aarch64: handle exceptions taken in debug state
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static struct target *get_aarch64(struct target *target, int32_t coreid)
283 {
284         struct target_list *head;
285         struct target *curr;
286
287         head = target->head;
288         while (head != (struct target_list *)NULL) {
289                 curr = head->target;
290                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
291                         return curr;
292                 head = head->next;
293         }
294         return target;
295 }
296 static int aarch64_halt(struct target *target);
297
298 static int aarch64_halt_smp(struct target *target)
299 {
300         int retval = ERROR_OK;
301         struct target_list *head = target->head;
302
303         while (head != (struct target_list *)NULL) {
304                 struct target *curr = head->target;
305                 struct armv8_common *armv8 = target_to_armv8(curr);
306
307                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
308                 if (curr->smp)
309                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
310                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
311                 if (retval != ERROR_OK)
312                         break;
313
314                 head = head->next;
315         }
316
317         /* halt the target PE */
318         if (retval == ERROR_OK)
319                 retval = aarch64_halt(target);
320
321         return retval;
322 }
323
324 static int update_halt_gdb(struct target *target)
325 {
326         int retval = 0;
327         if (target->gdb_service && target->gdb_service->core[0] == -1) {
328                 target->gdb_service->target = target;
329                 target->gdb_service->core[0] = target->coreid;
330                 retval += aarch64_halt_smp(target);
331         }
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int aarch64_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct aarch64_common *aarch64 = target_to_aarch64(target);
344         struct armv8_common *armv8 = &aarch64->armv8_common;
345         enum target_state prev_target_state = target->state;
346         /*  toggle to another core is done by gdb as follow */
347         /*  maint packet J core_id */
348         /*  continue */
349         /*  the next polling trigger an halt event sent to gdb */
350         if ((target->state == TARGET_HALTED) && (target->smp) &&
351                 (target->gdb_service) &&
352                 (target->gdb_service->target == NULL)) {
353                 target->gdb_service->target =
354                         get_aarch64(target, target->gdb_service->core[1]);
355                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
356                 return retval;
357         }
358         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
359                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
360         if (retval != ERROR_OK)
361                 return retval;
362         aarch64->cpudbg_dscr = dscr;
363
364         if (DSCR_RUN_MODE(dscr) == 0x3) {
365                 if (prev_target_state != TARGET_HALTED) {
366                         /* We have a halting debug event */
367                         LOG_DEBUG("Target halted");
368                         target->state = TARGET_HALTED;
369                         if ((prev_target_state == TARGET_RUNNING)
370                                 || (prev_target_state == TARGET_UNKNOWN)
371                                 || (prev_target_state == TARGET_RESET)) {
372                                 retval = aarch64_debug_entry(target);
373                                 if (retval != ERROR_OK)
374                                         return retval;
375                                 if (target->smp) {
376                                         retval = update_halt_gdb(target);
377                                         if (retval != ERROR_OK)
378                                                 return retval;
379                                 }
380                                 target_call_event_callbacks(target,
381                                         TARGET_EVENT_HALTED);
382                         }
383                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
384                                 LOG_DEBUG(" ");
385
386                                 retval = aarch64_debug_entry(target);
387                                 if (retval != ERROR_OK)
388                                         return retval;
389                                 if (target->smp) {
390                                         retval = update_halt_gdb(target);
391                                         if (retval != ERROR_OK)
392                                                 return retval;
393                                 }
394
395                                 target_call_event_callbacks(target,
396                                         TARGET_EVENT_DEBUG_HALTED);
397                         }
398                 }
399         } else
400                 target->state = TARGET_RUNNING;
401
402         return retval;
403 }
404
405 static int aarch64_halt(struct target *target)
406 {
407         int retval = ERROR_OK;
408         uint32_t dscr;
409         struct armv8_common *armv8 = target_to_armv8(target);
410
411         /*
412          * add HDE in halting debug mode
413          */
414         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
415                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
416         if (retval == ERROR_OK)
417                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
418                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         /* trigger an event on channel 0, this outputs a halt request to the PE */
423         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
424                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
425         if (retval != ERROR_OK)
426                 return retval;
427
428         long long then = timeval_ms();
429         for (;; ) {
430                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
431                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
432                 if (retval != ERROR_OK)
433                         return retval;
434                 if ((dscr & DSCRV8_HALT_MASK) != 0)
435                         break;
436                 if (timeval_ms() > then + 1000) {
437                         LOG_ERROR("Timeout waiting for halt");
438                         return ERROR_FAIL;
439                 }
440         }
441
442         target->debug_reason = DBG_REASON_DBGRQ;
443
444         return ERROR_OK;
445 }
446
447 static int aarch64_internal_restore(struct target *target, int current,
448         uint64_t *address, int handle_breakpoints, int debug_execution)
449 {
450         struct armv8_common *armv8 = target_to_armv8(target);
451         struct arm *arm = &armv8->arm;
452         int retval;
453         uint64_t resume_pc;
454
455         if (!debug_execution)
456                 target_free_all_working_areas(target);
457
458         /* current = 1: continue on current pc, otherwise continue at <address> */
459         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
460         if (!current)
461                 resume_pc = *address;
462         else
463                 *address = resume_pc;
464
465         /* Make sure that the Armv7 gdb thumb fixups does not
466          * kill the return address
467          */
468         switch (arm->core_state) {
469                 case ARM_STATE_ARM:
470                         resume_pc &= 0xFFFFFFFC;
471                         break;
472                 case ARM_STATE_AARCH64:
473                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
474                         break;
475                 case ARM_STATE_THUMB:
476                 case ARM_STATE_THUMB_EE:
477                         /* When the return address is loaded into PC
478                          * bit 0 must be 1 to stay in Thumb state
479                          */
480                         resume_pc |= 0x1;
481                         break;
482                 case ARM_STATE_JAZELLE:
483                         LOG_ERROR("How do I resume into Jazelle state??");
484                         return ERROR_FAIL;
485         }
486         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
487         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
488         arm->pc->dirty = 1;
489         arm->pc->valid = 1;
490         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
491
492         /* called it now before restoring context because it uses cpu
493          * register r0 for restoring system control register */
494         retval = aarch64_restore_system_control_reg(target);
495         if (retval != ERROR_OK)
496                 return retval;
497         retval = aarch64_restore_context(target, handle_breakpoints);
498         if (retval != ERROR_OK)
499                 return retval;
500         target->debug_reason = DBG_REASON_NOTHALTED;
501         target->state = TARGET_RUNNING;
502
503         /* registers are now invalid */
504         register_cache_invalidate(arm->core_cache);
505
506         return retval;
507 }
508
509 static int aarch64_internal_restart(struct target *target, bool slave_pe)
510 {
511         struct armv8_common *armv8 = target_to_armv8(target);
512         struct arm *arm = &armv8->arm;
513         int retval;
514         uint32_t dscr;
515         /*
516          * * Restart core and wait for it to be started.  Clear ITRen and sticky
517          * * exception flags: see ARMv7 ARM, C5.9.
518          *
519          * REVISIT: for single stepping, we probably want to
520          * disable IRQs by default, with optional override...
521          */
522
523         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
524                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
525         if (retval != ERROR_OK)
526                 return retval;
527
528         if ((dscr & DSCR_ITE) == 0)
529                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
530
531         /* make sure to acknowledge the halt event before resuming */
532         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
533                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
534
535         /*
536          * open the CTI gate for channel 1 so that the restart events
537          * get passed along to all PEs
538          */
539         if (retval == ERROR_OK)
540                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
541                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
542         if (retval != ERROR_OK)
543                 return retval;
544
545         if (!slave_pe) {
546                 /* trigger an event on channel 1, generates a restart request to the PE */
547                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
548                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
549                 if (retval != ERROR_OK)
550                         return retval;
551
552                 long long then = timeval_ms();
553                 for (;; ) {
554                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
555                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
556                         if (retval != ERROR_OK)
557                                 return retval;
558                         if ((dscr & DSCR_HDE) != 0)
559                                 break;
560                         if (timeval_ms() > then + 1000) {
561                                 LOG_ERROR("Timeout waiting for resume");
562                                 return ERROR_FAIL;
563                         }
564                 }
565         }
566
567         target->debug_reason = DBG_REASON_NOTHALTED;
568         target->state = TARGET_RUNNING;
569
570         /* registers are now invalid */
571         register_cache_invalidate(arm->core_cache);
572
573         return ERROR_OK;
574 }
575
576 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
577 {
578         int retval = 0;
579         struct target_list *head;
580         struct target *curr;
581         uint64_t address;
582         head = target->head;
583         while (head != (struct target_list *)NULL) {
584                 curr = head->target;
585                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
586                         /*  resume current address , not in step mode */
587                         retval += aarch64_internal_restore(curr, 1, &address,
588                                         handle_breakpoints, 0);
589                         retval += aarch64_internal_restart(curr, true);
590                 }
591                 head = head->next;
592
593         }
594         return retval;
595 }
596
597 static int aarch64_resume(struct target *target, int current,
598         target_addr_t address, int handle_breakpoints, int debug_execution)
599 {
600         int retval = 0;
601         uint64_t addr = address;
602
603         /* dummy resume for smp toggle in order to reduce gdb impact  */
604         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
605                 /*   simulate a start and halt of target */
606                 target->gdb_service->target = NULL;
607                 target->gdb_service->core[0] = target->gdb_service->core[1];
608                 /*  fake resume at next poll we play the  target core[1], see poll*/
609                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
610                 return 0;
611         }
612         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
613                                  debug_execution);
614         if (target->smp) {
615                 target->gdb_service->core[0] = -1;
616                 retval = aarch64_restore_smp(target, handle_breakpoints);
617                 if (retval != ERROR_OK)
618                         return retval;
619         }
620         aarch64_internal_restart(target, false);
621
622         if (!debug_execution) {
623                 target->state = TARGET_RUNNING;
624                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
625                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
626         } else {
627                 target->state = TARGET_DEBUG_RUNNING;
628                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
629                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
630         }
631
632         return ERROR_OK;
633 }
634
635 static int aarch64_debug_entry(struct target *target)
636 {
637         int retval = ERROR_OK;
638         struct aarch64_common *aarch64 = target_to_aarch64(target);
639         struct armv8_common *armv8 = target_to_armv8(target);
640         struct arm_dpm *dpm = &armv8->dpm;
641         enum arm_state core_state;
642
643         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
644
645         dpm->dscr = aarch64->cpudbg_dscr;
646         core_state = armv8_dpm_get_core_state(dpm);
647         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
648         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
649
650         /* make sure to clear all sticky errors */
651         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
652                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
653         if (retval != ERROR_OK)
654                 return retval;
655
656         /* Examine debug reason */
657         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
658
659         /* save address of instruction that triggered the watchpoint? */
660         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
661                 uint32_t tmp;
662                 uint64_t wfar = 0;
663
664                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
665                                 armv8->debug_base + CPUV8_DBG_WFAR1,
666                                 &tmp);
667                 if (retval != ERROR_OK)
668                         return retval;
669                 wfar = tmp;
670                 wfar = (wfar << 32);
671                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
672                                 armv8->debug_base + CPUV8_DBG_WFAR0,
673                                 &tmp);
674                 if (retval != ERROR_OK)
675                         return retval;
676                 wfar |= tmp;
677                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
678         }
679
680         retval = armv8_dpm_read_current_registers(&armv8->dpm);
681
682         if (retval == ERROR_OK && armv8->post_debug_entry)
683                 retval = armv8->post_debug_entry(target);
684
685         return retval;
686 }
687
688 static int aarch64_post_debug_entry(struct target *target)
689 {
690         struct aarch64_common *aarch64 = target_to_aarch64(target);
691         struct armv8_common *armv8 = &aarch64->armv8_common;
692         int retval;
693
694         /* clear sticky errors */
695         mem_ap_write_atomic_u32(armv8->debug_ap,
696                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
697
698         switch (armv8->arm.core_mode) {
699                 case ARMV8_64_EL0T:
700                         armv8_dpm_modeswitch(&armv8->dpm, ARMV8_64_EL1H);
701                         /* fall through */
702                 case ARMV8_64_EL1T:
703                 case ARMV8_64_EL1H:
704                         retval = armv8->arm.mrs(target, 3, /*op 0*/
705                                         0, 0,   /* op1, op2 */
706                                         1, 0,   /* CRn, CRm */
707                                         &aarch64->system_control_reg);
708                         if (retval != ERROR_OK)
709                                 return retval;
710                 break;
711                 case ARMV8_64_EL2T:
712                 case ARMV8_64_EL2H:
713                         retval = armv8->arm.mrs(target, 3, /*op 0*/
714                                         4, 0,   /* op1, op2 */
715                                         1, 0,   /* CRn, CRm */
716                                         &aarch64->system_control_reg);
717                         if (retval != ERROR_OK)
718                                 return retval;
719                 break;
720                 case ARMV8_64_EL3H:
721                 case ARMV8_64_EL3T:
722                         retval = armv8->arm.mrs(target, 3, /*op 0*/
723                                         6, 0,   /* op1, op2 */
724                                         1, 0,   /* CRn, CRm */
725                                         &aarch64->system_control_reg);
726                         if (retval != ERROR_OK)
727                                 return retval;
728                 break;
729
730                 case ARM_MODE_SVC:
731                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
732                         if (retval != ERROR_OK)
733                                 return retval;
734                         break;
735
736                 default:
737                         LOG_INFO("cannot read system control register in this mode");
738                         break;
739         }
740
741         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
742
743         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
744         aarch64->system_control_reg_curr = aarch64->system_control_reg;
745
746         if (armv8->armv8_mmu.armv8_cache.info == -1) {
747                 armv8_identify_cache(armv8);
748                 armv8_read_mpidr(armv8);
749         }
750
751         armv8->armv8_mmu.mmu_enabled =
752                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
753         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
754                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
755         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
756                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
757         aarch64->curr_mode = armv8->arm.core_mode;
758         return ERROR_OK;
759 }
760
761 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
762 {
763         struct armv8_common *armv8 = target_to_armv8(target);
764         uint32_t dscr;
765
766         /* Read DSCR */
767         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
768                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
769         if (ERROR_OK != retval)
770                 return retval;
771
772         /* clear bitfield */
773         dscr &= ~bit_mask;
774         /* put new value */
775         dscr |= value & bit_mask;
776
777         /* write new DSCR */
778         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
779                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
780         return retval;
781 }
782
783 static int aarch64_step(struct target *target, int current, target_addr_t address,
784         int handle_breakpoints)
785 {
786         struct armv8_common *armv8 = target_to_armv8(target);
787         int retval;
788         uint32_t edecr;
789
790         if (target->state != TARGET_HALTED) {
791                 LOG_WARNING("target not halted");
792                 return ERROR_TARGET_NOT_HALTED;
793         }
794
795         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
796                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
797         if (retval != ERROR_OK)
798                 return retval;
799
800         /* make sure EDECR.SS is not set when restoring the register */
801         edecr &= ~0x4;
802
803         /* set EDECR.SS to enter hardware step mode */
804         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
805                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
806         if (retval != ERROR_OK)
807                 return retval;
808
809         /* disable interrupts while stepping */
810         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
811         if (retval != ERROR_OK)
812                 return ERROR_OK;
813
814         /* resume the target */
815         retval = aarch64_resume(target, current, address, 0, 0);
816         if (retval != ERROR_OK)
817                 return retval;
818
819         long long then = timeval_ms();
820         while (target->state != TARGET_HALTED) {
821                 retval = aarch64_poll(target);
822                 if (retval != ERROR_OK)
823                         return retval;
824                 if (timeval_ms() > then + 1000) {
825                         LOG_ERROR("timeout waiting for target halt");
826                         return ERROR_FAIL;
827                 }
828         }
829
830         /* restore EDECR */
831         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
832                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
833         if (retval != ERROR_OK)
834                 return retval;
835
836         /* restore interrupts */
837         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
838         if (retval != ERROR_OK)
839                 return ERROR_OK;
840
841         return ERROR_OK;
842 }
843
844 static int aarch64_restore_context(struct target *target, bool bpwp)
845 {
846         struct armv8_common *armv8 = target_to_armv8(target);
847
848         LOG_DEBUG(" ");
849
850         if (armv8->pre_restore_context)
851                 armv8->pre_restore_context(target);
852
853         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
854
855 }
856
857 /*
858  * Cortex-A8 Breakpoint and watchpoint functions
859  */
860
861 /* Setup hardware Breakpoint Register Pair */
862 static int aarch64_set_breakpoint(struct target *target,
863         struct breakpoint *breakpoint, uint8_t matchmode)
864 {
865         int retval;
866         int brp_i = 0;
867         uint32_t control;
868         uint8_t byte_addr_select = 0x0F;
869         struct aarch64_common *aarch64 = target_to_aarch64(target);
870         struct armv8_common *armv8 = &aarch64->armv8_common;
871         struct aarch64_brp *brp_list = aarch64->brp_list;
872
873         if (breakpoint->set) {
874                 LOG_WARNING("breakpoint already set");
875                 return ERROR_OK;
876         }
877
878         if (breakpoint->type == BKPT_HARD) {
879                 int64_t bpt_value;
880                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
881                         brp_i++;
882                 if (brp_i >= aarch64->brp_num) {
883                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
884                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
885                 }
886                 breakpoint->set = brp_i + 1;
887                 if (breakpoint->length == 2)
888                         byte_addr_select = (3 << (breakpoint->address & 0x02));
889                 control = ((matchmode & 0x7) << 20)
890                         | (1 << 13)
891                         | (byte_addr_select << 5)
892                         | (3 << 1) | 1;
893                 brp_list[brp_i].used = 1;
894                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
895                 brp_list[brp_i].control = control;
896                 bpt_value = brp_list[brp_i].value;
897
898                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
899                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
900                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
901                 if (retval != ERROR_OK)
902                         return retval;
903                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
904                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
905                                 (uint32_t)(bpt_value >> 32));
906                 if (retval != ERROR_OK)
907                         return retval;
908
909                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
910                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
911                                 brp_list[brp_i].control);
912                 if (retval != ERROR_OK)
913                         return retval;
914                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
915                         brp_list[brp_i].control,
916                         brp_list[brp_i].value);
917
918         } else if (breakpoint->type == BKPT_SOFT) {
919                 uint8_t code[4];
920
921                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
922                 retval = target_read_memory(target,
923                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
924                                 breakpoint->length, 1,
925                                 breakpoint->orig_instr);
926                 if (retval != ERROR_OK)
927                         return retval;
928
929                 armv8_cache_d_inner_flush_virt(armv8,
930                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
931                                 breakpoint->length);
932
933                 retval = target_write_memory(target,
934                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
935                                 breakpoint->length, 1, code);
936                 if (retval != ERROR_OK)
937                         return retval;
938
939                 armv8_cache_d_inner_flush_virt(armv8,
940                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
941                                 breakpoint->length);
942
943                 armv8_cache_i_inner_inval_virt(armv8,
944                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
945                                 breakpoint->length);
946
947                 breakpoint->set = 0x11; /* Any nice value but 0 */
948         }
949
950         /* Ensure that halting debug mode is enable */
951         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
952         if (retval != ERROR_OK) {
953                 LOG_DEBUG("Failed to set DSCR.HDE");
954                 return retval;
955         }
956
957         return ERROR_OK;
958 }
959
960 static int aarch64_set_context_breakpoint(struct target *target,
961         struct breakpoint *breakpoint, uint8_t matchmode)
962 {
963         int retval = ERROR_FAIL;
964         int brp_i = 0;
965         uint32_t control;
966         uint8_t byte_addr_select = 0x0F;
967         struct aarch64_common *aarch64 = target_to_aarch64(target);
968         struct armv8_common *armv8 = &aarch64->armv8_common;
969         struct aarch64_brp *brp_list = aarch64->brp_list;
970
971         if (breakpoint->set) {
972                 LOG_WARNING("breakpoint already set");
973                 return retval;
974         }
975         /*check available context BRPs*/
976         while ((brp_list[brp_i].used ||
977                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
978                 brp_i++;
979
980         if (brp_i >= aarch64->brp_num) {
981                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
982                 return ERROR_FAIL;
983         }
984
985         breakpoint->set = brp_i + 1;
986         control = ((matchmode & 0x7) << 20)
987                 | (1 << 13)
988                 | (byte_addr_select << 5)
989                 | (3 << 1) | 1;
990         brp_list[brp_i].used = 1;
991         brp_list[brp_i].value = (breakpoint->asid);
992         brp_list[brp_i].control = control;
993         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
994                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
995                         brp_list[brp_i].value);
996         if (retval != ERROR_OK)
997                 return retval;
998         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
999                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1000                         brp_list[brp_i].control);
1001         if (retval != ERROR_OK)
1002                 return retval;
1003         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1004                 brp_list[brp_i].control,
1005                 brp_list[brp_i].value);
1006         return ERROR_OK;
1007
1008 }
1009
1010 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1011 {
1012         int retval = ERROR_FAIL;
1013         int brp_1 = 0;  /* holds the contextID pair */
1014         int brp_2 = 0;  /* holds the IVA pair */
1015         uint32_t control_CTX, control_IVA;
1016         uint8_t CTX_byte_addr_select = 0x0F;
1017         uint8_t IVA_byte_addr_select = 0x0F;
1018         uint8_t CTX_machmode = 0x03;
1019         uint8_t IVA_machmode = 0x01;
1020         struct aarch64_common *aarch64 = target_to_aarch64(target);
1021         struct armv8_common *armv8 = &aarch64->armv8_common;
1022         struct aarch64_brp *brp_list = aarch64->brp_list;
1023
1024         if (breakpoint->set) {
1025                 LOG_WARNING("breakpoint already set");
1026                 return retval;
1027         }
1028         /*check available context BRPs*/
1029         while ((brp_list[brp_1].used ||
1030                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1031                 brp_1++;
1032
1033         printf("brp(CTX) found num: %d\n", brp_1);
1034         if (brp_1 >= aarch64->brp_num) {
1035                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1036                 return ERROR_FAIL;
1037         }
1038
1039         while ((brp_list[brp_2].used ||
1040                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1041                 brp_2++;
1042
1043         printf("brp(IVA) found num: %d\n", brp_2);
1044         if (brp_2 >= aarch64->brp_num) {
1045                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1046                 return ERROR_FAIL;
1047         }
1048
1049         breakpoint->set = brp_1 + 1;
1050         breakpoint->linked_BRP = brp_2;
1051         control_CTX = ((CTX_machmode & 0x7) << 20)
1052                 | (brp_2 << 16)
1053                 | (0 << 14)
1054                 | (CTX_byte_addr_select << 5)
1055                 | (3 << 1) | 1;
1056         brp_list[brp_1].used = 1;
1057         brp_list[brp_1].value = (breakpoint->asid);
1058         brp_list[brp_1].control = control_CTX;
1059         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1060                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1061                         brp_list[brp_1].value);
1062         if (retval != ERROR_OK)
1063                 return retval;
1064         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1065                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1066                         brp_list[brp_1].control);
1067         if (retval != ERROR_OK)
1068                 return retval;
1069
1070         control_IVA = ((IVA_machmode & 0x7) << 20)
1071                 | (brp_1 << 16)
1072                 | (1 << 13)
1073                 | (IVA_byte_addr_select << 5)
1074                 | (3 << 1) | 1;
1075         brp_list[brp_2].used = 1;
1076         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1077         brp_list[brp_2].control = control_IVA;
1078         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1079                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1080                         brp_list[brp_2].value & 0xFFFFFFFF);
1081         if (retval != ERROR_OK)
1082                 return retval;
1083         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1084                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1085                         brp_list[brp_2].value >> 32);
1086         if (retval != ERROR_OK)
1087                 return retval;
1088         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1089                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1090                         brp_list[brp_2].control);
1091         if (retval != ERROR_OK)
1092                 return retval;
1093
1094         return ERROR_OK;
1095 }
1096
1097 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1098 {
1099         int retval;
1100         struct aarch64_common *aarch64 = target_to_aarch64(target);
1101         struct armv8_common *armv8 = &aarch64->armv8_common;
1102         struct aarch64_brp *brp_list = aarch64->brp_list;
1103
1104         if (!breakpoint->set) {
1105                 LOG_WARNING("breakpoint not set");
1106                 return ERROR_OK;
1107         }
1108
1109         if (breakpoint->type == BKPT_HARD) {
1110                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1111                         int brp_i = breakpoint->set - 1;
1112                         int brp_j = breakpoint->linked_BRP;
1113                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1114                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1115                                 return ERROR_OK;
1116                         }
1117                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1118                                 brp_list[brp_i].control, brp_list[brp_i].value);
1119                         brp_list[brp_i].used = 0;
1120                         brp_list[brp_i].value = 0;
1121                         brp_list[brp_i].control = 0;
1122                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1123                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1124                                         brp_list[brp_i].control);
1125                         if (retval != ERROR_OK)
1126                                 return retval;
1127                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1128                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1129                                         (uint32_t)brp_list[brp_i].value);
1130                         if (retval != ERROR_OK)
1131                                 return retval;
1132                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1133                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1134                                         (uint32_t)brp_list[brp_i].value);
1135                         if (retval != ERROR_OK)
1136                                 return retval;
1137                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1138                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1139                                 return ERROR_OK;
1140                         }
1141                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1142                                 brp_list[brp_j].control, brp_list[brp_j].value);
1143                         brp_list[brp_j].used = 0;
1144                         brp_list[brp_j].value = 0;
1145                         brp_list[brp_j].control = 0;
1146                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1147                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1148                                         brp_list[brp_j].control);
1149                         if (retval != ERROR_OK)
1150                                 return retval;
1151                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1152                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1153                                         (uint32_t)brp_list[brp_j].value);
1154                         if (retval != ERROR_OK)
1155                                 return retval;
1156                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1157                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1158                                         (uint32_t)brp_list[brp_j].value);
1159                         if (retval != ERROR_OK)
1160                                 return retval;
1161
1162                         breakpoint->linked_BRP = 0;
1163                         breakpoint->set = 0;
1164                         return ERROR_OK;
1165
1166                 } else {
1167                         int brp_i = breakpoint->set - 1;
1168                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1169                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1170                                 return ERROR_OK;
1171                         }
1172                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1173                                 brp_list[brp_i].control, brp_list[brp_i].value);
1174                         brp_list[brp_i].used = 0;
1175                         brp_list[brp_i].value = 0;
1176                         brp_list[brp_i].control = 0;
1177                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1178                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1179                                         brp_list[brp_i].control);
1180                         if (retval != ERROR_OK)
1181                                 return retval;
1182                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1183                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1184                                         brp_list[brp_i].value);
1185                         if (retval != ERROR_OK)
1186                                 return retval;
1187
1188                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1189                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1190                                         (uint32_t)brp_list[brp_i].value);
1191                         if (retval != ERROR_OK)
1192                                 return retval;
1193                         breakpoint->set = 0;
1194                         return ERROR_OK;
1195                 }
1196         } else {
1197                 /* restore original instruction (kept in target endianness) */
1198
1199                 armv8_cache_d_inner_flush_virt(armv8,
1200                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1201                                 breakpoint->length);
1202
1203                 if (breakpoint->length == 4) {
1204                         retval = target_write_memory(target,
1205                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1206                                         4, 1, breakpoint->orig_instr);
1207                         if (retval != ERROR_OK)
1208                                 return retval;
1209                 } else {
1210                         retval = target_write_memory(target,
1211                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1212                                         2, 1, breakpoint->orig_instr);
1213                         if (retval != ERROR_OK)
1214                                 return retval;
1215                 }
1216
1217                 armv8_cache_d_inner_flush_virt(armv8,
1218                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1219                                 breakpoint->length);
1220
1221                 armv8_cache_i_inner_inval_virt(armv8,
1222                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1223                                 breakpoint->length);
1224         }
1225         breakpoint->set = 0;
1226
1227         return ERROR_OK;
1228 }
1229
1230 static int aarch64_add_breakpoint(struct target *target,
1231         struct breakpoint *breakpoint)
1232 {
1233         struct aarch64_common *aarch64 = target_to_aarch64(target);
1234
1235         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1236                 LOG_INFO("no hardware breakpoint available");
1237                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1238         }
1239
1240         if (breakpoint->type == BKPT_HARD)
1241                 aarch64->brp_num_available--;
1242
1243         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1244 }
1245
1246 static int aarch64_add_context_breakpoint(struct target *target,
1247         struct breakpoint *breakpoint)
1248 {
1249         struct aarch64_common *aarch64 = target_to_aarch64(target);
1250
1251         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1252                 LOG_INFO("no hardware breakpoint available");
1253                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1254         }
1255
1256         if (breakpoint->type == BKPT_HARD)
1257                 aarch64->brp_num_available--;
1258
1259         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1260 }
1261
1262 static int aarch64_add_hybrid_breakpoint(struct target *target,
1263         struct breakpoint *breakpoint)
1264 {
1265         struct aarch64_common *aarch64 = target_to_aarch64(target);
1266
1267         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1268                 LOG_INFO("no hardware breakpoint available");
1269                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1270         }
1271
1272         if (breakpoint->type == BKPT_HARD)
1273                 aarch64->brp_num_available--;
1274
1275         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1276 }
1277
1278
1279 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1280 {
1281         struct aarch64_common *aarch64 = target_to_aarch64(target);
1282
1283 #if 0
1284 /* It is perfectly possible to remove breakpoints while the target is running */
1285         if (target->state != TARGET_HALTED) {
1286                 LOG_WARNING("target not halted");
1287                 return ERROR_TARGET_NOT_HALTED;
1288         }
1289 #endif
1290
1291         if (breakpoint->set) {
1292                 aarch64_unset_breakpoint(target, breakpoint);
1293                 if (breakpoint->type == BKPT_HARD)
1294                         aarch64->brp_num_available++;
1295         }
1296
1297         return ERROR_OK;
1298 }
1299
1300 /*
1301  * Cortex-A8 Reset functions
1302  */
1303
1304 static int aarch64_assert_reset(struct target *target)
1305 {
1306         struct armv8_common *armv8 = target_to_armv8(target);
1307
1308         LOG_DEBUG(" ");
1309
1310         /* FIXME when halt is requested, make it work somehow... */
1311
1312         /* Issue some kind of warm reset. */
1313         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1314                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1315         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1316                 /* REVISIT handle "pulls" cases, if there's
1317                  * hardware that needs them to work.
1318                  */
1319                 jtag_add_reset(0, 1);
1320         } else {
1321                 LOG_ERROR("%s: how to reset?", target_name(target));
1322                 return ERROR_FAIL;
1323         }
1324
1325         /* registers are now invalid */
1326         register_cache_invalidate(armv8->arm.core_cache);
1327
1328         target->state = TARGET_RESET;
1329
1330         return ERROR_OK;
1331 }
1332
1333 static int aarch64_deassert_reset(struct target *target)
1334 {
1335         int retval;
1336
1337         LOG_DEBUG(" ");
1338
1339         /* be certain SRST is off */
1340         jtag_add_reset(0, 0);
1341
1342         retval = aarch64_poll(target);
1343         if (retval != ERROR_OK)
1344                 return retval;
1345
1346         if (target->reset_halt) {
1347                 if (target->state != TARGET_HALTED) {
1348                         LOG_WARNING("%s: ran after reset and before halt ...",
1349                                 target_name(target));
1350                         retval = target_halt(target);
1351                         if (retval != ERROR_OK)
1352                                 return retval;
1353                 }
1354         }
1355
1356         return ERROR_OK;
1357 }
1358
1359 static int aarch64_write_apb_ap_memory(struct target *target,
1360         uint64_t address, uint32_t size,
1361         uint32_t count, const uint8_t *buffer)
1362 {
1363         /* write memory through APB-AP */
1364         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1365         struct armv8_common *armv8 = target_to_armv8(target);
1366         struct arm_dpm *dpm = &armv8->dpm;
1367         struct arm *arm = &armv8->arm;
1368         int total_bytes = count * size;
1369         int total_u32;
1370         int start_byte = address & 0x3;
1371         int end_byte   = (address + total_bytes) & 0x3;
1372         struct reg *reg;
1373         uint32_t dscr;
1374         uint8_t *tmp_buff = NULL;
1375
1376         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1377                           address, size, count);
1378         if (target->state != TARGET_HALTED) {
1379                 LOG_WARNING("target not halted");
1380                 return ERROR_TARGET_NOT_HALTED;
1381         }
1382
1383         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1384
1385         /* Mark register R0 as dirty, as it will be used
1386          * for transferring the data.
1387          * It will be restored automatically when exiting
1388          * debug mode
1389          */
1390         reg = armv8_reg_current(arm, 1);
1391         reg->dirty = true;
1392
1393         reg = armv8_reg_current(arm, 0);
1394         reg->dirty = true;
1395
1396         /*  clear any abort  */
1397         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1398                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1399         if (retval != ERROR_OK)
1400                 return retval;
1401
1402
1403         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1404
1405         /* The algorithm only copies 32 bit words, so the buffer
1406          * should be expanded to include the words at either end.
1407          * The first and last words will be read first to avoid
1408          * corruption if needed.
1409          */
1410         tmp_buff = malloc(total_u32 * 4);
1411
1412         if ((start_byte != 0) && (total_u32 > 1)) {
1413                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1414                  * the other bytes in the word.
1415                  */
1416                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1417                 if (retval != ERROR_OK)
1418                         goto error_free_buff_w;
1419         }
1420
1421         /* If end of write is not aligned, or the write is less than 4 bytes */
1422         if ((end_byte != 0) ||
1423                 ((total_u32 == 1) && (total_bytes != 4))) {
1424
1425                 /* Read the last word to avoid corruption during 32 bit write */
1426                 int mem_offset = (total_u32-1) * 4;
1427                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1428                 if (retval != ERROR_OK)
1429                         goto error_free_buff_w;
1430         }
1431
1432         /* Copy the write buffer over the top of the temporary buffer */
1433         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1434
1435         /* We now have a 32 bit aligned buffer that can be written */
1436
1437         /* Read DSCR */
1438         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1439                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1440         if (retval != ERROR_OK)
1441                 goto error_free_buff_w;
1442
1443         /* Set Normal access mode  */
1444         dscr = (dscr & ~DSCR_MA);
1445         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1446                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1447
1448         if (arm->core_state == ARM_STATE_AARCH64) {
1449                 /* Write X0 with value 'address' using write procedure */
1450                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1451                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1452                 retval = dpm->instr_write_data_dcc_64(dpm,
1453                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1454         } else {
1455                 /* Write R0 with value 'address' using write procedure */
1456                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1457                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1458                 dpm->instr_write_data_dcc(dpm,
1459                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1460
1461         }
1462         /* Step 1.d   - Change DCC to memory mode */
1463         dscr = dscr | DSCR_MA;
1464         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1465                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1466         if (retval != ERROR_OK)
1467                 goto error_unset_dtr_w;
1468
1469
1470         /* Step 2.a   - Do the write */
1471         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1472                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1473         if (retval != ERROR_OK)
1474                 goto error_unset_dtr_w;
1475
1476         /* Step 3.a   - Switch DTR mode back to Normal mode */
1477         dscr = (dscr & ~DSCR_MA);
1478         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1479                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1480         if (retval != ERROR_OK)
1481                 goto error_unset_dtr_w;
1482
1483         /* Check for sticky abort flags in the DSCR */
1484         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1485                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1486         if (retval != ERROR_OK)
1487                 goto error_free_buff_w;
1488
1489         dpm->dscr = dscr;
1490         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1491                 /* Abort occurred - clear it and exit */
1492                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1493                 mem_ap_write_atomic_u32(armv8->debug_ap,
1494                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1495                 armv8_dpm_handle_exception(dpm);
1496                 goto error_free_buff_w;
1497         }
1498
1499         /* Done */
1500         free(tmp_buff);
1501         return ERROR_OK;
1502
1503 error_unset_dtr_w:
1504         /* Unset DTR mode */
1505         mem_ap_read_atomic_u32(armv8->debug_ap,
1506                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1507         dscr = (dscr & ~DSCR_MA);
1508         mem_ap_write_atomic_u32(armv8->debug_ap,
1509                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1510 error_free_buff_w:
1511         LOG_ERROR("error");
1512         free(tmp_buff);
1513         return ERROR_FAIL;
1514 }
1515
1516 static int aarch64_read_apb_ap_memory(struct target *target,
1517         target_addr_t address, uint32_t size,
1518         uint32_t count, uint8_t *buffer)
1519 {
1520         /* read memory through APB-AP */
1521         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1522         struct armv8_common *armv8 = target_to_armv8(target);
1523         struct arm_dpm *dpm = &armv8->dpm;
1524         struct arm *arm = &armv8->arm;
1525         int total_bytes = count * size;
1526         int total_u32;
1527         int start_byte = address & 0x3;
1528         int end_byte   = (address + total_bytes) & 0x3;
1529         struct reg *reg;
1530         uint32_t dscr;
1531         uint8_t *tmp_buff = NULL;
1532         uint8_t *u8buf_ptr;
1533         uint32_t value;
1534
1535         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1536                           address, size, count);
1537         if (target->state != TARGET_HALTED) {
1538                 LOG_WARNING("target not halted");
1539                 return ERROR_TARGET_NOT_HALTED;
1540         }
1541
1542         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1543         /* Mark register X0, X1 as dirty, as it will be used
1544          * for transferring the data.
1545          * It will be restored automatically when exiting
1546          * debug mode
1547          */
1548         reg = armv8_reg_current(arm, 1);
1549         reg->dirty = true;
1550
1551         reg = armv8_reg_current(arm, 0);
1552         reg->dirty = true;
1553
1554         /*      clear any abort  */
1555         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1556                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1557         if (retval != ERROR_OK)
1558                 goto error_free_buff_r;
1559
1560         /* Read DSCR */
1561         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1562                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1563
1564         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1565
1566         /* Set Normal access mode  */
1567         dscr = (dscr & ~DSCR_MA);
1568         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1569                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1570
1571         if (arm->core_state == ARM_STATE_AARCH64) {
1572                 /* Write X0 with value 'address' using write procedure */
1573                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1574                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1575                 retval += dpm->instr_write_data_dcc_64(dpm,
1576                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1577                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1578                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1579                 /* Step 1.e - Change DCC to memory mode */
1580                 dscr = dscr | DSCR_MA;
1581                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1582                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1583                 /* Step 1.f - read DBGDTRTX and discard the value */
1584                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1585                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1586         } else {
1587                 /* Write R0 with value 'address' using write procedure */
1588                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1589                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1590                 retval += dpm->instr_write_data_dcc(dpm,
1591                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1592                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1593                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1594                 /* Step 1.e - Change DCC to memory mode */
1595                 dscr = dscr | DSCR_MA;
1596                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1597                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1598                 /* Step 1.f - read DBGDTRTX and discard the value */
1599                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1600                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1601
1602         }
1603         if (retval != ERROR_OK)
1604                 goto error_unset_dtr_r;
1605
1606         /* Optimize the read as much as we can, either way we read in a single pass  */
1607         if ((start_byte) || (end_byte)) {
1608                 /* The algorithm only copies 32 bit words, so the buffer
1609                  * should be expanded to include the words at either end.
1610                  * The first and last words will be read into a temp buffer
1611                  * to avoid corruption
1612                  */
1613                 tmp_buff = malloc(total_u32 * 4);
1614                 if (!tmp_buff)
1615                         goto error_unset_dtr_r;
1616
1617                 /* use the tmp buffer to read the entire data */
1618                 u8buf_ptr = tmp_buff;
1619         } else
1620                 /* address and read length are aligned so read directly into the passed buffer */
1621                 u8buf_ptr = buffer;
1622
1623         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1624          * Abort flags are sticky, so can be read at end of transactions
1625          *
1626          * This data is read in aligned to 32 bit boundary.
1627          */
1628
1629         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1630          * increments X0 by 4. */
1631         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1632                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1633         if (retval != ERROR_OK)
1634                         goto error_unset_dtr_r;
1635
1636         /* Step 3.a - set DTR access mode back to Normal mode   */
1637         dscr = (dscr & ~DSCR_MA);
1638         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1639                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1640         if (retval != ERROR_OK)
1641                 goto error_free_buff_r;
1642
1643         /* Step 3.b - read DBGDTRTX for the final value */
1644         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1645                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1646         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1647
1648         /* Check for sticky abort flags in the DSCR */
1649         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1650                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1651         if (retval != ERROR_OK)
1652                 goto error_free_buff_r;
1653
1654         dpm->dscr = dscr;
1655
1656         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1657                 /* Abort occurred - clear it and exit */
1658                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1659                 mem_ap_write_atomic_u32(armv8->debug_ap,
1660                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1661                 armv8_dpm_handle_exception(dpm);
1662                 goto error_free_buff_r;
1663         }
1664
1665         /* check if we need to copy aligned data by applying any shift necessary */
1666         if (tmp_buff) {
1667                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1668                 free(tmp_buff);
1669         }
1670
1671         /* Done */
1672         return ERROR_OK;
1673
1674 error_unset_dtr_r:
1675         /* Unset DTR mode */
1676         mem_ap_read_atomic_u32(armv8->debug_ap,
1677                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1678         dscr = (dscr & ~DSCR_MA);
1679         mem_ap_write_atomic_u32(armv8->debug_ap,
1680                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1681 error_free_buff_r:
1682         LOG_ERROR("error");
1683         free(tmp_buff);
1684         return ERROR_FAIL;
1685 }
1686
1687 static int aarch64_read_phys_memory(struct target *target,
1688         target_addr_t address, uint32_t size,
1689         uint32_t count, uint8_t *buffer)
1690 {
1691         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1692         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1693                 address, size, count);
1694
1695         if (count && buffer) {
1696                 /* read memory through APB-AP */
1697                 retval = aarch64_mmu_modify(target, 0);
1698                 if (retval != ERROR_OK)
1699                         return retval;
1700                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1701         }
1702         return retval;
1703 }
1704
1705 static int aarch64_read_memory(struct target *target, target_addr_t address,
1706         uint32_t size, uint32_t count, uint8_t *buffer)
1707 {
1708         int mmu_enabled = 0;
1709         int retval;
1710
1711         /* aarch64 handles unaligned memory access */
1712         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1713                 size, count);
1714
1715         /* determine if MMU was enabled on target stop */
1716         retval = aarch64_mmu(target, &mmu_enabled);
1717         if (retval != ERROR_OK)
1718                 return retval;
1719
1720         if (mmu_enabled) {
1721                 retval = aarch64_check_address(target, address);
1722                 if (retval != ERROR_OK)
1723                         return retval;
1724                 /* enable MMU as we could have disabled it for phys access */
1725                 retval = aarch64_mmu_modify(target, 1);
1726                 if (retval != ERROR_OK)
1727                         return retval;
1728         }
1729         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1730 }
1731
1732 static int aarch64_write_phys_memory(struct target *target,
1733         target_addr_t address, uint32_t size,
1734         uint32_t count, const uint8_t *buffer)
1735 {
1736         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1737
1738         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1739                 size, count);
1740
1741         if (count && buffer) {
1742                 /* write memory through APB-AP */
1743                 retval = aarch64_mmu_modify(target, 0);
1744                 if (retval != ERROR_OK)
1745                         return retval;
1746                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1747         }
1748
1749         return retval;
1750 }
1751
1752 static int aarch64_write_memory(struct target *target, target_addr_t address,
1753         uint32_t size, uint32_t count, const uint8_t *buffer)
1754 {
1755         int mmu_enabled = 0;
1756         int retval;
1757
1758         /* aarch64 handles unaligned memory access */
1759         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1760                   "; count %" PRId32, address, size, count);
1761
1762         /* determine if MMU was enabled on target stop */
1763         retval = aarch64_mmu(target, &mmu_enabled);
1764         if (retval != ERROR_OK)
1765                 return retval;
1766
1767         if (mmu_enabled) {
1768                 retval = aarch64_check_address(target, address);
1769                 if (retval != ERROR_OK)
1770                         return retval;
1771                 /* enable MMU as we could have disabled it for phys access */
1772                 retval = aarch64_mmu_modify(target, 1);
1773                 if (retval != ERROR_OK)
1774                         return retval;
1775         }
1776         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1777 }
1778
1779 static int aarch64_handle_target_request(void *priv)
1780 {
1781         struct target *target = priv;
1782         struct armv8_common *armv8 = target_to_armv8(target);
1783         int retval;
1784
1785         if (!target_was_examined(target))
1786                 return ERROR_OK;
1787         if (!target->dbg_msg_enabled)
1788                 return ERROR_OK;
1789
1790         if (target->state == TARGET_RUNNING) {
1791                 uint32_t request;
1792                 uint32_t dscr;
1793                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1794                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1795
1796                 /* check if we have data */
1797                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1798                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1799                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1800                         if (retval == ERROR_OK) {
1801                                 target_request(target, request);
1802                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1803                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1804                         }
1805                 }
1806         }
1807
1808         return ERROR_OK;
1809 }
1810
1811 static int aarch64_examine_first(struct target *target)
1812 {
1813         struct aarch64_common *aarch64 = target_to_aarch64(target);
1814         struct armv8_common *armv8 = &aarch64->armv8_common;
1815         struct adiv5_dap *swjdp = armv8->arm.dap;
1816         int i;
1817         int retval = ERROR_OK;
1818         uint64_t debug, ttypr;
1819         uint32_t cpuid;
1820         uint32_t tmp0, tmp1;
1821         debug = ttypr = cpuid = 0;
1822
1823         /* We do one extra read to ensure DAP is configured,
1824          * we call ahbap_debugport_init(swjdp) instead
1825          */
1826         retval = dap_dp_init(swjdp);
1827         if (retval != ERROR_OK)
1828                 return retval;
1829
1830         /* Search for the APB-AB - it is needed for access to debug registers */
1831         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1832         if (retval != ERROR_OK) {
1833                 LOG_ERROR("Could not find APB-AP for debug access");
1834                 return retval;
1835         }
1836
1837         retval = mem_ap_init(armv8->debug_ap);
1838         if (retval != ERROR_OK) {
1839                 LOG_ERROR("Could not initialize the APB-AP");
1840                 return retval;
1841         }
1842
1843         armv8->debug_ap->memaccess_tck = 80;
1844
1845         if (!target->dbgbase_set) {
1846                 uint32_t dbgbase;
1847                 /* Get ROM Table base */
1848                 uint32_t apid;
1849                 int32_t coreidx = target->coreid;
1850                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1851                 if (retval != ERROR_OK)
1852                         return retval;
1853                 /* Lookup 0x15 -- Processor DAP */
1854                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1855                                 &armv8->debug_base, &coreidx);
1856                 if (retval != ERROR_OK)
1857                         return retval;
1858                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1859                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1860         } else
1861                 armv8->debug_base = target->dbgbase;
1862
1863         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1864                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1865         if (retval != ERROR_OK) {
1866                 LOG_DEBUG("LOCK debug access fail");
1867                 return retval;
1868         }
1869
1870         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1871                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1872         if (retval != ERROR_OK) {
1873                 LOG_DEBUG("Examine %s failed", "oslock");
1874                 return retval;
1875         }
1876
1877         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1878                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1879         if (retval != ERROR_OK) {
1880                 LOG_DEBUG("Examine %s failed", "CPUID");
1881                 return retval;
1882         }
1883
1884         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1885                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1886         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1887                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1888         if (retval != ERROR_OK) {
1889                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1890                 return retval;
1891         }
1892         ttypr |= tmp1;
1893         ttypr = (ttypr << 32) | tmp0;
1894
1895         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1896                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1897         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1898                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1899         if (retval != ERROR_OK) {
1900                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1901                 return retval;
1902         }
1903         debug |= tmp1;
1904         debug = (debug << 32) | tmp0;
1905
1906         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1907         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1908         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1909
1910         if (target->ctibase == 0) {
1911                 /* assume a v8 rom table layout */
1912                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1913                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1914         } else
1915                 armv8->cti_base = target->ctibase;
1916
1917         armv8->arm.core_type = ARM_MODE_MON;
1918         retval = aarch64_dpm_setup(aarch64, debug);
1919         if (retval != ERROR_OK)
1920                 return retval;
1921
1922         /* Setup Breakpoint Register Pairs */
1923         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1924         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1925         aarch64->brp_num_available = aarch64->brp_num;
1926         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1927         for (i = 0; i < aarch64->brp_num; i++) {
1928                 aarch64->brp_list[i].used = 0;
1929                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1930                         aarch64->brp_list[i].type = BRP_NORMAL;
1931                 else
1932                         aarch64->brp_list[i].type = BRP_CONTEXT;
1933                 aarch64->brp_list[i].value = 0;
1934                 aarch64->brp_list[i].control = 0;
1935                 aarch64->brp_list[i].BRPn = i;
1936         }
1937
1938         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1939
1940         target_set_examined(target);
1941         return ERROR_OK;
1942 }
1943
1944 static int aarch64_examine(struct target *target)
1945 {
1946         int retval = ERROR_OK;
1947
1948         /* don't re-probe hardware after each reset */
1949         if (!target_was_examined(target))
1950                 retval = aarch64_examine_first(target);
1951
1952         /* Configure core debug access */
1953         if (retval == ERROR_OK)
1954                 retval = aarch64_init_debug_access(target);
1955
1956         return retval;
1957 }
1958
1959 /*
1960  *      Cortex-A8 target creation and initialization
1961  */
1962
1963 static int aarch64_init_target(struct command_context *cmd_ctx,
1964         struct target *target)
1965 {
1966         /* examine_first() does a bunch of this */
1967         return ERROR_OK;
1968 }
1969
1970 static int aarch64_init_arch_info(struct target *target,
1971         struct aarch64_common *aarch64, struct jtag_tap *tap)
1972 {
1973         struct armv8_common *armv8 = &aarch64->armv8_common;
1974         struct adiv5_dap *dap = armv8->arm.dap;
1975
1976         armv8->arm.dap = dap;
1977
1978         /* Setup struct aarch64_common */
1979         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1980         /*  tap has no dap initialized */
1981         if (!tap->dap) {
1982                 tap->dap = dap_init();
1983
1984                 /* Leave (only) generic DAP stuff for debugport_init() */
1985                 tap->dap->tap = tap;
1986         }
1987
1988         armv8->arm.dap = tap->dap;
1989
1990         aarch64->fast_reg_read = 0;
1991
1992         /* register arch-specific functions */
1993         armv8->examine_debug_reason = NULL;
1994
1995         armv8->post_debug_entry = aarch64_post_debug_entry;
1996
1997         armv8->pre_restore_context = NULL;
1998
1999         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2000
2001         /* REVISIT v7a setup should be in a v7a-specific routine */
2002         armv8_init_arch_info(target, armv8);
2003         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2004
2005         return ERROR_OK;
2006 }
2007
2008 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2009 {
2010         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2011
2012         return aarch64_init_arch_info(target, aarch64, target->tap);
2013 }
2014
2015 static int aarch64_mmu(struct target *target, int *enabled)
2016 {
2017         if (target->state != TARGET_HALTED) {
2018                 LOG_ERROR("%s: target not halted", __func__);
2019                 return ERROR_TARGET_INVALID;
2020         }
2021
2022         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2023         return ERROR_OK;
2024 }
2025
2026 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2027                              target_addr_t *phys)
2028 {
2029         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2030 }
2031
2032 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2033 {
2034         struct target *target = get_current_target(CMD_CTX);
2035         struct armv8_common *armv8 = target_to_armv8(target);
2036
2037         return armv8_handle_cache_info_command(CMD_CTX,
2038                         &armv8->armv8_mmu.armv8_cache);
2039 }
2040
2041
2042 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2043 {
2044         struct target *target = get_current_target(CMD_CTX);
2045         if (!target_was_examined(target)) {
2046                 LOG_ERROR("target not examined yet");
2047                 return ERROR_FAIL;
2048         }
2049
2050         return aarch64_init_debug_access(target);
2051 }
2052 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2053 {
2054         struct target *target = get_current_target(CMD_CTX);
2055         /* check target is an smp target */
2056         struct target_list *head;
2057         struct target *curr;
2058         head = target->head;
2059         target->smp = 0;
2060         if (head != (struct target_list *)NULL) {
2061                 while (head != (struct target_list *)NULL) {
2062                         curr = head->target;
2063                         curr->smp = 0;
2064                         head = head->next;
2065                 }
2066                 /*  fixes the target display to the debugger */
2067                 target->gdb_service->target = target;
2068         }
2069         return ERROR_OK;
2070 }
2071
2072 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2073 {
2074         struct target *target = get_current_target(CMD_CTX);
2075         struct target_list *head;
2076         struct target *curr;
2077         head = target->head;
2078         if (head != (struct target_list *)NULL) {
2079                 target->smp = 1;
2080                 while (head != (struct target_list *)NULL) {
2081                         curr = head->target;
2082                         curr->smp = 1;
2083                         head = head->next;
2084                 }
2085         }
2086         return ERROR_OK;
2087 }
2088
2089 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2090 {
2091         struct target *target = get_current_target(CMD_CTX);
2092         int retval = ERROR_OK;
2093         struct target_list *head;
2094         head = target->head;
2095         if (head != (struct target_list *)NULL) {
2096                 if (CMD_ARGC == 1) {
2097                         int coreid = 0;
2098                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2099                         if (ERROR_OK != retval)
2100                                 return retval;
2101                         target->gdb_service->core[1] = coreid;
2102
2103                 }
2104                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2105                         , target->gdb_service->core[1]);
2106         }
2107         return ERROR_OK;
2108 }
2109
2110 static const struct command_registration aarch64_exec_command_handlers[] = {
2111         {
2112                 .name = "cache_info",
2113                 .handler = aarch64_handle_cache_info_command,
2114                 .mode = COMMAND_EXEC,
2115                 .help = "display information about target caches",
2116                 .usage = "",
2117         },
2118         {
2119                 .name = "dbginit",
2120                 .handler = aarch64_handle_dbginit_command,
2121                 .mode = COMMAND_EXEC,
2122                 .help = "Initialize core debug",
2123                 .usage = "",
2124         },
2125         {       .name = "smp_off",
2126                 .handler = aarch64_handle_smp_off_command,
2127                 .mode = COMMAND_EXEC,
2128                 .help = "Stop smp handling",
2129                 .usage = "",
2130         },
2131         {
2132                 .name = "smp_on",
2133                 .handler = aarch64_handle_smp_on_command,
2134                 .mode = COMMAND_EXEC,
2135                 .help = "Restart smp handling",
2136                 .usage = "",
2137         },
2138         {
2139                 .name = "smp_gdb",
2140                 .handler = aarch64_handle_smp_gdb_command,
2141                 .mode = COMMAND_EXEC,
2142                 .help = "display/fix current core played to gdb",
2143                 .usage = "",
2144         },
2145
2146
2147         COMMAND_REGISTRATION_DONE
2148 };
2149 static const struct command_registration aarch64_command_handlers[] = {
2150         {
2151                 .chain = arm_command_handlers,
2152         },
2153         {
2154                 .chain = armv8_command_handlers,
2155         },
2156         {
2157                 .name = "cortex_a",
2158                 .mode = COMMAND_ANY,
2159                 .help = "Cortex-A command group",
2160                 .usage = "",
2161                 .chain = aarch64_exec_command_handlers,
2162         },
2163         COMMAND_REGISTRATION_DONE
2164 };
2165
2166 struct target_type aarch64_target = {
2167         .name = "aarch64",
2168
2169         .poll = aarch64_poll,
2170         .arch_state = armv8_arch_state,
2171
2172         .halt = aarch64_halt,
2173         .resume = aarch64_resume,
2174         .step = aarch64_step,
2175
2176         .assert_reset = aarch64_assert_reset,
2177         .deassert_reset = aarch64_deassert_reset,
2178
2179         /* REVISIT allow exporting VFP3 registers ... */
2180         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2181
2182         .read_memory = aarch64_read_memory,
2183         .write_memory = aarch64_write_memory,
2184
2185         .checksum_memory = arm_checksum_memory,
2186         .blank_check_memory = arm_blank_check_memory,
2187
2188         .run_algorithm = armv4_5_run_algorithm,
2189
2190         .add_breakpoint = aarch64_add_breakpoint,
2191         .add_context_breakpoint = aarch64_add_context_breakpoint,
2192         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2193         .remove_breakpoint = aarch64_remove_breakpoint,
2194         .add_watchpoint = NULL,
2195         .remove_watchpoint = NULL,
2196
2197         .commands = aarch64_command_handlers,
2198         .target_create = aarch64_target_create,
2199         .init_target = aarch64_init_target,
2200         .examine = aarch64_examine,
2201
2202         .read_phys_memory = aarch64_read_phys_memory,
2203         .write_phys_memory = aarch64_write_phys_memory,
2204         .mmu = aarch64_mmu,
2205         .virt2phys = aarch64_virt2phys,
2206 };