aarch64: use correct A64 instructions for cache handling
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
61
62                 switch (armv8->arm.core_mode) {
63                         case ARMV8_64_EL0T:
64                         case ARMV8_64_EL1T:
65                         case ARMV8_64_EL1H:
66                                 retval = armv8->arm.msr(target, 3, /*op 0*/
67                                                 0, 1,   /* op1, op2 */
68                                                 0, 0,   /* CRn, CRm */
69                                                 aarch64->system_control_reg);
70                                 if (retval != ERROR_OK)
71                                         return retval;
72                         break;
73                         case ARMV8_64_EL2T:
74                         case ARMV8_64_EL2H:
75                                 retval = armv8->arm.msr(target, 3, /*op 0*/
76                                                 4, 1,   /* op1, op2 */
77                                                 0, 0,   /* CRn, CRm */
78                                                 aarch64->system_control_reg);
79                                 if (retval != ERROR_OK)
80                                         return retval;
81                         break;
82                         case ARMV8_64_EL3H:
83                         case ARMV8_64_EL3T:
84                                 retval = armv8->arm.msr(target, 3, /*op 0*/
85                                                 6, 1,   /* op1, op2 */
86                                                 0, 0,   /* CRn, CRm */
87                                                 aarch64->system_control_reg);
88                                 if (retval != ERROR_OK)
89                                         return retval;
90                         break;
91                         default:
92                                 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
93                         }
94         }
95         return retval;
96 }
97
98 /*  check address before aarch64_apb read write access with mmu on
99  *  remove apb predictible data abort */
100 static int aarch64_check_address(struct target *target, uint32_t address)
101 {
102         /* TODO */
103         return ERROR_OK;
104 }
105 /*  modify system_control_reg in order to enable or disable mmu for :
106  *  - virt2phys address conversion
107  *  - read or write memory in phys or virt address */
108 static int aarch64_mmu_modify(struct target *target, int enable)
109 {
110         struct aarch64_common *aarch64 = target_to_aarch64(target);
111         struct armv8_common *armv8 = &aarch64->armv8_common;
112         int retval = ERROR_OK;
113
114         if (enable) {
115                 /*      if mmu enabled at target stop and mmu not enable */
116                 if (!(aarch64->system_control_reg & 0x1U)) {
117                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
118                         return ERROR_FAIL;
119                 }
120                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
121                         aarch64->system_control_reg_curr |= 0x1U;
122                         switch (armv8->arm.core_mode) {
123                                 case ARMV8_64_EL0T:
124                                 case ARMV8_64_EL1T:
125                                 case ARMV8_64_EL1H:
126                                         retval = armv8->arm.msr(target, 3, /*op 0*/
127                                                         0, 0,   /* op1, op2 */
128                                                         1, 0,   /* CRn, CRm */
129                                                         aarch64->system_control_reg_curr);
130                                         if (retval != ERROR_OK)
131                                                 return retval;
132                                 break;
133                                 case ARMV8_64_EL2T:
134                                 case ARMV8_64_EL2H:
135                                         retval = armv8->arm.msr(target, 3, /*op 0*/
136                                                         4, 0,   /* op1, op2 */
137                                                         1, 0,   /* CRn, CRm */
138                                                         aarch64->system_control_reg_curr);
139                                         if (retval != ERROR_OK)
140                                                 return retval;
141                                 break;
142                                 case ARMV8_64_EL3H:
143                                 case ARMV8_64_EL3T:
144                                         retval = armv8->arm.msr(target, 3, /*op 0*/
145                                                         6, 0,   /* op1, op2 */
146                                                         1, 0,   /* CRn, CRm */
147                                                         aarch64->system_control_reg_curr);
148                                         if (retval != ERROR_OK)
149                                                 return retval;
150                                 break;
151                                 default:
152                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
153                         }
154                 }
155         } else {
156                 if (aarch64->system_control_reg_curr & 0x4U) {
157                         /*  data cache is active */
158                         aarch64->system_control_reg_curr &= ~0x4U;
159                         /* flush data cache armv7 function to be called */
160                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
161                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
162                 }
163                 if ((aarch64->system_control_reg_curr & 0x1U)) {
164                         aarch64->system_control_reg_curr &= ~0x1U;
165                         switch (armv8->arm.core_mode) {
166                                 case ARMV8_64_EL0T:
167                                 case ARMV8_64_EL1T:
168                                 case ARMV8_64_EL1H:
169                                         retval = armv8->arm.msr(target, 3, /*op 0*/
170                                                         0, 0,   /* op1, op2 */
171                                                         1, 0,   /* CRn, CRm */
172                                                         aarch64->system_control_reg_curr);
173                                         if (retval != ERROR_OK)
174                                                 return retval;
175                                         break;
176                                 case ARMV8_64_EL2T:
177                                 case ARMV8_64_EL2H:
178                                         retval = armv8->arm.msr(target, 3, /*op 0*/
179                                                         4, 0,   /* op1, op2 */
180                                                         1, 0,   /* CRn, CRm */
181                                                         aarch64->system_control_reg_curr);
182                                         if (retval != ERROR_OK)
183                                                 return retval;
184                                         break;
185                                 case ARMV8_64_EL3H:
186                                 case ARMV8_64_EL3T:
187                                         retval = armv8->arm.msr(target, 3, /*op 0*/
188                                                         6, 0,   /* op1, op2 */
189                                                         1, 0,   /* CRn, CRm */
190                                                         aarch64->system_control_reg_curr);
191                                         if (retval != ERROR_OK)
192                                                 return retval;
193                                         break;
194                                 default:
195                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
196                                         break;
197                         }
198                 }
199         }
200         return retval;
201 }
202
203 /*
204  * Basic debug access, very low level assumes state is saved
205  */
206 static int aarch64_init_debug_access(struct target *target)
207 {
208         struct armv8_common *armv8 = target_to_armv8(target);
209         int retval;
210         uint32_t dummy;
211
212         LOG_DEBUG(" ");
213
214         /* Unlocking the debug registers for modification
215          * The debugport might be uninitialised so try twice */
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
217                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
218         if (retval != ERROR_OK) {
219                 /* try again */
220                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
221                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
222                 if (retval == ERROR_OK)
223                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
224         }
225         if (retval != ERROR_OK)
226                 return retval;
227         /* Clear Sticky Power Down status Bit in PRSR to enable access to
228            the registers in the Core Power Domain */
229         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
230                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
231         if (retval != ERROR_OK)
232                 return retval;
233
234         /* Enabling of instruction execution in debug mode is done in debug_entry code */
235
236         /* Resync breakpoint registers */
237
238         /* Since this is likely called from init or reset, update target state information*/
239         return aarch64_poll(target);
240 }
241
242 /* To reduce needless round-trips, pass in a pointer to the current
243  * DSCR value.  Initialize it to zero if you just need to know the
244  * value on return from this function; or DSCR_ITE if you
245  * happen to know that no instruction is pending.
246  */
247 static int aarch64_exec_opcode(struct target *target,
248         uint32_t opcode, uint32_t *dscr_p)
249 {
250         uint32_t dscr;
251         int retval;
252         struct armv8_common *armv8 = target_to_armv8(target);
253         dscr = dscr_p ? *dscr_p : 0;
254
255         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
256
257         /* Wait for InstrCompl bit to be set */
258         long long then = timeval_ms();
259         while ((dscr & DSCR_ITE) == 0) {
260                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
261                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
262                 if (retval != ERROR_OK) {
263                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
264                         return retval;
265                 }
266                 if (timeval_ms() > then + 1000) {
267                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
268                         return ERROR_FAIL;
269                 }
270         }
271
272         retval = mem_ap_write_u32(armv8->debug_ap,
273                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         then = timeval_ms();
278         do {
279                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
281                 if (retval != ERROR_OK) {
282                         LOG_ERROR("Could not read DSCR register");
283                         return retval;
284                 }
285                 if (timeval_ms() > then + 1000) {
286                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
287                         return ERROR_FAIL;
288                 }
289         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
290
291         if (dscr_p)
292                 *dscr_p = dscr;
293
294         return retval;
295 }
296
297 /* Write to memory mapped registers directly with no cache or mmu handling */
298 static int aarch64_dap_write_memap_register_u32(struct target *target,
299         uint32_t address,
300         uint32_t value)
301 {
302         int retval;
303         struct armv8_common *armv8 = target_to_armv8(target);
304
305         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
306
307         return retval;
308 }
309
310 /*
311  * AARCH64 implementation of Debug Programmer's Model
312  *
313  * NOTE the invariant:  these routines return with DSCR_ITE set,
314  * so there's no need to poll for it before executing an instruction.
315  *
316  * NOTE that in several of these cases the "stall" mode might be useful.
317  * It'd let us queue a few operations together... prepare/finish might
318  * be the places to enable/disable that mode.
319  */
320
321 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
322 {
323         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
324 }
325
326 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
327 {
328         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
329         return mem_ap_write_u32(armv8->debug_ap,
330                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
331 }
332
333 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
334 {
335         int ret;
336         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
337         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
338         ret = mem_ap_write_u32(armv8->debug_ap,
339                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
340         ret += mem_ap_write_u32(armv8->debug_ap,
341                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
342         return ret;
343 }
344
345 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
346         uint32_t *dscr_p)
347 {
348         uint32_t dscr = DSCR_ITE;
349         int retval;
350
351         if (dscr_p)
352                 dscr = *dscr_p;
353
354         /* Wait for DTRRXfull */
355         long long then = timeval_ms();
356         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
357                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
358                                 armv8->debug_base + CPUV8_DBG_DSCR,
359                                 &dscr);
360                 if (retval != ERROR_OK)
361                         return retval;
362                 if (timeval_ms() > then + 1000) {
363                         LOG_ERROR("Timeout waiting for read dcc");
364                         return ERROR_FAIL;
365                 }
366         }
367
368         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
369                                             armv8->debug_base + CPUV8_DBG_DTRTX,
370                                             data);
371         if (retval != ERROR_OK)
372                 return retval;
373         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
374
375         if (dscr_p)
376                 *dscr_p = dscr;
377
378         return retval;
379 }
380
381 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
382         uint32_t *dscr_p)
383 {
384         uint32_t dscr = DSCR_ITE;
385         uint32_t higher;
386         int retval;
387
388         if (dscr_p)
389                 dscr = *dscr_p;
390
391         /* Wait for DTRRXfull */
392         long long then = timeval_ms();
393         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
394                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
395                                 armv8->debug_base + CPUV8_DBG_DSCR,
396                                 &dscr);
397                 if (retval != ERROR_OK)
398                         return retval;
399                 if (timeval_ms() > then + 1000) {
400                         LOG_ERROR("Timeout waiting for read dcc");
401                         return ERROR_FAIL;
402                 }
403         }
404
405         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
406                                             armv8->debug_base + CPUV8_DBG_DTRTX,
407                                             (uint32_t *)data);
408         if (retval != ERROR_OK)
409                 return retval;
410
411         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
412                                             armv8->debug_base + CPUV8_DBG_DTRRX,
413                                             &higher);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         *data = *(uint32_t *)data | (uint64_t)higher << 32;
418         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
419
420         if (dscr_p)
421                 *dscr_p = dscr;
422
423         return retval;
424 }
425
426 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
427 {
428         struct aarch64_common *a8 = dpm_to_a8(dpm);
429         uint32_t dscr;
430         int retval;
431
432         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
433         long long then = timeval_ms();
434         for (;; ) {
435                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
436                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 if ((dscr & DSCR_ITE) != 0)
441                         break;
442                 if (timeval_ms() > then + 1000) {
443                         LOG_ERROR("Timeout waiting for dpm prepare");
444                         return ERROR_FAIL;
445                 }
446         }
447
448         /* this "should never happen" ... */
449         if (dscr & DSCR_DTR_RX_FULL) {
450                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
451                 /* Clear DCCRX */
452                 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
453                         a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
454                 if (retval != ERROR_OK)
455                         return retval;
456
457                 /* Clear sticky error */
458                 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
459                         a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
460                 if (retval != ERROR_OK)
461                         return retval;
462         }
463
464         return retval;
465 }
466
467 static int aarch64_dpm_finish(struct arm_dpm *dpm)
468 {
469         /* REVISIT what could be done here? */
470         return ERROR_OK;
471 }
472
473 static int aarch64_instr_execute(struct arm_dpm *dpm,
474         uint32_t opcode)
475 {
476         struct aarch64_common *a8 = dpm_to_a8(dpm);
477         uint32_t dscr = DSCR_ITE;
478
479         return aarch64_exec_opcode(
480                         a8->armv8_common.arm.target,
481                         opcode,
482                         &dscr);
483 }
484
485 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
486         uint32_t opcode, uint32_t data)
487 {
488         struct aarch64_common *a8 = dpm_to_a8(dpm);
489         int retval;
490         uint32_t dscr = DSCR_ITE;
491
492         retval = aarch64_write_dcc(&a8->armv8_common, data);
493         if (retval != ERROR_OK)
494                 return retval;
495
496         return aarch64_exec_opcode(
497                         a8->armv8_common.arm.target,
498                         opcode,
499                         &dscr);
500 }
501
502 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
503         uint32_t opcode, uint64_t data)
504 {
505         struct aarch64_common *a8 = dpm_to_a8(dpm);
506         int retval;
507         uint32_t dscr = DSCR_ITE;
508
509         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         return aarch64_exec_opcode(
514                         a8->armv8_common.arm.target,
515                         opcode,
516                         &dscr);
517 }
518
519 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
520         uint32_t opcode, uint32_t data)
521 {
522         struct aarch64_common *a8 = dpm_to_a8(dpm);
523         uint32_t dscr = DSCR_ITE;
524         int retval;
525
526         retval = aarch64_write_dcc(&a8->armv8_common, data);
527         if (retval != ERROR_OK)
528                 return retval;
529
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 0),
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         /* then the opcode, taking data from R0 */
538         retval = aarch64_exec_opcode(
539                         a8->armv8_common.arm.target,
540                         opcode,
541                         &dscr);
542
543         return retval;
544 }
545
546 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
547         uint32_t opcode, uint64_t data)
548 {
549         struct aarch64_common *a8 = dpm_to_a8(dpm);
550         uint32_t dscr = DSCR_ITE;
551         int retval;
552
553         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
554         if (retval != ERROR_OK)
555                 return retval;
556
557         retval = aarch64_exec_opcode(
558                         a8->armv8_common.arm.target,
559                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
560                         &dscr);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         /* then the opcode, taking data from R0 */
565         retval = aarch64_exec_opcode(
566                         a8->armv8_common.arm.target,
567                         opcode,
568                         &dscr);
569
570         return retval;
571 }
572
573 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
574 {
575         struct target *target = dpm->arm->target;
576         uint32_t dscr = DSCR_ITE;
577
578         /* "Prefetch flush" after modifying execution status in CPSR */
579         return aarch64_exec_opcode(target,
580                         DSB_SY,
581                         &dscr);
582 }
583
584 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
585         uint32_t opcode, uint32_t *data)
586 {
587         struct aarch64_common *a8 = dpm_to_a8(dpm);
588         int retval;
589         uint32_t dscr = DSCR_ITE;
590
591         /* the opcode, writing data to DCC */
592         retval = aarch64_exec_opcode(
593                         a8->armv8_common.arm.target,
594                         opcode,
595                         &dscr);
596         if (retval != ERROR_OK)
597                 return retval;
598
599         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
600 }
601
602 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
603         uint32_t opcode, uint64_t *data)
604 {
605         struct aarch64_common *a8 = dpm_to_a8(dpm);
606         int retval;
607         uint32_t dscr = DSCR_ITE;
608
609         /* the opcode, writing data to DCC */
610         retval = aarch64_exec_opcode(
611                         a8->armv8_common.arm.target,
612                         opcode,
613                         &dscr);
614         if (retval != ERROR_OK)
615                 return retval;
616
617         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
618 }
619
620 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
621         uint32_t opcode, uint32_t *data)
622 {
623         struct aarch64_common *a8 = dpm_to_a8(dpm);
624         uint32_t dscr = DSCR_ITE;
625         int retval;
626
627         /* the opcode, writing data to R0 */
628         retval = aarch64_exec_opcode(
629                         a8->armv8_common.arm.target,
630                         opcode,
631                         &dscr);
632         if (retval != ERROR_OK)
633                 return retval;
634
635         /* write R0 to DCC */
636         retval = aarch64_exec_opcode(
637                         a8->armv8_common.arm.target,
638                         ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 0),  /* msr dbgdtr_el0, x0 */
639                         &dscr);
640         if (retval != ERROR_OK)
641                 return retval;
642
643         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
644 }
645
646 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
647         uint32_t opcode, uint64_t *data)
648 {
649         struct aarch64_common *a8 = dpm_to_a8(dpm);
650         uint32_t dscr = DSCR_ITE;
651         int retval;
652
653         /* the opcode, writing data to R0 */
654         retval = aarch64_exec_opcode(
655                         a8->armv8_common.arm.target,
656                         opcode,
657                         &dscr);
658         if (retval != ERROR_OK)
659                 return retval;
660
661         /* write R0 to DCC */
662         retval = aarch64_exec_opcode(
663                         a8->armv8_common.arm.target,
664                         ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0),  /* msr dbgdtr_el0, x0 */
665                         &dscr);
666         if (retval != ERROR_OK)
667                 return retval;
668
669         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
670 }
671
672 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
673         uint32_t addr, uint32_t control)
674 {
675         struct aarch64_common *a8 = dpm_to_a8(dpm);
676         uint32_t vr = a8->armv8_common.debug_base;
677         uint32_t cr = a8->armv8_common.debug_base;
678         int retval;
679
680         switch (index_t) {
681                 case 0 ... 15:  /* breakpoints */
682                         vr += CPUV8_DBG_BVR_BASE;
683                         cr += CPUV8_DBG_BCR_BASE;
684                         break;
685                 case 16 ... 31: /* watchpoints */
686                         vr += CPUV8_DBG_WVR_BASE;
687                         cr += CPUV8_DBG_WCR_BASE;
688                         index_t -= 16;
689                         break;
690                 default:
691                         return ERROR_FAIL;
692         }
693         vr += 16 * index_t;
694         cr += 16 * index_t;
695
696         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
697                 (unsigned) vr, (unsigned) cr);
698
699         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
700                         vr, addr);
701         if (retval != ERROR_OK)
702                 return retval;
703         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
704                         cr, control);
705         return retval;
706 }
707
708 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
709 {
710         struct aarch64_common *a = dpm_to_a8(dpm);
711         uint32_t cr;
712
713         switch (index_t) {
714                 case 0 ... 15:
715                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
716                         break;
717                 case 16 ... 31:
718                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
719                         index_t -= 16;
720                         break;
721                 default:
722                         return ERROR_FAIL;
723         }
724         cr += 16 * index_t;
725
726         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
727
728         /* clear control register */
729         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
730
731 }
732
733 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
734 {
735         struct arm_dpm *dpm = &a8->armv8_common.dpm;
736         int retval;
737
738         dpm->arm = &a8->armv8_common.arm;
739         dpm->didr = debug;
740
741         dpm->prepare = aarch64_dpm_prepare;
742         dpm->finish = aarch64_dpm_finish;
743
744         dpm->instr_execute = aarch64_instr_execute;
745         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
746         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
747         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
748         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
749         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
750
751         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
752         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
753         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
754         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
755
756         dpm->arm_reg_current = armv8_reg_current;
757
758         dpm->bpwp_enable = aarch64_bpwp_enable;
759         dpm->bpwp_disable = aarch64_bpwp_disable;
760
761         retval = armv8_dpm_setup(dpm);
762         if (retval == ERROR_OK)
763                 retval = armv8_dpm_initialize(dpm);
764
765         return retval;
766 }
767 static struct target *get_aarch64(struct target *target, int32_t coreid)
768 {
769         struct target_list *head;
770         struct target *curr;
771
772         head = target->head;
773         while (head != (struct target_list *)NULL) {
774                 curr = head->target;
775                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
776                         return curr;
777                 head = head->next;
778         }
779         return target;
780 }
781 static int aarch64_halt(struct target *target);
782
783 static int aarch64_halt_smp(struct target *target)
784 {
785         int retval = 0;
786         struct target_list *head;
787         struct target *curr;
788         head = target->head;
789         while (head != (struct target_list *)NULL) {
790                 curr = head->target;
791                 if ((curr != target) && (curr->state != TARGET_HALTED))
792                         retval += aarch64_halt(curr);
793                 head = head->next;
794         }
795         return retval;
796 }
797
798 static int update_halt_gdb(struct target *target)
799 {
800         int retval = 0;
801         if (target->gdb_service && target->gdb_service->core[0] == -1) {
802                 target->gdb_service->target = target;
803                 target->gdb_service->core[0] = target->coreid;
804                 retval += aarch64_halt_smp(target);
805         }
806         return retval;
807 }
808
809 /*
810  * Cortex-A8 Run control
811  */
812
813 static int aarch64_poll(struct target *target)
814 {
815         int retval = ERROR_OK;
816         uint32_t dscr;
817         struct aarch64_common *aarch64 = target_to_aarch64(target);
818         struct armv8_common *armv8 = &aarch64->armv8_common;
819         enum target_state prev_target_state = target->state;
820         /*  toggle to another core is done by gdb as follow */
821         /*  maint packet J core_id */
822         /*  continue */
823         /*  the next polling trigger an halt event sent to gdb */
824         if ((target->state == TARGET_HALTED) && (target->smp) &&
825                 (target->gdb_service) &&
826                 (target->gdb_service->target == NULL)) {
827                 target->gdb_service->target =
828                         get_aarch64(target, target->gdb_service->core[1]);
829                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
830                 return retval;
831         }
832         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
833                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
834         if (retval != ERROR_OK)
835                 return retval;
836         aarch64->cpudbg_dscr = dscr;
837
838         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
839                 if (prev_target_state != TARGET_HALTED) {
840                         /* We have a halting debug event */
841                         LOG_DEBUG("Target halted");
842                         target->state = TARGET_HALTED;
843                         if ((prev_target_state == TARGET_RUNNING)
844                                 || (prev_target_state == TARGET_UNKNOWN)
845                                 || (prev_target_state == TARGET_RESET)) {
846                                 retval = aarch64_debug_entry(target);
847                                 if (retval != ERROR_OK)
848                                         return retval;
849                                 if (target->smp) {
850                                         retval = update_halt_gdb(target);
851                                         if (retval != ERROR_OK)
852                                                 return retval;
853                                 }
854                                 target_call_event_callbacks(target,
855                                         TARGET_EVENT_HALTED);
856                         }
857                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
858                                 LOG_DEBUG(" ");
859
860                                 retval = aarch64_debug_entry(target);
861                                 if (retval != ERROR_OK)
862                                         return retval;
863                                 if (target->smp) {
864                                         retval = update_halt_gdb(target);
865                                         if (retval != ERROR_OK)
866                                                 return retval;
867                                 }
868
869                                 target_call_event_callbacks(target,
870                                         TARGET_EVENT_DEBUG_HALTED);
871                         }
872                 }
873         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
874                 target->state = TARGET_RUNNING;
875         else {
876                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
877                 target->state = TARGET_UNKNOWN;
878         }
879
880         return retval;
881 }
882
883 static int aarch64_halt(struct target *target)
884 {
885         int retval = ERROR_OK;
886         uint32_t dscr;
887         struct armv8_common *armv8 = target_to_armv8(target);
888
889         /* enable CTI*/
890         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
891                         armv8->cti_base + CTI_CTR, 1);
892         if (retval != ERROR_OK)
893                 return retval;
894
895         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
896                         armv8->cti_base + CTI_GATE, 3);
897         if (retval != ERROR_OK)
898                 return retval;
899
900         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
901                         armv8->cti_base + CTI_OUTEN0, 1);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
906                         armv8->cti_base + CTI_OUTEN1, 2);
907         if (retval != ERROR_OK)
908                 return retval;
909
910         /*
911          * add HDE in halting debug mode
912          */
913         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
914                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
919                         armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
920         if (retval != ERROR_OK)
921                 return retval;
922
923         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
924                         armv8->cti_base + CTI_APPPULSE, 1);
925         if (retval != ERROR_OK)
926                 return retval;
927
928         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
929                         armv8->cti_base + CTI_INACK, 1);
930         if (retval != ERROR_OK)
931                 return retval;
932
933
934         long long then = timeval_ms();
935         for (;; ) {
936                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
937                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
938                 if (retval != ERROR_OK)
939                         return retval;
940                 if ((dscr & DSCRV8_HALT_MASK) != 0)
941                         break;
942                 if (timeval_ms() > then + 1000) {
943                         LOG_ERROR("Timeout waiting for halt");
944                         return ERROR_FAIL;
945                 }
946         }
947
948         target->debug_reason = DBG_REASON_DBGRQ;
949
950         return ERROR_OK;
951 }
952
953 static int aarch64_internal_restore(struct target *target, int current,
954         uint64_t *address, int handle_breakpoints, int debug_execution)
955 {
956         struct armv8_common *armv8 = target_to_armv8(target);
957         struct arm *arm = &armv8->arm;
958         int retval;
959         uint64_t resume_pc;
960
961         if (!debug_execution)
962                 target_free_all_working_areas(target);
963
964         /* current = 1: continue on current pc, otherwise continue at <address> */
965         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
966         if (!current)
967                 resume_pc = *address;
968         else
969                 *address = resume_pc;
970
971         /* Make sure that the Armv7 gdb thumb fixups does not
972          * kill the return address
973          */
974         switch (arm->core_state) {
975                 case ARM_STATE_ARM:
976                         resume_pc &= 0xFFFFFFFC;
977                         break;
978                 case ARM_STATE_AARCH64:
979                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
980                         break;
981                 case ARM_STATE_THUMB:
982                 case ARM_STATE_THUMB_EE:
983                         /* When the return address is loaded into PC
984                          * bit 0 must be 1 to stay in Thumb state
985                          */
986                         resume_pc |= 0x1;
987                         break;
988                 case ARM_STATE_JAZELLE:
989                         LOG_ERROR("How do I resume into Jazelle state??");
990                         return ERROR_FAIL;
991         }
992         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
993         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
994         arm->pc->dirty = 1;
995         arm->pc->valid = 1;
996         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
997
998         /* called it now before restoring context because it uses cpu
999          * register r0 for restoring system control register */
1000         retval = aarch64_restore_system_control_reg(target);
1001         if (retval != ERROR_OK)
1002                 return retval;
1003         retval = aarch64_restore_context(target, handle_breakpoints);
1004         if (retval != ERROR_OK)
1005                 return retval;
1006         target->debug_reason = DBG_REASON_NOTHALTED;
1007         target->state = TARGET_RUNNING;
1008
1009         /* registers are now invalid */
1010         register_cache_invalidate(arm->core_cache);
1011
1012 #if 0
1013         /* the front-end may request us not to handle breakpoints */
1014         if (handle_breakpoints) {
1015                 /* Single step past breakpoint at current address */
1016                 breakpoint = breakpoint_find(target, resume_pc);
1017                 if (breakpoint) {
1018                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1019                         cortex_m3_unset_breakpoint(target, breakpoint);
1020                         cortex_m3_single_step_core(target);
1021                         cortex_m3_set_breakpoint(target, breakpoint);
1022                 }
1023         }
1024 #endif
1025
1026         return retval;
1027 }
1028
1029 static int aarch64_internal_restart(struct target *target)
1030 {
1031         struct armv8_common *armv8 = target_to_armv8(target);
1032         struct arm *arm = &armv8->arm;
1033         int retval;
1034         uint32_t dscr;
1035         /*
1036          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1037          * * exception flags: see ARMv7 ARM, C5.9.
1038          *
1039          * REVISIT: for single stepping, we probably want to
1040          * disable IRQs by default, with optional override...
1041          */
1042
1043         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1044                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1045         if (retval != ERROR_OK)
1046                 return retval;
1047
1048         if ((dscr & DSCR_ITE) == 0)
1049                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1050
1051         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1052                         armv8->cti_base + CTI_APPPULSE, 2);
1053         if (retval != ERROR_OK)
1054                 return retval;
1055
1056         long long then = timeval_ms();
1057         for (;; ) {
1058                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1059                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1060                 if (retval != ERROR_OK)
1061                         return retval;
1062                 if ((dscr & DSCR_HDE) != 0)
1063                         break;
1064                 if (timeval_ms() > then + 1000) {
1065                         LOG_ERROR("Timeout waiting for resume");
1066                         return ERROR_FAIL;
1067                 }
1068         }
1069
1070         target->debug_reason = DBG_REASON_NOTHALTED;
1071         target->state = TARGET_RUNNING;
1072
1073         /* registers are now invalid */
1074         register_cache_invalidate(arm->core_cache);
1075
1076         return ERROR_OK;
1077 }
1078
1079 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1080 {
1081         int retval = 0;
1082         struct target_list *head;
1083         struct target *curr;
1084         uint64_t address;
1085         head = target->head;
1086         while (head != (struct target_list *)NULL) {
1087                 curr = head->target;
1088                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1089                         /*  resume current address , not in step mode */
1090                         retval += aarch64_internal_restore(curr, 1, &address,
1091                                         handle_breakpoints, 0);
1092                         retval += aarch64_internal_restart(curr);
1093                 }
1094                 head = head->next;
1095
1096         }
1097         return retval;
1098 }
1099
1100 static int aarch64_resume(struct target *target, int current,
1101         target_addr_t address, int handle_breakpoints, int debug_execution)
1102 {
1103         int retval = 0;
1104         uint64_t addr = address;
1105
1106         /* dummy resume for smp toggle in order to reduce gdb impact  */
1107         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1108                 /*   simulate a start and halt of target */
1109                 target->gdb_service->target = NULL;
1110                 target->gdb_service->core[0] = target->gdb_service->core[1];
1111                 /*  fake resume at next poll we play the  target core[1], see poll*/
1112                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1113                 return 0;
1114         }
1115         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1116                                  debug_execution);
1117         if (target->smp) {
1118                 target->gdb_service->core[0] = -1;
1119                 retval = aarch64_restore_smp(target, handle_breakpoints);
1120                 if (retval != ERROR_OK)
1121                         return retval;
1122         }
1123         aarch64_internal_restart(target);
1124
1125         if (!debug_execution) {
1126                 target->state = TARGET_RUNNING;
1127                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1128                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1129         } else {
1130                 target->state = TARGET_DEBUG_RUNNING;
1131                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1132                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1133         }
1134
1135         return ERROR_OK;
1136 }
1137
1138 static int aarch64_debug_entry(struct target *target)
1139 {
1140         int retval = ERROR_OK;
1141         struct aarch64_common *aarch64 = target_to_aarch64(target);
1142         struct armv8_common *armv8 = target_to_armv8(target);
1143
1144         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1145
1146         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1147          * imprecise data aborts get discarded by issuing a Data
1148          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1149          */
1150
1151         /* make sure to clear all sticky errors */
1152         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1153                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1154         if (retval != ERROR_OK)
1155                 return retval;
1156
1157         /* Examine debug reason */
1158         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1159
1160         /* save address of instruction that triggered the watchpoint? */
1161         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1162                 uint32_t tmp;
1163                 uint64_t wfar = 0;
1164
1165                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1166                                 armv8->debug_base + CPUV8_DBG_WFAR1,
1167                                 &tmp);
1168                 if (retval != ERROR_OK)
1169                         return retval;
1170                 wfar = tmp;
1171                 wfar = (wfar << 32);
1172                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1173                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1174                                 &tmp);
1175                 if (retval != ERROR_OK)
1176                         return retval;
1177                 wfar |= tmp;
1178                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
1179         }
1180
1181         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1182
1183         if (armv8->post_debug_entry) {
1184                 retval = armv8->post_debug_entry(target);
1185                 if (retval != ERROR_OK)
1186                         return retval;
1187         }
1188
1189         return retval;
1190 }
1191
1192 static int aarch64_post_debug_entry(struct target *target)
1193 {
1194         struct aarch64_common *aarch64 = target_to_aarch64(target);
1195         struct armv8_common *armv8 = &aarch64->armv8_common;
1196         int retval;
1197
1198         mem_ap_write_atomic_u32(armv8->debug_ap,
1199                                     armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1200         switch (armv8->arm.core_mode) {
1201                 case ARMV8_64_EL0T:
1202                 case ARMV8_64_EL1T:
1203                 case ARMV8_64_EL1H:
1204                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1205                                         0, 0,   /* op1, op2 */
1206                                         1, 0,   /* CRn, CRm */
1207                                         &aarch64->system_control_reg);
1208                         if (retval != ERROR_OK)
1209                                 return retval;
1210                 break;
1211                 case ARMV8_64_EL2T:
1212                 case ARMV8_64_EL2H:
1213                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1214                                         4, 0,   /* op1, op2 */
1215                                         1, 0,   /* CRn, CRm */
1216                                         &aarch64->system_control_reg);
1217                         if (retval != ERROR_OK)
1218                                 return retval;
1219                 break;
1220                 case ARMV8_64_EL3H:
1221                 case ARMV8_64_EL3T:
1222                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1223                                         6, 0,   /* op1, op2 */
1224                                         1, 0,   /* CRn, CRm */
1225                                         &aarch64->system_control_reg);
1226                         if (retval != ERROR_OK)
1227                                 return retval;
1228                 break;
1229                 default:
1230                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
1231         }
1232         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1233         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1234
1235         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1236                 armv8_identify_cache(target);
1237
1238         armv8->armv8_mmu.mmu_enabled =
1239                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1240         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1241                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1242         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1243                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1244         aarch64->curr_mode = armv8->arm.core_mode;
1245         return ERROR_OK;
1246 }
1247
1248 static int aarch64_step(struct target *target, int current, target_addr_t address,
1249         int handle_breakpoints)
1250 {
1251         struct armv8_common *armv8 = target_to_armv8(target);
1252         int retval;
1253         uint32_t tmp;
1254
1255         if (target->state != TARGET_HALTED) {
1256                 LOG_WARNING("target not halted");
1257                 return ERROR_TARGET_NOT_HALTED;
1258         }
1259
1260         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1261                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1262         if (retval != ERROR_OK)
1263                 return retval;
1264
1265         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1266                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1267         if (retval != ERROR_OK)
1268                 return retval;
1269
1270         target->debug_reason = DBG_REASON_SINGLESTEP;
1271         retval = aarch64_resume(target, 1, address, 0, 0);
1272         if (retval != ERROR_OK)
1273                 return retval;
1274
1275         long long then = timeval_ms();
1276         while (target->state != TARGET_HALTED) {
1277                 mem_ap_read_atomic_u32(armv8->debug_ap,
1278                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1279                 LOG_DEBUG("DESR = %#x", tmp);
1280                 retval = aarch64_poll(target);
1281                 if (retval != ERROR_OK)
1282                         return retval;
1283                 if (timeval_ms() > then + 1000) {
1284                         LOG_ERROR("timeout waiting for target halt");
1285                         return ERROR_FAIL;
1286                 }
1287         }
1288
1289         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1290                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1291         if (retval != ERROR_OK)
1292                 return retval;
1293
1294         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1295         if (target->state == TARGET_HALTED)
1296                 LOG_DEBUG("target stepped");
1297
1298         return ERROR_OK;
1299 }
1300
1301 static int aarch64_restore_context(struct target *target, bool bpwp)
1302 {
1303         struct armv8_common *armv8 = target_to_armv8(target);
1304
1305         LOG_DEBUG(" ");
1306
1307         if (armv8->pre_restore_context)
1308                 armv8->pre_restore_context(target);
1309
1310         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1311
1312 }
1313
1314 /*
1315  * Cortex-A8 Breakpoint and watchpoint functions
1316  */
1317
1318 /* Setup hardware Breakpoint Register Pair */
1319 static int aarch64_set_breakpoint(struct target *target,
1320         struct breakpoint *breakpoint, uint8_t matchmode)
1321 {
1322         int retval;
1323         int brp_i = 0;
1324         uint32_t control;
1325         uint8_t byte_addr_select = 0x0F;
1326         struct aarch64_common *aarch64 = target_to_aarch64(target);
1327         struct armv8_common *armv8 = &aarch64->armv8_common;
1328         struct aarch64_brp *brp_list = aarch64->brp_list;
1329         uint32_t dscr;
1330
1331         if (breakpoint->set) {
1332                 LOG_WARNING("breakpoint already set");
1333                 return ERROR_OK;
1334         }
1335
1336         if (breakpoint->type == BKPT_HARD) {
1337                 int64_t bpt_value;
1338                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1339                         brp_i++;
1340                 if (brp_i >= aarch64->brp_num) {
1341                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1342                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1343                 }
1344                 breakpoint->set = brp_i + 1;
1345                 if (breakpoint->length == 2)
1346                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1347                 control = ((matchmode & 0x7) << 20)
1348                         | (1 << 13)
1349                         | (byte_addr_select << 5)
1350                         | (3 << 1) | 1;
1351                 brp_list[brp_i].used = 1;
1352                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1353                 brp_list[brp_i].control = control;
1354                 bpt_value = brp_list[brp_i].value;
1355
1356                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1357                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1358                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1359                 if (retval != ERROR_OK)
1360                         return retval;
1361                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1362                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1363                                 (uint32_t)(bpt_value >> 32));
1364                 if (retval != ERROR_OK)
1365                         return retval;
1366
1367                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1368                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1369                                 brp_list[brp_i].control);
1370                 if (retval != ERROR_OK)
1371                         return retval;
1372                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1373                         brp_list[brp_i].control,
1374                         brp_list[brp_i].value);
1375
1376         } else if (breakpoint->type == BKPT_SOFT) {
1377                 uint8_t code[4];
1378                 buf_set_u32(code, 0, 32, ARMV8_BKPT(0x11));
1379                 retval = target_read_memory(target,
1380                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1381                                 breakpoint->length, 1,
1382                                 breakpoint->orig_instr);
1383                 if (retval != ERROR_OK)
1384                         return retval;
1385                 retval = target_write_memory(target,
1386                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1387                                 breakpoint->length, 1, code);
1388                 if (retval != ERROR_OK)
1389                         return retval;
1390                 breakpoint->set = 0x11; /* Any nice value but 0 */
1391         }
1392
1393         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1394                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1395         /* Ensure that halting debug mode is enable */
1396         dscr = dscr | DSCR_HDE;
1397         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1398                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1399         if (retval != ERROR_OK) {
1400                 LOG_DEBUG("Failed to set DSCR.HDE");
1401                 return retval;
1402         }
1403
1404         return ERROR_OK;
1405 }
1406
1407 static int aarch64_set_context_breakpoint(struct target *target,
1408         struct breakpoint *breakpoint, uint8_t matchmode)
1409 {
1410         int retval = ERROR_FAIL;
1411         int brp_i = 0;
1412         uint32_t control;
1413         uint8_t byte_addr_select = 0x0F;
1414         struct aarch64_common *aarch64 = target_to_aarch64(target);
1415         struct armv8_common *armv8 = &aarch64->armv8_common;
1416         struct aarch64_brp *brp_list = aarch64->brp_list;
1417
1418         if (breakpoint->set) {
1419                 LOG_WARNING("breakpoint already set");
1420                 return retval;
1421         }
1422         /*check available context BRPs*/
1423         while ((brp_list[brp_i].used ||
1424                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1425                 brp_i++;
1426
1427         if (brp_i >= aarch64->brp_num) {
1428                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1429                 return ERROR_FAIL;
1430         }
1431
1432         breakpoint->set = brp_i + 1;
1433         control = ((matchmode & 0x7) << 20)
1434                 | (1 << 13)
1435                 | (byte_addr_select << 5)
1436                 | (3 << 1) | 1;
1437         brp_list[brp_i].used = 1;
1438         brp_list[brp_i].value = (breakpoint->asid);
1439         brp_list[brp_i].control = control;
1440         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1441                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1442                         brp_list[brp_i].value);
1443         if (retval != ERROR_OK)
1444                 return retval;
1445         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1446                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1447                         brp_list[brp_i].control);
1448         if (retval != ERROR_OK)
1449                 return retval;
1450         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1451                 brp_list[brp_i].control,
1452                 brp_list[brp_i].value);
1453         return ERROR_OK;
1454
1455 }
1456
1457 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1458 {
1459         int retval = ERROR_FAIL;
1460         int brp_1 = 0;  /* holds the contextID pair */
1461         int brp_2 = 0;  /* holds the IVA pair */
1462         uint32_t control_CTX, control_IVA;
1463         uint8_t CTX_byte_addr_select = 0x0F;
1464         uint8_t IVA_byte_addr_select = 0x0F;
1465         uint8_t CTX_machmode = 0x03;
1466         uint8_t IVA_machmode = 0x01;
1467         struct aarch64_common *aarch64 = target_to_aarch64(target);
1468         struct armv8_common *armv8 = &aarch64->armv8_common;
1469         struct aarch64_brp *brp_list = aarch64->brp_list;
1470
1471         if (breakpoint->set) {
1472                 LOG_WARNING("breakpoint already set");
1473                 return retval;
1474         }
1475         /*check available context BRPs*/
1476         while ((brp_list[brp_1].used ||
1477                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1478                 brp_1++;
1479
1480         printf("brp(CTX) found num: %d\n", brp_1);
1481         if (brp_1 >= aarch64->brp_num) {
1482                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1483                 return ERROR_FAIL;
1484         }
1485
1486         while ((brp_list[brp_2].used ||
1487                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1488                 brp_2++;
1489
1490         printf("brp(IVA) found num: %d\n", brp_2);
1491         if (brp_2 >= aarch64->brp_num) {
1492                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1493                 return ERROR_FAIL;
1494         }
1495
1496         breakpoint->set = brp_1 + 1;
1497         breakpoint->linked_BRP = brp_2;
1498         control_CTX = ((CTX_machmode & 0x7) << 20)
1499                 | (brp_2 << 16)
1500                 | (0 << 14)
1501                 | (CTX_byte_addr_select << 5)
1502                 | (3 << 1) | 1;
1503         brp_list[brp_1].used = 1;
1504         brp_list[brp_1].value = (breakpoint->asid);
1505         brp_list[brp_1].control = control_CTX;
1506         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1507                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1508                         brp_list[brp_1].value);
1509         if (retval != ERROR_OK)
1510                 return retval;
1511         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1512                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1513                         brp_list[brp_1].control);
1514         if (retval != ERROR_OK)
1515                 return retval;
1516
1517         control_IVA = ((IVA_machmode & 0x7) << 20)
1518                 | (brp_1 << 16)
1519                 | (1 << 13)
1520                 | (IVA_byte_addr_select << 5)
1521                 | (3 << 1) | 1;
1522         brp_list[brp_2].used = 1;
1523         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1524         brp_list[brp_2].control = control_IVA;
1525         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1526                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1527                         brp_list[brp_2].value & 0xFFFFFFFF);
1528         if (retval != ERROR_OK)
1529                 return retval;
1530         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1531                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1532                         brp_list[brp_2].value >> 32);
1533         if (retval != ERROR_OK)
1534                 return retval;
1535         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1536                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1537                         brp_list[brp_2].control);
1538         if (retval != ERROR_OK)
1539                 return retval;
1540
1541         return ERROR_OK;
1542 }
1543
1544 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1545 {
1546         int retval;
1547         struct aarch64_common *aarch64 = target_to_aarch64(target);
1548         struct armv8_common *armv8 = &aarch64->armv8_common;
1549         struct aarch64_brp *brp_list = aarch64->brp_list;
1550
1551         if (!breakpoint->set) {
1552                 LOG_WARNING("breakpoint not set");
1553                 return ERROR_OK;
1554         }
1555
1556         if (breakpoint->type == BKPT_HARD) {
1557                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1558                         int brp_i = breakpoint->set - 1;
1559                         int brp_j = breakpoint->linked_BRP;
1560                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1561                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1562                                 return ERROR_OK;
1563                         }
1564                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1565                                 brp_list[brp_i].control, brp_list[brp_i].value);
1566                         brp_list[brp_i].used = 0;
1567                         brp_list[brp_i].value = 0;
1568                         brp_list[brp_i].control = 0;
1569                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1570                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1571                                         brp_list[brp_i].control);
1572                         if (retval != ERROR_OK)
1573                                 return retval;
1574                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1575                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1576                                         (uint32_t)brp_list[brp_i].value);
1577                         if (retval != ERROR_OK)
1578                                 return retval;
1579                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1580                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1581                                         (uint32_t)brp_list[brp_i].value);
1582                         if (retval != ERROR_OK)
1583                                 return retval;
1584                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1585                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1586                                 return ERROR_OK;
1587                         }
1588                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1589                                 brp_list[brp_j].control, brp_list[brp_j].value);
1590                         brp_list[brp_j].used = 0;
1591                         brp_list[brp_j].value = 0;
1592                         brp_list[brp_j].control = 0;
1593                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1594                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1595                                         brp_list[brp_j].control);
1596                         if (retval != ERROR_OK)
1597                                 return retval;
1598                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1599                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1600                                         (uint32_t)brp_list[brp_j].value);
1601                         if (retval != ERROR_OK)
1602                                 return retval;
1603                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1604                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1605                                         (uint32_t)brp_list[brp_j].value);
1606                         if (retval != ERROR_OK)
1607                                 return retval;
1608
1609                         breakpoint->linked_BRP = 0;
1610                         breakpoint->set = 0;
1611                         return ERROR_OK;
1612
1613                 } else {
1614                         int brp_i = breakpoint->set - 1;
1615                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1616                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1617                                 return ERROR_OK;
1618                         }
1619                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1620                                 brp_list[brp_i].control, brp_list[brp_i].value);
1621                         brp_list[brp_i].used = 0;
1622                         brp_list[brp_i].value = 0;
1623                         brp_list[brp_i].control = 0;
1624                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1625                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1626                                         brp_list[brp_i].control);
1627                         if (retval != ERROR_OK)
1628                                 return retval;
1629                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1630                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1631                                         brp_list[brp_i].value);
1632                         if (retval != ERROR_OK)
1633                                 return retval;
1634
1635                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1636                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1637                                         (uint32_t)brp_list[brp_i].value);
1638                         if (retval != ERROR_OK)
1639                                 return retval;
1640                         breakpoint->set = 0;
1641                         return ERROR_OK;
1642                 }
1643         } else {
1644                 /* restore original instruction (kept in target endianness) */
1645                 if (breakpoint->length == 4) {
1646                         retval = target_write_memory(target,
1647                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1648                                         4, 1, breakpoint->orig_instr);
1649                         if (retval != ERROR_OK)
1650                                 return retval;
1651                 } else {
1652                         retval = target_write_memory(target,
1653                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1654                                         2, 1, breakpoint->orig_instr);
1655                         if (retval != ERROR_OK)
1656                                 return retval;
1657                 }
1658         }
1659         breakpoint->set = 0;
1660
1661         return ERROR_OK;
1662 }
1663
1664 static int aarch64_add_breakpoint(struct target *target,
1665         struct breakpoint *breakpoint)
1666 {
1667         struct aarch64_common *aarch64 = target_to_aarch64(target);
1668
1669         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1670                 LOG_INFO("no hardware breakpoint available");
1671                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1672         }
1673
1674         if (breakpoint->type == BKPT_HARD)
1675                 aarch64->brp_num_available--;
1676
1677         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1678 }
1679
1680 static int aarch64_add_context_breakpoint(struct target *target,
1681         struct breakpoint *breakpoint)
1682 {
1683         struct aarch64_common *aarch64 = target_to_aarch64(target);
1684
1685         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1686                 LOG_INFO("no hardware breakpoint available");
1687                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1688         }
1689
1690         if (breakpoint->type == BKPT_HARD)
1691                 aarch64->brp_num_available--;
1692
1693         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1694 }
1695
1696 static int aarch64_add_hybrid_breakpoint(struct target *target,
1697         struct breakpoint *breakpoint)
1698 {
1699         struct aarch64_common *aarch64 = target_to_aarch64(target);
1700
1701         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1702                 LOG_INFO("no hardware breakpoint available");
1703                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1704         }
1705
1706         if (breakpoint->type == BKPT_HARD)
1707                 aarch64->brp_num_available--;
1708
1709         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1710 }
1711
1712
1713 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1714 {
1715         struct aarch64_common *aarch64 = target_to_aarch64(target);
1716
1717 #if 0
1718 /* It is perfectly possible to remove breakpoints while the target is running */
1719         if (target->state != TARGET_HALTED) {
1720                 LOG_WARNING("target not halted");
1721                 return ERROR_TARGET_NOT_HALTED;
1722         }
1723 #endif
1724
1725         if (breakpoint->set) {
1726                 aarch64_unset_breakpoint(target, breakpoint);
1727                 if (breakpoint->type == BKPT_HARD)
1728                         aarch64->brp_num_available++;
1729         }
1730
1731         return ERROR_OK;
1732 }
1733
1734 /*
1735  * Cortex-A8 Reset functions
1736  */
1737
1738 static int aarch64_assert_reset(struct target *target)
1739 {
1740         struct armv8_common *armv8 = target_to_armv8(target);
1741
1742         LOG_DEBUG(" ");
1743
1744         /* FIXME when halt is requested, make it work somehow... */
1745
1746         /* Issue some kind of warm reset. */
1747         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1748                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1749         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1750                 /* REVISIT handle "pulls" cases, if there's
1751                  * hardware that needs them to work.
1752                  */
1753                 jtag_add_reset(0, 1);
1754         } else {
1755                 LOG_ERROR("%s: how to reset?", target_name(target));
1756                 return ERROR_FAIL;
1757         }
1758
1759         /* registers are now invalid */
1760         register_cache_invalidate(armv8->arm.core_cache);
1761
1762         target->state = TARGET_RESET;
1763
1764         return ERROR_OK;
1765 }
1766
1767 static int aarch64_deassert_reset(struct target *target)
1768 {
1769         int retval;
1770
1771         LOG_DEBUG(" ");
1772
1773         /* be certain SRST is off */
1774         jtag_add_reset(0, 0);
1775
1776         retval = aarch64_poll(target);
1777         if (retval != ERROR_OK)
1778                 return retval;
1779
1780         if (target->reset_halt) {
1781                 if (target->state != TARGET_HALTED) {
1782                         LOG_WARNING("%s: ran after reset and before halt ...",
1783                                 target_name(target));
1784                         retval = target_halt(target);
1785                         if (retval != ERROR_OK)
1786                                 return retval;
1787                 }
1788         }
1789
1790         return ERROR_OK;
1791 }
1792
1793 static int aarch64_write_apb_ap_memory(struct target *target,
1794         uint64_t address, uint32_t size,
1795         uint32_t count, const uint8_t *buffer)
1796 {
1797         /* write memory through APB-AP */
1798         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1799         struct armv8_common *armv8 = target_to_armv8(target);
1800         struct arm *arm = &armv8->arm;
1801         int total_bytes = count * size;
1802         int total_u32;
1803         int start_byte = address & 0x3;
1804         int end_byte   = (address + total_bytes) & 0x3;
1805         struct reg *reg;
1806         uint32_t dscr;
1807         uint8_t *tmp_buff = NULL;
1808
1809         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1810                           address, size, count);
1811         if (target->state != TARGET_HALTED) {
1812                 LOG_WARNING("target not halted");
1813                 return ERROR_TARGET_NOT_HALTED;
1814         }
1815
1816         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1817
1818         /* Mark register R0 as dirty, as it will be used
1819          * for transferring the data.
1820          * It will be restored automatically when exiting
1821          * debug mode
1822          */
1823         reg = armv8_reg_current(arm, 1);
1824         reg->dirty = true;
1825
1826         reg = armv8_reg_current(arm, 0);
1827         reg->dirty = true;
1828
1829         /*  clear any abort  */
1830         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1831                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1832         if (retval != ERROR_OK)
1833                 return retval;
1834
1835
1836         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1837
1838         /* The algorithm only copies 32 bit words, so the buffer
1839          * should be expanded to include the words at either end.
1840          * The first and last words will be read first to avoid
1841          * corruption if needed.
1842          */
1843         tmp_buff = malloc(total_u32 * 4);
1844
1845         if ((start_byte != 0) && (total_u32 > 1)) {
1846                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1847                  * the other bytes in the word.
1848                  */
1849                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1850                 if (retval != ERROR_OK)
1851                         goto error_free_buff_w;
1852         }
1853
1854         /* If end of write is not aligned, or the write is less than 4 bytes */
1855         if ((end_byte != 0) ||
1856                 ((total_u32 == 1) && (total_bytes != 4))) {
1857
1858                 /* Read the last word to avoid corruption during 32 bit write */
1859                 int mem_offset = (total_u32-1) * 4;
1860                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1861                 if (retval != ERROR_OK)
1862                         goto error_free_buff_w;
1863         }
1864
1865         /* Copy the write buffer over the top of the temporary buffer */
1866         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1867
1868         /* We now have a 32 bit aligned buffer that can be written */
1869
1870         /* Read DSCR */
1871         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1872                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1873         if (retval != ERROR_OK)
1874                 goto error_free_buff_w;
1875
1876         /* Set Normal access mode  */
1877         dscr = (dscr & ~DSCR_MA);
1878         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1879                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1880
1881         if (arm->core_state == ARM_STATE_AARCH64) {
1882                 /* Write X0 with value 'address' using write procedure */
1883                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1884                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1885                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1886                 retval += aarch64_exec_opcode(target,
1887                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1888         } else {
1889                 /* Write R0 with value 'address' using write procedure */
1890                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1891                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1892                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1893                 retval += aarch64_exec_opcode(target,
1894                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1895
1896         }
1897         /* Step 1.d   - Change DCC to memory mode */
1898         dscr = dscr | DSCR_MA;
1899         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1900                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1901         if (retval != ERROR_OK)
1902                 goto error_unset_dtr_w;
1903
1904
1905         /* Step 2.a   - Do the write */
1906         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1907                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1908         if (retval != ERROR_OK)
1909                 goto error_unset_dtr_w;
1910
1911         /* Step 3.a   - Switch DTR mode back to Normal mode */
1912         dscr = (dscr & ~DSCR_MA);
1913         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1914                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1915         if (retval != ERROR_OK)
1916                 goto error_unset_dtr_w;
1917
1918         /* Check for sticky abort flags in the DSCR */
1919         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1920                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1921         if (retval != ERROR_OK)
1922                 goto error_free_buff_w;
1923         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1924                 /* Abort occurred - clear it and exit */
1925                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1926                 mem_ap_write_atomic_u32(armv8->debug_ap,
1927                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1928                 goto error_free_buff_w;
1929         }
1930
1931         /* Done */
1932         free(tmp_buff);
1933         return ERROR_OK;
1934
1935 error_unset_dtr_w:
1936         /* Unset DTR mode */
1937         mem_ap_read_atomic_u32(armv8->debug_ap,
1938                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1939         dscr = (dscr & ~DSCR_MA);
1940         mem_ap_write_atomic_u32(armv8->debug_ap,
1941                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1942 error_free_buff_w:
1943         LOG_ERROR("error");
1944         free(tmp_buff);
1945         return ERROR_FAIL;
1946 }
1947
1948 static int aarch64_read_apb_ap_memory(struct target *target,
1949         target_addr_t address, uint32_t size,
1950         uint32_t count, uint8_t *buffer)
1951 {
1952         /* read memory through APB-AP */
1953         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1954         struct armv8_common *armv8 = target_to_armv8(target);
1955         struct arm *arm = &armv8->arm;
1956         int total_bytes = count * size;
1957         int total_u32;
1958         int start_byte = address & 0x3;
1959         int end_byte   = (address + total_bytes) & 0x3;
1960         struct reg *reg;
1961         uint32_t dscr;
1962         uint8_t *tmp_buff = NULL;
1963         uint8_t *u8buf_ptr;
1964         uint32_t value;
1965
1966         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1967                           address, size, count);
1968         if (target->state != TARGET_HALTED) {
1969                 LOG_WARNING("target not halted");
1970                 return ERROR_TARGET_NOT_HALTED;
1971         }
1972
1973         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1974         /* Mark register X0, X1 as dirty, as it will be used
1975          * for transferring the data.
1976          * It will be restored automatically when exiting
1977          * debug mode
1978          */
1979         reg = armv8_reg_current(arm, 1);
1980         reg->dirty = true;
1981
1982         reg = armv8_reg_current(arm, 0);
1983         reg->dirty = true;
1984
1985         /*      clear any abort  */
1986         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1987                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1988         if (retval != ERROR_OK)
1989                 goto error_free_buff_r;
1990
1991         /* Read DSCR */
1992         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1993                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1994
1995         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1996
1997         /* Set Normal access mode  */
1998         dscr = (dscr & ~DSCR_MA);
1999         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2000                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2001
2002         if (arm->core_state == ARM_STATE_AARCH64) {
2003                 /* Write X0 with value 'address' using write procedure */
2004                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2005                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
2006                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2007                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2008                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2009                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2010                 /* Step 1.e - Change DCC to memory mode */
2011                 dscr = dscr | DSCR_MA;
2012                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2013                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2014                 /* Step 1.f - read DBGDTRTX and discard the value */
2015                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2016                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2017         } else {
2018                 /* Write R0 with value 'address' using write procedure */
2019                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2020                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
2021                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2022                 retval += aarch64_exec_opcode(target,
2023                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
2024                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2025                 retval += aarch64_exec_opcode(target,
2026                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2027                 /* Step 1.e - Change DCC to memory mode */
2028                 dscr = dscr | DSCR_MA;
2029                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2030                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2031                 /* Step 1.f - read DBGDTRTX and discard the value */
2032                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2033                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2034
2035         }
2036         if (retval != ERROR_OK)
2037                 goto error_unset_dtr_r;
2038
2039         /* Optimize the read as much as we can, either way we read in a single pass  */
2040         if ((start_byte) || (end_byte)) {
2041                 /* The algorithm only copies 32 bit words, so the buffer
2042                  * should be expanded to include the words at either end.
2043                  * The first and last words will be read into a temp buffer
2044                  * to avoid corruption
2045                  */
2046                 tmp_buff = malloc(total_u32 * 4);
2047                 if (!tmp_buff)
2048                         goto error_unset_dtr_r;
2049
2050                 /* use the tmp buffer to read the entire data */
2051                 u8buf_ptr = tmp_buff;
2052         } else
2053                 /* address and read length are aligned so read directly into the passed buffer */
2054                 u8buf_ptr = buffer;
2055
2056         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2057          * Abort flags are sticky, so can be read at end of transactions
2058          *
2059          * This data is read in aligned to 32 bit boundary.
2060          */
2061
2062         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2063          * increments X0 by 4. */
2064         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2065                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2066         if (retval != ERROR_OK)
2067                         goto error_unset_dtr_r;
2068
2069         /* Step 3.a - set DTR access mode back to Normal mode   */
2070         dscr = (dscr & ~DSCR_MA);
2071         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2072                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2073         if (retval != ERROR_OK)
2074                 goto error_free_buff_r;
2075
2076         /* Step 3.b - read DBGDTRTX for the final value */
2077         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2078                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2079         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2080
2081         /* Check for sticky abort flags in the DSCR */
2082         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2083                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2084         if (retval != ERROR_OK)
2085                 goto error_free_buff_r;
2086         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2087                 /* Abort occurred - clear it and exit */
2088                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2089                 mem_ap_write_atomic_u32(armv8->debug_ap,
2090                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2091                 goto error_free_buff_r;
2092         }
2093
2094         /* check if we need to copy aligned data by applying any shift necessary */
2095         if (tmp_buff) {
2096                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2097                 free(tmp_buff);
2098         }
2099
2100         /* Done */
2101         return ERROR_OK;
2102
2103 error_unset_dtr_r:
2104         /* Unset DTR mode */
2105         mem_ap_read_atomic_u32(armv8->debug_ap,
2106                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2107         dscr = (dscr & ~DSCR_MA);
2108         mem_ap_write_atomic_u32(armv8->debug_ap,
2109                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2110 error_free_buff_r:
2111         LOG_ERROR("error");
2112         free(tmp_buff);
2113         return ERROR_FAIL;
2114 }
2115
2116 static int aarch64_read_phys_memory(struct target *target,
2117         target_addr_t address, uint32_t size,
2118         uint32_t count, uint8_t *buffer)
2119 {
2120         struct armv8_common *armv8 = target_to_armv8(target);
2121         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2122         struct adiv5_dap *swjdp = armv8->arm.dap;
2123         uint8_t apsel = swjdp->apsel;
2124         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2125                 address, size, count);
2126
2127         if (count && buffer) {
2128
2129                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2130
2131                         /* read memory through AHB-AP */
2132                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2133                 } else {
2134                         /* read memory through APB-AP */
2135                         retval = aarch64_mmu_modify(target, 0);
2136                         if (retval != ERROR_OK)
2137                                 return retval;
2138                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2139                 }
2140         }
2141         return retval;
2142 }
2143
2144 static int aarch64_read_memory(struct target *target, target_addr_t address,
2145         uint32_t size, uint32_t count, uint8_t *buffer)
2146 {
2147         int mmu_enabled = 0;
2148         target_addr_t virt, phys;
2149         int retval;
2150         struct armv8_common *armv8 = target_to_armv8(target);
2151         struct adiv5_dap *swjdp = armv8->arm.dap;
2152         uint8_t apsel = swjdp->apsel;
2153
2154         /* aarch64 handles unaligned memory access */
2155         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2156                 size, count);
2157
2158         /* determine if MMU was enabled on target stop */
2159         if (!armv8->is_armv7r) {
2160                 retval = aarch64_mmu(target, &mmu_enabled);
2161                 if (retval != ERROR_OK)
2162                         return retval;
2163         }
2164
2165         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2166                 if (mmu_enabled) {
2167                         virt = address;
2168                         retval = aarch64_virt2phys(target, virt, &phys);
2169                         if (retval != ERROR_OK)
2170                                 return retval;
2171
2172                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2173                                   virt, phys);
2174                         address = phys;
2175                 }
2176                 retval = aarch64_read_phys_memory(target, address, size, count,
2177                                                   buffer);
2178         } else {
2179                 if (mmu_enabled) {
2180                         retval = aarch64_check_address(target, address);
2181                         if (retval != ERROR_OK)
2182                                 return retval;
2183                         /* enable MMU as we could have disabled it for phys
2184                            access */
2185                         retval = aarch64_mmu_modify(target, 1);
2186                         if (retval != ERROR_OK)
2187                                 return retval;
2188                 }
2189                 retval = aarch64_read_apb_ap_memory(target, address, size,
2190                                                     count, buffer);
2191         }
2192         return retval;
2193 }
2194
2195 static int aarch64_write_phys_memory(struct target *target,
2196         target_addr_t address, uint32_t size,
2197         uint32_t count, const uint8_t *buffer)
2198 {
2199         struct armv8_common *armv8 = target_to_armv8(target);
2200         struct adiv5_dap *swjdp = armv8->arm.dap;
2201         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2202         uint8_t apsel = swjdp->apsel;
2203
2204         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2205                 size, count);
2206
2207         if (count && buffer) {
2208
2209                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2210
2211                         /* write memory through AHB-AP */
2212                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2213                 } else {
2214
2215                         /* write memory through APB-AP */
2216                         if (!armv8->is_armv7r) {
2217                                 retval = aarch64_mmu_modify(target, 0);
2218                                 if (retval != ERROR_OK)
2219                                         return retval;
2220                         }
2221                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2222                 }
2223         }
2224
2225
2226         /* REVISIT this op is generic ARMv7-A/R stuff */
2227         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2228                 struct arm_dpm *dpm = armv8->arm.dpm;
2229
2230                 retval = dpm->prepare(dpm);
2231                 if (retval != ERROR_OK)
2232                         return retval;
2233
2234                 /* The Cache handling will NOT work with MMU active, the
2235                  * wrong addresses will be invalidated!
2236                  *
2237                  * For both ICache and DCache, walk all cache lines in the
2238                  * address range. Cortex-A has fixed 64 byte line length.
2239                  *
2240                  * REVISIT per ARMv7, these may trigger watchpoints ...
2241                  */
2242
2243                 /* invalidate I-Cache */
2244                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2245                         /* ICIMVAU - Invalidate Cache single entry
2246                          * with MVA to PoU
2247                          *      MCR p15, 0, r0, c7, c5, 1
2248                          */
2249                         for (uint32_t cacheline = 0;
2250                                 cacheline < size * count;
2251                                 cacheline += 64) {
2252                                 retval = dpm->instr_write_data_r0(dpm,
2253                                                 ARMV8_MSR_GP(SYSTEM_ICIVAU, 0),
2254                                                 address + cacheline);
2255                                 if (retval != ERROR_OK)
2256                                         return retval;
2257                         }
2258                 }
2259
2260                 /* invalidate D-Cache */
2261                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2262                         /* DCIMVAC - Invalidate data Cache line
2263                          * with MVA to PoC
2264                          *      MCR p15, 0, r0, c7, c6, 1
2265                          */
2266                         for (uint32_t cacheline = 0;
2267                                 cacheline < size * count;
2268                                 cacheline += 64) {
2269                                 retval = dpm->instr_write_data_r0(dpm,
2270                                                 ARMV8_MSR_GP(SYSTEM_DCCVAU, 0),
2271                                                 address + cacheline);
2272                                 if (retval != ERROR_OK)
2273                                         return retval;
2274                         }
2275                 }
2276
2277                 /* (void) */ dpm->finish(dpm);
2278         }
2279
2280         return retval;
2281 }
2282
2283 static int aarch64_write_memory(struct target *target, target_addr_t address,
2284         uint32_t size, uint32_t count, const uint8_t *buffer)
2285 {
2286         int mmu_enabled = 0;
2287         target_addr_t virt, phys;
2288         int retval;
2289         struct armv8_common *armv8 = target_to_armv8(target);
2290         struct adiv5_dap *swjdp = armv8->arm.dap;
2291         uint8_t apsel = swjdp->apsel;
2292
2293         /* aarch64 handles unaligned memory access */
2294         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2295                   "; count %" PRId32, address, size, count);
2296
2297         /* determine if MMU was enabled on target stop */
2298         if (!armv8->is_armv7r) {
2299                 retval = aarch64_mmu(target, &mmu_enabled);
2300                 if (retval != ERROR_OK)
2301                         return retval;
2302         }
2303
2304         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2305                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2306                           PRId32 "; count %" PRId32, address, size, count);
2307                 if (mmu_enabled) {
2308                         virt = address;
2309                         retval = aarch64_virt2phys(target, virt, &phys);
2310                         if (retval != ERROR_OK)
2311                                 return retval;
2312
2313                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2314                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2315                         address = phys;
2316                 }
2317                 retval = aarch64_write_phys_memory(target, address, size,
2318                                 count, buffer);
2319         } else {
2320                 if (mmu_enabled) {
2321                         retval = aarch64_check_address(target, address);
2322                         if (retval != ERROR_OK)
2323                                 return retval;
2324                         /* enable MMU as we could have disabled it for phys access */
2325                         retval = aarch64_mmu_modify(target, 1);
2326                         if (retval != ERROR_OK)
2327                                 return retval;
2328                 }
2329                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2330         }
2331         return retval;
2332 }
2333
2334 static int aarch64_handle_target_request(void *priv)
2335 {
2336         struct target *target = priv;
2337         struct armv8_common *armv8 = target_to_armv8(target);
2338         int retval;
2339
2340         if (!target_was_examined(target))
2341                 return ERROR_OK;
2342         if (!target->dbg_msg_enabled)
2343                 return ERROR_OK;
2344
2345         if (target->state == TARGET_RUNNING) {
2346                 uint32_t request;
2347                 uint32_t dscr;
2348                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2349                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2350
2351                 /* check if we have data */
2352                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2353                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2354                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2355                         if (retval == ERROR_OK) {
2356                                 target_request(target, request);
2357                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2358                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2359                         }
2360                 }
2361         }
2362
2363         return ERROR_OK;
2364 }
2365
2366 static int aarch64_examine_first(struct target *target)
2367 {
2368         struct aarch64_common *aarch64 = target_to_aarch64(target);
2369         struct armv8_common *armv8 = &aarch64->armv8_common;
2370         struct adiv5_dap *swjdp = armv8->arm.dap;
2371         int i;
2372         int retval = ERROR_OK;
2373         uint64_t debug, ttypr;
2374         uint32_t cpuid;
2375         uint32_t tmp0, tmp1;
2376         debug = ttypr = cpuid = 0;
2377
2378         /* We do one extra read to ensure DAP is configured,
2379          * we call ahbap_debugport_init(swjdp) instead
2380          */
2381         retval = dap_dp_init(swjdp);
2382         if (retval != ERROR_OK)
2383                 return retval;
2384
2385         /* Search for the APB-AB - it is needed for access to debug registers */
2386         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2387         if (retval != ERROR_OK) {
2388                 LOG_ERROR("Could not find APB-AP for debug access");
2389                 return retval;
2390         }
2391
2392         retval = mem_ap_init(armv8->debug_ap);
2393         if (retval != ERROR_OK) {
2394                 LOG_ERROR("Could not initialize the APB-AP");
2395                 return retval;
2396         }
2397
2398         armv8->debug_ap->memaccess_tck = 80;
2399
2400         /* Search for the AHB-AB */
2401         armv8->memory_ap_available = false;
2402         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2403         if (retval == ERROR_OK) {
2404                 retval = mem_ap_init(armv8->memory_ap);
2405                 if (retval == ERROR_OK)
2406                         armv8->memory_ap_available = true;
2407         }
2408         if (retval != ERROR_OK) {
2409                 /* AHB-AP not found or unavailable - use the CPU */
2410                 LOG_DEBUG("No AHB-AP available for memory access");
2411         }
2412
2413
2414         if (!target->dbgbase_set) {
2415                 uint32_t dbgbase;
2416                 /* Get ROM Table base */
2417                 uint32_t apid;
2418                 int32_t coreidx = target->coreid;
2419                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2420                 if (retval != ERROR_OK)
2421                         return retval;
2422                 /* Lookup 0x15 -- Processor DAP */
2423                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2424                                 &armv8->debug_base, &coreidx);
2425                 if (retval != ERROR_OK)
2426                         return retval;
2427                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
2428                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2429         } else
2430                 armv8->debug_base = target->dbgbase;
2431
2432         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2433                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2434         if (retval != ERROR_OK) {
2435                 LOG_DEBUG("LOCK debug access fail");
2436                 return retval;
2437         }
2438
2439         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2440                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2441         if (retval != ERROR_OK) {
2442                 LOG_DEBUG("Examine %s failed", "oslock");
2443                 return retval;
2444         }
2445
2446         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2447                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2448         if (retval != ERROR_OK) {
2449                 LOG_DEBUG("Examine %s failed", "CPUID");
2450                 return retval;
2451         }
2452
2453         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2454                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2455         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2456                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2457         if (retval != ERROR_OK) {
2458                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2459                 return retval;
2460         }
2461         ttypr |= tmp1;
2462         ttypr = (ttypr << 32) | tmp0;
2463
2464         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2465                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
2466         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2467                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
2468         if (retval != ERROR_OK) {
2469                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2470                 return retval;
2471         }
2472         debug |= tmp1;
2473         debug = (debug << 32) | tmp0;
2474
2475         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2476         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2477         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2478
2479         if (target->ctibase == 0) {
2480                 /* assume a v8 rom table layout */
2481                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
2482                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
2483         } else
2484                 armv8->cti_base = target->ctibase;
2485
2486         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2487                         armv8->cti_base + CTI_UNLOCK , 0xC5ACCE55);
2488         if (retval != ERROR_OK)
2489                 return retval;
2490
2491
2492         armv8->arm.core_type = ARM_MODE_MON;
2493         retval = aarch64_dpm_setup(aarch64, debug);
2494         if (retval != ERROR_OK)
2495                 return retval;
2496
2497         /* Setup Breakpoint Register Pairs */
2498         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2499         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2500         aarch64->brp_num_available = aarch64->brp_num;
2501         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2502         for (i = 0; i < aarch64->brp_num; i++) {
2503                 aarch64->brp_list[i].used = 0;
2504                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2505                         aarch64->brp_list[i].type = BRP_NORMAL;
2506                 else
2507                         aarch64->brp_list[i].type = BRP_CONTEXT;
2508                 aarch64->brp_list[i].value = 0;
2509                 aarch64->brp_list[i].control = 0;
2510                 aarch64->brp_list[i].BRPn = i;
2511         }
2512
2513         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2514
2515         target_set_examined(target);
2516         return ERROR_OK;
2517 }
2518
2519 static int aarch64_examine(struct target *target)
2520 {
2521         int retval = ERROR_OK;
2522
2523         /* don't re-probe hardware after each reset */
2524         if (!target_was_examined(target))
2525                 retval = aarch64_examine_first(target);
2526
2527         /* Configure core debug access */
2528         if (retval == ERROR_OK)
2529                 retval = aarch64_init_debug_access(target);
2530
2531         return retval;
2532 }
2533
2534 /*
2535  *      Cortex-A8 target creation and initialization
2536  */
2537
2538 static int aarch64_init_target(struct command_context *cmd_ctx,
2539         struct target *target)
2540 {
2541         /* examine_first() does a bunch of this */
2542         return ERROR_OK;
2543 }
2544
2545 static int aarch64_init_arch_info(struct target *target,
2546         struct aarch64_common *aarch64, struct jtag_tap *tap)
2547 {
2548         struct armv8_common *armv8 = &aarch64->armv8_common;
2549         struct adiv5_dap *dap = armv8->arm.dap;
2550
2551         armv8->arm.dap = dap;
2552
2553         /* Setup struct aarch64_common */
2554         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2555         /*  tap has no dap initialized */
2556         if (!tap->dap) {
2557                 tap->dap = dap_init();
2558
2559                 /* Leave (only) generic DAP stuff for debugport_init() */
2560                 tap->dap->tap = tap;
2561         }
2562
2563         armv8->arm.dap = tap->dap;
2564
2565         aarch64->fast_reg_read = 0;
2566
2567         /* register arch-specific functions */
2568         armv8->examine_debug_reason = NULL;
2569
2570         armv8->post_debug_entry = aarch64_post_debug_entry;
2571
2572         armv8->pre_restore_context = NULL;
2573
2574         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2575
2576         /* REVISIT v7a setup should be in a v7a-specific routine */
2577         armv8_init_arch_info(target, armv8);
2578         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2579
2580         return ERROR_OK;
2581 }
2582
2583 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2584 {
2585         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2586
2587         aarch64->armv8_common.is_armv7r = false;
2588
2589         return aarch64_init_arch_info(target, aarch64, target->tap);
2590 }
2591
2592 static int aarch64_mmu(struct target *target, int *enabled)
2593 {
2594         if (target->state != TARGET_HALTED) {
2595                 LOG_ERROR("%s: target not halted", __func__);
2596                 return ERROR_TARGET_INVALID;
2597         }
2598
2599         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2600         return ERROR_OK;
2601 }
2602
2603 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2604                              target_addr_t *phys)
2605 {
2606         int retval = ERROR_FAIL;
2607         struct armv8_common *armv8 = target_to_armv8(target);
2608         struct adiv5_dap *swjdp = armv8->arm.dap;
2609         uint8_t apsel = swjdp->apsel;
2610         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2611                 uint32_t ret;
2612                 retval = armv8_mmu_translate_va(target,
2613                                 virt, &ret);
2614                 if (retval != ERROR_OK)
2615                         goto done;
2616                 *phys = ret;
2617         } else {
2618                 LOG_ERROR("AAR64 processor not support translate va to pa");
2619         }
2620 done:
2621         return retval;
2622 }
2623
2624 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2625 {
2626         struct target *target = get_current_target(CMD_CTX);
2627         struct armv8_common *armv8 = target_to_armv8(target);
2628
2629         return armv8_handle_cache_info_command(CMD_CTX,
2630                         &armv8->armv8_mmu.armv8_cache);
2631 }
2632
2633
2634 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2635 {
2636         struct target *target = get_current_target(CMD_CTX);
2637         if (!target_was_examined(target)) {
2638                 LOG_ERROR("target not examined yet");
2639                 return ERROR_FAIL;
2640         }
2641
2642         return aarch64_init_debug_access(target);
2643 }
2644 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2645 {
2646         struct target *target = get_current_target(CMD_CTX);
2647         /* check target is an smp target */
2648         struct target_list *head;
2649         struct target *curr;
2650         head = target->head;
2651         target->smp = 0;
2652         if (head != (struct target_list *)NULL) {
2653                 while (head != (struct target_list *)NULL) {
2654                         curr = head->target;
2655                         curr->smp = 0;
2656                         head = head->next;
2657                 }
2658                 /*  fixes the target display to the debugger */
2659                 target->gdb_service->target = target;
2660         }
2661         return ERROR_OK;
2662 }
2663
2664 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2665 {
2666         struct target *target = get_current_target(CMD_CTX);
2667         struct target_list *head;
2668         struct target *curr;
2669         head = target->head;
2670         if (head != (struct target_list *)NULL) {
2671                 target->smp = 1;
2672                 while (head != (struct target_list *)NULL) {
2673                         curr = head->target;
2674                         curr->smp = 1;
2675                         head = head->next;
2676                 }
2677         }
2678         return ERROR_OK;
2679 }
2680
2681 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2682 {
2683         struct target *target = get_current_target(CMD_CTX);
2684         int retval = ERROR_OK;
2685         struct target_list *head;
2686         head = target->head;
2687         if (head != (struct target_list *)NULL) {
2688                 if (CMD_ARGC == 1) {
2689                         int coreid = 0;
2690                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2691                         if (ERROR_OK != retval)
2692                                 return retval;
2693                         target->gdb_service->core[1] = coreid;
2694
2695                 }
2696                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2697                         , target->gdb_service->core[1]);
2698         }
2699         return ERROR_OK;
2700 }
2701
2702 static const struct command_registration aarch64_exec_command_handlers[] = {
2703         {
2704                 .name = "cache_info",
2705                 .handler = aarch64_handle_cache_info_command,
2706                 .mode = COMMAND_EXEC,
2707                 .help = "display information about target caches",
2708                 .usage = "",
2709         },
2710         {
2711                 .name = "dbginit",
2712                 .handler = aarch64_handle_dbginit_command,
2713                 .mode = COMMAND_EXEC,
2714                 .help = "Initialize core debug",
2715                 .usage = "",
2716         },
2717         {       .name = "smp_off",
2718                 .handler = aarch64_handle_smp_off_command,
2719                 .mode = COMMAND_EXEC,
2720                 .help = "Stop smp handling",
2721                 .usage = "",
2722         },
2723         {
2724                 .name = "smp_on",
2725                 .handler = aarch64_handle_smp_on_command,
2726                 .mode = COMMAND_EXEC,
2727                 .help = "Restart smp handling",
2728                 .usage = "",
2729         },
2730         {
2731                 .name = "smp_gdb",
2732                 .handler = aarch64_handle_smp_gdb_command,
2733                 .mode = COMMAND_EXEC,
2734                 .help = "display/fix current core played to gdb",
2735                 .usage = "",
2736         },
2737
2738
2739         COMMAND_REGISTRATION_DONE
2740 };
2741 static const struct command_registration aarch64_command_handlers[] = {
2742         {
2743                 .chain = arm_command_handlers,
2744         },
2745         {
2746                 .chain = armv8_command_handlers,
2747         },
2748         {
2749                 .name = "cortex_a",
2750                 .mode = COMMAND_ANY,
2751                 .help = "Cortex-A command group",
2752                 .usage = "",
2753                 .chain = aarch64_exec_command_handlers,
2754         },
2755         COMMAND_REGISTRATION_DONE
2756 };
2757
2758 struct target_type aarch64_target = {
2759         .name = "aarch64",
2760
2761         .poll = aarch64_poll,
2762         .arch_state = armv8_arch_state,
2763
2764         .halt = aarch64_halt,
2765         .resume = aarch64_resume,
2766         .step = aarch64_step,
2767
2768         .assert_reset = aarch64_assert_reset,
2769         .deassert_reset = aarch64_deassert_reset,
2770
2771         /* REVISIT allow exporting VFP3 registers ... */
2772         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2773
2774         .read_memory = aarch64_read_memory,
2775         .write_memory = aarch64_write_memory,
2776
2777         .checksum_memory = arm_checksum_memory,
2778         .blank_check_memory = arm_blank_check_memory,
2779
2780         .run_algorithm = armv4_5_run_algorithm,
2781
2782         .add_breakpoint = aarch64_add_breakpoint,
2783         .add_context_breakpoint = aarch64_add_context_breakpoint,
2784         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2785         .remove_breakpoint = aarch64_remove_breakpoint,
2786         .add_watchpoint = NULL,
2787         .remove_watchpoint = NULL,
2788
2789         .commands = aarch64_command_handlers,
2790         .target_create = aarch64_target_create,
2791         .init_target = aarch64_init_target,
2792         .examine = aarch64_examine,
2793
2794         .read_phys_memory = aarch64_read_phys_memory,
2795         .write_phys_memory = aarch64_write_phys_memory,
2796         .mmu = aarch64_mmu,
2797         .virt2phys = aarch64_virt2phys,
2798 };