aarch64: deconflict debug register names
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
61                                                      0xd5181000,
62                                                      aarch64->system_control_reg);
63         }
64
65         return retval;
66 }
67
68 /*  check address before aarch64_apb read write access with mmu on
69  *  remove apb predictible data abort */
70 static int aarch64_check_address(struct target *target, uint32_t address)
71 {
72         /* TODO */
73         return ERROR_OK;
74 }
75 /*  modify system_control_reg in order to enable or disable mmu for :
76  *  - virt2phys address conversion
77  *  - read or write memory in phys or virt address */
78 static int aarch64_mmu_modify(struct target *target, int enable)
79 {
80         struct aarch64_common *aarch64 = target_to_aarch64(target);
81         struct armv8_common *armv8 = &aarch64->armv8_common;
82         int retval = ERROR_OK;
83
84         if (enable) {
85                 /*  if mmu enabled at target stop and mmu not enable */
86                 if (!(aarch64->system_control_reg & 0x1U)) {
87                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
88                         return ERROR_FAIL;
89                 }
90                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
91                         aarch64->system_control_reg_curr |= 0x1U;
92                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
93                                                              0xd5181000,
94                                                              aarch64->system_control_reg_curr);
95                 }
96         } else {
97                 if (aarch64->system_control_reg_curr & 0x4U) {
98                         /*  data cache is active */
99                         aarch64->system_control_reg_curr &= ~0x4U;
100                         /* flush data cache armv7 function to be called */
101                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
102                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
103                 }
104                 if ((aarch64->system_control_reg_curr & 0x1U)) {
105                         aarch64->system_control_reg_curr &= ~0x1U;
106                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
107                                                              0xd5181000,
108                                                              aarch64->system_control_reg_curr);
109                 }
110         }
111         return retval;
112 }
113
114 /*
115  * Basic debug access, very low level assumes state is saved
116  */
117 static int aarch64_init_debug_access(struct target *target)
118 {
119         struct armv8_common *armv8 = target_to_armv8(target);
120         int retval;
121         uint32_t dummy;
122
123         LOG_DEBUG(" ");
124
125         /* Unlocking the debug registers for modification
126          * The debugport might be uninitialised so try twice */
127         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
128                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
129         if (retval != ERROR_OK) {
130                 /* try again */
131                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
132                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
133                 if (retval == ERROR_OK)
134                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
135         }
136         if (retval != ERROR_OK)
137                 return retval;
138         /* Clear Sticky Power Down status Bit in PRSR to enable access to
139            the registers in the Core Power Domain */
140         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
141                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
142         if (retval != ERROR_OK)
143                 return retval;
144
145         /* Enabling of instruction execution in debug mode is done in debug_entry code */
146
147         /* Resync breakpoint registers */
148
149         /* Since this is likely called from init or reset, update target state information*/
150         return aarch64_poll(target);
151 }
152
153 /* To reduce needless round-trips, pass in a pointer to the current
154  * DSCR value.  Initialize it to zero if you just need to know the
155  * value on return from this function; or DSCR_ITE if you
156  * happen to know that no instruction is pending.
157  */
158 static int aarch64_exec_opcode(struct target *target,
159         uint32_t opcode, uint32_t *dscr_p)
160 {
161         uint32_t dscr;
162         int retval;
163         struct armv8_common *armv8 = target_to_armv8(target);
164         dscr = dscr_p ? *dscr_p : 0;
165
166         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
167
168         /* Wait for InstrCompl bit to be set */
169         long long then = timeval_ms();
170         while ((dscr & DSCR_ITE) == 0) {
171                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
172                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
173                 if (retval != ERROR_OK) {
174                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
175                         return retval;
176                 }
177                 if (timeval_ms() > then + 1000) {
178                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
179                         return ERROR_FAIL;
180                 }
181         }
182
183         retval = mem_ap_write_u32(armv8->debug_ap,
184                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
185         if (retval != ERROR_OK)
186                 return retval;
187
188         then = timeval_ms();
189         do {
190                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
191                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
192                 if (retval != ERROR_OK) {
193                         LOG_ERROR("Could not read DSCR register");
194                         return retval;
195                 }
196                 if (timeval_ms() > then + 1000) {
197                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
198                         return ERROR_FAIL;
199                 }
200         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
201
202         if (dscr_p)
203                 *dscr_p = dscr;
204
205         return retval;
206 }
207
208 /* Write to memory mapped registers directly with no cache or mmu handling */
209 static int aarch64_dap_write_memap_register_u32(struct target *target,
210         uint32_t address,
211         uint32_t value)
212 {
213         int retval;
214         struct armv8_common *armv8 = target_to_armv8(target);
215
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
217
218         return retval;
219 }
220
221 /*
222  * AARCH64 implementation of Debug Programmer's Model
223  *
224  * NOTE the invariant:  these routines return with DSCR_ITE set,
225  * so there's no need to poll for it before executing an instruction.
226  *
227  * NOTE that in several of these cases the "stall" mode might be useful.
228  * It'd let us queue a few operations together... prepare/finish might
229  * be the places to enable/disable that mode.
230  */
231
232 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
233 {
234         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
235 }
236
237 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
238 {
239         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
240         return mem_ap_write_u32(armv8->debug_ap,
241                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
242 }
243
244 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
245 {
246         int ret;
247         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
248         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
249         ret = mem_ap_write_u32(armv8->debug_ap,
250                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
251         ret += mem_ap_write_u32(armv8->debug_ap,
252                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
253         return ret;
254 }
255
256 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
257         uint32_t *dscr_p)
258 {
259         uint32_t dscr = DSCR_ITE;
260         int retval;
261
262         if (dscr_p)
263                 dscr = *dscr_p;
264
265         /* Wait for DTRRXfull */
266         long long then = timeval_ms();
267         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
268                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
269                                 armv8->debug_base + CPUV8_DBG_DSCR,
270                                 &dscr);
271                 if (retval != ERROR_OK)
272                         return retval;
273                 if (timeval_ms() > then + 1000) {
274                         LOG_ERROR("Timeout waiting for read dcc");
275                         return ERROR_FAIL;
276                 }
277         }
278
279         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                             armv8->debug_base + CPUV8_DBG_DTRTX,
281                                             data);
282         if (retval != ERROR_OK)
283                 return retval;
284         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
285
286         if (dscr_p)
287                 *dscr_p = dscr;
288
289         return retval;
290 }
291
292 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
293         uint32_t *dscr_p)
294 {
295         uint32_t dscr = DSCR_ITE;
296         uint32_t higher;
297         int retval;
298
299         if (dscr_p)
300                 dscr = *dscr_p;
301
302         /* Wait for DTRRXfull */
303         long long then = timeval_ms();
304         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
305                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
306                                 armv8->debug_base + CPUV8_DBG_DSCR,
307                                 &dscr);
308                 if (retval != ERROR_OK)
309                         return retval;
310                 if (timeval_ms() > then + 1000) {
311                         LOG_ERROR("Timeout waiting for read dcc");
312                         return ERROR_FAIL;
313                 }
314         }
315
316         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
317                                             armv8->debug_base + CPUV8_DBG_DTRTX,
318                                             (uint32_t *)data);
319         if (retval != ERROR_OK)
320                 return retval;
321
322         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
323                                             armv8->debug_base + CPUV8_DBG_DTRRX,
324                                             &higher);
325         if (retval != ERROR_OK)
326                 return retval;
327
328         *data = *(uint32_t *)data | (uint64_t)higher << 32;
329         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
330
331         if (dscr_p)
332                 *dscr_p = dscr;
333
334         return retval;
335 }
336
337 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
338 {
339         struct aarch64_common *a8 = dpm_to_a8(dpm);
340         uint32_t dscr;
341         int retval;
342
343         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
344         long long then = timeval_ms();
345         for (;; ) {
346                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
347                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
348                                 &dscr);
349                 if (retval != ERROR_OK)
350                         return retval;
351                 if ((dscr & DSCR_ITE) != 0)
352                         break;
353                 if (timeval_ms() > then + 1000) {
354                         LOG_ERROR("Timeout waiting for dpm prepare");
355                         return ERROR_FAIL;
356                 }
357         }
358
359         /* this "should never happen" ... */
360         if (dscr & DSCR_DTR_RX_FULL) {
361                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
362                 /* Clear DCCRX */
363                 retval = aarch64_exec_opcode(
364                                 a8->armv8_common.arm.target,
365                                 0xd5130400,
366                                 &dscr);
367                 if (retval != ERROR_OK)
368                         return retval;
369         }
370
371         return retval;
372 }
373
374 static int aarch64_dpm_finish(struct arm_dpm *dpm)
375 {
376         /* REVISIT what could be done here? */
377         return ERROR_OK;
378 }
379
380 static int aarch64_instr_execute(struct arm_dpm *dpm,
381         uint32_t opcode)
382 {
383         struct aarch64_common *a8 = dpm_to_a8(dpm);
384         uint32_t dscr = DSCR_ITE;
385
386         return aarch64_exec_opcode(
387                         a8->armv8_common.arm.target,
388                         opcode,
389                         &dscr);
390 }
391
392 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
393         uint32_t opcode, uint32_t data)
394 {
395         struct aarch64_common *a8 = dpm_to_a8(dpm);
396         int retval;
397         uint32_t dscr = DSCR_ITE;
398
399         retval = aarch64_write_dcc(&a8->armv8_common, data);
400         if (retval != ERROR_OK)
401                 return retval;
402
403         return aarch64_exec_opcode(
404                         a8->armv8_common.arm.target,
405                         opcode,
406                         &dscr);
407 }
408
409 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
410         uint32_t opcode, uint64_t data)
411 {
412         struct aarch64_common *a8 = dpm_to_a8(dpm);
413         int retval;
414         uint32_t dscr = DSCR_ITE;
415
416         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
417         if (retval != ERROR_OK)
418                 return retval;
419
420         return aarch64_exec_opcode(
421                         a8->armv8_common.arm.target,
422                         opcode,
423                         &dscr);
424 }
425
426 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
427         uint32_t opcode, uint32_t data)
428 {
429         struct aarch64_common *a8 = dpm_to_a8(dpm);
430         uint32_t dscr = DSCR_ITE;
431         int retval;
432
433         retval = aarch64_write_dcc(&a8->armv8_common, data);
434         if (retval != ERROR_OK)
435                 return retval;
436
437         retval = aarch64_exec_opcode(
438                         a8->armv8_common.arm.target,
439                         0xd5330500,
440                         &dscr);
441         if (retval != ERROR_OK)
442                 return retval;
443
444         /* then the opcode, taking data from R0 */
445         retval = aarch64_exec_opcode(
446                         a8->armv8_common.arm.target,
447                         opcode,
448                         &dscr);
449
450         return retval;
451 }
452
453 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
454         uint32_t opcode, uint64_t data)
455 {
456         struct aarch64_common *a8 = dpm_to_a8(dpm);
457         uint32_t dscr = DSCR_ITE;
458         int retval;
459
460         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         retval = aarch64_exec_opcode(
465                         a8->armv8_common.arm.target,
466                         0xd5330400,
467                         &dscr);
468         if (retval != ERROR_OK)
469                 return retval;
470
471         /* then the opcode, taking data from R0 */
472         retval = aarch64_exec_opcode(
473                         a8->armv8_common.arm.target,
474                         opcode,
475                         &dscr);
476
477         return retval;
478 }
479
480 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
481 {
482         struct target *target = dpm->arm->target;
483         uint32_t dscr = DSCR_ITE;
484
485         /* "Prefetch flush" after modifying execution status in CPSR */
486         return aarch64_exec_opcode(target,
487                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
488                         &dscr);
489 }
490
491 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
492         uint32_t opcode, uint32_t *data)
493 {
494         struct aarch64_common *a8 = dpm_to_a8(dpm);
495         int retval;
496         uint32_t dscr = DSCR_ITE;
497
498         /* the opcode, writing data to DCC */
499         retval = aarch64_exec_opcode(
500                         a8->armv8_common.arm.target,
501                         opcode,
502                         &dscr);
503         if (retval != ERROR_OK)
504                 return retval;
505
506         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
507 }
508
509 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
510         uint32_t opcode, uint64_t *data)
511 {
512         struct aarch64_common *a8 = dpm_to_a8(dpm);
513         int retval;
514         uint32_t dscr = DSCR_ITE;
515
516         /* the opcode, writing data to DCC */
517         retval = aarch64_exec_opcode(
518                         a8->armv8_common.arm.target,
519                         opcode,
520                         &dscr);
521         if (retval != ERROR_OK)
522                 return retval;
523
524         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
525 }
526
527 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
528         uint32_t opcode, uint32_t *data)
529 {
530         struct aarch64_common *a8 = dpm_to_a8(dpm);
531         uint32_t dscr = DSCR_ITE;
532         int retval;
533
534         /* the opcode, writing data to R0 */
535         retval = aarch64_exec_opcode(
536                         a8->armv8_common.arm.target,
537                         opcode,
538                         &dscr);
539         if (retval != ERROR_OK)
540                 return retval;
541
542         /* write R0 to DCC */
543         retval = aarch64_exec_opcode(
544                         a8->armv8_common.arm.target,
545                         0xd5130400,  /* msr dbgdtr_el0, x0 */
546                         &dscr);
547         if (retval != ERROR_OK)
548                 return retval;
549
550         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
551 }
552
553 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
554         uint32_t opcode, uint64_t *data)
555 {
556         struct aarch64_common *a8 = dpm_to_a8(dpm);
557         uint32_t dscr = DSCR_ITE;
558         int retval;
559
560         /* the opcode, writing data to R0 */
561         retval = aarch64_exec_opcode(
562                         a8->armv8_common.arm.target,
563                         opcode,
564                         &dscr);
565         if (retval != ERROR_OK)
566                 return retval;
567
568         /* write R0 to DCC */
569         retval = aarch64_exec_opcode(
570                         a8->armv8_common.arm.target,
571                         0xd5130400,  /* msr dbgdtr_el0, x0 */
572                         &dscr);
573         if (retval != ERROR_OK)
574                 return retval;
575
576         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
577 }
578
579 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
580         uint32_t addr, uint32_t control)
581 {
582         struct aarch64_common *a8 = dpm_to_a8(dpm);
583         uint32_t vr = a8->armv8_common.debug_base;
584         uint32_t cr = a8->armv8_common.debug_base;
585         int retval;
586
587         switch (index_t) {
588                 case 0 ... 15:  /* breakpoints */
589                         vr += CPUV8_DBG_BVR_BASE;
590                         cr += CPUV8_DBG_BCR_BASE;
591                         break;
592                 case 16 ... 31: /* watchpoints */
593                         vr += CPUV8_DBG_WVR_BASE;
594                         cr += CPUV8_DBG_WCR_BASE;
595                         index_t -= 16;
596                         break;
597                 default:
598                         return ERROR_FAIL;
599         }
600         vr += 4 * index_t;
601         cr += 4 * index_t;
602
603         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
604                 (unsigned) vr, (unsigned) cr);
605
606         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
607                         vr, addr);
608         if (retval != ERROR_OK)
609                 return retval;
610         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
611                         cr, control);
612         return retval;
613 }
614
615 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
616 {
617         return ERROR_OK;
618
619 #if 0
620         struct aarch64_common *a = dpm_to_a8(dpm);
621         uint32_t cr;
622
623         switch (index_t) {
624                 case 0 ... 15:
625                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
626                         break;
627                 case 16 ... 31:
628                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
629                         index_t -= 16;
630                         break;
631                 default:
632                         return ERROR_FAIL;
633         }
634         cr += 4 * index_t;
635
636         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
637
638         /* clear control register */
639         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
640 #endif
641 }
642
643 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
644 {
645         struct arm_dpm *dpm = &a8->armv8_common.dpm;
646         int retval;
647
648         dpm->arm = &a8->armv8_common.arm;
649         dpm->didr = debug;
650
651         dpm->prepare = aarch64_dpm_prepare;
652         dpm->finish = aarch64_dpm_finish;
653
654         dpm->instr_execute = aarch64_instr_execute;
655         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
656         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
657         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
658         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
659         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
660
661         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
662         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
663         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
664         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
665
666         dpm->arm_reg_current = armv8_reg_current;
667
668         dpm->bpwp_enable = aarch64_bpwp_enable;
669         dpm->bpwp_disable = aarch64_bpwp_disable;
670
671         retval = armv8_dpm_setup(dpm);
672         if (retval == ERROR_OK)
673                 retval = armv8_dpm_initialize(dpm);
674
675         return retval;
676 }
677 static struct target *get_aarch64(struct target *target, int32_t coreid)
678 {
679         struct target_list *head;
680         struct target *curr;
681
682         head = target->head;
683         while (head != (struct target_list *)NULL) {
684                 curr = head->target;
685                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
686                         return curr;
687                 head = head->next;
688         }
689         return target;
690 }
691 static int aarch64_halt(struct target *target);
692
693 static int aarch64_halt_smp(struct target *target)
694 {
695         int retval = 0;
696         struct target_list *head;
697         struct target *curr;
698         head = target->head;
699         while (head != (struct target_list *)NULL) {
700                 curr = head->target;
701                 if ((curr != target) && (curr->state != TARGET_HALTED))
702                         retval += aarch64_halt(curr);
703                 head = head->next;
704         }
705         return retval;
706 }
707
708 static int update_halt_gdb(struct target *target)
709 {
710         int retval = 0;
711         if (target->gdb_service && target->gdb_service->core[0] == -1) {
712                 target->gdb_service->target = target;
713                 target->gdb_service->core[0] = target->coreid;
714                 retval += aarch64_halt_smp(target);
715         }
716         return retval;
717 }
718
719 /*
720  * Cortex-A8 Run control
721  */
722
723 static int aarch64_poll(struct target *target)
724 {
725         int retval = ERROR_OK;
726         uint32_t dscr;
727         struct aarch64_common *aarch64 = target_to_aarch64(target);
728         struct armv8_common *armv8 = &aarch64->armv8_common;
729         enum target_state prev_target_state = target->state;
730         /*  toggle to another core is done by gdb as follow */
731         /*  maint packet J core_id */
732         /*  continue */
733         /*  the next polling trigger an halt event sent to gdb */
734         if ((target->state == TARGET_HALTED) && (target->smp) &&
735                 (target->gdb_service) &&
736                 (target->gdb_service->target == NULL)) {
737                 target->gdb_service->target =
738                         get_aarch64(target, target->gdb_service->core[1]);
739                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
740                 return retval;
741         }
742         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
743                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
744         if (retval != ERROR_OK)
745                 return retval;
746         aarch64->cpudbg_dscr = dscr;
747
748         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
749                 if (prev_target_state != TARGET_HALTED) {
750                         /* We have a halting debug event */
751                         LOG_DEBUG("Target halted");
752                         target->state = TARGET_HALTED;
753                         if ((prev_target_state == TARGET_RUNNING)
754                                 || (prev_target_state == TARGET_UNKNOWN)
755                                 || (prev_target_state == TARGET_RESET)) {
756                                 retval = aarch64_debug_entry(target);
757                                 if (retval != ERROR_OK)
758                                         return retval;
759                                 if (target->smp) {
760                                         retval = update_halt_gdb(target);
761                                         if (retval != ERROR_OK)
762                                                 return retval;
763                                 }
764                                 target_call_event_callbacks(target,
765                                         TARGET_EVENT_HALTED);
766                         }
767                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
768                                 LOG_DEBUG(" ");
769
770                                 retval = aarch64_debug_entry(target);
771                                 if (retval != ERROR_OK)
772                                         return retval;
773                                 if (target->smp) {
774                                         retval = update_halt_gdb(target);
775                                         if (retval != ERROR_OK)
776                                                 return retval;
777                                 }
778
779                                 target_call_event_callbacks(target,
780                                         TARGET_EVENT_DEBUG_HALTED);
781                         }
782                 }
783         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
784                 target->state = TARGET_RUNNING;
785         else {
786                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
787                 target->state = TARGET_UNKNOWN;
788         }
789
790         return retval;
791 }
792
793 static int aarch64_halt(struct target *target)
794 {
795         int retval = ERROR_OK;
796         uint32_t dscr;
797         struct armv8_common *armv8 = target_to_armv8(target);
798
799         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
800                         armv8->debug_base + 0x10000 + 0, &dscr);
801         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
802                         armv8->debug_base + 0x10000 + 0, 1);
803         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
804                         armv8->debug_base + 0x10000 + 0, &dscr);
805
806         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
807                         armv8->debug_base + 0x10000 + 0x140, &dscr);
808         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
809                         armv8->debug_base + 0x10000 + 0x140, 6);
810         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
811                         armv8->debug_base + 0x10000 + 0x140, &dscr);
812
813         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
814                         armv8->debug_base + 0x10000 + 0xa0, &dscr);
815         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
816                         armv8->debug_base + 0x10000 + 0xa0, 5);
817         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
818                         armv8->debug_base + 0x10000 + 0xa0, &dscr);
819
820         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
821                         armv8->debug_base + 0x10000 + 0xa4, &dscr);
822         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
823                         armv8->debug_base + 0x10000 + 0xa4, 2);
824         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
825                         armv8->debug_base + 0x10000 + 0xa4, &dscr);
826
827         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
828                         armv8->debug_base + 0x10000 + 0x20, &dscr);
829         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
830                         armv8->debug_base + 0x10000 + 0x20, 4);
831         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
832                         armv8->debug_base + 0x10000 + 0x20, &dscr);
833
834         /*
835          * enter halting debug mode
836          */
837         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
838                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
839         if (retval != ERROR_OK)
840                 return retval;
841
842 #       /* STATUS */
843         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
844                         armv8->debug_base + 0x10000 + 0x134, &dscr);
845
846         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
847                         armv8->debug_base + 0x10000 + 0x1c, &dscr);
848         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
849                         armv8->debug_base + 0x10000 + 0x1c, 1);
850         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
851                         armv8->debug_base + 0x10000 + 0x1c, &dscr);
852
853
854         long long then = timeval_ms();
855         for (;; ) {
856                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
857                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
858                 if (retval != ERROR_OK)
859                         return retval;
860                 if ((dscr & DSCR_CORE_HALTED) != 0)
861                         break;
862                 if (timeval_ms() > then + 1000) {
863                         LOG_ERROR("Timeout waiting for halt");
864                         return ERROR_FAIL;
865                 }
866         }
867
868         target->debug_reason = DBG_REASON_DBGRQ;
869
870         return ERROR_OK;
871 }
872
873 static int aarch64_internal_restore(struct target *target, int current,
874         uint64_t *address, int handle_breakpoints, int debug_execution)
875 {
876         struct armv8_common *armv8 = target_to_armv8(target);
877         struct arm *arm = &armv8->arm;
878         int retval;
879         uint64_t resume_pc;
880
881         if (!debug_execution)
882                 target_free_all_working_areas(target);
883
884         /* current = 1: continue on current pc, otherwise continue at <address> */
885         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
886         if (!current)
887                 resume_pc = *address;
888         else
889                 *address = resume_pc;
890
891         /* Make sure that the Armv7 gdb thumb fixups does not
892          * kill the return address
893          */
894         switch (arm->core_state) {
895                 case ARM_STATE_ARM:
896                         resume_pc &= 0xFFFFFFFC;
897                         break;
898                 case ARM_STATE_AARCH64:
899                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
900                         break;
901                 case ARM_STATE_THUMB:
902                 case ARM_STATE_THUMB_EE:
903                         /* When the return address is loaded into PC
904                          * bit 0 must be 1 to stay in Thumb state
905                          */
906                         resume_pc |= 0x1;
907                         break;
908                 case ARM_STATE_JAZELLE:
909                         LOG_ERROR("How do I resume into Jazelle state??");
910                         return ERROR_FAIL;
911         }
912         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
913         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
914         arm->pc->dirty = 1;
915         arm->pc->valid = 1;
916         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
917
918         /* called it now before restoring context because it uses cpu
919          * register r0 for restoring system control register */
920         retval = aarch64_restore_system_control_reg(target);
921         if (retval != ERROR_OK)
922                 return retval;
923         retval = aarch64_restore_context(target, handle_breakpoints);
924         if (retval != ERROR_OK)
925                 return retval;
926         target->debug_reason = DBG_REASON_NOTHALTED;
927         target->state = TARGET_RUNNING;
928
929         /* registers are now invalid */
930         register_cache_invalidate(arm->core_cache);
931
932 #if 0
933         /* the front-end may request us not to handle breakpoints */
934         if (handle_breakpoints) {
935                 /* Single step past breakpoint at current address */
936                 breakpoint = breakpoint_find(target, resume_pc);
937                 if (breakpoint) {
938                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
939                         cortex_m3_unset_breakpoint(target, breakpoint);
940                         cortex_m3_single_step_core(target);
941                         cortex_m3_set_breakpoint(target, breakpoint);
942                 }
943         }
944 #endif
945
946         return retval;
947 }
948
949 static int aarch64_internal_restart(struct target *target)
950 {
951         struct armv8_common *armv8 = target_to_armv8(target);
952         struct arm *arm = &armv8->arm;
953         int retval;
954         uint32_t dscr;
955         /*
956          * * Restart core and wait for it to be started.  Clear ITRen and sticky
957          * * exception flags: see ARMv7 ARM, C5.9.
958          *
959          * REVISIT: for single stepping, we probably want to
960          * disable IRQs by default, with optional override...
961          */
962
963         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
964                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
965         if (retval != ERROR_OK)
966                 return retval;
967
968         if ((dscr & DSCR_ITE) == 0)
969                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
970
971         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
972                         armv8->debug_base + CPUV8_DBG_DSCR, dscr & ~DSCR_ITR_EN);
973         if (retval != ERROR_OK)
974                 return retval;
975
976         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
977                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_RESTART |
978                         DRCR_CLEAR_EXCEPTIONS);
979         if (retval != ERROR_OK)
980                 return retval;
981
982         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
983                         armv8->debug_base + 0x10000 + 0x10, 1);
984         if (retval != ERROR_OK)
985                 return retval;
986
987         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
988                         armv8->debug_base + 0x10000 + 0x1c, 2);
989         if (retval != ERROR_OK)
990                 return retval;
991
992         long long then = timeval_ms();
993         for (;; ) {
994                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
995                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
996                 if (retval != ERROR_OK)
997                         return retval;
998                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
999                         break;
1000                 if (timeval_ms() > then + 1000) {
1001                         LOG_ERROR("Timeout waiting for resume");
1002                         return ERROR_FAIL;
1003                 }
1004         }
1005
1006         target->debug_reason = DBG_REASON_NOTHALTED;
1007         target->state = TARGET_RUNNING;
1008
1009         /* registers are now invalid */
1010         register_cache_invalidate(arm->core_cache);
1011
1012         return ERROR_OK;
1013 }
1014
1015 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1016 {
1017         int retval = 0;
1018         struct target_list *head;
1019         struct target *curr;
1020         uint64_t address;
1021         head = target->head;
1022         while (head != (struct target_list *)NULL) {
1023                 curr = head->target;
1024                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1025                         /*  resume current address , not in step mode */
1026                         retval += aarch64_internal_restore(curr, 1, &address,
1027                                         handle_breakpoints, 0);
1028                         retval += aarch64_internal_restart(curr);
1029                 }
1030                 head = head->next;
1031
1032         }
1033         return retval;
1034 }
1035
1036 static int aarch64_resume(struct target *target, int current,
1037         target_addr_t address, int handle_breakpoints, int debug_execution)
1038 {
1039         int retval = 0;
1040         uint64_t addr = address;
1041
1042         /* dummy resume for smp toggle in order to reduce gdb impact  */
1043         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1044                 /*   simulate a start and halt of target */
1045                 target->gdb_service->target = NULL;
1046                 target->gdb_service->core[0] = target->gdb_service->core[1];
1047                 /*  fake resume at next poll we play the  target core[1], see poll*/
1048                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1049                 return 0;
1050         }
1051         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1052                                  debug_execution);
1053         if (target->smp) {
1054                 target->gdb_service->core[0] = -1;
1055                 retval = aarch64_restore_smp(target, handle_breakpoints);
1056                 if (retval != ERROR_OK)
1057                         return retval;
1058         }
1059         aarch64_internal_restart(target);
1060
1061         if (!debug_execution) {
1062                 target->state = TARGET_RUNNING;
1063                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1064                 LOG_DEBUG("target resumed at 0x%" PRIu64, addr);
1065         } else {
1066                 target->state = TARGET_DEBUG_RUNNING;
1067                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1068                 LOG_DEBUG("target debug resumed at 0x%" PRIu64, addr);
1069         }
1070
1071         return ERROR_OK;
1072 }
1073
1074 static int aarch64_debug_entry(struct target *target)
1075 {
1076         uint32_t dscr;
1077         int retval = ERROR_OK;
1078         struct aarch64_common *aarch64 = target_to_aarch64(target);
1079         struct armv8_common *armv8 = target_to_armv8(target);
1080         uint32_t tmp;
1081
1082         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1083
1084         /* REVISIT surely we should not re-read DSCR !! */
1085         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1086                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1087         if (retval != ERROR_OK)
1088                 return retval;
1089
1090         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1091          * imprecise data aborts get discarded by issuing a Data
1092          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1093          */
1094
1095         /* Enable the ITR execution once we are in debug mode */
1096         dscr |= DSCR_ITR_EN;
1097         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1098                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1099         if (retval != ERROR_OK)
1100                 return retval;
1101
1102         /* Examine debug reason */
1103         arm_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1104         mem_ap_read_atomic_u32(armv8->debug_ap,
1105                                    armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1106         if ((tmp & 0x7) == 0x4)
1107                 target->debug_reason = DBG_REASON_SINGLESTEP;
1108
1109         /* save address of instruction that triggered the watchpoint? */
1110         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1111                 uint32_t wfar;
1112
1113                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1114                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1115                                 &wfar);
1116                 if (retval != ERROR_OK)
1117                         return retval;
1118                 arm_dpm_report_wfar(&armv8->dpm, wfar);
1119         }
1120
1121         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1122
1123         if (armv8->post_debug_entry) {
1124                 retval = armv8->post_debug_entry(target);
1125                 if (retval != ERROR_OK)
1126                         return retval;
1127         }
1128
1129         return retval;
1130 }
1131
1132 static int aarch64_post_debug_entry(struct target *target)
1133 {
1134         struct aarch64_common *aarch64 = target_to_aarch64(target);
1135         struct armv8_common *armv8 = &aarch64->armv8_common;
1136         struct armv8_mmu_common *armv8_mmu = &armv8->armv8_mmu;
1137         uint32_t sctlr_el1 = 0;
1138         int retval;
1139
1140         mem_ap_write_atomic_u32(armv8->debug_ap,
1141                                 armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1142         retval = aarch64_instr_read_data_r0(armv8->arm.dpm,
1143                                             0xd5381000, &sctlr_el1);
1144         if (retval != ERROR_OK)
1145                 return retval;
1146
1147         LOG_DEBUG("sctlr_el1 = %#8.8x", sctlr_el1);
1148         aarch64->system_control_reg = sctlr_el1;
1149         aarch64->system_control_reg_curr = sctlr_el1;
1150         aarch64->curr_mode = armv8->arm.core_mode;
1151
1152         armv8_mmu->mmu_enabled = sctlr_el1 & 0x1U ? 1 : 0;
1153         armv8_mmu->armv8_cache.d_u_cache_enabled = sctlr_el1 & 0x4U ? 1 : 0;
1154         armv8_mmu->armv8_cache.i_cache_enabled = sctlr_el1 & 0x1000U ? 1 : 0;
1155
1156 #if 0
1157         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1158                 armv8_identify_cache(target);
1159 #endif
1160
1161         return ERROR_OK;
1162 }
1163
1164 static int aarch64_step(struct target *target, int current, target_addr_t address,
1165         int handle_breakpoints)
1166 {
1167         struct armv8_common *armv8 = target_to_armv8(target);
1168         int retval;
1169         uint32_t tmp;
1170
1171         if (target->state != TARGET_HALTED) {
1172                 LOG_WARNING("target not halted");
1173                 return ERROR_TARGET_NOT_HALTED;
1174         }
1175
1176         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1177                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1178         if (retval != ERROR_OK)
1179                 return retval;
1180
1181         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1182                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1183         if (retval != ERROR_OK)
1184                 return retval;
1185
1186         target->debug_reason = DBG_REASON_SINGLESTEP;
1187         retval = aarch64_resume(target, 1, address, 0, 0);
1188         if (retval != ERROR_OK)
1189                 return retval;
1190
1191         long long then = timeval_ms();
1192         while (target->state != TARGET_HALTED) {
1193                 mem_ap_read_atomic_u32(armv8->debug_ap,
1194                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1195                 LOG_DEBUG("DESR = %#x", tmp);
1196                 retval = aarch64_poll(target);
1197                 if (retval != ERROR_OK)
1198                         return retval;
1199                 if (timeval_ms() > then + 1000) {
1200                         LOG_ERROR("timeout waiting for target halt");
1201                         return ERROR_FAIL;
1202                 }
1203         }
1204
1205         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1206                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1207         if (retval != ERROR_OK)
1208                 return retval;
1209
1210         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1211         if (target->state == TARGET_HALTED)
1212                 LOG_DEBUG("target stepped");
1213
1214         return ERROR_OK;
1215 }
1216
1217 static int aarch64_restore_context(struct target *target, bool bpwp)
1218 {
1219         struct armv8_common *armv8 = target_to_armv8(target);
1220
1221         LOG_DEBUG(" ");
1222
1223         if (armv8->pre_restore_context)
1224                 armv8->pre_restore_context(target);
1225
1226         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1227
1228 }
1229
1230 /*
1231  * Cortex-A8 Breakpoint and watchpoint functions
1232  */
1233
1234 /* Setup hardware Breakpoint Register Pair */
1235 static int aarch64_set_breakpoint(struct target *target,
1236         struct breakpoint *breakpoint, uint8_t matchmode)
1237 {
1238         int retval;
1239         int brp_i = 0;
1240         uint32_t control;
1241         uint8_t byte_addr_select = 0x0F;
1242         struct aarch64_common *aarch64 = target_to_aarch64(target);
1243         struct armv8_common *armv8 = &aarch64->armv8_common;
1244         struct aarch64_brp *brp_list = aarch64->brp_list;
1245         uint32_t dscr;
1246
1247         if (breakpoint->set) {
1248                 LOG_WARNING("breakpoint already set");
1249                 return ERROR_OK;
1250         }
1251
1252         if (breakpoint->type == BKPT_HARD) {
1253                 int64_t bpt_value;
1254                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1255                         brp_i++;
1256                 if (brp_i >= aarch64->brp_num) {
1257                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1258                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1259                 }
1260                 breakpoint->set = brp_i + 1;
1261                 if (breakpoint->length == 2)
1262                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1263                 control = ((matchmode & 0x7) << 20)
1264                         | (1 << 13)
1265                         | (byte_addr_select << 5)
1266                         | (3 << 1) | 1;
1267                 brp_list[brp_i].used = 1;
1268                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1269                 brp_list[brp_i].control = control;
1270                 bpt_value = brp_list[brp_i].value;
1271
1272                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1273                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1274                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1275                 if (retval != ERROR_OK)
1276                         return retval;
1277                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1278                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1279                                 (uint32_t)(bpt_value >> 32));
1280                 if (retval != ERROR_OK)
1281                         return retval;
1282
1283                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1284                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1285                                 brp_list[brp_i].control);
1286                 if (retval != ERROR_OK)
1287                         return retval;
1288                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1289                         brp_list[brp_i].control,
1290                         brp_list[brp_i].value);
1291
1292         } else if (breakpoint->type == BKPT_SOFT) {
1293                 uint8_t code[4];
1294                 buf_set_u32(code, 0, 32, 0xD4400000);
1295
1296                 retval = target_read_memory(target,
1297                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1298                                 breakpoint->length, 1,
1299                                 breakpoint->orig_instr);
1300                 if (retval != ERROR_OK)
1301                         return retval;
1302                 retval = target_write_memory(target,
1303                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1304                                 breakpoint->length, 1, code);
1305                 if (retval != ERROR_OK)
1306                         return retval;
1307                 breakpoint->set = 0x11; /* Any nice value but 0 */
1308         }
1309
1310         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1311                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1312         /* Ensure that halting debug mode is enable */
1313         dscr = dscr | DSCR_HDE;
1314         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1315                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1316         if (retval != ERROR_OK) {
1317                 LOG_DEBUG("Failed to set DSCR.HDE");
1318                 return retval;
1319         }
1320
1321         return ERROR_OK;
1322 }
1323
1324 static int aarch64_set_context_breakpoint(struct target *target,
1325         struct breakpoint *breakpoint, uint8_t matchmode)
1326 {
1327         int retval = ERROR_FAIL;
1328         int brp_i = 0;
1329         uint32_t control;
1330         uint8_t byte_addr_select = 0x0F;
1331         struct aarch64_common *aarch64 = target_to_aarch64(target);
1332         struct armv8_common *armv8 = &aarch64->armv8_common;
1333         struct aarch64_brp *brp_list = aarch64->brp_list;
1334
1335         if (breakpoint->set) {
1336                 LOG_WARNING("breakpoint already set");
1337                 return retval;
1338         }
1339         /*check available context BRPs*/
1340         while ((brp_list[brp_i].used ||
1341                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1342                 brp_i++;
1343
1344         if (brp_i >= aarch64->brp_num) {
1345                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1346                 return ERROR_FAIL;
1347         }
1348
1349         breakpoint->set = brp_i + 1;
1350         control = ((matchmode & 0x7) << 20)
1351                 | (byte_addr_select << 5)
1352                 | (3 << 1) | 1;
1353         brp_list[brp_i].used = 1;
1354         brp_list[brp_i].value = (breakpoint->asid);
1355         brp_list[brp_i].control = control;
1356         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1357                         + CPUV8_DBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1358                         brp_list[brp_i].value);
1359         if (retval != ERROR_OK)
1360                 return retval;
1361         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1362                         + CPUV8_DBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1363                         brp_list[brp_i].control);
1364         if (retval != ERROR_OK)
1365                 return retval;
1366         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1367                 brp_list[brp_i].control,
1368                 brp_list[brp_i].value);
1369         return ERROR_OK;
1370
1371 }
1372
1373 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1374 {
1375         int retval = ERROR_FAIL;
1376         int brp_1 = 0;  /* holds the contextID pair */
1377         int brp_2 = 0;  /* holds the IVA pair */
1378         uint32_t control_CTX, control_IVA;
1379         uint8_t CTX_byte_addr_select = 0x0F;
1380         uint8_t IVA_byte_addr_select = 0x0F;
1381         uint8_t CTX_machmode = 0x03;
1382         uint8_t IVA_machmode = 0x01;
1383         struct aarch64_common *aarch64 = target_to_aarch64(target);
1384         struct armv8_common *armv8 = &aarch64->armv8_common;
1385         struct aarch64_brp *brp_list = aarch64->brp_list;
1386
1387         if (breakpoint->set) {
1388                 LOG_WARNING("breakpoint already set");
1389                 return retval;
1390         }
1391         /*check available context BRPs*/
1392         while ((brp_list[brp_1].used ||
1393                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1394                 brp_1++;
1395
1396         printf("brp(CTX) found num: %d\n", brp_1);
1397         if (brp_1 >= aarch64->brp_num) {
1398                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1399                 return ERROR_FAIL;
1400         }
1401
1402         while ((brp_list[brp_2].used ||
1403                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1404                 brp_2++;
1405
1406         printf("brp(IVA) found num: %d\n", brp_2);
1407         if (brp_2 >= aarch64->brp_num) {
1408                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1409                 return ERROR_FAIL;
1410         }
1411
1412         breakpoint->set = brp_1 + 1;
1413         breakpoint->linked_BRP = brp_2;
1414         control_CTX = ((CTX_machmode & 0x7) << 20)
1415                 | (brp_2 << 16)
1416                 | (0 << 14)
1417                 | (CTX_byte_addr_select << 5)
1418                 | (3 << 1) | 1;
1419         brp_list[brp_1].used = 1;
1420         brp_list[brp_1].value = (breakpoint->asid);
1421         brp_list[brp_1].control = control_CTX;
1422         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1423                         + CPUV8_DBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1424                         brp_list[brp_1].value);
1425         if (retval != ERROR_OK)
1426                 return retval;
1427         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1428                         + CPUV8_DBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1429                         brp_list[brp_1].control);
1430         if (retval != ERROR_OK)
1431                 return retval;
1432
1433         control_IVA = ((IVA_machmode & 0x7) << 20)
1434                 | (brp_1 << 16)
1435                 | (IVA_byte_addr_select << 5)
1436                 | (3 << 1) | 1;
1437         brp_list[brp_2].used = 1;
1438         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1439         brp_list[brp_2].control = control_IVA;
1440         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1441                         + CPUV8_DBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1442                         brp_list[brp_2].value);
1443         if (retval != ERROR_OK)
1444                 return retval;
1445         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1446                         + CPUV8_DBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1447                         brp_list[brp_2].control);
1448         if (retval != ERROR_OK)
1449                 return retval;
1450
1451         return ERROR_OK;
1452 }
1453
1454 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1455 {
1456         int retval;
1457         struct aarch64_common *aarch64 = target_to_aarch64(target);
1458         struct armv8_common *armv8 = &aarch64->armv8_common;
1459         struct aarch64_brp *brp_list = aarch64->brp_list;
1460
1461         if (!breakpoint->set) {
1462                 LOG_WARNING("breakpoint not set");
1463                 return ERROR_OK;
1464         }
1465
1466         if (breakpoint->type == BKPT_HARD) {
1467                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1468                         int brp_i = breakpoint->set - 1;
1469                         int brp_j = breakpoint->linked_BRP;
1470                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1471                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1472                                 return ERROR_OK;
1473                         }
1474                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1475                                 brp_list[brp_i].control, brp_list[brp_i].value);
1476                         brp_list[brp_i].used = 0;
1477                         brp_list[brp_i].value = 0;
1478                         brp_list[brp_i].control = 0;
1479                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1480                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1481                                         brp_list[brp_i].control);
1482                         if (retval != ERROR_OK)
1483                                 return retval;
1484                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1485                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1486                                 return ERROR_OK;
1487                         }
1488                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1489                                 brp_list[brp_j].control, brp_list[brp_j].value);
1490                         brp_list[brp_j].used = 0;
1491                         brp_list[brp_j].value = 0;
1492                         brp_list[brp_j].control = 0;
1493                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1494                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1495                                         brp_list[brp_j].control);
1496                         if (retval != ERROR_OK)
1497                                 return retval;
1498                         breakpoint->linked_BRP = 0;
1499                         breakpoint->set = 0;
1500                         return ERROR_OK;
1501
1502                 } else {
1503                         int brp_i = breakpoint->set - 1;
1504                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1505                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1506                                 return ERROR_OK;
1507                         }
1508                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1509                                 brp_list[brp_i].control, brp_list[brp_i].value);
1510                         brp_list[brp_i].used = 0;
1511                         brp_list[brp_i].value = 0;
1512                         brp_list[brp_i].control = 0;
1513                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1514                                         + CPUV8_DBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1515                                         brp_list[brp_i].control);
1516                         if (retval != ERROR_OK)
1517                                 return retval;
1518                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1519                                         + CPUV8_DBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1520                                         brp_list[brp_i].value);
1521                         if (retval != ERROR_OK)
1522                                 return retval;
1523                         breakpoint->set = 0;
1524                         return ERROR_OK;
1525                 }
1526         } else {
1527                 /* restore original instruction (kept in target endianness) */
1528                 if (breakpoint->length == 4) {
1529                         retval = target_write_memory(target,
1530                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1531                                         4, 1, breakpoint->orig_instr);
1532                         if (retval != ERROR_OK)
1533                                 return retval;
1534                 } else {
1535                         retval = target_write_memory(target,
1536                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1537                                         2, 1, breakpoint->orig_instr);
1538                         if (retval != ERROR_OK)
1539                                 return retval;
1540                 }
1541         }
1542         breakpoint->set = 0;
1543
1544         return ERROR_OK;
1545 }
1546
1547 static int aarch64_add_breakpoint(struct target *target,
1548         struct breakpoint *breakpoint)
1549 {
1550         struct aarch64_common *aarch64 = target_to_aarch64(target);
1551
1552         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1553                 LOG_INFO("no hardware breakpoint available");
1554                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1555         }
1556
1557         if (breakpoint->type == BKPT_HARD)
1558                 aarch64->brp_num_available--;
1559
1560         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1561 }
1562
1563 static int aarch64_add_context_breakpoint(struct target *target,
1564         struct breakpoint *breakpoint)
1565 {
1566         struct aarch64_common *aarch64 = target_to_aarch64(target);
1567
1568         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1569                 LOG_INFO("no hardware breakpoint available");
1570                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1571         }
1572
1573         if (breakpoint->type == BKPT_HARD)
1574                 aarch64->brp_num_available--;
1575
1576         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1577 }
1578
1579 static int aarch64_add_hybrid_breakpoint(struct target *target,
1580         struct breakpoint *breakpoint)
1581 {
1582         struct aarch64_common *aarch64 = target_to_aarch64(target);
1583
1584         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1585                 LOG_INFO("no hardware breakpoint available");
1586                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1587         }
1588
1589         if (breakpoint->type == BKPT_HARD)
1590                 aarch64->brp_num_available--;
1591
1592         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1593 }
1594
1595
1596 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1597 {
1598         struct aarch64_common *aarch64 = target_to_aarch64(target);
1599
1600 #if 0
1601 /* It is perfectly possible to remove breakpoints while the target is running */
1602         if (target->state != TARGET_HALTED) {
1603                 LOG_WARNING("target not halted");
1604                 return ERROR_TARGET_NOT_HALTED;
1605         }
1606 #endif
1607
1608         if (breakpoint->set) {
1609                 aarch64_unset_breakpoint(target, breakpoint);
1610                 if (breakpoint->type == BKPT_HARD)
1611                         aarch64->brp_num_available++;
1612         }
1613
1614         return ERROR_OK;
1615 }
1616
1617 /*
1618  * Cortex-A8 Reset functions
1619  */
1620
1621 static int aarch64_assert_reset(struct target *target)
1622 {
1623         struct armv8_common *armv8 = target_to_armv8(target);
1624
1625         LOG_DEBUG(" ");
1626
1627         /* FIXME when halt is requested, make it work somehow... */
1628
1629         /* Issue some kind of warm reset. */
1630         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1631                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1632         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1633                 /* REVISIT handle "pulls" cases, if there's
1634                  * hardware that needs them to work.
1635                  */
1636                 jtag_add_reset(0, 1);
1637         } else {
1638                 LOG_ERROR("%s: how to reset?", target_name(target));
1639                 return ERROR_FAIL;
1640         }
1641
1642         /* registers are now invalid */
1643         register_cache_invalidate(armv8->arm.core_cache);
1644
1645         target->state = TARGET_RESET;
1646
1647         return ERROR_OK;
1648 }
1649
1650 static int aarch64_deassert_reset(struct target *target)
1651 {
1652         int retval;
1653
1654         LOG_DEBUG(" ");
1655
1656         /* be certain SRST is off */
1657         jtag_add_reset(0, 0);
1658
1659         retval = aarch64_poll(target);
1660         if (retval != ERROR_OK)
1661                 return retval;
1662
1663         if (target->reset_halt) {
1664                 if (target->state != TARGET_HALTED) {
1665                         LOG_WARNING("%s: ran after reset and before halt ...",
1666                                 target_name(target));
1667                         retval = target_halt(target);
1668                         if (retval != ERROR_OK)
1669                                 return retval;
1670                 }
1671         }
1672
1673         return ERROR_OK;
1674 }
1675
1676 static int aarch64_write_apb_ap_memory(struct target *target,
1677         uint64_t address, uint32_t size,
1678         uint32_t count, const uint8_t *buffer)
1679 {
1680         /* write memory through APB-AP */
1681         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1682         struct armv8_common *armv8 = target_to_armv8(target);
1683         struct arm *arm = &armv8->arm;
1684         int total_bytes = count * size;
1685         int total_u32;
1686         int start_byte = address & 0x3;
1687         int end_byte   = (address + total_bytes) & 0x3;
1688         struct reg *reg;
1689         uint32_t dscr;
1690         uint8_t *tmp_buff = NULL;
1691
1692         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1693                           address, size, count);
1694         if (target->state != TARGET_HALTED) {
1695                 LOG_WARNING("target not halted");
1696                 return ERROR_TARGET_NOT_HALTED;
1697         }
1698
1699         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1700
1701         /* Mark register R0 as dirty, as it will be used
1702          * for transferring the data.
1703          * It will be restored automatically when exiting
1704          * debug mode
1705          */
1706         reg = armv8_reg_current(arm, 1);
1707         reg->dirty = true;
1708
1709         reg = armv8_reg_current(arm, 0);
1710         reg->dirty = true;
1711
1712         /*  clear any abort  */
1713         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1714                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1715         if (retval != ERROR_OK)
1716                 return retval;
1717
1718
1719         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1720
1721         /* The algorithm only copies 32 bit words, so the buffer
1722          * should be expanded to include the words at either end.
1723          * The first and last words will be read first to avoid
1724          * corruption if needed.
1725          */
1726         tmp_buff = malloc(total_u32 * 4);
1727
1728         if ((start_byte != 0) && (total_u32 > 1)) {
1729                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1730                  * the other bytes in the word.
1731                  */
1732                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1733                 if (retval != ERROR_OK)
1734                         goto error_free_buff_w;
1735         }
1736
1737         /* If end of write is not aligned, or the write is less than 4 bytes */
1738         if ((end_byte != 0) ||
1739                 ((total_u32 == 1) && (total_bytes != 4))) {
1740
1741                 /* Read the last word to avoid corruption during 32 bit write */
1742                 int mem_offset = (total_u32-1) * 4;
1743                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1744                 if (retval != ERROR_OK)
1745                         goto error_free_buff_w;
1746         }
1747
1748         /* Copy the write buffer over the top of the temporary buffer */
1749         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1750
1751         /* We now have a 32 bit aligned buffer that can be written */
1752
1753         /* Read DSCR */
1754         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1755                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1756         if (retval != ERROR_OK)
1757                 goto error_free_buff_w;
1758
1759         /* Set Normal access mode  */
1760         dscr = (dscr & ~DSCR_MA);
1761         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1762                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1763
1764         if (arm->core_state == ARM_STATE_AARCH64) {
1765                 /* Write X0 with value 'address' using write procedure */
1766                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1767                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1768                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1769                 retval += aarch64_exec_opcode(target,
1770                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1771         } else {
1772                 /* Write R0 with value 'address' using write procedure */
1773                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1774                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1775                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1776                 retval += aarch64_exec_opcode(target,
1777                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1778
1779         }
1780         /* Step 1.d   - Change DCC to memory mode */
1781         dscr = dscr | DSCR_MA;
1782         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1783                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1784         if (retval != ERROR_OK)
1785                 goto error_unset_dtr_w;
1786
1787
1788         /* Step 2.a   - Do the write */
1789         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1790                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1791         if (retval != ERROR_OK)
1792                 goto error_unset_dtr_w;
1793
1794         /* Step 3.a   - Switch DTR mode back to Normal mode */
1795         dscr = (dscr & ~DSCR_MA);
1796         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1797                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1798         if (retval != ERROR_OK)
1799                 goto error_unset_dtr_w;
1800
1801         /* Check for sticky abort flags in the DSCR */
1802         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1803                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1804         if (retval != ERROR_OK)
1805                 goto error_free_buff_w;
1806         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1807                 /* Abort occurred - clear it and exit */
1808                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1809                 mem_ap_write_atomic_u32(armv8->debug_ap,
1810                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1811                 goto error_free_buff_w;
1812         }
1813
1814         /* Done */
1815         free(tmp_buff);
1816         return ERROR_OK;
1817
1818 error_unset_dtr_w:
1819         /* Unset DTR mode */
1820         mem_ap_read_atomic_u32(armv8->debug_ap,
1821                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1822         dscr = (dscr & ~DSCR_MA);
1823         mem_ap_write_atomic_u32(armv8->debug_ap,
1824                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1825 error_free_buff_w:
1826         LOG_ERROR("error");
1827         free(tmp_buff);
1828         return ERROR_FAIL;
1829 }
1830
1831 static int aarch64_read_apb_ap_memory(struct target *target,
1832         target_addr_t address, uint32_t size,
1833         uint32_t count, uint8_t *buffer)
1834 {
1835         /* read memory through APB-AP */
1836         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1837         struct armv8_common *armv8 = target_to_armv8(target);
1838         struct arm *arm = &armv8->arm;
1839         int total_bytes = count * size;
1840         int total_u32;
1841         int start_byte = address & 0x3;
1842         int end_byte   = (address + total_bytes) & 0x3;
1843         struct reg *reg;
1844         uint32_t dscr;
1845         uint8_t *tmp_buff = NULL;
1846         uint8_t *u8buf_ptr;
1847         uint32_t value;
1848
1849         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1850                           address, size, count);
1851         if (target->state != TARGET_HALTED) {
1852                 LOG_WARNING("target not halted");
1853                 return ERROR_TARGET_NOT_HALTED;
1854         }
1855
1856         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1857         /* Mark register X0, X1 as dirty, as it will be used
1858          * for transferring the data.
1859          * It will be restored automatically when exiting
1860          * debug mode
1861          */
1862         reg = armv8_reg_current(arm, 1);
1863         reg->dirty = true;
1864
1865         reg = armv8_reg_current(arm, 0);
1866         reg->dirty = true;
1867
1868         /*      clear any abort  */
1869         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1870                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1871         if (retval != ERROR_OK)
1872                 goto error_free_buff_r;
1873
1874         /* Read DSCR */
1875         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1876                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1877
1878         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1879
1880         /* Set Normal access mode  */
1881         dscr = (dscr & ~DSCR_MA);
1882         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1883                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1884
1885         if (arm->core_state == ARM_STATE_AARCH64) {
1886                 /* Write X0 with value 'address' using write procedure */
1887                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1888                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1889                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1890                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1891                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1892                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1893                 /* Step 1.e - Change DCC to memory mode */
1894                 dscr = dscr | DSCR_MA;
1895                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1896                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1897                 /* Step 1.f - read DBGDTRTX and discard the value */
1898                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1899                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1900         } else {
1901                 /* Write R0 with value 'address' using write procedure */
1902                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1903                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1904                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1905                 retval += aarch64_exec_opcode(target,
1906                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1907                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1908                 retval += aarch64_exec_opcode(target,
1909                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
1910                 /* Step 1.e - Change DCC to memory mode */
1911                 dscr = dscr | DSCR_MA;
1912                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1913                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1914                 /* Step 1.f - read DBGDTRTX and discard the value */
1915                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1916                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1917
1918         }
1919         if (retval != ERROR_OK)
1920                 goto error_unset_dtr_r;
1921
1922         /* Optimize the read as much as we can, either way we read in a single pass  */
1923         if ((start_byte) || (end_byte)) {
1924                 /* The algorithm only copies 32 bit words, so the buffer
1925                  * should be expanded to include the words at either end.
1926                  * The first and last words will be read into a temp buffer
1927                  * to avoid corruption
1928                  */
1929                 tmp_buff = malloc(total_u32 * 4);
1930                 if (!tmp_buff)
1931                         goto error_unset_dtr_r;
1932
1933                 /* use the tmp buffer to read the entire data */
1934                 u8buf_ptr = tmp_buff;
1935         } else
1936                 /* address and read length are aligned so read directly into the passed buffer */
1937                 u8buf_ptr = buffer;
1938
1939         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1940          * Abort flags are sticky, so can be read at end of transactions
1941          *
1942          * This data is read in aligned to 32 bit boundary.
1943          */
1944
1945         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1946          * increments X0 by 4. */
1947         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1948                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1949         if (retval != ERROR_OK)
1950                         goto error_unset_dtr_r;
1951
1952         /* Step 3.a - set DTR access mode back to Normal mode   */
1953         dscr = (dscr & ~DSCR_MA);
1954         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1955                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1956         if (retval != ERROR_OK)
1957                 goto error_free_buff_r;
1958
1959         /* Step 3.b - read DBGDTRTX for the final value */
1960         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1961                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1962         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1963
1964         /* Check for sticky abort flags in the DSCR */
1965         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1966                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1967         if (retval != ERROR_OK)
1968                 goto error_free_buff_r;
1969         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1970                 /* Abort occurred - clear it and exit */
1971                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1972                 mem_ap_write_atomic_u32(armv8->debug_ap,
1973                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1974                 goto error_free_buff_r;
1975         }
1976
1977         /* check if we need to copy aligned data by applying any shift necessary */
1978         if (tmp_buff) {
1979                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1980                 free(tmp_buff);
1981         }
1982
1983         /* Done */
1984         return ERROR_OK;
1985
1986 error_unset_dtr_r:
1987         /* Unset DTR mode */
1988         mem_ap_read_atomic_u32(armv8->debug_ap,
1989                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1990         dscr = (dscr & ~DSCR_MA);
1991         mem_ap_write_atomic_u32(armv8->debug_ap,
1992                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1993 error_free_buff_r:
1994         LOG_ERROR("error");
1995         free(tmp_buff);
1996         return ERROR_FAIL;
1997 }
1998
1999 static int aarch64_read_phys_memory(struct target *target,
2000         target_addr_t address, uint32_t size,
2001         uint32_t count, uint8_t *buffer)
2002 {
2003         struct armv8_common *armv8 = target_to_armv8(target);
2004         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2005         struct adiv5_dap *swjdp = armv8->arm.dap;
2006         uint8_t apsel = swjdp->apsel;
2007         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2008                 address, size, count);
2009
2010         if (count && buffer) {
2011
2012                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2013
2014                         /* read memory through AHB-AP */
2015                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2016                 } else {
2017                         /* read memory through APB-AP */
2018                         retval = aarch64_mmu_modify(target, 0);
2019                         if (retval != ERROR_OK)
2020                                 return retval;
2021                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2022                 }
2023         }
2024         return retval;
2025 }
2026
2027 static int aarch64_read_memory(struct target *target, target_addr_t address,
2028         uint32_t size, uint32_t count, uint8_t *buffer)
2029 {
2030         int mmu_enabled = 0;
2031         target_addr_t virt, phys;
2032         int retval;
2033         struct armv8_common *armv8 = target_to_armv8(target);
2034         struct adiv5_dap *swjdp = armv8->arm.dap;
2035         uint8_t apsel = swjdp->apsel;
2036
2037         /* aarch64 handles unaligned memory access */
2038         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2039                 size, count);
2040
2041         /* determine if MMU was enabled on target stop */
2042         if (!armv8->is_armv7r) {
2043                 retval = aarch64_mmu(target, &mmu_enabled);
2044                 if (retval != ERROR_OK)
2045                         return retval;
2046         }
2047
2048         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2049                 if (mmu_enabled) {
2050                         virt = address;
2051                         retval = aarch64_virt2phys(target, virt, &phys);
2052                         if (retval != ERROR_OK)
2053                                 return retval;
2054
2055                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2056                                   virt, phys);
2057                         address = phys;
2058                 }
2059                 retval = aarch64_read_phys_memory(target, address, size, count,
2060                                                   buffer);
2061         } else {
2062                 if (mmu_enabled) {
2063                         retval = aarch64_check_address(target, address);
2064                         if (retval != ERROR_OK)
2065                                 return retval;
2066                         /* enable MMU as we could have disabled it for phys
2067                            access */
2068                         retval = aarch64_mmu_modify(target, 1);
2069                         if (retval != ERROR_OK)
2070                                 return retval;
2071                 }
2072                 retval = aarch64_read_apb_ap_memory(target, address, size,
2073                                                     count, buffer);
2074         }
2075         return retval;
2076 }
2077
2078 static int aarch64_write_phys_memory(struct target *target,
2079         target_addr_t address, uint32_t size,
2080         uint32_t count, const uint8_t *buffer)
2081 {
2082         struct armv8_common *armv8 = target_to_armv8(target);
2083         struct adiv5_dap *swjdp = armv8->arm.dap;
2084         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2085         uint8_t apsel = swjdp->apsel;
2086
2087         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2088                 size, count);
2089
2090         if (count && buffer) {
2091
2092                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2093
2094                         /* write memory through AHB-AP */
2095                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2096                 } else {
2097
2098                         /* write memory through APB-AP */
2099                         if (!armv8->is_armv7r) {
2100                                 retval = aarch64_mmu_modify(target, 0);
2101                                 if (retval != ERROR_OK)
2102                                         return retval;
2103                         }
2104                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2105                 }
2106         }
2107
2108
2109         /* REVISIT this op is generic ARMv7-A/R stuff */
2110         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2111                 struct arm_dpm *dpm = armv8->arm.dpm;
2112
2113                 retval = dpm->prepare(dpm);
2114                 if (retval != ERROR_OK)
2115                         return retval;
2116
2117                 /* The Cache handling will NOT work with MMU active, the
2118                  * wrong addresses will be invalidated!
2119                  *
2120                  * For both ICache and DCache, walk all cache lines in the
2121                  * address range. Cortex-A8 has fixed 64 byte line length.
2122                  *
2123                  * REVISIT per ARMv7, these may trigger watchpoints ...
2124                  */
2125
2126                 /* invalidate I-Cache */
2127                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2128                         /* ICIMVAU - Invalidate Cache single entry
2129                          * with MVA to PoU
2130                          *      MCR p15, 0, r0, c7, c5, 1
2131                          */
2132                         for (uint32_t cacheline = address;
2133                                 cacheline < address + size * count;
2134                                 cacheline += 64) {
2135                                 retval = dpm->instr_write_data_r0(dpm,
2136                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2137                                                 cacheline);
2138                                 if (retval != ERROR_OK)
2139                                         return retval;
2140                         }
2141                 }
2142
2143                 /* invalidate D-Cache */
2144                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2145                         /* DCIMVAC - Invalidate data Cache line
2146                          * with MVA to PoC
2147                          *      MCR p15, 0, r0, c7, c6, 1
2148                          */
2149                         for (uint32_t cacheline = address;
2150                                 cacheline < address + size * count;
2151                                 cacheline += 64) {
2152                                 retval = dpm->instr_write_data_r0(dpm,
2153                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2154                                                 cacheline);
2155                                 if (retval != ERROR_OK)
2156                                         return retval;
2157                         }
2158                 }
2159
2160                 /* (void) */ dpm->finish(dpm);
2161         }
2162
2163         return retval;
2164 }
2165
2166 static int aarch64_write_memory(struct target *target, target_addr_t address,
2167         uint32_t size, uint32_t count, const uint8_t *buffer)
2168 {
2169         int mmu_enabled = 0;
2170         target_addr_t virt, phys;
2171         int retval;
2172         struct armv8_common *armv8 = target_to_armv8(target);
2173         struct adiv5_dap *swjdp = armv8->arm.dap;
2174         uint8_t apsel = swjdp->apsel;
2175
2176         /* aarch64 handles unaligned memory access */
2177         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2178                   "; count %" PRId32, address, size, count);
2179
2180         /* determine if MMU was enabled on target stop */
2181         if (!armv8->is_armv7r) {
2182                 retval = aarch64_mmu(target, &mmu_enabled);
2183                 if (retval != ERROR_OK)
2184                         return retval;
2185         }
2186
2187         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2188                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2189                           PRId32 "; count %" PRId32, address, size, count);
2190                 if (mmu_enabled) {
2191                         virt = address;
2192                         retval = aarch64_virt2phys(target, virt, &phys);
2193                         if (retval != ERROR_OK)
2194                                 return retval;
2195
2196                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2197                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2198                         address = phys;
2199                 }
2200                 retval = aarch64_write_phys_memory(target, address, size,
2201                                 count, buffer);
2202         } else {
2203                 if (mmu_enabled) {
2204                         retval = aarch64_check_address(target, address);
2205                         if (retval != ERROR_OK)
2206                                 return retval;
2207                         /* enable MMU as we could have disabled it for phys access */
2208                         retval = aarch64_mmu_modify(target, 1);
2209                         if (retval != ERROR_OK)
2210                                 return retval;
2211                 }
2212                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2213         }
2214         return retval;
2215 }
2216
2217 static int aarch64_handle_target_request(void *priv)
2218 {
2219         struct target *target = priv;
2220         struct armv8_common *armv8 = target_to_armv8(target);
2221         int retval;
2222
2223         if (!target_was_examined(target))
2224                 return ERROR_OK;
2225         if (!target->dbg_msg_enabled)
2226                 return ERROR_OK;
2227
2228         if (target->state == TARGET_RUNNING) {
2229                 uint32_t request;
2230                 uint32_t dscr;
2231                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2232                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2233
2234                 /* check if we have data */
2235                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2236                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2237                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2238                         if (retval == ERROR_OK) {
2239                                 target_request(target, request);
2240                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2241                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2242                         }
2243                 }
2244         }
2245
2246         return ERROR_OK;
2247 }
2248
2249 static int aarch64_examine_first(struct target *target)
2250 {
2251         struct aarch64_common *aarch64 = target_to_aarch64(target);
2252         struct armv8_common *armv8 = &aarch64->armv8_common;
2253         struct adiv5_dap *swjdp = armv8->arm.dap;
2254         int retval = ERROR_OK;
2255         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2256         int i;
2257
2258         /* We do one extra read to ensure DAP is configured,
2259          * we call ahbap_debugport_init(swjdp) instead
2260          */
2261         retval = dap_dp_init(swjdp);
2262         if (retval != ERROR_OK)
2263                 return retval;
2264
2265         /* Search for the APB-AB - it is needed for access to debug registers */
2266         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2267         if (retval != ERROR_OK) {
2268                 LOG_ERROR("Could not find APB-AP for debug access");
2269                 return retval;
2270         }
2271
2272         retval = mem_ap_init(armv8->debug_ap);
2273         if (retval != ERROR_OK) {
2274                 LOG_ERROR("Could not initialize the APB-AP");
2275                 return retval;
2276         }
2277
2278         armv8->debug_ap->memaccess_tck = 80;
2279
2280         /* Search for the AHB-AB */
2281         armv8->memory_ap_available = false;
2282         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2283         if (retval == ERROR_OK) {
2284                 retval = mem_ap_init(armv8->memory_ap);
2285                 if (retval == ERROR_OK)
2286                         armv8->memory_ap_available = true;
2287         }
2288         if (retval != ERROR_OK) {
2289                 /* AHB-AP not found or unavailable - use the CPU */
2290                 LOG_DEBUG("No AHB-AP available for memory access");
2291         }
2292
2293
2294         if (!target->dbgbase_set) {
2295                 uint32_t dbgbase;
2296                 /* Get ROM Table base */
2297                 uint32_t apid;
2298                 int32_t coreidx = target->coreid;
2299                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2300                 if (retval != ERROR_OK)
2301                         return retval;
2302                 /* Lookup 0x15 -- Processor DAP */
2303                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2304                                 &armv8->debug_base, &coreidx);
2305                 if (retval != ERROR_OK)
2306                         return retval;
2307                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2308                           coreidx, armv8->debug_base);
2309         } else
2310                 armv8->debug_base = target->dbgbase;
2311
2312         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2313                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2314         if (retval != ERROR_OK) {
2315                 LOG_DEBUG("Examine %s failed", "oslock");
2316                 return retval;
2317         }
2318
2319         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2320                         armv8->debug_base + 0x88, &cpuid);
2321         LOG_DEBUG("0x88 = %x", cpuid);
2322
2323         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2324                         armv8->debug_base + 0x314, &cpuid);
2325         LOG_DEBUG("0x314 = %x", cpuid);
2326
2327         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2328                         armv8->debug_base + 0x310, &cpuid);
2329         LOG_DEBUG("0x310 = %x", cpuid);
2330         if (retval != ERROR_OK)
2331                 return retval;
2332
2333         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2334                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2335         if (retval != ERROR_OK) {
2336                 LOG_DEBUG("Examine %s failed", "CPUID");
2337                 return retval;
2338         }
2339
2340         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2341                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2342         if (retval != ERROR_OK) {
2343                 LOG_DEBUG("Examine %s failed", "CTYPR");
2344                 return retval;
2345         }
2346
2347         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2348                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2349         if (retval != ERROR_OK) {
2350                 LOG_DEBUG("Examine %s failed", "TTYPR");
2351                 return retval;
2352         }
2353
2354         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2355                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2356         if (retval != ERROR_OK) {
2357                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2358                 return retval;
2359         }
2360         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2361                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2362         if (retval != ERROR_OK) {
2363                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2364                 return retval;
2365         }
2366
2367         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2368         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2369         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2370         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2371         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2372
2373         armv8->arm.core_type = ARM_MODE_MON;
2374         armv8->arm.core_state = ARM_STATE_AARCH64;
2375         retval = aarch64_dpm_setup(aarch64, debug);
2376         if (retval != ERROR_OK)
2377                 return retval;
2378
2379         /* Setup Breakpoint Register Pairs */
2380         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2381         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2382
2383         /* hack - no context bpt support yet */
2384         aarch64->brp_num_context = 0;
2385
2386         aarch64->brp_num_available = aarch64->brp_num;
2387         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2388         for (i = 0; i < aarch64->brp_num; i++) {
2389                 aarch64->brp_list[i].used = 0;
2390                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2391                         aarch64->brp_list[i].type = BRP_NORMAL;
2392                 else
2393                         aarch64->brp_list[i].type = BRP_CONTEXT;
2394                 aarch64->brp_list[i].value = 0;
2395                 aarch64->brp_list[i].control = 0;
2396                 aarch64->brp_list[i].BRPn = i;
2397         }
2398
2399         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2400
2401         target_set_examined(target);
2402         return ERROR_OK;
2403 }
2404
2405 static int aarch64_examine(struct target *target)
2406 {
2407         int retval = ERROR_OK;
2408
2409         /* don't re-probe hardware after each reset */
2410         if (!target_was_examined(target))
2411                 retval = aarch64_examine_first(target);
2412
2413         /* Configure core debug access */
2414         if (retval == ERROR_OK)
2415                 retval = aarch64_init_debug_access(target);
2416
2417         return retval;
2418 }
2419
2420 /*
2421  *      Cortex-A8 target creation and initialization
2422  */
2423
2424 static int aarch64_init_target(struct command_context *cmd_ctx,
2425         struct target *target)
2426 {
2427         /* examine_first() does a bunch of this */
2428         return ERROR_OK;
2429 }
2430
2431 static int aarch64_init_arch_info(struct target *target,
2432         struct aarch64_common *aarch64, struct jtag_tap *tap)
2433 {
2434         struct armv8_common *armv8 = &aarch64->armv8_common;
2435         struct adiv5_dap *dap = armv8->arm.dap;
2436
2437         armv8->arm.dap = dap;
2438
2439         /* Setup struct aarch64_common */
2440         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2441         /*  tap has no dap initialized */
2442         if (!tap->dap) {
2443                 tap->dap = dap_init();
2444
2445                 /* Leave (only) generic DAP stuff for debugport_init() */
2446                 tap->dap->tap = tap;
2447         }
2448
2449         armv8->arm.dap = tap->dap;
2450
2451         aarch64->fast_reg_read = 0;
2452
2453         /* register arch-specific functions */
2454         armv8->examine_debug_reason = NULL;
2455
2456         armv8->post_debug_entry = aarch64_post_debug_entry;
2457
2458         armv8->pre_restore_context = NULL;
2459
2460         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2461
2462         /* REVISIT v7a setup should be in a v7a-specific routine */
2463         armv8_init_arch_info(target, armv8);
2464         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2465
2466         return ERROR_OK;
2467 }
2468
2469 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2470 {
2471         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2472
2473         aarch64->armv8_common.is_armv7r = false;
2474
2475         return aarch64_init_arch_info(target, aarch64, target->tap);
2476 }
2477
2478 static int aarch64_mmu(struct target *target, int *enabled)
2479 {
2480         if (target->state != TARGET_HALTED) {
2481                 LOG_ERROR("%s: target not halted", __func__);
2482                 return ERROR_TARGET_INVALID;
2483         }
2484
2485         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2486         return ERROR_OK;
2487 }
2488
2489 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2490                              target_addr_t *phys)
2491 {
2492         int retval = ERROR_FAIL;
2493         struct armv8_common *armv8 = target_to_armv8(target);
2494         struct adiv5_dap *swjdp = armv8->arm.dap;
2495         uint8_t apsel = swjdp->apsel;
2496         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2497                 uint32_t ret;
2498                 retval = armv8_mmu_translate_va(target,
2499                                 virt, &ret);
2500                 if (retval != ERROR_OK)
2501                         goto done;
2502                 *phys = ret;
2503         } else {/*  use this method if armv8->memory_ap not selected
2504                  *  mmu must be enable in order to get a correct translation */
2505                 retval = aarch64_mmu_modify(target, 1);
2506                 if (retval != ERROR_OK)
2507                         goto done;
2508                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2509         }
2510 done:
2511         return retval;
2512 }
2513
2514 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2515 {
2516         struct target *target = get_current_target(CMD_CTX);
2517         struct armv8_common *armv8 = target_to_armv8(target);
2518
2519         return armv8_handle_cache_info_command(CMD_CTX,
2520                         &armv8->armv8_mmu.armv8_cache);
2521 }
2522
2523
2524 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2525 {
2526         struct target *target = get_current_target(CMD_CTX);
2527         if (!target_was_examined(target)) {
2528                 LOG_ERROR("target not examined yet");
2529                 return ERROR_FAIL;
2530         }
2531
2532         return aarch64_init_debug_access(target);
2533 }
2534 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2535 {
2536         struct target *target = get_current_target(CMD_CTX);
2537         /* check target is an smp target */
2538         struct target_list *head;
2539         struct target *curr;
2540         head = target->head;
2541         target->smp = 0;
2542         if (head != (struct target_list *)NULL) {
2543                 while (head != (struct target_list *)NULL) {
2544                         curr = head->target;
2545                         curr->smp = 0;
2546                         head = head->next;
2547                 }
2548                 /*  fixes the target display to the debugger */
2549                 target->gdb_service->target = target;
2550         }
2551         return ERROR_OK;
2552 }
2553
2554 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2555 {
2556         struct target *target = get_current_target(CMD_CTX);
2557         struct target_list *head;
2558         struct target *curr;
2559         head = target->head;
2560         if (head != (struct target_list *)NULL) {
2561                 target->smp = 1;
2562                 while (head != (struct target_list *)NULL) {
2563                         curr = head->target;
2564                         curr->smp = 1;
2565                         head = head->next;
2566                 }
2567         }
2568         return ERROR_OK;
2569 }
2570
2571 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2572 {
2573         struct target *target = get_current_target(CMD_CTX);
2574         int retval = ERROR_OK;
2575         struct target_list *head;
2576         head = target->head;
2577         if (head != (struct target_list *)NULL) {
2578                 if (CMD_ARGC == 1) {
2579                         int coreid = 0;
2580                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2581                         if (ERROR_OK != retval)
2582                                 return retval;
2583                         target->gdb_service->core[1] = coreid;
2584
2585                 }
2586                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2587                         , target->gdb_service->core[1]);
2588         }
2589         return ERROR_OK;
2590 }
2591
2592 static const struct command_registration aarch64_exec_command_handlers[] = {
2593         {
2594                 .name = "cache_info",
2595                 .handler = aarch64_handle_cache_info_command,
2596                 .mode = COMMAND_EXEC,
2597                 .help = "display information about target caches",
2598                 .usage = "",
2599         },
2600         {
2601                 .name = "dbginit",
2602                 .handler = aarch64_handle_dbginit_command,
2603                 .mode = COMMAND_EXEC,
2604                 .help = "Initialize core debug",
2605                 .usage = "",
2606         },
2607         {       .name = "smp_off",
2608                 .handler = aarch64_handle_smp_off_command,
2609                 .mode = COMMAND_EXEC,
2610                 .help = "Stop smp handling",
2611                 .usage = "",
2612         },
2613         {
2614                 .name = "smp_on",
2615                 .handler = aarch64_handle_smp_on_command,
2616                 .mode = COMMAND_EXEC,
2617                 .help = "Restart smp handling",
2618                 .usage = "",
2619         },
2620         {
2621                 .name = "smp_gdb",
2622                 .handler = aarch64_handle_smp_gdb_command,
2623                 .mode = COMMAND_EXEC,
2624                 .help = "display/fix current core played to gdb",
2625                 .usage = "",
2626         },
2627
2628
2629         COMMAND_REGISTRATION_DONE
2630 };
2631 static const struct command_registration aarch64_command_handlers[] = {
2632         {
2633                 .chain = arm_command_handlers,
2634         },
2635         {
2636                 .chain = armv8_command_handlers,
2637         },
2638         {
2639                 .name = "cortex_a",
2640                 .mode = COMMAND_ANY,
2641                 .help = "Cortex-A command group",
2642                 .usage = "",
2643                 .chain = aarch64_exec_command_handlers,
2644         },
2645         COMMAND_REGISTRATION_DONE
2646 };
2647
2648 struct target_type aarch64_target = {
2649         .name = "aarch64",
2650
2651         .poll = aarch64_poll,
2652         .arch_state = armv8_arch_state,
2653
2654         .halt = aarch64_halt,
2655         .resume = aarch64_resume,
2656         .step = aarch64_step,
2657
2658         .assert_reset = aarch64_assert_reset,
2659         .deassert_reset = aarch64_deassert_reset,
2660
2661         /* REVISIT allow exporting VFP3 registers ... */
2662         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2663
2664         .read_memory = aarch64_read_memory,
2665         .write_memory = aarch64_write_memory,
2666
2667         .checksum_memory = arm_checksum_memory,
2668         .blank_check_memory = arm_blank_check_memory,
2669
2670         .run_algorithm = armv4_5_run_algorithm,
2671
2672         .add_breakpoint = aarch64_add_breakpoint,
2673         .add_context_breakpoint = aarch64_add_context_breakpoint,
2674         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2675         .remove_breakpoint = aarch64_remove_breakpoint,
2676         .add_watchpoint = NULL,
2677         .remove_watchpoint = NULL,
2678
2679         .commands = aarch64_command_handlers,
2680         .target_create = aarch64_target_create,
2681         .init_target = aarch64_init_target,
2682         .examine = aarch64_examine,
2683
2684         .read_phys_memory = aarch64_read_phys_memory,
2685         .write_phys_memory = aarch64_write_phys_memory,
2686         .mmu = aarch64_mmu,
2687         .virt2phys = aarch64_virt2phys,
2688 };