xff;
2569                                 }
2570
2571                                 arm7_9->write_core_regs(target, reg_list, reg);
2572
2573                                 for (i = 1; i <= thisrun_accesses; i++)
2574                                 {
2575                                         arm7_9->store_byte_reg(target, i);
2576                                         /* fast memory writes are only safe when the target is running
2577                                          * from a sufficiently high clock (32 kHz is usually too slow)
2578                                          */
2579                                         if (arm7_9->fast_memory_access)
2580                                                 retval = arm7_9_execute_fast_sys_speed(target);
2581                                         else
2582                                                 retval = arm7_9_execute_sys_speed(target);
2583                                         if (retval != ERROR_OK)
2584                                         {
2585                                                 return retval;
2586                                         }
2587
2588                                 }
2589
2590                                 num_accesses += thisrun_accesses;
2591                         }
2592                         break;
2593                 default:
2594                         LOG_ERROR("BUG: we shouldn't get here");
2595                         exit(-1);
2596                         break;
2597         }
2598
2599         /* Re-Set DBGACK */
2600         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2601         embeddedice_store_reg(dbg_ctrl);
2602
2603         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2604                 return ERROR_FAIL;
2605
2606         for (i = 0; i <= last_reg; i++)
2607                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2608
2609         arm7_9->read_xpsr(target, &cpsr, 0);
2610         if ((retval = jtag_execute_queue()) != ERROR_OK)
2611         {
2612                 LOG_ERROR("JTAG error while reading cpsr");
2613                 return ERROR_TARGET_DATA_ABORT;
2614         }
2615
2616         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2617         {
2618                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2619
2620                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2621
2622                 return ERROR_TARGET_DATA_ABORT;
2623         }
2624
2625         return ERROR_OK;
2626 }
2627
2628 static int dcc_count;
2629 static uint8_t *dcc_buffer;
2630
2631 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2632 {
2633         int retval = ERROR_OK;
2634         armv4_5_common_t *armv4_5 = target->arch_info;
2635         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2636
2637         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2638                 return retval;
2639
2640         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2641         int count = dcc_count;
2642         uint8_t *buffer = dcc_buffer;
2643         if (count > 2)
2644         {
2645                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2646                  * core function repeated. */
2647                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2648                 buffer += 4;
2649
2650                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2651                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2652                 jtag_tap_t *tap;
2653                 tap = ice_reg->jtag_info->tap;
2654
2655                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2656                 buffer += (count-2)*4;
2657
2658                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2659         } else
2660         {
2661                 int i;
2662                 for (i = 0; i < count; i++)
2663                 {
2664                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2665                         buffer += 4;
2666                 }
2667         }
2668
2669         if ((retval = target_halt(target))!= ERROR_OK)
2670         {
2671                 return retval;
2672         }
2673         return target_wait_state(target, TARGET_HALTED, 500);
2674 }
2675
2676 static const uint32_t dcc_code[] =
2677 {
2678         /* r0 == input, points to memory buffer
2679          * r1 == scratch
2680          */
2681
2682         /* spin until DCC control (c0) reports data arrived */
2683         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2684         0xe3110001,     /*    tst r1, #1              */
2685         0x0afffffc,     /*    bne w                   */
2686
2687         /* read word from DCC (c1), write to memory */
2688         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2689         0xe4801004,     /*    str r1, [r0], #4        */
2690
2691         /* repeat */
2692         0xeafffff9      /*    b   w                   */
2693 };
2694
2695 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2696
2697 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2698 {
2699         int retval;
2700         armv4_5_common_t *armv4_5 = target->arch_info;
2701         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2702         int i;
2703
2704         if (!arm7_9->dcc_downloads)
2705                 return target_write_memory(target, address, 4, count, buffer);
2706
2707         /* regrab previously allocated working_area, or allocate a new one */
2708         if (!arm7_9->dcc_working_area)
2709         {
2710                 uint8_t dcc_code_buf[6 * 4];
2711
2712                 /* make sure we have a working area */
2713                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2714                 {
2715                         LOG_INFO("no working area available, falling back to memory writes");
2716                         return target_write_memory(target, address, 4, count, buffer);
2717                 }
2718
2719                 /* copy target instructions to target endianness */
2720                 for (i = 0; i < 6; i++)
2721                 {
2722                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2723                 }
2724
2725                 /* write DCC code to working area */
2726                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2727                 {
2728                         return retval;
2729                 }
2730         }
2731
2732         armv4_5_algorithm_t armv4_5_info;
2733         reg_param_t reg_params[1];
2734
2735         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2736         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2737         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2738
2739         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2740
2741         buf_set_u32(reg_params[0].value, 0, 32, address);
2742
2743         dcc_count = count;
2744         dcc_buffer = buffer;
2745         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2746                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2747
2748         if (retval == ERROR_OK)
2749         {
2750                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2751                 if (endaddress != (address + count*4))
2752                 {
2753                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2754                         retval = ERROR_FAIL;
2755                 }
2756         }
2757
2758         destroy_reg_param(&reg_params[0]);
2759
2760         return retval;
2761 }
2762
2763 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2764 {
2765         working_area_t *crc_algorithm;
2766         armv4_5_algorithm_t armv4_5_info;
2767         reg_param_t reg_params[2];
2768         int retval;
2769
2770         static const uint32_t arm7_9_crc_code[] = {
2771                 0xE1A02000,                             /* mov          r2, r0 */
2772                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2773                 0xE1A03001,                             /* mov          r3, r1 */
2774                 0xE3A04000,                             /* mov          r4, #0 */
2775                 0xEA00000B,                             /* b            ncomp */
2776                                                                 /* nbyte: */
2777                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2778                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2779                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2780                 0xE3A05000,                             /* mov          r5, #0 */
2781                                                                 /* loop: */
2782                 0xE3500000,                             /* cmp          r0, #0 */
2783                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2784                 0xE2855001,                             /* add          r5, r5, #1 */
2785                 0xE1A00006,                             /* mov          r0, r6 */
2786                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2787                 0xE3550008,                             /* cmp          r5, #8 */
2788                 0x1AFFFFF8,                             /* bne          loop */
2789                 0xE2844001,                             /* add          r4, r4, #1 */
2790                                                                 /* ncomp: */
2791                 0xE1540003,                             /* cmp          r4, r3 */
2792                 0x1AFFFFF1,                             /* bne          nbyte */
2793                                                                 /* end: */
2794                 0xEAFFFFFE,                             /* b            end */
2795                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2796         };
2797
2798         uint32_t i;
2799
2800         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2801         {
2802                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2803         }
2804
2805         /* convert flash writing code into a buffer in target endianness */
2806         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2807         {
2808                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2809                 {
2810                         return retval;
2811                 }
2812         }
2813
2814         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2815         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2816         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2817
2818         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2819         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2820
2821         buf_set_u32(reg_params[0].value, 0, 32, address);
2822         buf_set_u32(reg_params[1].value, 0, 32, count);
2823
2824         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2825                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), 20000, &armv4_5_info)) != ERROR_OK)
2826         {
2827                 LOG_ERROR("error executing arm7_9 crc algorithm");
2828                 destroy_reg_param(&reg_params[0]);
2829                 destroy_reg_param(&reg_params[1]);
2830                 target_free_working_area(target, crc_algorithm);
2831                 return retval;
2832         }
2833
2834         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2835
2836         destroy_reg_param(&reg_params[0]);
2837         destroy_reg_param(&reg_params[1]);
2838
2839         target_free_working_area(target, crc_algorithm);
2840
2841         return ERROR_OK;
2842 }
2843
2844 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2845 {
2846         working_area_t *erase_check_algorithm;
2847         reg_param_t reg_params[3];
2848         armv4_5_algorithm_t armv4_5_info;
2849         int retval;
2850         uint32_t i;
2851
2852         static const uint32_t erase_check_code[] =
2853         {
2854                 /* loop: */
2855                 0xe4d03001,             /* ldrb r3, [r0], #1 */
2856                 0xe0022003,             /* and r2, r2, r3    */
2857                 0xe2511001,             /* subs r1, r1, #1   */
2858                 0x1afffffb,             /* bne loop          */
2859                 /* end: */
2860                 0xeafffffe              /* b end             */
2861         };
2862
2863         /* make sure we have a working area */
2864         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2865         {
2866                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2867         }
2868
2869         /* convert flash writing code into a buffer in target endianness */
2870         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2871                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2872                 {
2873                         return retval;
2874                 }
2875
2876         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2877         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2878         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2879
2880         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2881         buf_set_u32(reg_params[0].value, 0, 32, address);
2882
2883         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2884         buf_set_u32(reg_params[1].value, 0, 32, count);
2885
2886         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2887         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2888
2889         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2890                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2891         {
2892                 destroy_reg_param(&reg_params[0]);
2893                 destroy_reg_param(&reg_params[1]);
2894                 destroy_reg_param(&reg_params[2]);
2895                 target_free_working_area(target, erase_check_algorithm);
2896                 return 0;
2897         }
2898
2899         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2900
2901         destroy_reg_param(&reg_params[0]);
2902         destroy_reg_param(&reg_params[1]);
2903         destroy_reg_param(&reg_params[2]);
2904
2905         target_free_working_area(target, erase_check_algorithm);
2906
2907         return ERROR_OK;
2908 }
2909
2910 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2911 {
2912         command_t *arm7_9_cmd;
2913
2914         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2915
2916         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr | spsr>");
2917         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2918
2919         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2920
2921         register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2922                 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2923         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2924                  COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2925         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2926                 COMMAND_ANY, "use DCC downloads for larger memory writes <enable | disable>");
2927
2928         armv4_5_register_commands(cmd_ctx);
2929
2930         etm_register_commands(cmd_ctx);
2931
2932         return ERROR_OK;
2933 }
2934
2935 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2936 {
2937         uint32_t value;
2938         int spsr;
2939         int retval;
2940         target_t *target = get_current_target(cmd_ctx);
2941         armv4_5_common_t *armv4_5;
2942         arm7_9_common_t *arm7_9;
2943
2944         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2945         {
2946                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2947                 return ERROR_OK;
2948         }
2949
2950         if (target->state != TARGET_HALTED)
2951         {
2952                 command_print(cmd_ctx, "can't write registers while running");
2953                 return ERROR_OK;
2954         }
2955
2956         if (argc < 2)
2957         {
2958                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2959                 return ERROR_OK;
2960         }
2961
2962         value = strtoul(args[0], NULL, 0);
2963         spsr = strtol(args[1], NULL, 0);
2964
2965         /* if we're writing the CPSR, mask the T bit */
2966         if (!spsr)
2967                 value &= ~0x20;
2968
2969         arm7_9->write_xpsr(target, value, spsr);
2970         if ((retval = jtag_execute_queue()) != ERROR_OK)
2971         {
2972                 LOG_ERROR("JTAG error while writing to xpsr");
2973                 return retval;
2974         }
2975
2976         return ERROR_OK;
2977 }
2978
2979 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2980 {
2981         uint32_t value;
2982         int rotate;
2983         int spsr;
2984         int retval;
2985         target_t *target = get_current_target(cmd_ctx);
2986         armv4_5_common_t *armv4_5;
2987         arm7_9_common_t *arm7_9;
2988
2989         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2990         {
2991                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2992                 return ERROR_OK;
2993         }
2994
2995         if (target->state != TARGET_HALTED)
2996         {
2997                 command_print(cmd_ctx, "can't write registers while running");
2998                 return ERROR_OK;
2999         }
3000
3001         if (argc < 3)
3002         {
3003                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
3004                 return ERROR_OK;
3005         }
3006
3007         value = strtoul(args[0], NULL, 0);
3008         rotate = strtol(args[1], NULL, 0);
3009         spsr = strtol(args[2], NULL, 0);
3010
3011         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
3012         if ((retval = jtag_execute_queue()) != ERROR_OK)
3013         {
3014                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
3015                 return retval;
3016         }
3017
3018         return ERROR_OK;
3019 }
3020
3021 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3022 {
3023         uint32_t value;
3024         uint32_t mode;
3025         int num;
3026         target_t *target = get_current_target(cmd_ctx);
3027         armv4_5_common_t *armv4_5;
3028         arm7_9_common_t *arm7_9;
3029
3030         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3031         {
3032                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3033                 return ERROR_OK;
3034         }
3035
3036         if (target->state != TARGET_HALTED)
3037         {
3038                 command_print(cmd_ctx, "can't write registers while running");
3039                 return ERROR_OK;
3040         }
3041
3042         if (argc < 3)
3043         {
3044                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
3045                 return ERROR_OK;
3046         }
3047
3048         num = strtol(args[0], NULL, 0);
3049         mode = strtoul(args[1], NULL, 0);
3050         value = strtoul(args[2], NULL, 0);
3051
3052         return arm7_9_write_core_reg(target, num, mode, value);
3053 }
3054
3055 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3056 {
3057         target_t *target = get_current_target(cmd_ctx);
3058         armv4_5_common_t *armv4_5;
3059         arm7_9_common_t *arm7_9;
3060
3061         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3062         {
3063                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3064                 return ERROR_OK;
3065         }
3066
3067         if (argc > 0)
3068         {
3069                 if (strcmp("enable", args[0]) == 0)
3070                 {
3071                         arm7_9->use_dbgrq = 1;
3072                 }
3073                 else if (strcmp("disable", args[0]) == 0)
3074                 {
3075                         arm7_9->use_dbgrq = 0;
3076                 }
3077                 else
3078                 {
3079                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3080                 }
3081         }
3082
3083         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3084
3085         return ERROR_OK;
3086 }
3087
3088 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3089 {
3090         target_t *target = get_current_target(cmd_ctx);
3091         armv4_5_common_t *armv4_5;
3092         arm7_9_common_t *arm7_9;
3093
3094         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3095         {
3096                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3097                 return ERROR_OK;
3098         }
3099
3100         if (argc > 0)
3101         {
3102                 if (strcmp("enable", args[0]) == 0)
3103                 {
3104                         arm7_9->fast_memory_access = 1;
3105                 }
3106                 else if (strcmp("disable", args[0]) == 0)
3107                 {
3108                         arm7_9->fast_memory_access = 0;
3109                 }
3110                 else
3111                 {
3112                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3113                 }
3114         }
3115
3116         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3117
3118         return ERROR_OK;
3119 }
3120
3121 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3122 {
3123         target_t *target = get_current_target(cmd_ctx);
3124         armv4_5_common_t *armv4_5;
3125         arm7_9_common_t *arm7_9;
3126
3127         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3128         {
3129                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3130                 return ERROR_OK;
3131         }
3132
3133         if (argc > 0)
3134         {
3135                 if (strcmp("enable", args[0]) == 0)
3136                 {
3137                         arm7_9->dcc_downloads = 1;
3138                 }
3139                 else if (strcmp("disable", args[0]) == 0)
3140                 {
3141                         arm7_9->dcc_downloads = 0;
3142                 }
3143                 else
3144                 {
3145                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3146                 }
3147         }
3148
3149         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3150
3151         return ERROR_OK;
3152 }
3153
3154 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3155 {
3156         int retval = ERROR_OK;
3157         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3158
3159         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3160
3161         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3162         {
3163                 return retval;
3164         }
3165
3166         arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3167         arm7_9->wp_available_max = 2;
3168         arm7_9->sw_breakpoints_added = 0;
3169         arm7_9->sw_breakpoint_count = 0;
3170         arm7_9->breakpoint_count = 0;
3171         arm7_9->wp0_used = 0;
3172         arm7_9->wp1_used = 0;
3173         arm7_9->wp1_used_default = 0;
3174         arm7_9->use_dbgrq = 0;
3175
3176         arm7_9->etm_ctx = NULL;
3177         arm7_9->has_single_step = 0;
3178         arm7_9->has_monitor_mode = 0;
3179         arm7_9->has_vector_catch = 0;
3180
3181         arm7_9->debug_entry_from_reset = 0;
3182
3183         arm7_9->dcc_working_area = NULL;
3184
3185         arm7_9->fast_memory_access = fast_and_dangerous;
3186         arm7_9->dcc_downloads = fast_and_dangerous;
3187
3188         arm7_9->need_bypass_before_restart = 0;
3189
3190         armv4_5->arch_info = arm7_9;
3191         armv4_5->read_core_reg = arm7_9_read_core_reg;
3192         armv4_5->write_core_reg = arm7_9_write_core_reg;
3193         armv4_5->full_context = arm7_9_full_context;
3194
3195         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3196         {
3197                 return retval;
3198         }
3199
3200         if ((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3201         {
3202                 return retval;
3203         }
3204
3205         return ERROR_OK;
3206 }