aarch64: refactor SCTLR manipulation
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         enum arm_mode target_mode = ARM_MODE_ANY;
53         int retval = ERROR_OK;
54         uint32_t instr;
55
56         struct aarch64_common *aarch64 = target_to_aarch64(target);
57         struct armv8_common *armv8 = target_to_armv8(target);
58
59         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
60                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
61                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
62
63                 switch (armv8->arm.core_mode) {
64                 case ARMV8_64_EL0T:
65                         target_mode = ARMV8_64_EL1H;
66                         /* fall through */
67                 case ARMV8_64_EL1T:
68                 case ARMV8_64_EL1H:
69                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
70                         break;
71                 case ARMV8_64_EL2T:
72                 case ARMV8_64_EL2H:
73                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
74                         break;
75                 case ARMV8_64_EL3H:
76                 case ARMV8_64_EL3T:
77                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
78                         break;
79
80                 case ARM_MODE_SVC:
81                 case ARM_MODE_ABT:
82                 case ARM_MODE_FIQ:
83                 case ARM_MODE_IRQ:
84                         instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
85                         break;
86
87                 default:
88                         LOG_INFO("cannot read system control register in this mode");
89                         return ERROR_FAIL;
90                 }
91
92                 if (target_mode != ARM_MODE_ANY)
93                         armv8_dpm_modeswitch(&armv8->dpm, target_mode);
94
95                 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
96                 if (retval != ERROR_OK)
97                         return retval;
98
99                 if (target_mode != ARM_MODE_ANY)
100                         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
101         }
102
103         return retval;
104 }
105
106 /*  check address before aarch64_apb read write access with mmu on
107  *  remove apb predictible data abort */
108 static int aarch64_check_address(struct target *target, uint32_t address)
109 {
110         /* TODO */
111         return ERROR_OK;
112 }
113 /*  modify system_control_reg in order to enable or disable mmu for :
114  *  - virt2phys address conversion
115  *  - read or write memory in phys or virt address */
116 static int aarch64_mmu_modify(struct target *target, int enable)
117 {
118         struct aarch64_common *aarch64 = target_to_aarch64(target);
119         struct armv8_common *armv8 = &aarch64->armv8_common;
120         int retval = ERROR_OK;
121         uint32_t instr = 0;
122
123         if (enable) {
124                 /*      if mmu enabled at target stop and mmu not enable */
125                 if (!(aarch64->system_control_reg & 0x1U)) {
126                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
127                         return ERROR_FAIL;
128                 }
129                 if (!(aarch64->system_control_reg_curr & 0x1U))
130                         aarch64->system_control_reg_curr |= 0x1U;
131         } else {
132                 if (aarch64->system_control_reg_curr & 0x4U) {
133                         /*  data cache is active */
134                         aarch64->system_control_reg_curr &= ~0x4U;
135                         /* flush data cache armv8 function to be called */
136                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
137                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
138                 }
139                 if ((aarch64->system_control_reg_curr & 0x1U)) {
140                         aarch64->system_control_reg_curr &= ~0x1U;
141                 }
142         }
143
144         switch (armv8->arm.core_mode) {
145         case ARMV8_64_EL0T:
146         case ARMV8_64_EL1T:
147         case ARMV8_64_EL1H:
148                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
149                 break;
150         case ARMV8_64_EL2T:
151         case ARMV8_64_EL2H:
152                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
153                 break;
154         case ARMV8_64_EL3H:
155         case ARMV8_64_EL3T:
156                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
157                 break;
158         default:
159                 LOG_DEBUG("unknown cpu state 0x%x" PRIx32, armv8->arm.core_state);
160                 break;
161         }
162
163         retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
164                                 aarch64->system_control_reg_curr);
165         return retval;
166 }
167
168 /*
169  * Basic debug access, very low level assumes state is saved
170  */
171 static int aarch64_init_debug_access(struct target *target)
172 {
173         struct armv8_common *armv8 = target_to_armv8(target);
174         int retval;
175         uint32_t dummy;
176
177         LOG_DEBUG(" ");
178
179         /* Clear Sticky Power Down status Bit in PRSR to enable access to
180            the registers in the Core Power Domain */
181         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
182                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
183         if (retval != ERROR_OK)
184                 return retval;
185
186         /*
187          * Static CTI configuration:
188          * Channel 0 -> trigger outputs HALT request to PE
189          * Channel 1 -> trigger outputs Resume request to PE
190          * Gate all channel trigger events from entering the CTM
191          */
192
193         /* Enable CTI */
194         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
195                         armv8->cti_base + CTI_CTR, 1);
196         /* By default, gate all channel triggers to and from the CTM */
197         if (retval == ERROR_OK)
198                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
199                                 armv8->cti_base + CTI_GATE, 0);
200         /* output halt requests to PE on channel 0 trigger */
201         if (retval == ERROR_OK)
202                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
203                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
204         /* output restart requests to PE on channel 1 trigger */
205         if (retval == ERROR_OK)
206                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
207                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
208         if (retval != ERROR_OK)
209                 return retval;
210
211         /* Resync breakpoint registers */
212
213         /* Since this is likely called from init or reset, update target state information*/
214         return aarch64_poll(target);
215 }
216
217 /* Write to memory mapped registers directly with no cache or mmu handling */
218 static int aarch64_dap_write_memap_register_u32(struct target *target,
219         uint32_t address,
220         uint32_t value)
221 {
222         int retval;
223         struct armv8_common *armv8 = target_to_armv8(target);
224
225         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
226
227         return retval;
228 }
229
230 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
231 {
232         struct arm_dpm *dpm = &a8->armv8_common.dpm;
233         int retval;
234
235         dpm->arm = &a8->armv8_common.arm;
236         dpm->didr = debug;
237
238         retval = armv8_dpm_setup(dpm);
239         if (retval == ERROR_OK)
240                 retval = armv8_dpm_initialize(dpm);
241
242         return retval;
243 }
244
245 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
246 {
247         struct armv8_common *armv8 = target_to_armv8(target);
248         uint32_t dscr;
249
250         /* Read DSCR */
251         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
252                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
253         if (ERROR_OK != retval)
254                 return retval;
255
256         /* clear bitfield */
257         dscr &= ~bit_mask;
258         /* put new value */
259         dscr |= value & bit_mask;
260
261         /* write new DSCR */
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
263                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
264         return retval;
265 }
266
267 static struct target *get_aarch64(struct target *target, int32_t coreid)
268 {
269         struct target_list *head;
270         struct target *curr;
271
272         head = target->head;
273         while (head != (struct target_list *)NULL) {
274                 curr = head->target;
275                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
276                         return curr;
277                 head = head->next;
278         }
279         return target;
280 }
281 static int aarch64_halt(struct target *target);
282
283 static int aarch64_halt_smp(struct target *target)
284 {
285         int retval = ERROR_OK;
286         struct target_list *head = target->head;
287
288         while (head != (struct target_list *)NULL) {
289                 struct target *curr = head->target;
290                 struct armv8_common *armv8 = target_to_armv8(curr);
291
292                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
293                 if (curr->smp) {
294                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
295                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
296                         if (retval == ERROR_OK)
297                                 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
298                 }
299                 if (retval != ERROR_OK)
300                         break;
301
302                 head = head->next;
303         }
304
305         /* halt the target PE */
306         if (retval == ERROR_OK)
307                 retval = aarch64_halt(target);
308
309         return retval;
310 }
311
312 static int update_halt_gdb(struct target *target)
313 {
314         int retval = 0;
315         if (target->gdb_service && target->gdb_service->core[0] == -1) {
316                 target->gdb_service->target = target;
317                 target->gdb_service->core[0] = target->coreid;
318                 retval += aarch64_halt_smp(target);
319         }
320         return retval;
321 }
322
323 /*
324  * Cortex-A8 Run control
325  */
326
327 static int aarch64_poll(struct target *target)
328 {
329         int retval = ERROR_OK;
330         uint32_t dscr;
331         struct aarch64_common *aarch64 = target_to_aarch64(target);
332         struct armv8_common *armv8 = &aarch64->armv8_common;
333         enum target_state prev_target_state = target->state;
334         /*  toggle to another core is done by gdb as follow */
335         /*  maint packet J core_id */
336         /*  continue */
337         /*  the next polling trigger an halt event sent to gdb */
338         if ((target->state == TARGET_HALTED) && (target->smp) &&
339                 (target->gdb_service) &&
340                 (target->gdb_service->target == NULL)) {
341                 target->gdb_service->target =
342                         get_aarch64(target, target->gdb_service->core[1]);
343                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
344                 return retval;
345         }
346         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
347                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
348         if (retval != ERROR_OK)
349                 return retval;
350         aarch64->cpudbg_dscr = dscr;
351
352         if (DSCR_RUN_MODE(dscr) == 0x3) {
353                 if (prev_target_state != TARGET_HALTED) {
354                         /* We have a halting debug event */
355                         LOG_DEBUG("Target %s halted", target_name(target));
356                         target->state = TARGET_HALTED;
357                         if ((prev_target_state == TARGET_RUNNING)
358                                 || (prev_target_state == TARGET_UNKNOWN)
359                                 || (prev_target_state == TARGET_RESET)) {
360                                 retval = aarch64_debug_entry(target);
361                                 if (retval != ERROR_OK)
362                                         return retval;
363                                 if (target->smp) {
364                                         retval = update_halt_gdb(target);
365                                         if (retval != ERROR_OK)
366                                                 return retval;
367                                 }
368                                 target_call_event_callbacks(target,
369                                         TARGET_EVENT_HALTED);
370                         }
371                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
372                                 LOG_DEBUG(" ");
373
374                                 retval = aarch64_debug_entry(target);
375                                 if (retval != ERROR_OK)
376                                         return retval;
377                                 if (target->smp) {
378                                         retval = update_halt_gdb(target);
379                                         if (retval != ERROR_OK)
380                                                 return retval;
381                                 }
382
383                                 target_call_event_callbacks(target,
384                                         TARGET_EVENT_DEBUG_HALTED);
385                         }
386                 }
387         } else
388                 target->state = TARGET_RUNNING;
389
390         return retval;
391 }
392
393 static int aarch64_halt(struct target *target)
394 {
395         int retval = ERROR_OK;
396         uint32_t dscr;
397         struct armv8_common *armv8 = target_to_armv8(target);
398
399         /*
400          * add HDE in halting debug mode
401          */
402         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
403         if (retval != ERROR_OK)
404                 return retval;
405
406         /* trigger an event on channel 0, this outputs a halt request to the PE */
407         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
408                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
409         if (retval != ERROR_OK)
410                 return retval;
411
412         long long then = timeval_ms();
413         for (;; ) {
414                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
415                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
416                 if (retval != ERROR_OK)
417                         return retval;
418                 if ((dscr & DSCRV8_HALT_MASK) != 0)
419                         break;
420                 if (timeval_ms() > then + 1000) {
421                         LOG_ERROR("Timeout waiting for halt");
422                         return ERROR_FAIL;
423                 }
424         }
425
426         target->debug_reason = DBG_REASON_DBGRQ;
427
428         return ERROR_OK;
429 }
430
431 static int aarch64_internal_restore(struct target *target, int current,
432         uint64_t *address, int handle_breakpoints, int debug_execution)
433 {
434         struct armv8_common *armv8 = target_to_armv8(target);
435         struct arm *arm = &armv8->arm;
436         int retval;
437         uint64_t resume_pc;
438
439         if (!debug_execution)
440                 target_free_all_working_areas(target);
441
442         /* current = 1: continue on current pc, otherwise continue at <address> */
443         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
444         if (!current)
445                 resume_pc = *address;
446         else
447                 *address = resume_pc;
448
449         /* Make sure that the Armv7 gdb thumb fixups does not
450          * kill the return address
451          */
452         switch (arm->core_state) {
453                 case ARM_STATE_ARM:
454                         resume_pc &= 0xFFFFFFFC;
455                         break;
456                 case ARM_STATE_AARCH64:
457                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
458                         break;
459                 case ARM_STATE_THUMB:
460                 case ARM_STATE_THUMB_EE:
461                         /* When the return address is loaded into PC
462                          * bit 0 must be 1 to stay in Thumb state
463                          */
464                         resume_pc |= 0x1;
465                         break;
466                 case ARM_STATE_JAZELLE:
467                         LOG_ERROR("How do I resume into Jazelle state??");
468                         return ERROR_FAIL;
469         }
470         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
471         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
472         arm->pc->dirty = 1;
473         arm->pc->valid = 1;
474
475         /* called it now before restoring context because it uses cpu
476          * register r0 for restoring system control register */
477         retval = aarch64_restore_system_control_reg(target);
478         if (retval == ERROR_OK)
479                 retval = aarch64_restore_context(target, handle_breakpoints);
480
481         return retval;
482 }
483
484 static int aarch64_internal_restart(struct target *target, bool slave_pe)
485 {
486         struct armv8_common *armv8 = target_to_armv8(target);
487         struct arm *arm = &armv8->arm;
488         int retval;
489         uint32_t dscr;
490         /*
491          * * Restart core and wait for it to be started.  Clear ITRen and sticky
492          * * exception flags: see ARMv7 ARM, C5.9.
493          *
494          * REVISIT: for single stepping, we probably want to
495          * disable IRQs by default, with optional override...
496          */
497
498         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
499                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         if ((dscr & DSCR_ITE) == 0)
504                 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
505         if ((dscr & DSCR_ERR) != 0)
506                 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
507
508         /* make sure to acknowledge the halt event before resuming */
509         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
510                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
511
512         /*
513          * open the CTI gate for channel 1 so that the restart events
514          * get passed along to all PEs
515          */
516         if (retval == ERROR_OK)
517                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
518                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
519         if (retval != ERROR_OK)
520                 return retval;
521
522         if (!slave_pe) {
523                 /* trigger an event on channel 1, generates a restart request to the PE */
524                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
525                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
526                 if (retval != ERROR_OK)
527                         return retval;
528
529                 long long then = timeval_ms();
530                 for (;; ) {
531                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
532                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
533                         if (retval != ERROR_OK)
534                                 return retval;
535                         if ((dscr & DSCR_HDE) != 0)
536                                 break;
537                         if (timeval_ms() > then + 1000) {
538                                 LOG_ERROR("Timeout waiting for resume");
539                                 return ERROR_FAIL;
540                         }
541                 }
542         }
543
544         target->debug_reason = DBG_REASON_NOTHALTED;
545         target->state = TARGET_RUNNING;
546
547         /* registers are now invalid */
548         register_cache_invalidate(arm->core_cache);
549         register_cache_invalidate(arm->core_cache->next);
550
551         return ERROR_OK;
552 }
553
554 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
555 {
556         int retval = 0;
557         struct target_list *head;
558         struct target *curr;
559         uint64_t address;
560         head = target->head;
561         while (head != (struct target_list *)NULL) {
562                 curr = head->target;
563                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
564                         /*  resume current address , not in step mode */
565                         retval += aarch64_internal_restore(curr, 1, &address,
566                                         handle_breakpoints, 0);
567                         retval += aarch64_internal_restart(curr, true);
568                 }
569                 head = head->next;
570
571         }
572         return retval;
573 }
574
575 static int aarch64_resume(struct target *target, int current,
576         target_addr_t address, int handle_breakpoints, int debug_execution)
577 {
578         int retval = 0;
579         uint64_t addr = address;
580
581         /* dummy resume for smp toggle in order to reduce gdb impact  */
582         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
583                 /*   simulate a start and halt of target */
584                 target->gdb_service->target = NULL;
585                 target->gdb_service->core[0] = target->gdb_service->core[1];
586                 /*  fake resume at next poll we play the  target core[1], see poll*/
587                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
588                 return 0;
589         }
590
591         if (target->state != TARGET_HALTED)
592                 return ERROR_TARGET_NOT_HALTED;
593
594         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
595                                  debug_execution);
596         if (target->smp) {
597                 target->gdb_service->core[0] = -1;
598                 retval = aarch64_restore_smp(target, handle_breakpoints);
599                 if (retval != ERROR_OK)
600                         return retval;
601         }
602         aarch64_internal_restart(target, false);
603
604         if (!debug_execution) {
605                 target->state = TARGET_RUNNING;
606                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
607                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
608         } else {
609                 target->state = TARGET_DEBUG_RUNNING;
610                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
611                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
612         }
613
614         return ERROR_OK;
615 }
616
617 static int aarch64_debug_entry(struct target *target)
618 {
619         int retval = ERROR_OK;
620         struct aarch64_common *aarch64 = target_to_aarch64(target);
621         struct armv8_common *armv8 = target_to_armv8(target);
622         struct arm_dpm *dpm = &armv8->dpm;
623         enum arm_state core_state;
624
625         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
626
627         dpm->dscr = aarch64->cpudbg_dscr;
628         core_state = armv8_dpm_get_core_state(dpm);
629         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
630         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
631
632         /* make sure to clear all sticky errors */
633         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
634                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
635
636         /* discard async exceptions */
637         if (retval == ERROR_OK)
638                 retval = dpm->instr_cpsr_sync(dpm);
639
640         if (retval != ERROR_OK)
641                 return retval;
642
643         /* Examine debug reason */
644         armv8_dpm_report_dscr(dpm, aarch64->cpudbg_dscr);
645
646         /* save address of instruction that triggered the watchpoint? */
647         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
648                 uint32_t tmp;
649                 uint64_t wfar = 0;
650
651                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
652                                 armv8->debug_base + CPUV8_DBG_WFAR1,
653                                 &tmp);
654                 if (retval != ERROR_OK)
655                         return retval;
656                 wfar = tmp;
657                 wfar = (wfar << 32);
658                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
659                                 armv8->debug_base + CPUV8_DBG_WFAR0,
660                                 &tmp);
661                 if (retval != ERROR_OK)
662                         return retval;
663                 wfar |= tmp;
664                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
665         }
666
667         retval = armv8_dpm_read_current_registers(&armv8->dpm);
668
669         if (retval == ERROR_OK && armv8->post_debug_entry)
670                 retval = armv8->post_debug_entry(target);
671
672         return retval;
673 }
674
675 static int aarch64_post_debug_entry(struct target *target)
676 {
677         struct aarch64_common *aarch64 = target_to_aarch64(target);
678         struct armv8_common *armv8 = &aarch64->armv8_common;
679         int retval;
680         enum arm_mode target_mode = ARM_MODE_ANY;
681         uint32_t instr;
682
683         switch (armv8->arm.core_mode) {
684         case ARMV8_64_EL0T:
685                 target_mode = ARMV8_64_EL1H;
686                 /* fall through */
687         case ARMV8_64_EL1T:
688         case ARMV8_64_EL1H:
689                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
690                 break;
691         case ARMV8_64_EL2T:
692         case ARMV8_64_EL2H:
693                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
694                 break;
695         case ARMV8_64_EL3H:
696         case ARMV8_64_EL3T:
697                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
698                 break;
699
700         case ARM_MODE_SVC:
701         case ARM_MODE_ABT:
702         case ARM_MODE_FIQ:
703         case ARM_MODE_IRQ:
704                 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
705                 break;
706
707         default:
708                 LOG_INFO("cannot read system control register in this mode");
709                 return ERROR_FAIL;
710         }
711
712         if (target_mode != ARM_MODE_ANY)
713                 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
714
715         retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
716         if (retval != ERROR_OK)
717                 return retval;
718
719         if (target_mode != ARM_MODE_ANY)
720                 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
721
722         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
723         aarch64->system_control_reg_curr = aarch64->system_control_reg;
724
725         if (armv8->armv8_mmu.armv8_cache.info == -1) {
726                 armv8_identify_cache(armv8);
727                 armv8_read_mpidr(armv8);
728         }
729
730         armv8->armv8_mmu.mmu_enabled =
731                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
732         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
733                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
734         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
735                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
736         aarch64->curr_mode = armv8->arm.core_mode;
737         return ERROR_OK;
738 }
739
740 static int aarch64_step(struct target *target, int current, target_addr_t address,
741         int handle_breakpoints)
742 {
743         struct armv8_common *armv8 = target_to_armv8(target);
744         int retval;
745         uint32_t edecr;
746
747         if (target->state != TARGET_HALTED) {
748                 LOG_WARNING("target not halted");
749                 return ERROR_TARGET_NOT_HALTED;
750         }
751
752         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
753                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
754         if (retval != ERROR_OK)
755                 return retval;
756
757         /* make sure EDECR.SS is not set when restoring the register */
758         edecr &= ~0x4;
759
760         /* set EDECR.SS to enter hardware step mode */
761         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
762                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
763         if (retval != ERROR_OK)
764                 return retval;
765
766         /* disable interrupts while stepping */
767         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
768         if (retval != ERROR_OK)
769                 return ERROR_OK;
770
771         /* resume the target */
772         retval = aarch64_resume(target, current, address, 0, 0);
773         if (retval != ERROR_OK)
774                 return retval;
775
776         long long then = timeval_ms();
777         while (target->state != TARGET_HALTED) {
778                 retval = aarch64_poll(target);
779                 if (retval != ERROR_OK)
780                         return retval;
781                 if (timeval_ms() > then + 1000) {
782                         LOG_ERROR("timeout waiting for target halt");
783                         return ERROR_FAIL;
784                 }
785         }
786
787         /* restore EDECR */
788         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
789                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
790         if (retval != ERROR_OK)
791                 return retval;
792
793         /* restore interrupts */
794         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
795         if (retval != ERROR_OK)
796                 return ERROR_OK;
797
798         return ERROR_OK;
799 }
800
801 static int aarch64_restore_context(struct target *target, bool bpwp)
802 {
803         struct armv8_common *armv8 = target_to_armv8(target);
804
805         LOG_DEBUG("%s", target_name(target));
806
807         if (armv8->pre_restore_context)
808                 armv8->pre_restore_context(target);
809
810         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
811 }
812
813 /*
814  * Cortex-A8 Breakpoint and watchpoint functions
815  */
816
817 /* Setup hardware Breakpoint Register Pair */
818 static int aarch64_set_breakpoint(struct target *target,
819         struct breakpoint *breakpoint, uint8_t matchmode)
820 {
821         int retval;
822         int brp_i = 0;
823         uint32_t control;
824         uint8_t byte_addr_select = 0x0F;
825         struct aarch64_common *aarch64 = target_to_aarch64(target);
826         struct armv8_common *armv8 = &aarch64->armv8_common;
827         struct aarch64_brp *brp_list = aarch64->brp_list;
828
829         if (breakpoint->set) {
830                 LOG_WARNING("breakpoint already set");
831                 return ERROR_OK;
832         }
833
834         if (breakpoint->type == BKPT_HARD) {
835                 int64_t bpt_value;
836                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
837                         brp_i++;
838                 if (brp_i >= aarch64->brp_num) {
839                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
840                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
841                 }
842                 breakpoint->set = brp_i + 1;
843                 if (breakpoint->length == 2)
844                         byte_addr_select = (3 << (breakpoint->address & 0x02));
845                 control = ((matchmode & 0x7) << 20)
846                         | (1 << 13)
847                         | (byte_addr_select << 5)
848                         | (3 << 1) | 1;
849                 brp_list[brp_i].used = 1;
850                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
851                 brp_list[brp_i].control = control;
852                 bpt_value = brp_list[brp_i].value;
853
854                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
855                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
856                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
857                 if (retval != ERROR_OK)
858                         return retval;
859                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
860                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
861                                 (uint32_t)(bpt_value >> 32));
862                 if (retval != ERROR_OK)
863                         return retval;
864
865                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
866                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
867                                 brp_list[brp_i].control);
868                 if (retval != ERROR_OK)
869                         return retval;
870                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
871                         brp_list[brp_i].control,
872                         brp_list[brp_i].value);
873
874         } else if (breakpoint->type == BKPT_SOFT) {
875                 uint8_t code[4];
876
877                 buf_set_u32(code, 0, 32, armv8_opcode(armv8, ARMV8_OPC_HLT));
878                 retval = target_read_memory(target,
879                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
880                                 breakpoint->length, 1,
881                                 breakpoint->orig_instr);
882                 if (retval != ERROR_OK)
883                         return retval;
884
885                 armv8_cache_d_inner_flush_virt(armv8,
886                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
887                                 breakpoint->length);
888
889                 retval = target_write_memory(target,
890                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
891                                 breakpoint->length, 1, code);
892                 if (retval != ERROR_OK)
893                         return retval;
894
895                 armv8_cache_d_inner_flush_virt(armv8,
896                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
897                                 breakpoint->length);
898
899                 armv8_cache_i_inner_inval_virt(armv8,
900                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
901                                 breakpoint->length);
902
903                 breakpoint->set = 0x11; /* Any nice value but 0 */
904         }
905
906         /* Ensure that halting debug mode is enable */
907         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
908         if (retval != ERROR_OK) {
909                 LOG_DEBUG("Failed to set DSCR.HDE");
910                 return retval;
911         }
912
913         return ERROR_OK;
914 }
915
916 static int aarch64_set_context_breakpoint(struct target *target,
917         struct breakpoint *breakpoint, uint8_t matchmode)
918 {
919         int retval = ERROR_FAIL;
920         int brp_i = 0;
921         uint32_t control;
922         uint8_t byte_addr_select = 0x0F;
923         struct aarch64_common *aarch64 = target_to_aarch64(target);
924         struct armv8_common *armv8 = &aarch64->armv8_common;
925         struct aarch64_brp *brp_list = aarch64->brp_list;
926
927         if (breakpoint->set) {
928                 LOG_WARNING("breakpoint already set");
929                 return retval;
930         }
931         /*check available context BRPs*/
932         while ((brp_list[brp_i].used ||
933                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
934                 brp_i++;
935
936         if (brp_i >= aarch64->brp_num) {
937                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
938                 return ERROR_FAIL;
939         }
940
941         breakpoint->set = brp_i + 1;
942         control = ((matchmode & 0x7) << 20)
943                 | (1 << 13)
944                 | (byte_addr_select << 5)
945                 | (3 << 1) | 1;
946         brp_list[brp_i].used = 1;
947         brp_list[brp_i].value = (breakpoint->asid);
948         brp_list[brp_i].control = control;
949         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
950                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
951                         brp_list[brp_i].value);
952         if (retval != ERROR_OK)
953                 return retval;
954         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
955                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
956                         brp_list[brp_i].control);
957         if (retval != ERROR_OK)
958                 return retval;
959         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
960                 brp_list[brp_i].control,
961                 brp_list[brp_i].value);
962         return ERROR_OK;
963
964 }
965
966 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
967 {
968         int retval = ERROR_FAIL;
969         int brp_1 = 0;  /* holds the contextID pair */
970         int brp_2 = 0;  /* holds the IVA pair */
971         uint32_t control_CTX, control_IVA;
972         uint8_t CTX_byte_addr_select = 0x0F;
973         uint8_t IVA_byte_addr_select = 0x0F;
974         uint8_t CTX_machmode = 0x03;
975         uint8_t IVA_machmode = 0x01;
976         struct aarch64_common *aarch64 = target_to_aarch64(target);
977         struct armv8_common *armv8 = &aarch64->armv8_common;
978         struct aarch64_brp *brp_list = aarch64->brp_list;
979
980         if (breakpoint->set) {
981                 LOG_WARNING("breakpoint already set");
982                 return retval;
983         }
984         /*check available context BRPs*/
985         while ((brp_list[brp_1].used ||
986                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
987                 brp_1++;
988
989         printf("brp(CTX) found num: %d\n", brp_1);
990         if (brp_1 >= aarch64->brp_num) {
991                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
992                 return ERROR_FAIL;
993         }
994
995         while ((brp_list[brp_2].used ||
996                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
997                 brp_2++;
998
999         printf("brp(IVA) found num: %d\n", brp_2);
1000         if (brp_2 >= aarch64->brp_num) {
1001                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1002                 return ERROR_FAIL;
1003         }
1004
1005         breakpoint->set = brp_1 + 1;
1006         breakpoint->linked_BRP = brp_2;
1007         control_CTX = ((CTX_machmode & 0x7) << 20)
1008                 | (brp_2 << 16)
1009                 | (0 << 14)
1010                 | (CTX_byte_addr_select << 5)
1011                 | (3 << 1) | 1;
1012         brp_list[brp_1].used = 1;
1013         brp_list[brp_1].value = (breakpoint->asid);
1014         brp_list[brp_1].control = control_CTX;
1015         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1016                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1017                         brp_list[brp_1].value);
1018         if (retval != ERROR_OK)
1019                 return retval;
1020         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1021                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1022                         brp_list[brp_1].control);
1023         if (retval != ERROR_OK)
1024                 return retval;
1025
1026         control_IVA = ((IVA_machmode & 0x7) << 20)
1027                 | (brp_1 << 16)
1028                 | (1 << 13)
1029                 | (IVA_byte_addr_select << 5)
1030                 | (3 << 1) | 1;
1031         brp_list[brp_2].used = 1;
1032         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1033         brp_list[brp_2].control = control_IVA;
1034         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1035                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1036                         brp_list[brp_2].value & 0xFFFFFFFF);
1037         if (retval != ERROR_OK)
1038                 return retval;
1039         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1040                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1041                         brp_list[brp_2].value >> 32);
1042         if (retval != ERROR_OK)
1043                 return retval;
1044         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1045                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1046                         brp_list[brp_2].control);
1047         if (retval != ERROR_OK)
1048                 return retval;
1049
1050         return ERROR_OK;
1051 }
1052
1053 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1054 {
1055         int retval;
1056         struct aarch64_common *aarch64 = target_to_aarch64(target);
1057         struct armv8_common *armv8 = &aarch64->armv8_common;
1058         struct aarch64_brp *brp_list = aarch64->brp_list;
1059
1060         if (!breakpoint->set) {
1061                 LOG_WARNING("breakpoint not set");
1062                 return ERROR_OK;
1063         }
1064
1065         if (breakpoint->type == BKPT_HARD) {
1066                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1067                         int brp_i = breakpoint->set - 1;
1068                         int brp_j = breakpoint->linked_BRP;
1069                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1070                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1071                                 return ERROR_OK;
1072                         }
1073                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1074                                 brp_list[brp_i].control, brp_list[brp_i].value);
1075                         brp_list[brp_i].used = 0;
1076                         brp_list[brp_i].value = 0;
1077                         brp_list[brp_i].control = 0;
1078                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1079                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1080                                         brp_list[brp_i].control);
1081                         if (retval != ERROR_OK)
1082                                 return retval;
1083                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1084                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1085                                         (uint32_t)brp_list[brp_i].value);
1086                         if (retval != ERROR_OK)
1087                                 return retval;
1088                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1089                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1090                                         (uint32_t)brp_list[brp_i].value);
1091                         if (retval != ERROR_OK)
1092                                 return retval;
1093                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1094                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1095                                 return ERROR_OK;
1096                         }
1097                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1098                                 brp_list[brp_j].control, brp_list[brp_j].value);
1099                         brp_list[brp_j].used = 0;
1100                         brp_list[brp_j].value = 0;
1101                         brp_list[brp_j].control = 0;
1102                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1103                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1104                                         brp_list[brp_j].control);
1105                         if (retval != ERROR_OK)
1106                                 return retval;
1107                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1108                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1109                                         (uint32_t)brp_list[brp_j].value);
1110                         if (retval != ERROR_OK)
1111                                 return retval;
1112                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1113                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1114                                         (uint32_t)brp_list[brp_j].value);
1115                         if (retval != ERROR_OK)
1116                                 return retval;
1117
1118                         breakpoint->linked_BRP = 0;
1119                         breakpoint->set = 0;
1120                         return ERROR_OK;
1121
1122                 } else {
1123                         int brp_i = breakpoint->set - 1;
1124                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1125                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1126                                 return ERROR_OK;
1127                         }
1128                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1129                                 brp_list[brp_i].control, brp_list[brp_i].value);
1130                         brp_list[brp_i].used = 0;
1131                         brp_list[brp_i].value = 0;
1132                         brp_list[brp_i].control = 0;
1133                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1134                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1135                                         brp_list[brp_i].control);
1136                         if (retval != ERROR_OK)
1137                                 return retval;
1138                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1139                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1140                                         brp_list[brp_i].value);
1141                         if (retval != ERROR_OK)
1142                                 return retval;
1143
1144                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1145                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1146                                         (uint32_t)brp_list[brp_i].value);
1147                         if (retval != ERROR_OK)
1148                                 return retval;
1149                         breakpoint->set = 0;
1150                         return ERROR_OK;
1151                 }
1152         } else {
1153                 /* restore original instruction (kept in target endianness) */
1154
1155                 armv8_cache_d_inner_flush_virt(armv8,
1156                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1157                                 breakpoint->length);
1158
1159                 if (breakpoint->length == 4) {
1160                         retval = target_write_memory(target,
1161                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1162                                         4, 1, breakpoint->orig_instr);
1163                         if (retval != ERROR_OK)
1164                                 return retval;
1165                 } else {
1166                         retval = target_write_memory(target,
1167                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1168                                         2, 1, breakpoint->orig_instr);
1169                         if (retval != ERROR_OK)
1170                                 return retval;
1171                 }
1172
1173                 armv8_cache_d_inner_flush_virt(armv8,
1174                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1175                                 breakpoint->length);
1176
1177                 armv8_cache_i_inner_inval_virt(armv8,
1178                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1179                                 breakpoint->length);
1180         }
1181         breakpoint->set = 0;
1182
1183         return ERROR_OK;
1184 }
1185
1186 static int aarch64_add_breakpoint(struct target *target,
1187         struct breakpoint *breakpoint)
1188 {
1189         struct aarch64_common *aarch64 = target_to_aarch64(target);
1190
1191         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1192                 LOG_INFO("no hardware breakpoint available");
1193                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1194         }
1195
1196         if (breakpoint->type == BKPT_HARD)
1197                 aarch64->brp_num_available--;
1198
1199         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1200 }
1201
1202 static int aarch64_add_context_breakpoint(struct target *target,
1203         struct breakpoint *breakpoint)
1204 {
1205         struct aarch64_common *aarch64 = target_to_aarch64(target);
1206
1207         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1208                 LOG_INFO("no hardware breakpoint available");
1209                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1210         }
1211
1212         if (breakpoint->type == BKPT_HARD)
1213                 aarch64->brp_num_available--;
1214
1215         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1216 }
1217
1218 static int aarch64_add_hybrid_breakpoint(struct target *target,
1219         struct breakpoint *breakpoint)
1220 {
1221         struct aarch64_common *aarch64 = target_to_aarch64(target);
1222
1223         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1224                 LOG_INFO("no hardware breakpoint available");
1225                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1226         }
1227
1228         if (breakpoint->type == BKPT_HARD)
1229                 aarch64->brp_num_available--;
1230
1231         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1232 }
1233
1234
1235 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1236 {
1237         struct aarch64_common *aarch64 = target_to_aarch64(target);
1238
1239 #if 0
1240 /* It is perfectly possible to remove breakpoints while the target is running */
1241         if (target->state != TARGET_HALTED) {
1242                 LOG_WARNING("target not halted");
1243                 return ERROR_TARGET_NOT_HALTED;
1244         }
1245 #endif
1246
1247         if (breakpoint->set) {
1248                 aarch64_unset_breakpoint(target, breakpoint);
1249                 if (breakpoint->type == BKPT_HARD)
1250                         aarch64->brp_num_available++;
1251         }
1252
1253         return ERROR_OK;
1254 }
1255
1256 /*
1257  * Cortex-A8 Reset functions
1258  */
1259
1260 static int aarch64_assert_reset(struct target *target)
1261 {
1262         struct armv8_common *armv8 = target_to_armv8(target);
1263
1264         LOG_DEBUG(" ");
1265
1266         /* FIXME when halt is requested, make it work somehow... */
1267
1268         /* Issue some kind of warm reset. */
1269         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1270                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1271         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1272                 /* REVISIT handle "pulls" cases, if there's
1273                  * hardware that needs them to work.
1274                  */
1275                 jtag_add_reset(0, 1);
1276         } else {
1277                 LOG_ERROR("%s: how to reset?", target_name(target));
1278                 return ERROR_FAIL;
1279         }
1280
1281         /* registers are now invalid */
1282         if (target_was_examined(target))
1283                 register_cache_invalidate(armv8->arm.core_cache);
1284
1285         target->state = TARGET_RESET;
1286
1287         return ERROR_OK;
1288 }
1289
1290 static int aarch64_deassert_reset(struct target *target)
1291 {
1292         int retval;
1293
1294         LOG_DEBUG(" ");
1295
1296         /* be certain SRST is off */
1297         jtag_add_reset(0, 0);
1298
1299         if (!target_was_examined(target))
1300                 return ERROR_OK;
1301
1302         retval = aarch64_poll(target);
1303         if (retval != ERROR_OK)
1304                 return retval;
1305
1306         if (target->reset_halt) {
1307                 if (target->state != TARGET_HALTED) {
1308                         LOG_WARNING("%s: ran after reset and before halt ...",
1309                                 target_name(target));
1310                         retval = target_halt(target);
1311                         if (retval != ERROR_OK)
1312                                 return retval;
1313                 }
1314         }
1315
1316         return ERROR_OK;
1317 }
1318
1319 static int aarch64_write_apb_ap_memory(struct target *target,
1320         uint64_t address, uint32_t size,
1321         uint32_t count, const uint8_t *buffer)
1322 {
1323         /* write memory through APB-AP */
1324         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1325         struct armv8_common *armv8 = target_to_armv8(target);
1326         struct arm_dpm *dpm = &armv8->dpm;
1327         struct arm *arm = &armv8->arm;
1328         int total_bytes = count * size;
1329         int total_u32;
1330         int start_byte = address & 0x3;
1331         int end_byte   = (address + total_bytes) & 0x3;
1332         struct reg *reg;
1333         uint32_t dscr;
1334         uint8_t *tmp_buff = NULL;
1335
1336         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count %"  PRIu32,
1337                           address, size, count);
1338
1339         if (target->state != TARGET_HALTED) {
1340                 LOG_WARNING("target not halted");
1341                 return ERROR_TARGET_NOT_HALTED;
1342         }
1343
1344         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1345
1346         /* Mark register R0 as dirty, as it will be used
1347          * for transferring the data.
1348          * It will be restored automatically when exiting
1349          * debug mode
1350          */
1351         reg = armv8_reg_current(arm, 1);
1352         reg->dirty = true;
1353
1354         reg = armv8_reg_current(arm, 0);
1355         reg->dirty = true;
1356
1357         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1358
1359         /* The algorithm only copies 32 bit words, so the buffer
1360          * should be expanded to include the words at either end.
1361          * The first and last words will be read first to avoid
1362          * corruption if needed.
1363          */
1364         tmp_buff = malloc(total_u32 * 4);
1365
1366         if ((start_byte != 0) && (total_u32 > 1)) {
1367                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1368                  * the other bytes in the word.
1369                  */
1370                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1371                 if (retval != ERROR_OK)
1372                         goto error_free_buff_w;
1373         }
1374
1375         /* If end of write is not aligned, or the write is less than 4 bytes */
1376         if ((end_byte != 0) ||
1377                 ((total_u32 == 1) && (total_bytes != 4))) {
1378
1379                 /* Read the last word to avoid corruption during 32 bit write */
1380                 int mem_offset = (total_u32-1) * 4;
1381                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1382                 if (retval != ERROR_OK)
1383                         goto error_free_buff_w;
1384         }
1385
1386         /* Copy the write buffer over the top of the temporary buffer */
1387         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1388
1389         /* We now have a 32 bit aligned buffer that can be written */
1390
1391         /* Read DSCR */
1392         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1393                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1394         if (retval != ERROR_OK)
1395                 goto error_free_buff_w;
1396
1397         /* Set Normal access mode  */
1398         dscr = (dscr & ~DSCR_MA);
1399         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1400                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1401
1402         if (arm->core_state == ARM_STATE_AARCH64) {
1403                 /* Write X0 with value 'address' using write procedure */
1404                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1405                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1406                 retval = dpm->instr_write_data_dcc_64(dpm,
1407                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1408         } else {
1409                 /* Write R0 with value 'address' using write procedure */
1410                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1411                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1412                 dpm->instr_write_data_dcc(dpm,
1413                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1414
1415         }
1416         /* Step 1.d   - Change DCC to memory mode */
1417         dscr = dscr | DSCR_MA;
1418         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1419                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1420         if (retval != ERROR_OK)
1421                 goto error_unset_dtr_w;
1422
1423
1424         /* Step 2.a   - Do the write */
1425         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1426                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1427         if (retval != ERROR_OK)
1428                 goto error_unset_dtr_w;
1429
1430         /* Step 3.a   - Switch DTR mode back to Normal mode */
1431         dscr = (dscr & ~DSCR_MA);
1432         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1433                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1434         if (retval != ERROR_OK)
1435                 goto error_unset_dtr_w;
1436
1437         /* Check for sticky abort flags in the DSCR */
1438         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1439                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1440         if (retval != ERROR_OK)
1441                 goto error_free_buff_w;
1442
1443         dpm->dscr = dscr;
1444         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1445                 /* Abort occurred - clear it and exit */
1446                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1447                 armv8_dpm_handle_exception(dpm);
1448                 goto error_free_buff_w;
1449         }
1450
1451         /* Done */
1452         free(tmp_buff);
1453         return ERROR_OK;
1454
1455 error_unset_dtr_w:
1456         /* Unset DTR mode */
1457         mem_ap_read_atomic_u32(armv8->debug_ap,
1458                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1459         dscr = (dscr & ~DSCR_MA);
1460         mem_ap_write_atomic_u32(armv8->debug_ap,
1461                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1462 error_free_buff_w:
1463         LOG_ERROR("error");
1464         free(tmp_buff);
1465         return ERROR_FAIL;
1466 }
1467
1468 static int aarch64_read_apb_ap_memory(struct target *target,
1469         target_addr_t address, uint32_t size,
1470         uint32_t count, uint8_t *buffer)
1471 {
1472         /* read memory through APB-AP */
1473         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1474         struct armv8_common *armv8 = target_to_armv8(target);
1475         struct arm_dpm *dpm = &armv8->dpm;
1476         struct arm *arm = &armv8->arm;
1477         int total_bytes = count * size;
1478         int total_u32;
1479         int start_byte = address & 0x3;
1480         int end_byte   = (address + total_bytes) & 0x3;
1481         struct reg *reg;
1482         uint32_t dscr;
1483         uint8_t *tmp_buff = NULL;
1484         uint8_t *u8buf_ptr;
1485         uint32_t value;
1486
1487         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count %"  PRIu32,
1488                           address, size, count);
1489
1490         if (target->state != TARGET_HALTED) {
1491                 LOG_WARNING("target not halted");
1492                 return ERROR_TARGET_NOT_HALTED;
1493         }
1494
1495         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1496         /* Mark register X0, X1 as dirty, as it will be used
1497          * for transferring the data.
1498          * It will be restored automatically when exiting
1499          * debug mode
1500          */
1501         reg = armv8_reg_current(arm, 1);
1502         reg->dirty = true;
1503
1504         reg = armv8_reg_current(arm, 0);
1505         reg->dirty = true;
1506
1507         /* Read DSCR */
1508         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1509                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1510
1511         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1512
1513         /* Set Normal access mode  */
1514         dscr = (dscr & ~DSCR_MA);
1515         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1516                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1517
1518         if (arm->core_state == ARM_STATE_AARCH64) {
1519                 /* Write X0 with value 'address' using write procedure */
1520                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1521                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1522                 retval += dpm->instr_write_data_dcc_64(dpm,
1523                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1524                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1525                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1526                 /* Step 1.e - Change DCC to memory mode */
1527                 dscr = dscr | DSCR_MA;
1528                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1529                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1530                 /* Step 1.f - read DBGDTRTX and discard the value */
1531                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1532                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1533         } else {
1534                 /* Write R0 with value 'address' using write procedure */
1535                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1536                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1537                 retval += dpm->instr_write_data_dcc(dpm,
1538                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1539                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1540                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1541                 /* Step 1.e - Change DCC to memory mode */
1542                 dscr = dscr | DSCR_MA;
1543                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1544                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1545                 /* Step 1.f - read DBGDTRTX and discard the value */
1546                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1547                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1548
1549         }
1550         if (retval != ERROR_OK)
1551                 goto error_unset_dtr_r;
1552
1553         /* Optimize the read as much as we can, either way we read in a single pass  */
1554         if ((start_byte) || (end_byte)) {
1555                 /* The algorithm only copies 32 bit words, so the buffer
1556                  * should be expanded to include the words at either end.
1557                  * The first and last words will be read into a temp buffer
1558                  * to avoid corruption
1559                  */
1560                 tmp_buff = malloc(total_u32 * 4);
1561                 if (!tmp_buff)
1562                         goto error_unset_dtr_r;
1563
1564                 /* use the tmp buffer to read the entire data */
1565                 u8buf_ptr = tmp_buff;
1566         } else
1567                 /* address and read length are aligned so read directly into the passed buffer */
1568                 u8buf_ptr = buffer;
1569
1570         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1571          * Abort flags are sticky, so can be read at end of transactions
1572          *
1573          * This data is read in aligned to 32 bit boundary.
1574          */
1575
1576         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1577          * increments X0 by 4. */
1578         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1579                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1580         if (retval != ERROR_OK)
1581                         goto error_unset_dtr_r;
1582
1583         /* Step 3.a - set DTR access mode back to Normal mode   */
1584         dscr = (dscr & ~DSCR_MA);
1585         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1586                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1587         if (retval != ERROR_OK)
1588                 goto error_free_buff_r;
1589
1590         /* Step 3.b - read DBGDTRTX for the final value */
1591         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1592                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1593         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1594
1595         /* Check for sticky abort flags in the DSCR */
1596         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1597                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1598         if (retval != ERROR_OK)
1599                 goto error_free_buff_r;
1600
1601         dpm->dscr = dscr;
1602
1603         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1604                 /* Abort occurred - clear it and exit */
1605                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1606                 armv8_dpm_handle_exception(dpm);
1607                 goto error_free_buff_r;
1608         }
1609
1610         /* check if we need to copy aligned data by applying any shift necessary */
1611         if (tmp_buff) {
1612                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1613                 free(tmp_buff);
1614         }
1615
1616         /* Done */
1617         return ERROR_OK;
1618
1619 error_unset_dtr_r:
1620         /* Unset DTR mode */
1621         mem_ap_read_atomic_u32(armv8->debug_ap,
1622                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1623         dscr = (dscr & ~DSCR_MA);
1624         mem_ap_write_atomic_u32(armv8->debug_ap,
1625                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1626 error_free_buff_r:
1627         LOG_ERROR("error");
1628         free(tmp_buff);
1629         return ERROR_FAIL;
1630 }
1631
1632 static int aarch64_read_phys_memory(struct target *target,
1633         target_addr_t address, uint32_t size,
1634         uint32_t count, uint8_t *buffer)
1635 {
1636         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1637         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1638                 address, size, count);
1639
1640         if (count && buffer) {
1641                 /* read memory through APB-AP */
1642                 retval = aarch64_mmu_modify(target, 0);
1643                 if (retval != ERROR_OK)
1644                         return retval;
1645                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1646         }
1647         return retval;
1648 }
1649
1650 static int aarch64_read_memory(struct target *target, target_addr_t address,
1651         uint32_t size, uint32_t count, uint8_t *buffer)
1652 {
1653         int mmu_enabled = 0;
1654         int retval;
1655
1656         /* aarch64 handles unaligned memory access */
1657         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1658                 size, count);
1659
1660         /* determine if MMU was enabled on target stop */
1661         retval = aarch64_mmu(target, &mmu_enabled);
1662         if (retval != ERROR_OK)
1663                 return retval;
1664
1665         if (mmu_enabled) {
1666                 retval = aarch64_check_address(target, address);
1667                 if (retval != ERROR_OK)
1668                         return retval;
1669                 /* enable MMU as we could have disabled it for phys access */
1670                 retval = aarch64_mmu_modify(target, 1);
1671                 if (retval != ERROR_OK)
1672                         return retval;
1673         }
1674         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1675 }
1676
1677 static int aarch64_write_phys_memory(struct target *target,
1678         target_addr_t address, uint32_t size,
1679         uint32_t count, const uint8_t *buffer)
1680 {
1681         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1682
1683         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1684                 size, count);
1685
1686         if (count && buffer) {
1687                 /* write memory through APB-AP */
1688                 retval = aarch64_mmu_modify(target, 0);
1689                 if (retval != ERROR_OK)
1690                         return retval;
1691                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1692         }
1693
1694         return retval;
1695 }
1696
1697 static int aarch64_write_memory(struct target *target, target_addr_t address,
1698         uint32_t size, uint32_t count, const uint8_t *buffer)
1699 {
1700         int mmu_enabled = 0;
1701         int retval;
1702
1703         /* aarch64 handles unaligned memory access */
1704         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1705                   "; count %" PRId32, address, size, count);
1706
1707         /* determine if MMU was enabled on target stop */
1708         retval = aarch64_mmu(target, &mmu_enabled);
1709         if (retval != ERROR_OK)
1710                 return retval;
1711
1712         if (mmu_enabled) {
1713                 retval = aarch64_check_address(target, address);
1714                 if (retval != ERROR_OK)
1715                         return retval;
1716                 /* enable MMU as we could have disabled it for phys access */
1717                 retval = aarch64_mmu_modify(target, 1);
1718                 if (retval != ERROR_OK)
1719                         return retval;
1720         }
1721         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1722 }
1723
1724 static int aarch64_handle_target_request(void *priv)
1725 {
1726         struct target *target = priv;
1727         struct armv8_common *armv8 = target_to_armv8(target);
1728         int retval;
1729
1730         if (!target_was_examined(target))
1731                 return ERROR_OK;
1732         if (!target->dbg_msg_enabled)
1733                 return ERROR_OK;
1734
1735         if (target->state == TARGET_RUNNING) {
1736                 uint32_t request;
1737                 uint32_t dscr;
1738                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1739                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1740
1741                 /* check if we have data */
1742                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1743                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1744                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1745                         if (retval == ERROR_OK) {
1746                                 target_request(target, request);
1747                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1748                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1749                         }
1750                 }
1751         }
1752
1753         return ERROR_OK;
1754 }
1755
1756 static int aarch64_examine_first(struct target *target)
1757 {
1758         struct aarch64_common *aarch64 = target_to_aarch64(target);
1759         struct armv8_common *armv8 = &aarch64->armv8_common;
1760         struct adiv5_dap *swjdp = armv8->arm.dap;
1761         int i;
1762         int retval = ERROR_OK;
1763         uint64_t debug, ttypr;
1764         uint32_t cpuid;
1765         uint32_t tmp0, tmp1;
1766         debug = ttypr = cpuid = 0;
1767
1768         /* We do one extra read to ensure DAP is configured,
1769          * we call ahbap_debugport_init(swjdp) instead
1770          */
1771         retval = dap_dp_init(swjdp);
1772         if (retval != ERROR_OK)
1773                 return retval;
1774
1775         /* Search for the APB-AB - it is needed for access to debug registers */
1776         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1777         if (retval != ERROR_OK) {
1778                 LOG_ERROR("Could not find APB-AP for debug access");
1779                 return retval;
1780         }
1781
1782         retval = mem_ap_init(armv8->debug_ap);
1783         if (retval != ERROR_OK) {
1784                 LOG_ERROR("Could not initialize the APB-AP");
1785                 return retval;
1786         }
1787
1788         armv8->debug_ap->memaccess_tck = 80;
1789
1790         if (!target->dbgbase_set) {
1791                 uint32_t dbgbase;
1792                 /* Get ROM Table base */
1793                 uint32_t apid;
1794                 int32_t coreidx = target->coreid;
1795                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1796                 if (retval != ERROR_OK)
1797                         return retval;
1798                 /* Lookup 0x15 -- Processor DAP */
1799                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1800                                 &armv8->debug_base, &coreidx);
1801                 if (retval != ERROR_OK)
1802                         return retval;
1803                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1804                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1805         } else
1806                 armv8->debug_base = target->dbgbase;
1807
1808         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1809                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1810         if (retval != ERROR_OK) {
1811                 LOG_DEBUG("LOCK debug access fail");
1812                 return retval;
1813         }
1814
1815         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1816                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1817         if (retval != ERROR_OK) {
1818                 LOG_DEBUG("Examine %s failed", "oslock");
1819                 return retval;
1820         }
1821
1822         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1823                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1824         if (retval != ERROR_OK) {
1825                 LOG_DEBUG("Examine %s failed", "CPUID");
1826                 return retval;
1827         }
1828
1829         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1830                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1831         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1832                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1833         if (retval != ERROR_OK) {
1834                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1835                 return retval;
1836         }
1837         ttypr |= tmp1;
1838         ttypr = (ttypr << 32) | tmp0;
1839
1840         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1841                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1842         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1843                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1844         if (retval != ERROR_OK) {
1845                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1846                 return retval;
1847         }
1848         debug |= tmp1;
1849         debug = (debug << 32) | tmp0;
1850
1851         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1852         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1853         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1854
1855         if (target->ctibase == 0) {
1856                 /* assume a v8 rom table layout */
1857                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1858                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1859         } else
1860                 armv8->cti_base = target->ctibase;
1861
1862         armv8->arm.core_type = ARM_MODE_MON;
1863         retval = aarch64_dpm_setup(aarch64, debug);
1864         if (retval != ERROR_OK)
1865                 return retval;
1866
1867         /* Setup Breakpoint Register Pairs */
1868         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1869         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1870         aarch64->brp_num_available = aarch64->brp_num;
1871         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1872         for (i = 0; i < aarch64->brp_num; i++) {
1873                 aarch64->brp_list[i].used = 0;
1874                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1875                         aarch64->brp_list[i].type = BRP_NORMAL;
1876                 else
1877                         aarch64->brp_list[i].type = BRP_CONTEXT;
1878                 aarch64->brp_list[i].value = 0;
1879                 aarch64->brp_list[i].control = 0;
1880                 aarch64->brp_list[i].BRPn = i;
1881         }
1882
1883         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1884
1885         target_set_examined(target);
1886         return ERROR_OK;
1887 }
1888
1889 static int aarch64_examine(struct target *target)
1890 {
1891         int retval = ERROR_OK;
1892
1893         /* don't re-probe hardware after each reset */
1894         if (!target_was_examined(target))
1895                 retval = aarch64_examine_first(target);
1896
1897         /* Configure core debug access */
1898         if (retval == ERROR_OK)
1899                 retval = aarch64_init_debug_access(target);
1900
1901         return retval;
1902 }
1903
1904 /*
1905  *      Cortex-A8 target creation and initialization
1906  */
1907
1908 static int aarch64_init_target(struct command_context *cmd_ctx,
1909         struct target *target)
1910 {
1911         /* examine_first() does a bunch of this */
1912         return ERROR_OK;
1913 }
1914
1915 static int aarch64_init_arch_info(struct target *target,
1916         struct aarch64_common *aarch64, struct jtag_tap *tap)
1917 {
1918         struct armv8_common *armv8 = &aarch64->armv8_common;
1919         struct adiv5_dap *dap = armv8->arm.dap;
1920
1921         armv8->arm.dap = dap;
1922
1923         /* Setup struct aarch64_common */
1924         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1925         /*  tap has no dap initialized */
1926         if (!tap->dap) {
1927                 tap->dap = dap_init();
1928
1929                 /* Leave (only) generic DAP stuff for debugport_init() */
1930                 tap->dap->tap = tap;
1931         }
1932
1933         armv8->arm.dap = tap->dap;
1934
1935         aarch64->fast_reg_read = 0;
1936
1937         /* register arch-specific functions */
1938         armv8->examine_debug_reason = NULL;
1939
1940         armv8->post_debug_entry = aarch64_post_debug_entry;
1941
1942         armv8->pre_restore_context = NULL;
1943
1944         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1945
1946         /* REVISIT v7a setup should be in a v7a-specific routine */
1947         armv8_init_arch_info(target, armv8);
1948         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
1949
1950         return ERROR_OK;
1951 }
1952
1953 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
1954 {
1955         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
1956
1957         return aarch64_init_arch_info(target, aarch64, target->tap);
1958 }
1959
1960 static int aarch64_mmu(struct target *target, int *enabled)
1961 {
1962         if (target->state != TARGET_HALTED) {
1963                 LOG_ERROR("%s: target not halted", __func__);
1964                 return ERROR_TARGET_INVALID;
1965         }
1966
1967         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
1968         return ERROR_OK;
1969 }
1970
1971 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
1972                              target_addr_t *phys)
1973 {
1974         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
1975 }
1976
1977 COMMAND_HANDLER(aarch64_handle_cache_info_command)
1978 {
1979         struct target *target = get_current_target(CMD_CTX);
1980         struct armv8_common *armv8 = target_to_armv8(target);
1981
1982         return armv8_handle_cache_info_command(CMD_CTX,
1983                         &armv8->armv8_mmu.armv8_cache);
1984 }
1985
1986
1987 COMMAND_HANDLER(aarch64_handle_dbginit_command)
1988 {
1989         struct target *target = get_current_target(CMD_CTX);
1990         if (!target_was_examined(target)) {
1991                 LOG_ERROR("target not examined yet");
1992                 return ERROR_FAIL;
1993         }
1994
1995         return aarch64_init_debug_access(target);
1996 }
1997 COMMAND_HANDLER(aarch64_handle_smp_off_command)
1998 {
1999         struct target *target = get_current_target(CMD_CTX);
2000         /* check target is an smp target */
2001         struct target_list *head;
2002         struct target *curr;
2003         head = target->head;
2004         target->smp = 0;
2005         if (head != (struct target_list *)NULL) {
2006                 while (head != (struct target_list *)NULL) {
2007                         curr = head->target;
2008                         curr->smp = 0;
2009                         head = head->next;
2010                 }
2011                 /*  fixes the target display to the debugger */
2012                 target->gdb_service->target = target;
2013         }
2014         return ERROR_OK;
2015 }
2016
2017 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2018 {
2019         struct target *target = get_current_target(CMD_CTX);
2020         struct target_list *head;
2021         struct target *curr;
2022         head = target->head;
2023         if (head != (struct target_list *)NULL) {
2024                 target->smp = 1;
2025                 while (head != (struct target_list *)NULL) {
2026                         curr = head->target;
2027                         curr->smp = 1;
2028                         head = head->next;
2029                 }
2030         }
2031         return ERROR_OK;
2032 }
2033
2034 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2035 {
2036         struct target *target = get_current_target(CMD_CTX);
2037         int retval = ERROR_OK;
2038         struct target_list *head;
2039         head = target->head;
2040         if (head != (struct target_list *)NULL) {
2041                 if (CMD_ARGC == 1) {
2042                         int coreid = 0;
2043                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2044                         if (ERROR_OK != retval)
2045                                 return retval;
2046                         target->gdb_service->core[1] = coreid;
2047
2048                 }
2049                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2050                         , target->gdb_service->core[1]);
2051         }
2052         return ERROR_OK;
2053 }
2054
2055 static const struct command_registration aarch64_exec_command_handlers[] = {
2056         {
2057                 .name = "cache_info",
2058                 .handler = aarch64_handle_cache_info_command,
2059                 .mode = COMMAND_EXEC,
2060                 .help = "display information about target caches",
2061                 .usage = "",
2062         },
2063         {
2064                 .name = "dbginit",
2065                 .handler = aarch64_handle_dbginit_command,
2066                 .mode = COMMAND_EXEC,
2067                 .help = "Initialize core debug",
2068                 .usage = "",
2069         },
2070         {       .name = "smp_off",
2071                 .handler = aarch64_handle_smp_off_command,
2072                 .mode = COMMAND_EXEC,
2073                 .help = "Stop smp handling",
2074                 .usage = "",
2075         },
2076         {
2077                 .name = "smp_on",
2078                 .handler = aarch64_handle_smp_on_command,
2079                 .mode = COMMAND_EXEC,
2080                 .help = "Restart smp handling",
2081                 .usage = "",
2082         },
2083         {
2084                 .name = "smp_gdb",
2085                 .handler = aarch64_handle_smp_gdb_command,
2086                 .mode = COMMAND_EXEC,
2087                 .help = "display/fix current core played to gdb",
2088                 .usage = "",
2089         },
2090
2091
2092         COMMAND_REGISTRATION_DONE
2093 };
2094 static const struct command_registration aarch64_command_handlers[] = {
2095         {
2096                 .chain = armv8_command_handlers,
2097         },
2098         {
2099                 .name = "cortex_a",
2100                 .mode = COMMAND_ANY,
2101                 .help = "Cortex-A command group",
2102                 .usage = "",
2103                 .chain = aarch64_exec_command_handlers,
2104         },
2105         COMMAND_REGISTRATION_DONE
2106 };
2107
2108 struct target_type aarch64_target = {
2109         .name = "aarch64",
2110
2111         .poll = aarch64_poll,
2112         .arch_state = armv8_arch_state,
2113
2114         .halt = aarch64_halt,
2115         .resume = aarch64_resume,
2116         .step = aarch64_step,
2117
2118         .assert_reset = aarch64_assert_reset,
2119         .deassert_reset = aarch64_deassert_reset,
2120
2121         /* REVISIT allow exporting VFP3 registers ... */
2122         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2123
2124         .read_memory = aarch64_read_memory,
2125         .write_memory = aarch64_write_memory,
2126
2127         .checksum_memory = arm_checksum_memory,
2128         .blank_check_memory = arm_blank_check_memory,
2129
2130         .run_algorithm = armv4_5_run_algorithm,
2131
2132         .add_breakpoint = aarch64_add_breakpoint,
2133         .add_context_breakpoint = aarch64_add_context_breakpoint,
2134         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2135         .remove_breakpoint = aarch64_remove_breakpoint,
2136         .add_watchpoint = NULL,
2137         .remove_watchpoint = NULL,
2138
2139         .commands = aarch64_command_handlers,
2140         .target_create = aarch64_target_create,
2141         .init_target = aarch64_init_target,
2142         .examine = aarch64_examine,
2143
2144         .read_phys_memory = aarch64_read_phys_memory,
2145         .write_phys_memory = aarch64_write_phys_memory,
2146         .mmu = aarch64_mmu,
2147         .virt2phys = aarch64_virt2phys,
2148 };