target/arc: fix clang static analyzer warnings
[fw/openocd] / src / target / arc.c
1 /***************************************************************************
2  *   Copyright (C) 2013-2015,2019-2020 Synopsys, Inc.                      *
3  *   Frank Dols <frank.dols@synopsys.com>                                  *
4  *   Mischa Jonker <mischa.jonker@synopsys.com>                            *
5  *   Anton Kolesov <anton.kolesov@synopsys.com>                            *
6  *   Evgeniy Didin <didin@synopsys.com>                                    *
7  *                                                                         *
8  *   SPDX-License-Identifier: GPL-2.0-or-later                             *
9  ***************************************************************************/
10
11
12 #ifdef HAVE_CONFIG_H
13 #include "config.h"
14 #endif
15
16 #include "arc.h"
17
18
19
20 /*
21  * ARC architecture specific details.
22  *
23  * ARC has two types of registers:
24  *  1) core registers(e.g. r0,r1..) [is_core = true]
25  *  2) Auxiliary registers [is_core = false]..
26  *
27  * Auxiliary registers at the same time can be divided into
28  * read-only BCR(build configuration regs, e.g. isa_config, mpu_build) and
29  * R/RW non-BCR ("control" register, e.g. pc, status32_t, debug).
30  *
31  * The way of accessing to Core and AUX registers differs on Jtag level.
32  * BCR/non-BCR describes if the register is immutable and that reading
33  * unexisting register is safe RAZ, rather then an error.
34  * Note, core registers cannot be BCR.
35  *
36  * In arc/cpu/ tcl files all regiters are defined as core, non-BCR aux
37  * and BCR aux, in "add-reg" command they are passed to three lists
38  * respectively:  core_reg_descriptions, aux_reg_descriptions,
39  * bcr_reg_descriptions.
40  *
41  * Due to the specifics of accessing to BCR/non-BCR registers there are two
42  * register caches:
43  *  1) core_and_aux_cache - includes registers described in
44  *     core_reg_descriptions and aux_reg_descriptions lists.
45  *     Used during save/restore context step.
46  *  2) bcr_cache - includes registers described bcr_reg_descriptions.
47  *     Currently used internally during configure step.
48  */
49
50
51
52 void arc_reg_data_type_add(struct target *target,
53                 struct arc_reg_data_type *data_type)
54 {
55         LOG_DEBUG("Adding %s reg_data_type", data_type->data_type.id);
56         struct arc_common *arc = target_to_arc(target);
57         assert(arc);
58
59         list_add_tail(&data_type->list, &arc->reg_data_types);
60 }
61
62 /**
63  * Private implementation of register_get_by_name() for ARC that
64  * doesn't skip not [yet] existing registers. Used in many places
65  * for iteration through registers and even for marking required registers as
66  * existing.
67  */
68 struct reg *arc_reg_get_by_name(struct reg_cache *first,
69                 const char *name, bool search_all)
70 {
71         unsigned int i;
72         struct reg_cache *cache = first;
73
74         while (cache) {
75                 for (i = 0; i < cache->num_regs; i++) {
76                         if (!strcmp(cache->reg_list[i].name, name))
77                                 return &(cache->reg_list[i]);
78                 }
79
80                 if (search_all)
81                         cache = cache->next;
82                 else
83                         break;
84         }
85
86         return NULL;
87 }
88
89
90 /* Initialize arc_common structure, which passes to openocd target instance */
91 static int arc_init_arch_info(struct target *target, struct arc_common *arc,
92         struct jtag_tap *tap)
93 {
94         arc->common_magic = ARC_COMMON_MAGIC;
95         target->arch_info = arc;
96
97         arc->jtag_info.tap = tap;
98
99         /* The only allowed ir_length is 4 for ARC jtag. */
100         if (tap->ir_length != 4) {
101                 LOG_ERROR("ARC jtag instruction length should be equal to 4");
102                 return ERROR_FAIL;
103         }
104
105         /* Add standard GDB data types */
106         INIT_LIST_HEAD(&arc->reg_data_types);
107         struct arc_reg_data_type *std_types = calloc(ARRAY_SIZE(standard_gdb_types),
108                 sizeof(*std_types));
109
110         if (!std_types) {
111                 LOG_ERROR("Unable to allocate memory");
112                 return ERROR_FAIL;
113         }
114
115         for (unsigned int i = 0; i < ARRAY_SIZE(standard_gdb_types); i++) {
116                 std_types[i].data_type.type = standard_gdb_types[i].type;
117                 std_types[i].data_type.id = standard_gdb_types[i].id;
118                 arc_reg_data_type_add(target, &(std_types[i]));
119         }
120
121         /* Fields related to target descriptions */
122         INIT_LIST_HEAD(&arc->core_reg_descriptions);
123         INIT_LIST_HEAD(&arc->aux_reg_descriptions);
124         INIT_LIST_HEAD(&arc->bcr_reg_descriptions);
125         arc->num_regs = 0;
126         arc->num_core_regs = 0;
127         arc->num_aux_regs = 0;
128         arc->num_bcr_regs = 0;
129         arc->last_general_reg = ULONG_MAX;
130         arc->pc_index_in_cache = ULONG_MAX;
131         arc->debug_index_in_cache = ULONG_MAX;
132
133         return ERROR_OK;
134 }
135
136 int arc_reg_add(struct target *target, struct arc_reg_desc *arc_reg,
137                 const char * const type_name, const size_t type_name_len)
138 {
139         assert(target);
140         assert(arc_reg);
141
142         struct arc_common *arc = target_to_arc(target);
143         assert(arc);
144
145         /* Find register type */
146         {
147                 struct arc_reg_data_type *type;
148                 list_for_each_entry(type, &arc->reg_data_types, list)
149                         if (!strncmp(type->data_type.id, type_name, type_name_len)) {
150                                 arc_reg->data_type = &(type->data_type);
151                                 break;
152                         }
153
154                 if (!arc_reg->data_type)
155                         return ERROR_ARC_REGTYPE_NOT_FOUND;
156         }
157
158         if (arc_reg->is_core) {
159                 list_add_tail(&arc_reg->list, &arc->core_reg_descriptions);
160                 arc->num_core_regs += 1;
161         } else if (arc_reg->is_bcr) {
162                 list_add_tail(&arc_reg->list, &arc->bcr_reg_descriptions);
163                 arc->num_bcr_regs += 1;
164         } else {
165                 list_add_tail(&arc_reg->list, &arc->aux_reg_descriptions);
166                 arc->num_aux_regs += 1;
167         }
168         arc->num_regs += 1;
169
170         LOG_DEBUG(
171                         "added register {name=%s, num=0x%x, type=%s%s%s%s}",
172                         arc_reg->name, arc_reg->arch_num, arc_reg->data_type->id,
173                         arc_reg->is_core ? ", core" : "",  arc_reg->is_bcr ? ", bcr" : "",
174                         arc_reg->is_general ? ", general" : ""
175                 );
176
177         return ERROR_OK;
178 }
179
180 /* Reading core or aux register */
181 static int arc_get_register(struct reg *reg)
182 {
183         assert(reg);
184
185         struct arc_reg_desc *desc = reg->arch_info;
186         struct target *target = desc->target;
187         struct arc_common *arc = target_to_arc(target);
188
189         uint32_t value;
190
191         if (reg->valid) {
192                 LOG_DEBUG("Get register (cached) gdb_num=%" PRIu32 ", name=%s, value=0x%" PRIx32,
193                                 reg->number, desc->name, target_buffer_get_u32(target, reg->value));
194                 return ERROR_OK;
195         }
196
197         if (desc->is_core) {
198                 /* Accessing to R61/R62 registers causes Jtag hang */
199                 if (desc->arch_num == CORE_R61_NUM || desc->arch_num == CORE_R62_NUM) {
200                         LOG_ERROR("It is forbidden to read core registers 61 and 62.");
201                         return ERROR_FAIL;
202                 }
203                 CHECK_RETVAL(arc_jtag_read_core_reg_one(&arc->jtag_info, desc->arch_num,
204                                         &value));
205         } else {
206                 CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, desc->arch_num,
207                         &value));
208         }
209
210         target_buffer_set_u32(target, reg->value, value);
211
212         /* If target is unhalted all register reads should be uncached. */
213         if (target->state == TARGET_HALTED)
214                 reg->valid = true;
215         else
216                 reg->valid = false;
217
218         reg->dirty = false;
219
220         LOG_DEBUG("Get register gdb_num=%" PRIu32 ", name=%s, value=0x%" PRIx32,
221                         reg->number , desc->name, value);
222
223
224         return ERROR_OK;
225 }
226
227 /* Writing core or aux register */
228 static int arc_set_register(struct reg *reg, uint8_t *buf)
229 {
230         struct arc_reg_desc *desc = reg->arch_info;
231         struct target *target = desc->target;
232         uint32_t value = target_buffer_get_u32(target, buf);
233         /* Unlike "get" function "set" is supported only if target
234         * is in halt mode. Async writes are not supported yet. */
235         if (target->state != TARGET_HALTED)
236                 return ERROR_TARGET_NOT_HALTED;
237
238         /* Accessing to R61/R62 registers causes Jtag hang */
239         if (desc->is_core && (desc->arch_num == CORE_R61_NUM ||
240                         desc->arch_num == CORE_R62_NUM)) {
241                 LOG_ERROR("It is forbidden to write core registers 61 and 62.");
242                 return ERROR_FAIL;
243         }
244         target_buffer_set_u32(target, reg->value, value);
245
246         LOG_DEBUG("Set register gdb_num=%" PRIu32 ", name=%s, value=0x%08" PRIx32,
247                         reg->number, desc->name, value);
248
249         reg->valid = true;
250         reg->dirty = true;
251
252         return ERROR_OK;
253 }
254
255 const struct reg_arch_type arc_reg_type = {
256         .get = arc_get_register,
257         .set = arc_set_register,
258 };
259
260 /* GDB register groups. For now we suport only general and "empty" */
261 static const char * const reg_group_general = "general";
262 static const char * const reg_group_other = "";
263
264 /* Common code to initialize `struct reg` for different registers: core, aux, bcr. */
265 static int arc_init_reg(struct target *target, struct reg *reg,
266                         struct arc_reg_desc *reg_desc, unsigned long number)
267 {
268         assert(target);
269         assert(reg);
270         assert(reg_desc);
271
272         struct arc_common *arc = target_to_arc(target);
273
274         /* Initialize struct reg */
275         reg->name = reg_desc->name;
276         reg->size = 32; /* All register in ARC are 32-bit */
277         reg->value = &reg_desc->reg_value;
278         reg->type = &arc_reg_type;
279         reg->arch_info = reg_desc;
280         reg->caller_save = true; /* @todo should be configurable. */
281         reg->reg_data_type = reg_desc->data_type;
282         reg->feature = &reg_desc->feature;
283
284         reg->feature->name = reg_desc->gdb_xml_feature;
285
286         /* reg->number is used by OpenOCD as value for @regnum. Thus when setting
287          * value of a register GDB will use it as a number of register in
288          * P-packet. OpenOCD gdbserver will then use number of register in
289          * P-packet as an array index in the reg_list returned by
290          * arc_regs_get_gdb_reg_list. So to ensure that registers are assigned
291          * correctly it would be required to either sort registers in
292          * arc_regs_get_gdb_reg_list or to assign numbers sequentially here and
293          * according to how registers will be sorted in
294          * arc_regs_get_gdb_reg_list. Second options is much more simpler. */
295         reg->number = number;
296
297         if (reg_desc->is_general) {
298                 arc->last_general_reg = reg->number;
299                 reg->group = reg_group_general;
300         } else {
301                 reg->group = reg_group_other;
302         }
303
304         return ERROR_OK;
305 }
306
307 /* Building aux/core reg_cache */
308 static int arc_build_reg_cache(struct target *target)
309 {
310         unsigned long i = 0;
311         struct arc_reg_desc *reg_desc;
312         /* get pointers to arch-specific information */
313         struct arc_common *arc = target_to_arc(target);
314         const unsigned long num_regs = arc->num_core_regs + arc->num_aux_regs;
315         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
316         struct reg_cache *cache = calloc(1, sizeof(*cache));
317         struct reg *reg_list = calloc(num_regs, sizeof(*reg_list));
318
319         if (!cache || !reg_list)  {
320                 LOG_ERROR("Not enough memory");
321                 goto fail;
322         }
323
324         /* Build the process context cache */
325         cache->name = "arc registers";
326         cache->next = NULL;
327         cache->reg_list = reg_list;
328         cache->num_regs = num_regs;
329         arc->core_and_aux_cache = cache;
330         (*cache_p) = cache;
331
332         if (list_empty(&arc->core_reg_descriptions)) {
333                 LOG_ERROR("No core registers were defined");
334                 goto fail;
335         }
336
337         list_for_each_entry(reg_desc, &arc->core_reg_descriptions, list) {
338                 CHECK_RETVAL(arc_init_reg(target, &reg_list[i], reg_desc, i));
339
340                 LOG_DEBUG("reg n=%3li name=%3s group=%s feature=%s", i,
341                         reg_list[i].name, reg_list[i].group,
342                         reg_list[i].feature->name);
343
344                 i += 1;
345         }
346
347         if (list_empty(&arc->aux_reg_descriptions)) {
348                 LOG_ERROR("No aux registers were defined");
349                 goto fail;
350         }
351
352         list_for_each_entry(reg_desc, &arc->aux_reg_descriptions, list) {
353                  CHECK_RETVAL(arc_init_reg(target, &reg_list[i],  reg_desc, i));
354
355                 LOG_DEBUG("reg n=%3li name=%3s group=%s feature=%s", i,
356                         reg_list[i].name, reg_list[i].group,
357                         reg_list[i].feature->name);
358
359                 /* PC and DEBUG are essential so we search for them. */
360                 if (!strcmp("pc", reg_desc->name)) {
361                         if (arc->pc_index_in_cache != ULONG_MAX) {
362                                 LOG_ERROR("Double definition of PC in configuration");
363                                 goto fail;
364                         }
365                         arc->pc_index_in_cache = i;
366                 } else if (!strcmp("debug", reg_desc->name)) {
367                         if (arc->debug_index_in_cache != ULONG_MAX) {
368                                 LOG_ERROR("Double definition of DEBUG in configuration");
369                                 goto fail;
370                         }
371                         arc->debug_index_in_cache = i;
372                 }
373                 i += 1;
374         }
375
376         if (arc->pc_index_in_cache == ULONG_MAX
377                         || arc->debug_index_in_cache == ULONG_MAX) {
378                 LOG_ERROR("`pc' and `debug' registers must be present in target description.");
379                 goto fail;
380         }
381
382         assert(i == (arc->num_core_regs + arc->num_aux_regs));
383
384         arc->core_aux_cache_built = true;
385
386         return ERROR_OK;
387
388 fail:
389         free(cache);
390         free(reg_list);
391
392         return ERROR_FAIL;
393 }
394
395 /* Build bcr reg_cache.
396  * This function must be called only after arc_build_reg_cache */
397 static int arc_build_bcr_reg_cache(struct target *target)
398 {
399         /* get pointers to arch-specific information */
400         struct arc_common *arc = target_to_arc(target);
401         const unsigned long num_regs = arc->num_bcr_regs;
402         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
403         struct reg_cache *cache = malloc(sizeof(*cache));
404         struct reg *reg_list = calloc(num_regs, sizeof(*reg_list));
405
406         struct arc_reg_desc *reg_desc;
407         unsigned long i = 0;
408         unsigned long gdb_regnum = arc->core_and_aux_cache->num_regs;
409
410         if (!cache || !reg_list)  {
411                 LOG_ERROR("Unable to allocate memory");
412                 goto fail;
413         }
414
415         /* Build the process context cache */
416         cache->name = "arc.bcr";
417         cache->next = NULL;
418         cache->reg_list = reg_list;
419         cache->num_regs = num_regs;
420         arc->bcr_cache = cache;
421         (*cache_p) = cache;
422
423         if (list_empty(&arc->bcr_reg_descriptions)) {
424                 LOG_ERROR("No BCR registers are defined");
425                 goto fail;
426         }
427
428         list_for_each_entry(reg_desc, &arc->bcr_reg_descriptions, list) {
429                  CHECK_RETVAL(arc_init_reg(target, &reg_list[i], reg_desc, gdb_regnum));
430                 /* BCRs always semantically, they are just read-as-zero, if there is
431                  * not real register. */
432                 reg_list[i].exist = true;
433
434                 LOG_DEBUG("reg n=%3li name=%3s group=%s feature=%s", i,
435                         reg_list[i].name, reg_list[i].group,
436                         reg_list[i].feature->name);
437                 i += 1;
438                 gdb_regnum += 1;
439         }
440
441         assert(i == arc->num_bcr_regs);
442
443         arc->bcr_cache_built = true;
444
445
446         return ERROR_OK;
447 fail:
448         free(cache);
449         free(reg_list);
450
451         return ERROR_FAIL;
452 }
453
454
455 static int arc_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
456         int *reg_list_size, enum target_register_class reg_class)
457 {
458         assert(target->reg_cache);
459         struct arc_common *arc = target_to_arc(target);
460
461         /* get pointers to arch-specific information storage */
462         *reg_list_size = arc->num_regs;
463         *reg_list = calloc(*reg_list_size, sizeof(struct reg *));
464
465         if (!*reg_list) {
466                 LOG_ERROR("Unable to allocate memory");
467                 return ERROR_FAIL;
468         }
469
470         /* OpenOCD gdb_server API seems to be inconsistent here: when it generates
471          * XML tdesc it filters out !exist registers, however when creating a
472          * g-packet it doesn't do so. REG_CLASS_ALL is used in first case, and
473          * REG_CLASS_GENERAL used in the latter one. Due to this we had to filter
474          * out !exist register for "general", but not for "all". Attempts to filter out
475          * !exist for "all" as well will cause a failed check in OpenOCD GDB
476          * server. */
477         if (reg_class == REG_CLASS_ALL) {
478                 unsigned long i = 0;
479                 struct reg_cache *reg_cache = target->reg_cache;
480                 while (reg_cache) {
481                         for (unsigned j = 0; j < reg_cache->num_regs; j++, i++)
482                                 (*reg_list)[i] =  &reg_cache->reg_list[j];
483                         reg_cache = reg_cache->next;
484                 }
485                 assert(i == arc->num_regs);
486                 LOG_DEBUG("REG_CLASS_ALL: number of regs=%i", *reg_list_size);
487         } else {
488                 unsigned long i = 0;
489                 unsigned long gdb_reg_number = 0;
490                 struct reg_cache *reg_cache = target->reg_cache;
491                 while (reg_cache) {
492                         for (unsigned j = 0;
493                                  j < reg_cache->num_regs && gdb_reg_number <= arc->last_general_reg;
494                                  j++) {
495                                 if (reg_cache->reg_list[j].exist) {
496                                         (*reg_list)[i] =  &reg_cache->reg_list[j];
497                                         i++;
498                                 }
499                                 gdb_reg_number += 1;
500                         }
501                         reg_cache = reg_cache->next;
502                 }
503                 *reg_list_size = i;
504                 LOG_DEBUG("REG_CLASS_GENERAL: number of regs=%i", *reg_list_size);
505         }
506
507         return ERROR_OK;
508 }
509
510 /* Reading field of struct_type register */
511 int arc_reg_get_field(struct target *target, const char *reg_name,
512                 const char *field_name, uint32_t *value_ptr)
513 {
514         struct reg_data_type_struct_field *field;
515
516         LOG_DEBUG("getting register field (reg_name=%s, field_name=%s)", reg_name, field_name);
517
518         /* Get register */
519         struct reg *reg = arc_reg_get_by_name(target->reg_cache, reg_name, true);
520
521         if (!reg) {
522                 LOG_ERROR("Requested register `%s' doens't exist.", reg_name);
523                 return ERROR_ARC_REGISTER_NOT_FOUND;
524         }
525
526         if (reg->reg_data_type->type != REG_TYPE_ARCH_DEFINED
527             || reg->reg_data_type->type_class != REG_TYPE_CLASS_STRUCT)
528                 return ERROR_ARC_REGISTER_IS_NOT_STRUCT;
529
530         /* Get field in a register */
531         struct reg_data_type_struct *reg_struct =
532                 reg->reg_data_type->reg_type_struct;
533         for (field = reg_struct->fields;
534              field;
535              field = field->next) {
536                 if (!strcmp(field->name, field_name))
537                         break;
538         }
539
540         if (!field)
541                 return ERROR_ARC_REGISTER_FIELD_NOT_FOUND;
542
543         if (!field->use_bitfields)
544                 return ERROR_ARC_FIELD_IS_NOT_BITFIELD;
545
546         if (!reg->valid)
547                 CHECK_RETVAL(reg->type->get(reg));
548
549         /* First do endiannes-safe read of register value
550          * then convert it to binary buffer for further
551          * field extraction */
552
553         *value_ptr = buf_get_u32(reg->value, field->bitfield->start,
554                 field->bitfield->end - field->bitfield->start + 1);
555
556         return ERROR_OK;
557 }
558
559 static int arc_get_register_value(struct target *target, const char *reg_name,
560                 uint32_t *value_ptr)
561 {
562         LOG_DEBUG("reg_name=%s", reg_name);
563
564         struct reg *reg = arc_reg_get_by_name(target->reg_cache, reg_name, true);
565
566         if (!reg)
567                 return ERROR_ARC_REGISTER_NOT_FOUND;
568
569         if (!reg->valid)
570                 CHECK_RETVAL(reg->type->get(reg));
571
572         *value_ptr = target_buffer_get_u32(target, reg->value);
573
574         return ERROR_OK;
575 }
576
577
578 /* Configure DCCM's */
579 static int arc_configure_dccm(struct target  *target)
580 {
581         struct arc_common *arc = target_to_arc(target);
582
583         uint32_t dccm_build_version, dccm_build_size0, dccm_build_size1;
584         CHECK_RETVAL(arc_reg_get_field(target, "dccm_build", "version",
585                 &dccm_build_version));
586         CHECK_RETVAL(arc_reg_get_field(target, "dccm_build", "size0",
587                 &dccm_build_size0));
588         CHECK_RETVAL(arc_reg_get_field(target, "dccm_build", "size1",
589                 &dccm_build_size1));
590         /* There is no yet support of configurable number of cycles,
591          * So there is no difference between v3 and v4 */
592         if ((dccm_build_version == 3 || dccm_build_version == 4) && dccm_build_size0 > 0) {
593                 CHECK_RETVAL(arc_get_register_value(target, "aux_dccm", &(arc->dccm_start)));
594                 uint32_t dccm_size = 0x100;
595                 dccm_size <<= dccm_build_size0;
596                 if (dccm_build_size0 == 0xF)
597                         dccm_size <<= dccm_build_size1;
598                 arc->dccm_end = arc->dccm_start + dccm_size;
599                 LOG_DEBUG("DCCM detected start=0x%" PRIx32 " end=0x%" PRIx32,
600                                 arc->dccm_start, arc->dccm_end);
601
602         }
603         return ERROR_OK;
604 }
605
606
607 /* Configure ICCM's */
608
609 static int arc_configure_iccm(struct target  *target)
610 {
611         struct arc_common *arc = target_to_arc(target);
612
613         /* ICCM0 */
614         uint32_t iccm_build_version, iccm_build_size00, iccm_build_size01;
615         uint32_t aux_iccm = 0;
616         CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "version",
617                 &iccm_build_version));
618         CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm0_size0",
619                 &iccm_build_size00));
620         CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm0_size1",
621                 &iccm_build_size01));
622         if (iccm_build_version == 4 && iccm_build_size00 > 0) {
623                 CHECK_RETVAL(arc_get_register_value(target, "aux_iccm", &aux_iccm));
624                 uint32_t iccm0_size = 0x100;
625                 iccm0_size <<= iccm_build_size00;
626                 if (iccm_build_size00 == 0xF)
627                         iccm0_size <<= iccm_build_size01;
628                 /* iccm0 start is located in highest 4 bits of aux_iccm */
629                 arc->iccm0_start = aux_iccm & 0xF0000000;
630                 arc->iccm0_end = arc->iccm0_start + iccm0_size;
631                 LOG_DEBUG("ICCM0 detected start=0x%" PRIx32 " end=0x%" PRIx32,
632                                 arc->iccm0_start, arc->iccm0_end);
633         }
634
635         /* ICCM1 */
636         uint32_t iccm_build_size10, iccm_build_size11;
637         CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm1_size0",
638                 &iccm_build_size10));
639         CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm1_size1",
640                 &iccm_build_size11));
641         if (iccm_build_version == 4 && iccm_build_size10 > 0) {
642                 /* Use value read for ICCM0 */
643                 if (!aux_iccm)
644                         CHECK_RETVAL(arc_get_register_value(target, "aux_iccm", &aux_iccm));
645                 uint32_t iccm1_size = 0x100;
646                 iccm1_size <<= iccm_build_size10;
647                 if (iccm_build_size10 == 0xF)
648                         iccm1_size <<= iccm_build_size11;
649                 arc->iccm1_start = aux_iccm & 0x0F000000;
650                 arc->iccm1_end = arc->iccm1_start + iccm1_size;
651                 LOG_DEBUG("ICCM1 detected start=0x%" PRIx32 " end=0x%" PRIx32,
652                                 arc->iccm1_start, arc->iccm1_end);
653         }
654         return ERROR_OK;
655 }
656
657 /* Configure some core features, depending on BCRs. */
658 static int arc_configure(struct target *target)
659 {
660         LOG_DEBUG("Configuring ARC ICCM and DCCM");
661
662         /* Configuring DCCM if DCCM_BUILD and AUX_DCCM are known registers. */
663         if (arc_reg_get_by_name(target->reg_cache, "dccm_build", true) &&
664             arc_reg_get_by_name(target->reg_cache, "aux_dccm", true))
665                                 CHECK_RETVAL(arc_configure_dccm(target));
666
667         /* Configuring ICCM if ICCM_BUILD and AUX_ICCM are known registers. */
668         if (arc_reg_get_by_name(target->reg_cache, "iccm_build", true) &&
669             arc_reg_get_by_name(target->reg_cache, "aux_iccm", true))
670                                 CHECK_RETVAL(arc_configure_iccm(target));
671
672         return ERROR_OK;
673 }
674
675 /* arc_examine is function, which is used for all arc targets*/
676 static int arc_examine(struct target *target)
677 {
678         uint32_t status;
679         struct arc_common *arc = target_to_arc(target);
680
681         CHECK_RETVAL(arc_jtag_startup(&arc->jtag_info));
682
683         if (!target_was_examined(target)) {
684                 CHECK_RETVAL(arc_jtag_status(&arc->jtag_info, &status));
685                 if (status & ARC_JTAG_STAT_RU)
686                         target->state = TARGET_RUNNING;
687                 else
688                         target->state = TARGET_HALTED;
689
690                 /* Read BCRs and configure optional registers. */
691                 CHECK_RETVAL(arc_configure(target));
692
693                 target_set_examined(target);
694         }
695
696         return ERROR_OK;
697 }
698
699 static int arc_halt(struct target *target)
700 {
701         uint32_t value, irq_state;
702         struct arc_common *arc = target_to_arc(target);
703
704         LOG_DEBUG("target->state: %s", target_state_name(target));
705
706         if (target->state == TARGET_HALTED) {
707                 LOG_DEBUG("target was already halted");
708                 return ERROR_OK;
709         }
710
711         if (target->state == TARGET_UNKNOWN)
712                 LOG_WARNING("target was in unknown state when halt was requested");
713
714         if (target->state == TARGET_RESET) {
715                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
716                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
717                         return ERROR_TARGET_FAILURE;
718                 } else {
719                         target->debug_reason = DBG_REASON_DBGRQ;
720                 }
721         }
722
723         /* Break (stop) processor.
724          * Do read-modify-write sequence, or DEBUG.UB will be reset unintentionally.
725          * We do not use here arc_get/set_core_reg functions here because they imply
726          * that the processor is already halted. */
727         CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG, &value));
728         value |= SET_CORE_FORCE_HALT; /* set the HALT bit */
729         CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG, value));
730         alive_sleep(1);
731
732         /* Save current IRQ state */
733         CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, &irq_state));
734
735         if (irq_state & AUX_STATUS32_REG_IE_BIT)
736                 arc->irq_state = 1;
737         else
738                 arc->irq_state = 0;
739
740         /* update state and notify gdb*/
741         target->state = TARGET_HALTED;
742         CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
743
744         /* some more debug information */
745         if (debug_level >= LOG_LVL_DEBUG) {
746                 LOG_DEBUG("core stopped (halted) DEGUB-REG: 0x%08" PRIx32, value);
747                 CHECK_RETVAL(arc_get_register_value(target, "status32", &value));
748                 LOG_DEBUG("core STATUS32: 0x%08" PRIx32, value);
749         }
750
751         return ERROR_OK;
752 }
753
754 /**
755  * Read registers that are used in GDB g-packet. We don't read them one-by-one,
756  * but do that in one batch operation to improve speed. Calls to JTAG layer are
757  * expensive so it is better to make one big call that reads all necessary
758  * registers, instead of many calls, one for one register.
759  */
760 static int arc_save_context(struct target *target)
761 {
762         int retval = ERROR_OK;
763         unsigned int i;
764         struct arc_common *arc = target_to_arc(target);
765         struct reg *reg_list = arc->core_and_aux_cache->reg_list;
766
767         LOG_DEBUG("Saving aux and core registers values");
768         assert(reg_list);
769
770         /* It is assumed that there is at least one AUX register in the list, for
771          * example PC. */
772         const uint32_t core_regs_size = arc->num_core_regs * sizeof(uint32_t);
773         /* last_general_reg is inclusive number. To get count of registers it is
774          * required to do +1. */
775         const uint32_t regs_to_scan =
776                 MIN(arc->last_general_reg + 1, arc->num_regs);
777         const uint32_t aux_regs_size = arc->num_aux_regs * sizeof(uint32_t);
778         uint32_t *core_values = malloc(core_regs_size);
779         uint32_t *aux_values = malloc(aux_regs_size);
780         uint32_t *core_addrs = malloc(core_regs_size);
781         uint32_t *aux_addrs = malloc(aux_regs_size);
782         unsigned int core_cnt = 0;
783         unsigned int aux_cnt = 0;
784
785         if (!core_values || !core_addrs || !aux_values || !aux_addrs)  {
786                 LOG_ERROR("Unable to allocate memory");
787                 retval = ERROR_FAIL;
788                 goto exit;
789         }
790
791         memset(core_values, 0xff, core_regs_size);
792         memset(core_addrs, 0xff, core_regs_size);
793         memset(aux_values, 0xff, aux_regs_size);
794         memset(aux_addrs, 0xff, aux_regs_size);
795
796         for (i = 0; i < MIN(arc->num_core_regs, regs_to_scan); i++) {
797                 struct reg *reg = &(reg_list[i]);
798                 struct arc_reg_desc *arc_reg = reg->arch_info;
799                 if (!reg->valid && reg->exist) {
800                         core_addrs[core_cnt] = arc_reg->arch_num;
801                         core_cnt += 1;
802                 }
803         }
804
805         for (i = arc->num_core_regs; i < regs_to_scan; i++) {
806                 struct reg *reg = &(reg_list[i]);
807                 struct arc_reg_desc *arc_reg = reg->arch_info;
808                 if (!reg->valid && reg->exist) {
809                         aux_addrs[aux_cnt] = arc_reg->arch_num;
810                         aux_cnt += 1;
811                 }
812         }
813
814         /* Read data from target. */
815         if (core_cnt > 0) {
816                 retval = arc_jtag_read_core_reg(&arc->jtag_info, core_addrs, core_cnt, core_values);
817                 if (ERROR_OK != retval) {
818                         LOG_ERROR("Attempt to read core registers failed.");
819                         retval = ERROR_FAIL;
820                         goto exit;
821                 }
822         }
823         if (aux_cnt > 0) {
824                 retval = arc_jtag_read_aux_reg(&arc->jtag_info, aux_addrs, aux_cnt, aux_values);
825                 if (ERROR_OK != retval) {
826                         LOG_ERROR("Attempt to read aux registers failed.");
827                         retval = ERROR_FAIL;
828                         goto exit;
829                 }
830         }
831
832         /* Parse core regs */
833         core_cnt = 0;
834         for (i = 0; i < MIN(arc->num_core_regs, regs_to_scan); i++) {
835                 struct reg *reg = &(reg_list[i]);
836                 struct arc_reg_desc *arc_reg = reg->arch_info;
837                 if (!reg->valid && reg->exist) {
838                         target_buffer_set_u32(target, reg->value, core_values[core_cnt]);
839                         core_cnt += 1;
840                         reg->valid = true;
841                         reg->dirty = false;
842                         LOG_DEBUG("Get core register regnum=%" PRIu32 ", name=%s, value=0x%08" PRIx32,
843                                 i, arc_reg->name, core_values[core_cnt]);
844                 }
845         }
846
847         /* Parse aux regs */
848         aux_cnt = 0;
849         for (i = arc->num_core_regs; i < regs_to_scan; i++) {
850                 struct reg *reg = &(reg_list[i]);
851                 struct arc_reg_desc *arc_reg = reg->arch_info;
852                 if (!reg->valid && reg->exist) {
853                         target_buffer_set_u32(target, reg->value, aux_values[aux_cnt]);
854                         aux_cnt += 1;
855                         reg->valid = true;
856                         reg->dirty = false;
857                         LOG_DEBUG("Get aux register regnum=%" PRIu32 ", name=%s, value=0x%08" PRIx32,
858                                 i , arc_reg->name, aux_values[aux_cnt]);
859                 }
860         }
861
862 exit:
863         free(core_values);
864         free(core_addrs);
865         free(aux_values);
866         free(aux_addrs);
867
868         return retval;
869 }
870
871 static int arc_examine_debug_reason(struct target *target)
872 {
873         uint32_t debug_bh;
874
875         /* Only check for reason if don't know it already. */
876         /* BTW After singlestep at this point core is not marked as halted, so
877          * reading from memory to get current instruction wouldn't work anyway.  */
878         if (target->debug_reason == DBG_REASON_DBGRQ ||
879             target->debug_reason == DBG_REASON_SINGLESTEP) {
880                 return ERROR_OK;
881         }
882
883         CHECK_RETVAL(arc_reg_get_field(target, "debug", "bh",
884                                 &debug_bh));
885
886         if (debug_bh) {
887                 /* DEBUG.BH is set if core halted due to BRK instruction.  */
888                 target->debug_reason = DBG_REASON_BREAKPOINT;
889         } else {
890                 /* TODO: Add Actionpoint check when AP support will be introduced*/
891                 LOG_WARNING("Unknown debug reason");
892         }
893
894         return ERROR_OK;
895 }
896
897 static int arc_debug_entry(struct target *target)
898 {
899         CHECK_RETVAL(arc_save_context(target));
900
901         /* TODO: reset internal indicators of caches states, otherwise D$/I$
902          * will not be flushed/invalidated when required. */
903         CHECK_RETVAL(arc_examine_debug_reason(target));
904
905         return ERROR_OK;
906 }
907
908 static int arc_poll(struct target *target)
909 {
910         uint32_t status, value;
911         struct arc_common *arc = target_to_arc(target);
912
913         /* gdb calls continuously through this arc_poll() function  */
914         CHECK_RETVAL(arc_jtag_status(&arc->jtag_info, &status));
915
916         /* check for processor halted */
917         if (status & ARC_JTAG_STAT_RU) {
918                 if (target->state != TARGET_RUNNING) {
919                         LOG_WARNING("target is still running!");
920                         target->state = TARGET_RUNNING;
921                 }
922                 return ERROR_OK;
923         }
924         /* In some cases JTAG status register indicates that
925          *  processor is in halt mode, but processor is still running.
926          *  We check halt bit of AUX STATUS32 register for setting correct state. */
927         if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
928                 CHECK_RETVAL(arc_get_register_value(target, "status32", &value));
929                 if (value & AUX_STATUS32_REG_HALT_BIT) {
930                         LOG_DEBUG("ARC core in halt or reset state.");
931                         target->state = TARGET_HALTED;
932                         CHECK_RETVAL(arc_debug_entry(target));
933                         CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
934                 } else {
935                 LOG_DEBUG("Discrepancy of STATUS32[0] HALT bit and ARC_JTAG_STAT_RU, "
936                                                 "target is still running");
937                 }
938
939         } else if (target->state == TARGET_DEBUG_RUNNING) {
940
941                 target->state = TARGET_HALTED;
942                 LOG_DEBUG("ARC core is in debug running mode");
943
944                 CHECK_RETVAL(arc_debug_entry(target));
945
946                 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED));
947         }
948
949         return ERROR_OK;
950 }
951
952 static int arc_assert_reset(struct target *target)
953 {
954         struct arc_common *arc = target_to_arc(target);
955         enum reset_types jtag_reset_config = jtag_get_reset_config();
956         bool srst_asserted = false;
957
958         LOG_DEBUG("target->state: %s", target_state_name(target));
959
960         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
961                 /* allow scripts to override the reset event */
962
963                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
964                 register_cache_invalidate(arc->core_and_aux_cache);
965                  /* An ARC target might be in halt state after reset, so
966                  * if script requested processor to resume, then it must
967                  * be manually started to ensure that this request
968                  * is satisfied. */
969                 if (target->state == TARGET_HALTED && !target->reset_halt) {
970                         /* Resume the target and continue from the current
971                          * PC register value. */
972                         LOG_DEBUG("Starting CPU execution after reset");
973                         CHECK_RETVAL(target_resume(target, 1, 0, 0, 0));
974                 }
975                 target->state = TARGET_RESET;
976
977                 return ERROR_OK;
978         }
979
980         /* some cores support connecting while srst is asserted
981          * use that mode if it has been configured */
982         if (!(jtag_reset_config & RESET_SRST_PULLS_TRST) &&
983                         (jtag_reset_config & RESET_SRST_NO_GATING)) {
984                 jtag_add_reset(0, 1);
985                 srst_asserted = true;
986         }
987
988         if (jtag_reset_config & RESET_HAS_SRST) {
989                 /* should issue a srst only, but we may have to assert trst as well */
990                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
991                         jtag_add_reset(1, 1);
992                 else if (!srst_asserted)
993                         jtag_add_reset(0, 1);
994         }
995
996         target->state = TARGET_RESET;
997         jtag_add_sleep(50000);
998
999         register_cache_invalidate(arc->core_and_aux_cache);
1000
1001         if (target->reset_halt)
1002                 CHECK_RETVAL(target_halt(target));
1003
1004         return ERROR_OK;
1005 }
1006
1007 static int arc_deassert_reset(struct target *target)
1008 {
1009         LOG_DEBUG("target->state: %s", target_state_name(target));
1010
1011         /* deassert reset lines */
1012         jtag_add_reset(0, 0);
1013
1014         return ERROR_OK;
1015 }
1016
1017 static int arc_arch_state(struct target *target)
1018 {
1019         uint32_t pc_value;
1020
1021         if (debug_level < LOG_LVL_DEBUG)
1022                 return ERROR_OK;
1023
1024         CHECK_RETVAL(arc_get_register_value(target, "pc", &pc_value));
1025
1026         LOG_DEBUG("target state: %s;  PC at: 0x%08" PRIx32,
1027                 target_state_name(target),
1028                 pc_value);
1029
1030         return ERROR_OK;
1031 }
1032
1033 /**
1034  * See arc_save_context() for reason why we want to dump all regs at once.
1035  * This however means that if there are dependencies between registers they
1036  * will not be observable until target will be resumed.
1037  */
1038 static int arc_restore_context(struct target *target)
1039 {
1040         int retval = ERROR_OK;
1041         unsigned int i;
1042         struct arc_common *arc = target_to_arc(target);
1043         struct reg *reg_list = arc->core_and_aux_cache->reg_list;
1044
1045         LOG_DEBUG("Restoring registers values");
1046         assert(reg_list);
1047
1048         const uint32_t core_regs_size = arc->num_core_regs  * sizeof(uint32_t);
1049         const uint32_t aux_regs_size =  arc->num_aux_regs * sizeof(uint32_t);
1050         uint32_t *core_values = malloc(core_regs_size);
1051         uint32_t *aux_values = malloc(aux_regs_size);
1052         uint32_t *core_addrs = malloc(core_regs_size);
1053         uint32_t *aux_addrs = malloc(aux_regs_size);
1054         unsigned int core_cnt = 0;
1055         unsigned int aux_cnt = 0;
1056
1057         if (!core_values || !core_addrs || !aux_values || !aux_addrs)  {
1058                 LOG_ERROR("Unable to allocate memory");
1059                 retval = ERROR_FAIL;
1060                 goto exit;
1061         }
1062
1063         memset(core_values, 0xff, core_regs_size);
1064         memset(core_addrs, 0xff, core_regs_size);
1065         memset(aux_values, 0xff, aux_regs_size);
1066         memset(aux_addrs, 0xff, aux_regs_size);
1067
1068         for (i = 0; i < arc->num_core_regs; i++) {
1069                 struct reg *reg = &(reg_list[i]);
1070                 struct arc_reg_desc *arc_reg = reg->arch_info;
1071                 if (reg->valid && reg->exist && reg->dirty) {
1072                         LOG_DEBUG("Will write regnum=%u", i);
1073                         core_addrs[core_cnt] = arc_reg->arch_num;
1074                         core_values[core_cnt] = target_buffer_get_u32(target, reg->value);
1075                         core_cnt += 1;
1076                 }
1077         }
1078
1079         for (i = 0; i < arc->num_aux_regs; i++) {
1080                 struct reg *reg = &(reg_list[arc->num_core_regs + i]);
1081                 struct arc_reg_desc *arc_reg = reg->arch_info;
1082                 if (reg->valid && reg->exist && reg->dirty) {
1083                         LOG_DEBUG("Will write regnum=%lu", arc->num_core_regs + i);
1084                         aux_addrs[aux_cnt] = arc_reg->arch_num;
1085                         aux_values[aux_cnt] = target_buffer_get_u32(target, reg->value);
1086                         aux_cnt += 1;
1087                 }
1088         }
1089
1090         /* Write data to target.
1091          * Check before write, if aux and core count is greater than 0. */
1092         if (core_cnt > 0) {
1093                 retval = arc_jtag_write_core_reg(&arc->jtag_info, core_addrs, core_cnt, core_values);
1094                 if (ERROR_OK != retval) {
1095                         LOG_ERROR("Attempt to write to core registers failed.");
1096                         retval = ERROR_FAIL;
1097                         goto exit;
1098                 }
1099         }
1100
1101         if (aux_cnt > 0) {
1102                 retval = arc_jtag_write_aux_reg(&arc->jtag_info, aux_addrs, aux_cnt, aux_values);
1103                 if (ERROR_OK != retval) {
1104                         LOG_ERROR("Attempt to write to aux registers failed.");
1105                         retval = ERROR_FAIL;
1106                         goto exit;
1107                 }
1108         }
1109
1110 exit:
1111         free(core_values);
1112         free(core_addrs);
1113         free(aux_values);
1114         free(aux_addrs);
1115
1116         return retval;
1117 }
1118
1119 static int arc_enable_interrupts(struct target *target, int enable)
1120 {
1121         uint32_t value;
1122
1123         struct arc_common *arc = target_to_arc(target);
1124
1125         CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, &value));
1126
1127         if (enable) {
1128                 /* enable interrupts */
1129                 value |= SET_CORE_ENABLE_INTERRUPTS;
1130                 CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, value));
1131                 LOG_DEBUG("interrupts enabled");
1132         } else {
1133                 /* disable interrupts */
1134                 value &= ~SET_CORE_ENABLE_INTERRUPTS;
1135                 CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, value));
1136                 LOG_DEBUG("interrupts disabled");
1137         }
1138
1139         return ERROR_OK;
1140 }
1141
1142 static int arc_resume(struct target *target, int current, target_addr_t address,
1143         int handle_breakpoints, int debug_execution)
1144 {
1145         struct arc_common *arc = target_to_arc(target);
1146         uint32_t resume_pc = 0;
1147         uint32_t value;
1148         struct reg *pc = &arc->core_and_aux_cache->reg_list[arc->pc_index_in_cache];
1149
1150         LOG_DEBUG("current:%i, address:0x%08" TARGET_PRIxADDR ", handle_breakpoints(not supported yet):%i,"
1151                 " debug_execution:%i", current, address, handle_breakpoints, debug_execution);
1152
1153         if (target->state != TARGET_HALTED) {
1154                 LOG_WARNING("target not halted");
1155                 return ERROR_TARGET_NOT_HALTED;
1156         }
1157
1158         /* current = 1: continue on current PC, otherwise continue at <address> */
1159         if (!current) {
1160                 target_buffer_set_u32(target, pc->value, address);
1161                 pc->dirty = 1;
1162                 pc->valid = 1;
1163                 LOG_DEBUG("Changing the value of current PC to 0x%08" TARGET_PRIxADDR, address);
1164         }
1165
1166         if (!current)
1167                 resume_pc = address;
1168         else
1169                 resume_pc = target_buffer_get_u32(target, pc->value);
1170
1171         CHECK_RETVAL(arc_restore_context(target));
1172
1173         LOG_DEBUG("Target resumes from PC=0x%" PRIx32 ", pc.dirty=%i, pc.valid=%i",
1174                 resume_pc, pc->dirty, pc->valid);
1175
1176         /* check if GDB tells to set our PC where to continue from */
1177         if ((pc->valid == 1) && (resume_pc == target_buffer_get_u32(target, pc->value))) {
1178                 value = target_buffer_get_u32(target, pc->value);
1179                 LOG_DEBUG("resume Core (when start-core) with PC @:0x%08" PRIx32, value);
1180                 CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_PC_REG, value));
1181         }
1182
1183         /* Restore IRQ state if not in debug_execution*/
1184         if (!debug_execution)
1185                 CHECK_RETVAL(arc_enable_interrupts(target, arc->irq_state));
1186         else
1187                 CHECK_RETVAL(arc_enable_interrupts(target, !debug_execution));
1188
1189         target->debug_reason = DBG_REASON_NOTHALTED;
1190
1191         /* ready to get us going again */
1192         target->state = TARGET_RUNNING;
1193         CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, &value));
1194         value &= ~SET_CORE_HALT_BIT;        /* clear the HALT bit */
1195         CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, value));
1196         LOG_DEBUG("Core started to run");
1197
1198         /* registers are now invalid */
1199         register_cache_invalidate(arc->core_and_aux_cache);
1200
1201         if (!debug_execution) {
1202                 target->state = TARGET_RUNNING;
1203                 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
1204                 LOG_DEBUG("target resumed at 0x%08" PRIx32, resume_pc);
1205         } else {
1206                 target->state = TARGET_DEBUG_RUNNING;
1207                 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED));
1208                 LOG_DEBUG("target debug resumed at 0x%08" PRIx32, resume_pc);
1209         }
1210
1211         return ERROR_OK;
1212 }
1213
1214 static int arc_init_target(struct command_context *cmd_ctx, struct target *target)
1215 {
1216         CHECK_RETVAL(arc_build_reg_cache(target));
1217         CHECK_RETVAL(arc_build_bcr_reg_cache(target));
1218         target->debug_reason = DBG_REASON_DBGRQ;
1219         return ERROR_OK;
1220 }
1221
1222 static void arc_free_reg_cache(struct reg_cache *cache)
1223 {
1224         free(cache->reg_list);
1225         free(cache);
1226 }
1227
1228 static void arc_deinit_target(struct target *target)
1229 {
1230         struct arc_common *arc = target_to_arc(target);
1231
1232         LOG_DEBUG("deinitialization of target");
1233         if (arc->core_aux_cache_built)
1234                 arc_free_reg_cache(arc->core_and_aux_cache);
1235         if (arc->bcr_cache_built)
1236                 arc_free_reg_cache(arc->bcr_cache);
1237
1238         struct arc_reg_data_type *type, *n;
1239         struct arc_reg_desc *desc, *k;
1240
1241         /* Free arc-specific reg_data_types allocations*/
1242         list_for_each_entry_safe_reverse(type, n, &arc->reg_data_types, list) {
1243                 if (type->data_type.type_class == REG_TYPE_CLASS_STRUCT) {
1244                         free(type->reg_type_struct_field);
1245                         free(type->bitfields);
1246                         free(type);
1247                 }       else if (type->data_type.type_class == REG_TYPE_CLASS_FLAGS) {
1248                         free(type->reg_type_flags_field);
1249                         free(type->bitfields);
1250                         free(type);
1251                 }
1252         }
1253
1254         /* Free standard_gdb_types reg_data_types allocations */
1255         type = list_first_entry(&arc->reg_data_types, struct arc_reg_data_type, list);
1256         free(type);
1257
1258         list_for_each_entry_safe(desc, k, &arc->aux_reg_descriptions, list)
1259                 free_reg_desc(desc);
1260
1261         list_for_each_entry_safe(desc, k, &arc->core_reg_descriptions, list)
1262                 free_reg_desc(desc);
1263
1264         list_for_each_entry_safe(desc, k, &arc->bcr_reg_descriptions, list)
1265                 free_reg_desc(desc);
1266
1267         free(arc);
1268 }
1269
1270
1271 static int arc_target_create(struct target *target, Jim_Interp *interp)
1272 {
1273         struct arc_common *arc = calloc(1, sizeof(*arc));
1274
1275         if (!arc) {
1276                 LOG_ERROR("Unable to allocate memory");
1277                 return ERROR_FAIL;
1278         }
1279
1280         LOG_DEBUG("Entering");
1281         CHECK_RETVAL(arc_init_arch_info(target, arc, target->tap));
1282
1283         return ERROR_OK;
1284 }
1285
1286
1287 /* ARC v2 target */
1288 struct target_type arcv2_target = {
1289         .name = "arcv2",
1290
1291         .poll = arc_poll,
1292
1293         .arch_state = arc_arch_state,
1294
1295         /* TODO That seems like something similiar to metaware hostlink, so perhaps
1296          * we can exploit this in the future. */
1297         .target_request_data = NULL,
1298
1299         .halt = arc_halt,
1300         .resume = arc_resume,
1301         .step = NULL,
1302
1303         .assert_reset = arc_assert_reset,
1304         .deassert_reset = arc_deassert_reset,
1305
1306         /* TODO Implement soft_reset_halt */
1307         .soft_reset_halt = NULL,
1308
1309         .get_gdb_reg_list = arc_get_gdb_reg_list,
1310
1311         .read_memory = arc_mem_read,
1312         .write_memory = arc_mem_write,
1313         .checksum_memory = NULL,
1314         .blank_check_memory = NULL,
1315
1316         .add_breakpoint = NULL,
1317         .add_context_breakpoint = NULL,
1318         .add_hybrid_breakpoint = NULL,
1319         .remove_breakpoint = NULL,
1320         .add_watchpoint = NULL,
1321         .remove_watchpoint = NULL,
1322         .hit_watchpoint = NULL,
1323
1324         .run_algorithm = NULL,
1325         .start_algorithm = NULL,
1326         .wait_algorithm = NULL,
1327
1328         .commands = arc_monitor_command_handlers,
1329
1330         .target_create = arc_target_create,
1331         .init_target = arc_init_target,
1332         .deinit_target = arc_deinit_target,
1333         .examine = arc_examine,
1334
1335         .virt2phys = NULL,
1336         .read_phys_memory = NULL,
1337         .write_phys_memory = NULL,
1338         .mmu = NULL,
1339 };