aarch64: add basic Aarch32 support
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
50         uint32_t opcode, uint32_t data);
51
52 static int aarch64_restore_system_control_reg(struct target *target)
53 {
54         int retval = ERROR_OK;
55
56         struct aarch64_common *aarch64 = target_to_aarch64(target);
57         struct armv8_common *armv8 = target_to_armv8(target);
58
59         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
60                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
61                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
62
63                 switch (armv8->arm.core_mode) {
64                         case ARMV8_64_EL0T:
65                         case ARMV8_64_EL1T:
66                         case ARMV8_64_EL1H:
67                                 retval = armv8->arm.msr(target, 3, /*op 0*/
68                                                 0, 1,   /* op1, op2 */
69                                                 0, 0,   /* CRn, CRm */
70                                                 aarch64->system_control_reg);
71                                 if (retval != ERROR_OK)
72                                         return retval;
73                         break;
74                         case ARMV8_64_EL2T:
75                         case ARMV8_64_EL2H:
76                                 retval = armv8->arm.msr(target, 3, /*op 0*/
77                                                 4, 1,   /* op1, op2 */
78                                                 0, 0,   /* CRn, CRm */
79                                                 aarch64->system_control_reg);
80                                 if (retval != ERROR_OK)
81                                         return retval;
82                         break;
83                         case ARMV8_64_EL3H:
84                         case ARMV8_64_EL3T:
85                                 retval = armv8->arm.msr(target, 3, /*op 0*/
86                                                 6, 1,   /* op1, op2 */
87                                                 0, 0,   /* CRn, CRm */
88                                                 aarch64->system_control_reg);
89                                 if (retval != ERROR_OK)
90                                         return retval;
91                         break;
92                         default:
93                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
94                                 if (retval != ERROR_OK)
95                                         return retval;
96                                 break;
97                         }
98         }
99         return retval;
100 }
101
102 /*  check address before aarch64_apb read write access with mmu on
103  *  remove apb predictible data abort */
104 static int aarch64_check_address(struct target *target, uint32_t address)
105 {
106         /* TODO */
107         return ERROR_OK;
108 }
109 /*  modify system_control_reg in order to enable or disable mmu for :
110  *  - virt2phys address conversion
111  *  - read or write memory in phys or virt address */
112 static int aarch64_mmu_modify(struct target *target, int enable)
113 {
114         struct aarch64_common *aarch64 = target_to_aarch64(target);
115         struct armv8_common *armv8 = &aarch64->armv8_common;
116         int retval = ERROR_OK;
117
118         if (enable) {
119                 /*      if mmu enabled at target stop and mmu not enable */
120                 if (!(aarch64->system_control_reg & 0x1U)) {
121                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
122                         return ERROR_FAIL;
123                 }
124                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
125                         aarch64->system_control_reg_curr |= 0x1U;
126                         switch (armv8->arm.core_mode) {
127                                 case ARMV8_64_EL0T:
128                                 case ARMV8_64_EL1T:
129                                 case ARMV8_64_EL1H:
130                                         retval = armv8->arm.msr(target, 3, /*op 0*/
131                                                         0, 0,   /* op1, op2 */
132                                                         1, 0,   /* CRn, CRm */
133                                                         aarch64->system_control_reg_curr);
134                                         if (retval != ERROR_OK)
135                                                 return retval;
136                                 break;
137                                 case ARMV8_64_EL2T:
138                                 case ARMV8_64_EL2H:
139                                         retval = armv8->arm.msr(target, 3, /*op 0*/
140                                                         4, 0,   /* op1, op2 */
141                                                         1, 0,   /* CRn, CRm */
142                                                         aarch64->system_control_reg_curr);
143                                         if (retval != ERROR_OK)
144                                                 return retval;
145                                 break;
146                                 case ARMV8_64_EL3H:
147                                 case ARMV8_64_EL3T:
148                                         retval = armv8->arm.msr(target, 3, /*op 0*/
149                                                         6, 0,   /* op1, op2 */
150                                                         1, 0,   /* CRn, CRm */
151                                                         aarch64->system_control_reg_curr);
152                                         if (retval != ERROR_OK)
153                                                 return retval;
154                                 break;
155                                 default:
156                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
157                         }
158                 }
159         } else {
160                 if (aarch64->system_control_reg_curr & 0x4U) {
161                         /*  data cache is active */
162                         aarch64->system_control_reg_curr &= ~0x4U;
163                         /* flush data cache armv7 function to be called */
164                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
165                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
166                 }
167                 if ((aarch64->system_control_reg_curr & 0x1U)) {
168                         aarch64->system_control_reg_curr &= ~0x1U;
169                         switch (armv8->arm.core_mode) {
170                                 case ARMV8_64_EL0T:
171                                 case ARMV8_64_EL1T:
172                                 case ARMV8_64_EL1H:
173                                         retval = armv8->arm.msr(target, 3, /*op 0*/
174                                                         0, 0,   /* op1, op2 */
175                                                         1, 0,   /* CRn, CRm */
176                                                         aarch64->system_control_reg_curr);
177                                         if (retval != ERROR_OK)
178                                                 return retval;
179                                         break;
180                                 case ARMV8_64_EL2T:
181                                 case ARMV8_64_EL2H:
182                                         retval = armv8->arm.msr(target, 3, /*op 0*/
183                                                         4, 0,   /* op1, op2 */
184                                                         1, 0,   /* CRn, CRm */
185                                                         aarch64->system_control_reg_curr);
186                                         if (retval != ERROR_OK)
187                                                 return retval;
188                                         break;
189                                 case ARMV8_64_EL3H:
190                                 case ARMV8_64_EL3T:
191                                         retval = armv8->arm.msr(target, 3, /*op 0*/
192                                                         6, 0,   /* op1, op2 */
193                                                         1, 0,   /* CRn, CRm */
194                                                         aarch64->system_control_reg_curr);
195                                         if (retval != ERROR_OK)
196                                                 return retval;
197                                         break;
198                                 default:
199                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
200                                         break;
201                         }
202                 }
203         }
204         return retval;
205 }
206
207 /*
208  * Basic debug access, very low level assumes state is saved
209  */
210 static int aarch64_init_debug_access(struct target *target)
211 {
212         struct armv8_common *armv8 = target_to_armv8(target);
213         int retval;
214         uint32_t dummy;
215
216         LOG_DEBUG(" ");
217
218         /* Clear Sticky Power Down status Bit in PRSR to enable access to
219            the registers in the Core Power Domain */
220         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
221                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
222         if (retval != ERROR_OK)
223                 return retval;
224
225         /*
226          * Static CTI configuration:
227          * Channel 0 -> trigger outputs HALT request to PE
228          * Channel 1 -> trigger outputs Resume request to PE
229          * Gate all channel trigger events from entering the CTM
230          */
231
232         /* Enable CTI */
233         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
234                         armv8->cti_base + CTI_CTR, 1);
235         /* By default, gate all channel triggers to and from the CTM */
236         if (retval == ERROR_OK)
237                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
238                                 armv8->cti_base + CTI_GATE, 0);
239         /* output halt requests to PE on channel 0 trigger */
240         if (retval == ERROR_OK)
241                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
242                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
243         /* output restart requests to PE on channel 1 trigger */
244         if (retval == ERROR_OK)
245                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
246                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
247         if (retval != ERROR_OK)
248                 return retval;
249
250         /* Resync breakpoint registers */
251
252         /* Since this is likely called from init or reset, update target state information*/
253         return aarch64_poll(target);
254 }
255
256 /* To reduce needless round-trips, pass in a pointer to the current
257  * DSCR value.  Initialize it to zero if you just need to know the
258  * value on return from this function; or DSCR_ITE if you
259  * happen to know that no instruction is pending.
260  */
261 static int aarch64_exec_opcode(struct target *target,
262         uint32_t opcode, uint32_t *dscr_p)
263 {
264         uint32_t dscr;
265         int retval;
266         struct armv8_common *armv8 = target_to_armv8(target);
267         dscr = dscr_p ? *dscr_p : 0;
268
269         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
270
271         /* Wait for InstrCompl bit to be set */
272         long long then = timeval_ms();
273         while ((dscr & DSCR_ITE) == 0) {
274                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
275                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
276                 if (retval != ERROR_OK) {
277                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
278                         return retval;
279                 }
280                 if (timeval_ms() > then + 1000) {
281                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
282                         return ERROR_FAIL;
283                 }
284         }
285
286         retval = mem_ap_write_u32(armv8->debug_ap,
287                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
288         if (retval != ERROR_OK)
289                 return retval;
290
291         then = timeval_ms();
292         do {
293                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
294                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
295                 if (retval != ERROR_OK) {
296                         LOG_ERROR("Could not read DSCR register");
297                         return retval;
298                 }
299                 if (timeval_ms() > then + 1000) {
300                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
301                         return ERROR_FAIL;
302                 }
303         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
304
305         if (dscr_p)
306                 *dscr_p = dscr;
307
308         return retval;
309 }
310
311 /* Write to memory mapped registers directly with no cache or mmu handling */
312 static int aarch64_dap_write_memap_register_u32(struct target *target,
313         uint32_t address,
314         uint32_t value)
315 {
316         int retval;
317         struct armv8_common *armv8 = target_to_armv8(target);
318
319         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
320
321         return retval;
322 }
323
324 /*
325  * AARCH64 implementation of Debug Programmer's Model
326  *
327  * NOTE the invariant:  these routines return with DSCR_ITE set,
328  * so there's no need to poll for it before executing an instruction.
329  *
330  * NOTE that in several of these cases the "stall" mode might be useful.
331  * It'd let us queue a few operations together... prepare/finish might
332  * be the places to enable/disable that mode.
333  */
334
335 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
336 {
337         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
338 }
339
340 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
341 {
342         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
343         return mem_ap_write_u32(armv8->debug_ap,
344                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
345 }
346
347 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
348 {
349         int ret;
350         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
351         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
352         ret = mem_ap_write_u32(armv8->debug_ap,
353                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
354         ret += mem_ap_write_u32(armv8->debug_ap,
355                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
356         return ret;
357 }
358
359 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
360         uint32_t *dscr_p)
361 {
362         uint32_t dscr = DSCR_ITE;
363         int retval;
364
365         if (dscr_p)
366                 dscr = *dscr_p;
367
368         /* Wait for DTRRXfull */
369         long long then = timeval_ms();
370         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
371                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
372                                 armv8->debug_base + CPUV8_DBG_DSCR,
373                                 &dscr);
374                 if (retval != ERROR_OK)
375                         return retval;
376                 if (timeval_ms() > then + 1000) {
377                         LOG_ERROR("Timeout waiting for read dcc");
378                         return ERROR_FAIL;
379                 }
380         }
381
382         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
383                                             armv8->debug_base + CPUV8_DBG_DTRTX,
384                                             data);
385         if (retval != ERROR_OK)
386                 return retval;
387         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
388
389         if (dscr_p)
390                 *dscr_p = dscr;
391
392         return retval;
393 }
394
395 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
396         uint32_t *dscr_p)
397 {
398         uint32_t dscr = DSCR_ITE;
399         uint32_t higher;
400         int retval;
401
402         if (dscr_p)
403                 dscr = *dscr_p;
404
405         /* Wait for DTRRXfull */
406         long long then = timeval_ms();
407         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
408                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
409                                 armv8->debug_base + CPUV8_DBG_DSCR,
410                                 &dscr);
411                 if (retval != ERROR_OK)
412                         return retval;
413                 if (timeval_ms() > then + 1000) {
414                         LOG_ERROR("Timeout waiting for read dcc");
415                         return ERROR_FAIL;
416                 }
417         }
418
419         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
420                                             armv8->debug_base + CPUV8_DBG_DTRTX,
421                                             (uint32_t *)data);
422         if (retval != ERROR_OK)
423                 return retval;
424
425         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
426                                             armv8->debug_base + CPUV8_DBG_DTRRX,
427                                             &higher);
428         if (retval != ERROR_OK)
429                 return retval;
430
431         *data = *(uint32_t *)data | (uint64_t)higher << 32;
432         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
433
434         if (dscr_p)
435                 *dscr_p = dscr;
436
437         return retval;
438 }
439
440 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
441 {
442         struct aarch64_common *a8 = dpm_to_a8(dpm);
443         uint32_t dscr;
444         int retval;
445
446         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
447         long long then = timeval_ms();
448         for (;; ) {
449                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
450                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
451                                 &dscr);
452                 if (retval != ERROR_OK)
453                         return retval;
454                 if ((dscr & DSCR_ITE) != 0)
455                         break;
456                 if (timeval_ms() > then + 1000) {
457                         LOG_ERROR("Timeout waiting for dpm prepare");
458                         return ERROR_FAIL;
459                 }
460         }
461
462         /* this "should never happen" ... */
463         if (dscr & DSCR_DTR_RX_FULL) {
464                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
465                 /* Clear DCCRX */
466                 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
467                         a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
468                 if (retval != ERROR_OK)
469                         return retval;
470
471                 /* Clear sticky error */
472                 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
473                         a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
474                 if (retval != ERROR_OK)
475                         return retval;
476         }
477
478         return retval;
479 }
480
481 static int aarch64_dpm_finish(struct arm_dpm *dpm)
482 {
483         /* REVISIT what could be done here? */
484         return ERROR_OK;
485 }
486
487 static int aarch64_instr_execute(struct arm_dpm *dpm,
488         uint32_t opcode)
489 {
490         struct aarch64_common *a8 = dpm_to_a8(dpm);
491         uint32_t dscr = DSCR_ITE;
492
493         return aarch64_exec_opcode(
494                         a8->armv8_common.arm.target,
495                         opcode,
496                         &dscr);
497 }
498
499 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
500         uint32_t opcode, uint32_t data)
501 {
502         struct aarch64_common *a8 = dpm_to_a8(dpm);
503         int retval;
504         uint32_t dscr = DSCR_ITE;
505
506         retval = aarch64_write_dcc(&a8->armv8_common, data);
507         if (retval != ERROR_OK)
508                 return retval;
509
510         return aarch64_exec_opcode(
511                         a8->armv8_common.arm.target,
512                         opcode,
513                         &dscr);
514 }
515
516 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
517         uint32_t opcode, uint64_t data)
518 {
519         struct aarch64_common *a8 = dpm_to_a8(dpm);
520         int retval;
521         uint32_t dscr = DSCR_ITE;
522
523         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
524         if (retval != ERROR_OK)
525                 return retval;
526
527         return aarch64_exec_opcode(
528                         a8->armv8_common.arm.target,
529                         opcode,
530                         &dscr);
531 }
532
533 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
534         uint32_t opcode, uint32_t data)
535 {
536         struct aarch64_common *a8 = dpm_to_a8(dpm);
537
538         uint32_t dscr = DSCR_ITE;
539         int retval;
540
541         retval = aarch64_write_dcc(&a8->armv8_common, data);
542         if (retval != ERROR_OK)
543                 return retval;
544
545         retval = aarch64_exec_opcode(
546                         a8->armv8_common.arm.target, armv8_opcode(&a8->armv8_common, READ_REG_DTRRX), &dscr);
547         if (retval != ERROR_OK)
548                 return retval;
549
550         /* then the opcode, taking data from R0 */
551         retval = aarch64_exec_opcode(
552                         a8->armv8_common.arm.target,
553                         opcode,
554                         &dscr);
555
556         return retval;
557 }
558
559 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
560         uint32_t opcode, uint64_t data)
561 {
562         struct aarch64_common *a8 = dpm_to_a8(dpm);
563         uint32_t dscr = DSCR_ITE;
564         int retval;
565
566         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
567         if (retval != ERROR_OK)
568                 return retval;
569
570         retval = aarch64_exec_opcode(
571                         a8->armv8_common.arm.target,
572                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
573                         &dscr);
574         if (retval != ERROR_OK)
575                 return retval;
576
577         /* then the opcode, taking data from R0 */
578         retval = aarch64_exec_opcode(
579                         a8->armv8_common.arm.target,
580                         opcode,
581                         &dscr);
582
583         return retval;
584 }
585
586 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
587 {
588         struct target *target = dpm->arm->target;
589         struct armv8_common *armv8 = target_to_armv8(target);
590         uint32_t dscr = DSCR_ITE;
591
592         /* "Prefetch flush" after modifying execution status in CPSR */
593         return aarch64_exec_opcode(target, armv8_opcode(armv8, ARMV8_OPC_DSB_SY), &dscr);
594 }
595
596 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
597         uint32_t opcode, uint32_t *data)
598 {
599         struct aarch64_common *a8 = dpm_to_a8(dpm);
600         int retval;
601         uint32_t dscr = DSCR_ITE;
602
603         /* the opcode, writing data to DCC */
604         retval = aarch64_exec_opcode(
605                         a8->armv8_common.arm.target,
606                         opcode,
607                         &dscr);
608         if (retval != ERROR_OK)
609                 return retval;
610
611         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
612 }
613
614 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
615         uint32_t opcode, uint64_t *data)
616 {
617         struct aarch64_common *a8 = dpm_to_a8(dpm);
618         int retval;
619         uint32_t dscr = DSCR_ITE;
620
621         /* the opcode, writing data to DCC */
622         retval = aarch64_exec_opcode(
623                         a8->armv8_common.arm.target,
624                         opcode,
625                         &dscr);
626         if (retval != ERROR_OK)
627                 return retval;
628
629         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
630 }
631
632 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
633         uint32_t opcode, uint32_t *data)
634 {
635         struct aarch64_common *a8 = dpm_to_a8(dpm);
636         uint32_t dscr = DSCR_ITE;
637         int retval;
638
639         /* the opcode, writing data to R0 */
640         retval = aarch64_exec_opcode(
641                         a8->armv8_common.arm.target,
642                         opcode,
643                         &dscr);
644         if (retval != ERROR_OK)
645                 return retval;
646
647         /* write R0 to DCC */
648         retval = aarch64_exec_opcode(
649                         a8->armv8_common.arm.target, armv8_opcode(&a8->armv8_common, WRITE_REG_DTRTX), &dscr);
650         if (retval != ERROR_OK)
651                 return retval;
652
653         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
654 }
655
656 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
657         uint32_t opcode, uint64_t *data)
658 {
659         struct aarch64_common *a8 = dpm_to_a8(dpm);
660         uint32_t dscr = DSCR_ITE;
661         int retval;
662
663         /* the opcode, writing data to R0 */
664         retval = aarch64_exec_opcode(
665                         a8->armv8_common.arm.target,
666                         opcode,
667                         &dscr);
668         if (retval != ERROR_OK)
669                 return retval;
670
671         /* write R0 to DCC */
672         retval = aarch64_exec_opcode(
673                         a8->armv8_common.arm.target,
674                         ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0),  /* msr dbgdtr_el0, x0 */
675                         &dscr);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
680 }
681
682 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
683         uint32_t addr, uint32_t control)
684 {
685         struct aarch64_common *a8 = dpm_to_a8(dpm);
686         uint32_t vr = a8->armv8_common.debug_base;
687         uint32_t cr = a8->armv8_common.debug_base;
688         int retval;
689
690         switch (index_t) {
691                 case 0 ... 15:  /* breakpoints */
692                         vr += CPUV8_DBG_BVR_BASE;
693                         cr += CPUV8_DBG_BCR_BASE;
694                         break;
695                 case 16 ... 31: /* watchpoints */
696                         vr += CPUV8_DBG_WVR_BASE;
697                         cr += CPUV8_DBG_WCR_BASE;
698                         index_t -= 16;
699                         break;
700                 default:
701                         return ERROR_FAIL;
702         }
703         vr += 16 * index_t;
704         cr += 16 * index_t;
705
706         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
707                 (unsigned) vr, (unsigned) cr);
708
709         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
710                         vr, addr);
711         if (retval != ERROR_OK)
712                 return retval;
713         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
714                         cr, control);
715         return retval;
716 }
717
718 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
719 {
720         struct aarch64_common *a = dpm_to_a8(dpm);
721         uint32_t cr;
722
723         switch (index_t) {
724                 case 0 ... 15:
725                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
726                         break;
727                 case 16 ... 31:
728                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
729                         index_t -= 16;
730                         break;
731                 default:
732                         return ERROR_FAIL;
733         }
734         cr += 16 * index_t;
735
736         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
737
738         /* clear control register */
739         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
740
741 }
742
743 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
744 {
745         struct arm_dpm *dpm = &a8->armv8_common.dpm;
746         int retval;
747
748         dpm->arm = &a8->armv8_common.arm;
749         dpm->didr = debug;
750
751         dpm->prepare = aarch64_dpm_prepare;
752         dpm->finish = aarch64_dpm_finish;
753
754         dpm->instr_execute = aarch64_instr_execute;
755         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
756         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
757         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
758         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
759         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
760
761         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
762         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
763         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
764         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
765
766         dpm->arm_reg_current = armv8_reg_current;
767
768         dpm->bpwp_enable = aarch64_bpwp_enable;
769         dpm->bpwp_disable = aarch64_bpwp_disable;
770
771         retval = armv8_dpm_setup(dpm);
772         if (retval == ERROR_OK)
773                 retval = armv8_dpm_initialize(dpm);
774
775         return retval;
776 }
777 static struct target *get_aarch64(struct target *target, int32_t coreid)
778 {
779         struct target_list *head;
780         struct target *curr;
781
782         head = target->head;
783         while (head != (struct target_list *)NULL) {
784                 curr = head->target;
785                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
786                         return curr;
787                 head = head->next;
788         }
789         return target;
790 }
791 static int aarch64_halt(struct target *target);
792
793 static int aarch64_halt_smp(struct target *target)
794 {
795         int retval = ERROR_OK;
796         struct target_list *head = target->head;
797
798         while (head != (struct target_list *)NULL) {
799                 struct target *curr = head->target;
800                 struct armv8_common *armv8 = target_to_armv8(curr);
801
802                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
803                 if (curr->smp)
804                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
805                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
806                 if (retval != ERROR_OK)
807                         break;
808
809                 head = head->next;
810         }
811
812         /* halt the target PE */
813         if (retval == ERROR_OK)
814                 retval = aarch64_halt(target);
815
816         return retval;
817 }
818
819 static int update_halt_gdb(struct target *target)
820 {
821         int retval = 0;
822         if (target->gdb_service && target->gdb_service->core[0] == -1) {
823                 target->gdb_service->target = target;
824                 target->gdb_service->core[0] = target->coreid;
825                 retval += aarch64_halt_smp(target);
826         }
827         return retval;
828 }
829
830 /*
831  * Cortex-A8 Run control
832  */
833
834 static int aarch64_poll(struct target *target)
835 {
836         int retval = ERROR_OK;
837         uint32_t dscr;
838         struct aarch64_common *aarch64 = target_to_aarch64(target);
839         struct armv8_common *armv8 = &aarch64->armv8_common;
840         enum target_state prev_target_state = target->state;
841         /*  toggle to another core is done by gdb as follow */
842         /*  maint packet J core_id */
843         /*  continue */
844         /*  the next polling trigger an halt event sent to gdb */
845         if ((target->state == TARGET_HALTED) && (target->smp) &&
846                 (target->gdb_service) &&
847                 (target->gdb_service->target == NULL)) {
848                 target->gdb_service->target =
849                         get_aarch64(target, target->gdb_service->core[1]);
850                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
851                 return retval;
852         }
853         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
854                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
855         if (retval != ERROR_OK)
856                 return retval;
857         aarch64->cpudbg_dscr = dscr;
858
859         if (DSCR_RUN_MODE(dscr) == 0x3) {
860                 if (prev_target_state != TARGET_HALTED) {
861                         /* We have a halting debug event */
862                         LOG_DEBUG("Target halted");
863                         target->state = TARGET_HALTED;
864                         if ((prev_target_state == TARGET_RUNNING)
865                                 || (prev_target_state == TARGET_UNKNOWN)
866                                 || (prev_target_state == TARGET_RESET)) {
867                                 retval = aarch64_debug_entry(target);
868                                 if (retval != ERROR_OK)
869                                         return retval;
870                                 if (target->smp) {
871                                         retval = update_halt_gdb(target);
872                                         if (retval != ERROR_OK)
873                                                 return retval;
874                                 }
875                                 target_call_event_callbacks(target,
876                                         TARGET_EVENT_HALTED);
877                         }
878                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
879                                 LOG_DEBUG(" ");
880
881                                 retval = aarch64_debug_entry(target);
882                                 if (retval != ERROR_OK)
883                                         return retval;
884                                 if (target->smp) {
885                                         retval = update_halt_gdb(target);
886                                         if (retval != ERROR_OK)
887                                                 return retval;
888                                 }
889
890                                 target_call_event_callbacks(target,
891                                         TARGET_EVENT_DEBUG_HALTED);
892                         }
893                 }
894         } else
895                 target->state = TARGET_RUNNING;
896
897         return retval;
898 }
899
900 static int aarch64_halt(struct target *target)
901 {
902         int retval = ERROR_OK;
903         uint32_t dscr;
904         struct armv8_common *armv8 = target_to_armv8(target);
905
906         /*
907          * add HDE in halting debug mode
908          */
909         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
910                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
911         if (retval == ERROR_OK)
912                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
913                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
914         if (retval != ERROR_OK)
915                 return retval;
916
917         /* trigger an event on channel 0, this outputs a halt request to the PE */
918         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
919                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
920         if (retval != ERROR_OK)
921                 return retval;
922
923         long long then = timeval_ms();
924         for (;; ) {
925                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
926                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
927                 if (retval != ERROR_OK)
928                         return retval;
929                 if ((dscr & DSCRV8_HALT_MASK) != 0)
930                         break;
931                 if (timeval_ms() > then + 1000) {
932                         LOG_ERROR("Timeout waiting for halt");
933                         return ERROR_FAIL;
934                 }
935         }
936
937         target->debug_reason = DBG_REASON_DBGRQ;
938
939         return ERROR_OK;
940 }
941
942 static int aarch64_internal_restore(struct target *target, int current,
943         uint64_t *address, int handle_breakpoints, int debug_execution)
944 {
945         struct armv8_common *armv8 = target_to_armv8(target);
946         struct arm *arm = &armv8->arm;
947         int retval;
948         uint64_t resume_pc;
949
950         if (!debug_execution)
951                 target_free_all_working_areas(target);
952
953         /* current = 1: continue on current pc, otherwise continue at <address> */
954         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
955         if (!current)
956                 resume_pc = *address;
957         else
958                 *address = resume_pc;
959
960         /* Make sure that the Armv7 gdb thumb fixups does not
961          * kill the return address
962          */
963         switch (arm->core_state) {
964                 case ARM_STATE_ARM:
965                         resume_pc &= 0xFFFFFFFC;
966                         break;
967                 case ARM_STATE_AARCH64:
968                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
969                         break;
970                 case ARM_STATE_THUMB:
971                 case ARM_STATE_THUMB_EE:
972                         /* When the return address is loaded into PC
973                          * bit 0 must be 1 to stay in Thumb state
974                          */
975                         resume_pc |= 0x1;
976                         break;
977                 case ARM_STATE_JAZELLE:
978                         LOG_ERROR("How do I resume into Jazelle state??");
979                         return ERROR_FAIL;
980         }
981         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
982         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
983         arm->pc->dirty = 1;
984         arm->pc->valid = 1;
985         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
986
987         /* called it now before restoring context because it uses cpu
988          * register r0 for restoring system control register */
989         retval = aarch64_restore_system_control_reg(target);
990         if (retval != ERROR_OK)
991                 return retval;
992         retval = aarch64_restore_context(target, handle_breakpoints);
993         if (retval != ERROR_OK)
994                 return retval;
995         target->debug_reason = DBG_REASON_NOTHALTED;
996         target->state = TARGET_RUNNING;
997
998         /* registers are now invalid */
999         register_cache_invalidate(arm->core_cache);
1000
1001         return retval;
1002 }
1003
1004 static int aarch64_internal_restart(struct target *target, bool slave_pe)
1005 {
1006         struct armv8_common *armv8 = target_to_armv8(target);
1007         struct arm *arm = &armv8->arm;
1008         int retval;
1009         uint32_t dscr;
1010         /*
1011          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1012          * * exception flags: see ARMv7 ARM, C5.9.
1013          *
1014          * REVISIT: for single stepping, we probably want to
1015          * disable IRQs by default, with optional override...
1016          */
1017
1018         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1019                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1020         if (retval != ERROR_OK)
1021                 return retval;
1022
1023         if ((dscr & DSCR_ITE) == 0)
1024                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1025
1026         /* make sure to acknowledge the halt event before resuming */
1027         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1028                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
1029
1030         /*
1031          * open the CTI gate for channel 1 so that the restart events
1032          * get passed along to all PEs
1033          */
1034         if (retval == ERROR_OK)
1035                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1036                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
1037         if (retval != ERROR_OK)
1038                 return retval;
1039
1040         if (!slave_pe) {
1041                 /* trigger an event on channel 1, generates a restart request to the PE */
1042                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1043                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
1044                 if (retval != ERROR_OK)
1045                         return retval;
1046
1047                 long long then = timeval_ms();
1048                 for (;; ) {
1049                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1050                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1051                         if (retval != ERROR_OK)
1052                                 return retval;
1053                         if ((dscr & DSCR_HDE) != 0)
1054                                 break;
1055                         if (timeval_ms() > then + 1000) {
1056                                 LOG_ERROR("Timeout waiting for resume");
1057                                 return ERROR_FAIL;
1058                         }
1059                 }
1060         }
1061
1062         target->debug_reason = DBG_REASON_NOTHALTED;
1063         target->state = TARGET_RUNNING;
1064
1065         /* registers are now invalid */
1066         register_cache_invalidate(arm->core_cache);
1067
1068         return ERROR_OK;
1069 }
1070
1071 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1072 {
1073         int retval = 0;
1074         struct target_list *head;
1075         struct target *curr;
1076         uint64_t address;
1077         head = target->head;
1078         while (head != (struct target_list *)NULL) {
1079                 curr = head->target;
1080                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1081                         /*  resume current address , not in step mode */
1082                         retval += aarch64_internal_restore(curr, 1, &address,
1083                                         handle_breakpoints, 0);
1084                         retval += aarch64_internal_restart(curr, true);
1085                 }
1086                 head = head->next;
1087
1088         }
1089         return retval;
1090 }
1091
1092 static int aarch64_resume(struct target *target, int current,
1093         target_addr_t address, int handle_breakpoints, int debug_execution)
1094 {
1095         int retval = 0;
1096         uint64_t addr = address;
1097
1098         /* dummy resume for smp toggle in order to reduce gdb impact  */
1099         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1100                 /*   simulate a start and halt of target */
1101                 target->gdb_service->target = NULL;
1102                 target->gdb_service->core[0] = target->gdb_service->core[1];
1103                 /*  fake resume at next poll we play the  target core[1], see poll*/
1104                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1105                 return 0;
1106         }
1107         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1108                                  debug_execution);
1109         if (target->smp) {
1110                 target->gdb_service->core[0] = -1;
1111                 retval = aarch64_restore_smp(target, handle_breakpoints);
1112                 if (retval != ERROR_OK)
1113                         return retval;
1114         }
1115         aarch64_internal_restart(target, false);
1116
1117         if (!debug_execution) {
1118                 target->state = TARGET_RUNNING;
1119                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1120                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1121         } else {
1122                 target->state = TARGET_DEBUG_RUNNING;
1123                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1124                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1125         }
1126
1127         return ERROR_OK;
1128 }
1129
1130 static int aarch64_debug_entry(struct target *target)
1131 {
1132         int retval = ERROR_OK;
1133         struct aarch64_common *aarch64 = target_to_aarch64(target);
1134         struct armv8_common *armv8 = target_to_armv8(target);
1135
1136         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1137
1138         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1139          * imprecise data aborts get discarded by issuing a Data
1140          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1141          */
1142
1143         /* make sure to clear all sticky errors */
1144         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1145                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1146         if (retval != ERROR_OK)
1147                 return retval;
1148
1149         /* Examine debug reason */
1150         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1151
1152         /* save address of instruction that triggered the watchpoint? */
1153         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1154                 uint32_t tmp;
1155                 uint64_t wfar = 0;
1156
1157                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1158                                 armv8->debug_base + CPUV8_DBG_WFAR1,
1159                                 &tmp);
1160                 if (retval != ERROR_OK)
1161                         return retval;
1162                 wfar = tmp;
1163                 wfar = (wfar << 32);
1164                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1165                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1166                                 &tmp);
1167                 if (retval != ERROR_OK)
1168                         return retval;
1169                 wfar |= tmp;
1170                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
1171         }
1172
1173         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1174
1175         if (armv8->post_debug_entry) {
1176                 retval = armv8->post_debug_entry(target);
1177                 if (retval != ERROR_OK)
1178                         return retval;
1179         }
1180
1181         return retval;
1182 }
1183
1184 static int aarch64_post_debug_entry(struct target *target)
1185 {
1186         struct aarch64_common *aarch64 = target_to_aarch64(target);
1187         struct armv8_common *armv8 = &aarch64->armv8_common;
1188         int retval;
1189
1190         /* clear sticky errors */
1191         mem_ap_write_atomic_u32(armv8->debug_ap,
1192                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1193
1194         switch (armv8->arm.core_mode) {
1195                 case ARMV8_64_EL0T:
1196                 case ARMV8_64_EL1T:
1197                 case ARMV8_64_EL1H:
1198                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1199                                         0, 0,   /* op1, op2 */
1200                                         1, 0,   /* CRn, CRm */
1201                                         &aarch64->system_control_reg);
1202                         if (retval != ERROR_OK)
1203                                 return retval;
1204                 break;
1205                 case ARMV8_64_EL2T:
1206                 case ARMV8_64_EL2H:
1207                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1208                                         4, 0,   /* op1, op2 */
1209                                         1, 0,   /* CRn, CRm */
1210                                         &aarch64->system_control_reg);
1211                         if (retval != ERROR_OK)
1212                                 return retval;
1213                 break;
1214                 case ARMV8_64_EL3H:
1215                 case ARMV8_64_EL3T:
1216                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1217                                         6, 0,   /* op1, op2 */
1218                                         1, 0,   /* CRn, CRm */
1219                                         &aarch64->system_control_reg);
1220                         if (retval != ERROR_OK)
1221                                 return retval;
1222                 break;
1223                 default:
1224                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
1225                         if (retval != ERROR_OK)
1226                                 return retval;
1227                         break;
1228         }
1229
1230         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1231         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1232
1233         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1234                 armv8_identify_cache(target);
1235
1236         armv8->armv8_mmu.mmu_enabled =
1237                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1238         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1239                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1240         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1241                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1242         aarch64->curr_mode = armv8->arm.core_mode;
1243         return ERROR_OK;
1244 }
1245
1246 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1247 {
1248         struct armv8_common *armv8 = target_to_armv8(target);
1249         uint32_t dscr;
1250
1251         /* Read DSCR */
1252         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1253                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1254         if (ERROR_OK != retval)
1255                 return retval;
1256
1257         /* clear bitfield */
1258         dscr &= ~bit_mask;
1259         /* put new value */
1260         dscr |= value & bit_mask;
1261
1262         /* write new DSCR */
1263         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1264                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1265         return retval;
1266 }
1267
1268 static int aarch64_step(struct target *target, int current, target_addr_t address,
1269         int handle_breakpoints)
1270 {
1271         struct armv8_common *armv8 = target_to_armv8(target);
1272         int retval;
1273         uint32_t edecr;
1274
1275         if (target->state != TARGET_HALTED) {
1276                 LOG_WARNING("target not halted");
1277                 return ERROR_TARGET_NOT_HALTED;
1278         }
1279
1280         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1281                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1282         if (retval != ERROR_OK)
1283                 return retval;
1284
1285         /* make sure EDECR.SS is not set when restoring the register */
1286         edecr &= ~0x4;
1287
1288         /* set EDECR.SS to enter hardware step mode */
1289         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1290                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1291         if (retval != ERROR_OK)
1292                 return retval;
1293
1294         /* disable interrupts while stepping */
1295         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1296         if (retval != ERROR_OK)
1297                 return ERROR_OK;
1298
1299         /* resume the target */
1300         retval = aarch64_resume(target, current, address, 0, 0);
1301         if (retval != ERROR_OK)
1302                 return retval;
1303
1304         long long then = timeval_ms();
1305         while (target->state != TARGET_HALTED) {
1306                 retval = aarch64_poll(target);
1307                 if (retval != ERROR_OK)
1308                         return retval;
1309                 if (timeval_ms() > then + 1000) {
1310                         LOG_ERROR("timeout waiting for target halt");
1311                         return ERROR_FAIL;
1312                 }
1313         }
1314
1315         /* restore EDECR */
1316         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1317                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1318         if (retval != ERROR_OK)
1319                 return retval;
1320
1321         /* restore interrupts */
1322         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1323         if (retval != ERROR_OK)
1324                 return ERROR_OK;
1325
1326         return ERROR_OK;
1327 }
1328
1329 static int aarch64_restore_context(struct target *target, bool bpwp)
1330 {
1331         struct armv8_common *armv8 = target_to_armv8(target);
1332
1333         LOG_DEBUG(" ");
1334
1335         if (armv8->pre_restore_context)
1336                 armv8->pre_restore_context(target);
1337
1338         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1339
1340 }
1341
1342 /*
1343  * Cortex-A8 Breakpoint and watchpoint functions
1344  */
1345
1346 /* Setup hardware Breakpoint Register Pair */
1347 static int aarch64_set_breakpoint(struct target *target,
1348         struct breakpoint *breakpoint, uint8_t matchmode)
1349 {
1350         int retval;
1351         int brp_i = 0;
1352         uint32_t control;
1353         uint8_t byte_addr_select = 0x0F;
1354         struct aarch64_common *aarch64 = target_to_aarch64(target);
1355         struct armv8_common *armv8 = &aarch64->armv8_common;
1356         struct aarch64_brp *brp_list = aarch64->brp_list;
1357         uint32_t dscr;
1358
1359         if (breakpoint->set) {
1360                 LOG_WARNING("breakpoint already set");
1361                 return ERROR_OK;
1362         }
1363
1364         if (breakpoint->type == BKPT_HARD) {
1365                 int64_t bpt_value;
1366                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1367                         brp_i++;
1368                 if (brp_i >= aarch64->brp_num) {
1369                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1370                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1371                 }
1372                 breakpoint->set = brp_i + 1;
1373                 if (breakpoint->length == 2)
1374                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1375                 control = ((matchmode & 0x7) << 20)
1376                         | (1 << 13)
1377                         | (byte_addr_select << 5)
1378                         | (3 << 1) | 1;
1379                 brp_list[brp_i].used = 1;
1380                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1381                 brp_list[brp_i].control = control;
1382                 bpt_value = brp_list[brp_i].value;
1383
1384                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1385                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1386                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1387                 if (retval != ERROR_OK)
1388                         return retval;
1389                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1390                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1391                                 (uint32_t)(bpt_value >> 32));
1392                 if (retval != ERROR_OK)
1393                         return retval;
1394
1395                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1396                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1397                                 brp_list[brp_i].control);
1398                 if (retval != ERROR_OK)
1399                         return retval;
1400                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1401                         brp_list[brp_i].control,
1402                         brp_list[brp_i].value);
1403
1404         } else if (breakpoint->type == BKPT_SOFT) {
1405                 uint8_t code[4];
1406
1407                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
1408                 retval = target_read_memory(target,
1409                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1410                                 breakpoint->length, 1,
1411                                 breakpoint->orig_instr);
1412                 if (retval != ERROR_OK)
1413                         return retval;
1414
1415                 armv8_cache_d_inner_flush_virt(armv8,
1416                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1417                                 breakpoint->length);
1418
1419                 retval = target_write_memory(target,
1420                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1421                                 breakpoint->length, 1, code);
1422                 if (retval != ERROR_OK)
1423                         return retval;
1424
1425                 armv8_cache_d_inner_flush_virt(armv8,
1426                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1427                                 breakpoint->length);
1428
1429                 armv8_cache_i_inner_inval_virt(armv8,
1430                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1431                                 breakpoint->length);
1432
1433                 breakpoint->set = 0x11; /* Any nice value but 0 */
1434         }
1435
1436         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1437                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1438         /* Ensure that halting debug mode is enable */
1439         dscr = dscr | DSCR_HDE;
1440         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1441                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1442         if (retval != ERROR_OK) {
1443                 LOG_DEBUG("Failed to set DSCR.HDE");
1444                 return retval;
1445         }
1446
1447         return ERROR_OK;
1448 }
1449
1450 static int aarch64_set_context_breakpoint(struct target *target,
1451         struct breakpoint *breakpoint, uint8_t matchmode)
1452 {
1453         int retval = ERROR_FAIL;
1454         int brp_i = 0;
1455         uint32_t control;
1456         uint8_t byte_addr_select = 0x0F;
1457         struct aarch64_common *aarch64 = target_to_aarch64(target);
1458         struct armv8_common *armv8 = &aarch64->armv8_common;
1459         struct aarch64_brp *brp_list = aarch64->brp_list;
1460
1461         if (breakpoint->set) {
1462                 LOG_WARNING("breakpoint already set");
1463                 return retval;
1464         }
1465         /*check available context BRPs*/
1466         while ((brp_list[brp_i].used ||
1467                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1468                 brp_i++;
1469
1470         if (brp_i >= aarch64->brp_num) {
1471                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1472                 return ERROR_FAIL;
1473         }
1474
1475         breakpoint->set = brp_i + 1;
1476         control = ((matchmode & 0x7) << 20)
1477                 | (1 << 13)
1478                 | (byte_addr_select << 5)
1479                 | (3 << 1) | 1;
1480         brp_list[brp_i].used = 1;
1481         brp_list[brp_i].value = (breakpoint->asid);
1482         brp_list[brp_i].control = control;
1483         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1484                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1485                         brp_list[brp_i].value);
1486         if (retval != ERROR_OK)
1487                 return retval;
1488         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1489                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1490                         brp_list[brp_i].control);
1491         if (retval != ERROR_OK)
1492                 return retval;
1493         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1494                 brp_list[brp_i].control,
1495                 brp_list[brp_i].value);
1496         return ERROR_OK;
1497
1498 }
1499
1500 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1501 {
1502         int retval = ERROR_FAIL;
1503         int brp_1 = 0;  /* holds the contextID pair */
1504         int brp_2 = 0;  /* holds the IVA pair */
1505         uint32_t control_CTX, control_IVA;
1506         uint8_t CTX_byte_addr_select = 0x0F;
1507         uint8_t IVA_byte_addr_select = 0x0F;
1508         uint8_t CTX_machmode = 0x03;
1509         uint8_t IVA_machmode = 0x01;
1510         struct aarch64_common *aarch64 = target_to_aarch64(target);
1511         struct armv8_common *armv8 = &aarch64->armv8_common;
1512         struct aarch64_brp *brp_list = aarch64->brp_list;
1513
1514         if (breakpoint->set) {
1515                 LOG_WARNING("breakpoint already set");
1516                 return retval;
1517         }
1518         /*check available context BRPs*/
1519         while ((brp_list[brp_1].used ||
1520                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1521                 brp_1++;
1522
1523         printf("brp(CTX) found num: %d\n", brp_1);
1524         if (brp_1 >= aarch64->brp_num) {
1525                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1526                 return ERROR_FAIL;
1527         }
1528
1529         while ((brp_list[brp_2].used ||
1530                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1531                 brp_2++;
1532
1533         printf("brp(IVA) found num: %d\n", brp_2);
1534         if (brp_2 >= aarch64->brp_num) {
1535                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1536                 return ERROR_FAIL;
1537         }
1538
1539         breakpoint->set = brp_1 + 1;
1540         breakpoint->linked_BRP = brp_2;
1541         control_CTX = ((CTX_machmode & 0x7) << 20)
1542                 | (brp_2 << 16)
1543                 | (0 << 14)
1544                 | (CTX_byte_addr_select << 5)
1545                 | (3 << 1) | 1;
1546         brp_list[brp_1].used = 1;
1547         brp_list[brp_1].value = (breakpoint->asid);
1548         brp_list[brp_1].control = control_CTX;
1549         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1550                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1551                         brp_list[brp_1].value);
1552         if (retval != ERROR_OK)
1553                 return retval;
1554         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1555                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1556                         brp_list[brp_1].control);
1557         if (retval != ERROR_OK)
1558                 return retval;
1559
1560         control_IVA = ((IVA_machmode & 0x7) << 20)
1561                 | (brp_1 << 16)
1562                 | (1 << 13)
1563                 | (IVA_byte_addr_select << 5)
1564                 | (3 << 1) | 1;
1565         brp_list[brp_2].used = 1;
1566         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1567         brp_list[brp_2].control = control_IVA;
1568         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1569                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1570                         brp_list[brp_2].value & 0xFFFFFFFF);
1571         if (retval != ERROR_OK)
1572                 return retval;
1573         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1574                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1575                         brp_list[brp_2].value >> 32);
1576         if (retval != ERROR_OK)
1577                 return retval;
1578         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1579                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1580                         brp_list[brp_2].control);
1581         if (retval != ERROR_OK)
1582                 return retval;
1583
1584         return ERROR_OK;
1585 }
1586
1587 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1588 {
1589         int retval;
1590         struct aarch64_common *aarch64 = target_to_aarch64(target);
1591         struct armv8_common *armv8 = &aarch64->armv8_common;
1592         struct aarch64_brp *brp_list = aarch64->brp_list;
1593
1594         if (!breakpoint->set) {
1595                 LOG_WARNING("breakpoint not set");
1596                 return ERROR_OK;
1597         }
1598
1599         if (breakpoint->type == BKPT_HARD) {
1600                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1601                         int brp_i = breakpoint->set - 1;
1602                         int brp_j = breakpoint->linked_BRP;
1603                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1604                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1605                                 return ERROR_OK;
1606                         }
1607                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1608                                 brp_list[brp_i].control, brp_list[brp_i].value);
1609                         brp_list[brp_i].used = 0;
1610                         brp_list[brp_i].value = 0;
1611                         brp_list[brp_i].control = 0;
1612                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1613                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1614                                         brp_list[brp_i].control);
1615                         if (retval != ERROR_OK)
1616                                 return retval;
1617                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1618                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1619                                         (uint32_t)brp_list[brp_i].value);
1620                         if (retval != ERROR_OK)
1621                                 return retval;
1622                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1623                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1624                                         (uint32_t)brp_list[brp_i].value);
1625                         if (retval != ERROR_OK)
1626                                 return retval;
1627                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1628                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1629                                 return ERROR_OK;
1630                         }
1631                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1632                                 brp_list[brp_j].control, brp_list[brp_j].value);
1633                         brp_list[brp_j].used = 0;
1634                         brp_list[brp_j].value = 0;
1635                         brp_list[brp_j].control = 0;
1636                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1637                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1638                                         brp_list[brp_j].control);
1639                         if (retval != ERROR_OK)
1640                                 return retval;
1641                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1642                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1643                                         (uint32_t)brp_list[brp_j].value);
1644                         if (retval != ERROR_OK)
1645                                 return retval;
1646                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1647                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1648                                         (uint32_t)brp_list[brp_j].value);
1649                         if (retval != ERROR_OK)
1650                                 return retval;
1651
1652                         breakpoint->linked_BRP = 0;
1653                         breakpoint->set = 0;
1654                         return ERROR_OK;
1655
1656                 } else {
1657                         int brp_i = breakpoint->set - 1;
1658                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1659                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1660                                 return ERROR_OK;
1661                         }
1662                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1663                                 brp_list[brp_i].control, brp_list[brp_i].value);
1664                         brp_list[brp_i].used = 0;
1665                         brp_list[brp_i].value = 0;
1666                         brp_list[brp_i].control = 0;
1667                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1668                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1669                                         brp_list[brp_i].control);
1670                         if (retval != ERROR_OK)
1671                                 return retval;
1672                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1673                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1674                                         brp_list[brp_i].value);
1675                         if (retval != ERROR_OK)
1676                                 return retval;
1677
1678                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1679                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1680                                         (uint32_t)brp_list[brp_i].value);
1681                         if (retval != ERROR_OK)
1682                                 return retval;
1683                         breakpoint->set = 0;
1684                         return ERROR_OK;
1685                 }
1686         } else {
1687                 /* restore original instruction (kept in target endianness) */
1688
1689                 armv8_cache_d_inner_flush_virt(armv8,
1690                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1691                                 breakpoint->length);
1692
1693                 if (breakpoint->length == 4) {
1694                         retval = target_write_memory(target,
1695                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1696                                         4, 1, breakpoint->orig_instr);
1697                         if (retval != ERROR_OK)
1698                                 return retval;
1699                 } else {
1700                         retval = target_write_memory(target,
1701                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1702                                         2, 1, breakpoint->orig_instr);
1703                         if (retval != ERROR_OK)
1704                                 return retval;
1705                 }
1706
1707                 armv8_cache_d_inner_flush_virt(armv8,
1708                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1709                                 breakpoint->length);
1710
1711                 armv8_cache_i_inner_inval_virt(armv8,
1712                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1713                                 breakpoint->length);
1714         }
1715         breakpoint->set = 0;
1716
1717         return ERROR_OK;
1718 }
1719
1720 static int aarch64_add_breakpoint(struct target *target,
1721         struct breakpoint *breakpoint)
1722 {
1723         struct aarch64_common *aarch64 = target_to_aarch64(target);
1724
1725         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1726                 LOG_INFO("no hardware breakpoint available");
1727                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1728         }
1729
1730         if (breakpoint->type == BKPT_HARD)
1731                 aarch64->brp_num_available--;
1732
1733         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1734 }
1735
1736 static int aarch64_add_context_breakpoint(struct target *target,
1737         struct breakpoint *breakpoint)
1738 {
1739         struct aarch64_common *aarch64 = target_to_aarch64(target);
1740
1741         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1742                 LOG_INFO("no hardware breakpoint available");
1743                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1744         }
1745
1746         if (breakpoint->type == BKPT_HARD)
1747                 aarch64->brp_num_available--;
1748
1749         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1750 }
1751
1752 static int aarch64_add_hybrid_breakpoint(struct target *target,
1753         struct breakpoint *breakpoint)
1754 {
1755         struct aarch64_common *aarch64 = target_to_aarch64(target);
1756
1757         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1758                 LOG_INFO("no hardware breakpoint available");
1759                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1760         }
1761
1762         if (breakpoint->type == BKPT_HARD)
1763                 aarch64->brp_num_available--;
1764
1765         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1766 }
1767
1768
1769 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1770 {
1771         struct aarch64_common *aarch64 = target_to_aarch64(target);
1772
1773 #if 0
1774 /* It is perfectly possible to remove breakpoints while the target is running */
1775         if (target->state != TARGET_HALTED) {
1776                 LOG_WARNING("target not halted");
1777                 return ERROR_TARGET_NOT_HALTED;
1778         }
1779 #endif
1780
1781         if (breakpoint->set) {
1782                 aarch64_unset_breakpoint(target, breakpoint);
1783                 if (breakpoint->type == BKPT_HARD)
1784                         aarch64->brp_num_available++;
1785         }
1786
1787         return ERROR_OK;
1788 }
1789
1790 /*
1791  * Cortex-A8 Reset functions
1792  */
1793
1794 static int aarch64_assert_reset(struct target *target)
1795 {
1796         struct armv8_common *armv8 = target_to_armv8(target);
1797
1798         LOG_DEBUG(" ");
1799
1800         /* FIXME when halt is requested, make it work somehow... */
1801
1802         /* Issue some kind of warm reset. */
1803         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1804                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1805         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1806                 /* REVISIT handle "pulls" cases, if there's
1807                  * hardware that needs them to work.
1808                  */
1809                 jtag_add_reset(0, 1);
1810         } else {
1811                 LOG_ERROR("%s: how to reset?", target_name(target));
1812                 return ERROR_FAIL;
1813         }
1814
1815         /* registers are now invalid */
1816         register_cache_invalidate(armv8->arm.core_cache);
1817
1818         target->state = TARGET_RESET;
1819
1820         return ERROR_OK;
1821 }
1822
1823 static int aarch64_deassert_reset(struct target *target)
1824 {
1825         int retval;
1826
1827         LOG_DEBUG(" ");
1828
1829         /* be certain SRST is off */
1830         jtag_add_reset(0, 0);
1831
1832         retval = aarch64_poll(target);
1833         if (retval != ERROR_OK)
1834                 return retval;
1835
1836         if (target->reset_halt) {
1837                 if (target->state != TARGET_HALTED) {
1838                         LOG_WARNING("%s: ran after reset and before halt ...",
1839                                 target_name(target));
1840                         retval = target_halt(target);
1841                         if (retval != ERROR_OK)
1842                                 return retval;
1843                 }
1844         }
1845
1846         return ERROR_OK;
1847 }
1848
1849 static int aarch64_write_apb_ap_memory(struct target *target,
1850         uint64_t address, uint32_t size,
1851         uint32_t count, const uint8_t *buffer)
1852 {
1853         /* write memory through APB-AP */
1854         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1855         struct armv8_common *armv8 = target_to_armv8(target);
1856         struct arm *arm = &armv8->arm;
1857         int total_bytes = count * size;
1858         int total_u32;
1859         int start_byte = address & 0x3;
1860         int end_byte   = (address + total_bytes) & 0x3;
1861         struct reg *reg;
1862         uint32_t dscr;
1863         uint8_t *tmp_buff = NULL;
1864
1865         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1866                           address, size, count);
1867         if (target->state != TARGET_HALTED) {
1868                 LOG_WARNING("target not halted");
1869                 return ERROR_TARGET_NOT_HALTED;
1870         }
1871
1872         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1873
1874         /* Mark register R0 as dirty, as it will be used
1875          * for transferring the data.
1876          * It will be restored automatically when exiting
1877          * debug mode
1878          */
1879         reg = armv8_reg_current(arm, 1);
1880         reg->dirty = true;
1881
1882         reg = armv8_reg_current(arm, 0);
1883         reg->dirty = true;
1884
1885         /*  clear any abort  */
1886         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1887                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1888         if (retval != ERROR_OK)
1889                 return retval;
1890
1891
1892         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1893
1894         /* The algorithm only copies 32 bit words, so the buffer
1895          * should be expanded to include the words at either end.
1896          * The first and last words will be read first to avoid
1897          * corruption if needed.
1898          */
1899         tmp_buff = malloc(total_u32 * 4);
1900
1901         if ((start_byte != 0) && (total_u32 > 1)) {
1902                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1903                  * the other bytes in the word.
1904                  */
1905                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1906                 if (retval != ERROR_OK)
1907                         goto error_free_buff_w;
1908         }
1909
1910         /* If end of write is not aligned, or the write is less than 4 bytes */
1911         if ((end_byte != 0) ||
1912                 ((total_u32 == 1) && (total_bytes != 4))) {
1913
1914                 /* Read the last word to avoid corruption during 32 bit write */
1915                 int mem_offset = (total_u32-1) * 4;
1916                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1917                 if (retval != ERROR_OK)
1918                         goto error_free_buff_w;
1919         }
1920
1921         /* Copy the write buffer over the top of the temporary buffer */
1922         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1923
1924         /* We now have a 32 bit aligned buffer that can be written */
1925
1926         /* Read DSCR */
1927         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1928                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1929         if (retval != ERROR_OK)
1930                 goto error_free_buff_w;
1931
1932         /* Set Normal access mode  */
1933         dscr = (dscr & ~DSCR_MA);
1934         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1935                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1936
1937         if (arm->core_state == ARM_STATE_AARCH64) {
1938                 /* Write X0 with value 'address' using write procedure */
1939                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1940                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1941                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1942                 retval += aarch64_exec_opcode(target,
1943                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1944         } else {
1945                 /* Write R0 with value 'address' using write procedure */
1946                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1947                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1948                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1949                 retval += aarch64_exec_opcode(target,
1950                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1951
1952         }
1953         /* Step 1.d   - Change DCC to memory mode */
1954         dscr = dscr | DSCR_MA;
1955         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1956                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1957         if (retval != ERROR_OK)
1958                 goto error_unset_dtr_w;
1959
1960
1961         /* Step 2.a   - Do the write */
1962         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1963                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1964         if (retval != ERROR_OK)
1965                 goto error_unset_dtr_w;
1966
1967         /* Step 3.a   - Switch DTR mode back to Normal mode */
1968         dscr = (dscr & ~DSCR_MA);
1969         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1970                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1971         if (retval != ERROR_OK)
1972                 goto error_unset_dtr_w;
1973
1974         /* Check for sticky abort flags in the DSCR */
1975         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1976                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1977         if (retval != ERROR_OK)
1978                 goto error_free_buff_w;
1979         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1980                 /* Abort occurred - clear it and exit */
1981                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1982                 mem_ap_write_atomic_u32(armv8->debug_ap,
1983                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1984                 goto error_free_buff_w;
1985         }
1986
1987         /* Done */
1988         free(tmp_buff);
1989         return ERROR_OK;
1990
1991 error_unset_dtr_w:
1992         /* Unset DTR mode */
1993         mem_ap_read_atomic_u32(armv8->debug_ap,
1994                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1995         dscr = (dscr & ~DSCR_MA);
1996         mem_ap_write_atomic_u32(armv8->debug_ap,
1997                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1998 error_free_buff_w:
1999         LOG_ERROR("error");
2000         free(tmp_buff);
2001         return ERROR_FAIL;
2002 }
2003
2004 static int aarch64_read_apb_ap_memory(struct target *target,
2005         target_addr_t address, uint32_t size,
2006         uint32_t count, uint8_t *buffer)
2007 {
2008         /* read memory through APB-AP */
2009         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2010         struct armv8_common *armv8 = target_to_armv8(target);
2011         struct arm *arm = &armv8->arm;
2012         int total_bytes = count * size;
2013         int total_u32;
2014         int start_byte = address & 0x3;
2015         int end_byte   = (address + total_bytes) & 0x3;
2016         struct reg *reg;
2017         uint32_t dscr;
2018         uint8_t *tmp_buff = NULL;
2019         uint8_t *u8buf_ptr;
2020         uint32_t value;
2021
2022         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
2023                           address, size, count);
2024         if (target->state != TARGET_HALTED) {
2025                 LOG_WARNING("target not halted");
2026                 return ERROR_TARGET_NOT_HALTED;
2027         }
2028
2029         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
2030         /* Mark register X0, X1 as dirty, as it will be used
2031          * for transferring the data.
2032          * It will be restored automatically when exiting
2033          * debug mode
2034          */
2035         reg = armv8_reg_current(arm, 1);
2036         reg->dirty = true;
2037
2038         reg = armv8_reg_current(arm, 0);
2039         reg->dirty = true;
2040
2041         /*      clear any abort  */
2042         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2043                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2044         if (retval != ERROR_OK)
2045                 goto error_free_buff_r;
2046
2047         /* Read DSCR */
2048         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2049                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2050
2051         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2052
2053         /* Set Normal access mode  */
2054         dscr = (dscr & ~DSCR_MA);
2055         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2056                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2057
2058         if (arm->core_state == ARM_STATE_AARCH64) {
2059                 /* Write X0 with value 'address' using write procedure */
2060                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2061                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
2062                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2063                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2064                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2065                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2066                 /* Step 1.e - Change DCC to memory mode */
2067                 dscr = dscr | DSCR_MA;
2068                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2069                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2070                 /* Step 1.f - read DBGDTRTX and discard the value */
2071                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2072                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2073         } else {
2074                 /* Write R0 with value 'address' using write procedure */
2075                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2076                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
2077                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2078                 retval += aarch64_exec_opcode(target,
2079                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
2080                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2081                 retval += aarch64_exec_opcode(target,
2082                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2083                 /* Step 1.e - Change DCC to memory mode */
2084                 dscr = dscr | DSCR_MA;
2085                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2086                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2087                 /* Step 1.f - read DBGDTRTX and discard the value */
2088                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2089                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2090
2091         }
2092         if (retval != ERROR_OK)
2093                 goto error_unset_dtr_r;
2094
2095         /* Optimize the read as much as we can, either way we read in a single pass  */
2096         if ((start_byte) || (end_byte)) {
2097                 /* The algorithm only copies 32 bit words, so the buffer
2098                  * should be expanded to include the words at either end.
2099                  * The first and last words will be read into a temp buffer
2100                  * to avoid corruption
2101                  */
2102                 tmp_buff = malloc(total_u32 * 4);
2103                 if (!tmp_buff)
2104                         goto error_unset_dtr_r;
2105
2106                 /* use the tmp buffer to read the entire data */
2107                 u8buf_ptr = tmp_buff;
2108         } else
2109                 /* address and read length are aligned so read directly into the passed buffer */
2110                 u8buf_ptr = buffer;
2111
2112         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2113          * Abort flags are sticky, so can be read at end of transactions
2114          *
2115          * This data is read in aligned to 32 bit boundary.
2116          */
2117
2118         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2119          * increments X0 by 4. */
2120         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2121                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2122         if (retval != ERROR_OK)
2123                         goto error_unset_dtr_r;
2124
2125         /* Step 3.a - set DTR access mode back to Normal mode   */
2126         dscr = (dscr & ~DSCR_MA);
2127         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2128                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2129         if (retval != ERROR_OK)
2130                 goto error_free_buff_r;
2131
2132         /* Step 3.b - read DBGDTRTX for the final value */
2133         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2134                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2135         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2136
2137         /* Check for sticky abort flags in the DSCR */
2138         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2139                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2140         if (retval != ERROR_OK)
2141                 goto error_free_buff_r;
2142         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2143                 /* Abort occurred - clear it and exit */
2144                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2145                 mem_ap_write_atomic_u32(armv8->debug_ap,
2146                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2147                 goto error_free_buff_r;
2148         }
2149
2150         /* check if we need to copy aligned data by applying any shift necessary */
2151         if (tmp_buff) {
2152                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2153                 free(tmp_buff);
2154         }
2155
2156         /* Done */
2157         return ERROR_OK;
2158
2159 error_unset_dtr_r:
2160         /* Unset DTR mode */
2161         mem_ap_read_atomic_u32(armv8->debug_ap,
2162                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2163         dscr = (dscr & ~DSCR_MA);
2164         mem_ap_write_atomic_u32(armv8->debug_ap,
2165                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2166 error_free_buff_r:
2167         LOG_ERROR("error");
2168         free(tmp_buff);
2169         return ERROR_FAIL;
2170 }
2171
2172 static int aarch64_read_phys_memory(struct target *target,
2173         target_addr_t address, uint32_t size,
2174         uint32_t count, uint8_t *buffer)
2175 {
2176         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2177         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2178                 address, size, count);
2179
2180         if (count && buffer) {
2181                 /* read memory through APB-AP */
2182                 retval = aarch64_mmu_modify(target, 0);
2183                 if (retval != ERROR_OK)
2184                         return retval;
2185                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2186         }
2187         return retval;
2188 }
2189
2190 static int aarch64_read_memory(struct target *target, target_addr_t address,
2191         uint32_t size, uint32_t count, uint8_t *buffer)
2192 {
2193         int mmu_enabled = 0;
2194         int retval;
2195
2196         /* aarch64 handles unaligned memory access */
2197         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2198                 size, count);
2199
2200         /* determine if MMU was enabled on target stop */
2201         retval = aarch64_mmu(target, &mmu_enabled);
2202         if (retval != ERROR_OK)
2203                 return retval;
2204
2205         if (mmu_enabled) {
2206                 retval = aarch64_check_address(target, address);
2207                 if (retval != ERROR_OK)
2208                         return retval;
2209                 /* enable MMU as we could have disabled it for phys access */
2210                 retval = aarch64_mmu_modify(target, 1);
2211                 if (retval != ERROR_OK)
2212                         return retval;
2213         }
2214         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2215 }
2216
2217 static int aarch64_write_phys_memory(struct target *target,
2218         target_addr_t address, uint32_t size,
2219         uint32_t count, const uint8_t *buffer)
2220 {
2221         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2222
2223         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2224                 size, count);
2225
2226         if (count && buffer) {
2227                 /* write memory through APB-AP */
2228                 retval = aarch64_mmu_modify(target, 0);
2229                 if (retval != ERROR_OK)
2230                         return retval;
2231                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2232         }
2233
2234         return retval;
2235 }
2236
2237 static int aarch64_write_memory(struct target *target, target_addr_t address,
2238         uint32_t size, uint32_t count, const uint8_t *buffer)
2239 {
2240         int mmu_enabled = 0;
2241         int retval;
2242
2243         /* aarch64 handles unaligned memory access */
2244         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2245                   "; count %" PRId32, address, size, count);
2246
2247         /* determine if MMU was enabled on target stop */
2248         retval = aarch64_mmu(target, &mmu_enabled);
2249         if (retval != ERROR_OK)
2250                 return retval;
2251
2252         if (mmu_enabled) {
2253                 retval = aarch64_check_address(target, address);
2254                 if (retval != ERROR_OK)
2255                         return retval;
2256                 /* enable MMU as we could have disabled it for phys access */
2257                 retval = aarch64_mmu_modify(target, 1);
2258                 if (retval != ERROR_OK)
2259                         return retval;
2260         }
2261         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2262 }
2263
2264 static int aarch64_handle_target_request(void *priv)
2265 {
2266         struct target *target = priv;
2267         struct armv8_common *armv8 = target_to_armv8(target);
2268         int retval;
2269
2270         if (!target_was_examined(target))
2271                 return ERROR_OK;
2272         if (!target->dbg_msg_enabled)
2273                 return ERROR_OK;
2274
2275         if (target->state == TARGET_RUNNING) {
2276                 uint32_t request;
2277                 uint32_t dscr;
2278                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2279                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2280
2281                 /* check if we have data */
2282                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2283                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2284                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2285                         if (retval == ERROR_OK) {
2286                                 target_request(target, request);
2287                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2288                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2289                         }
2290                 }
2291         }
2292
2293         return ERROR_OK;
2294 }
2295
2296 static int aarch64_examine_first(struct target *target)
2297 {
2298         struct aarch64_common *aarch64 = target_to_aarch64(target);
2299         struct armv8_common *armv8 = &aarch64->armv8_common;
2300         struct adiv5_dap *swjdp = armv8->arm.dap;
2301         int i;
2302         int retval = ERROR_OK;
2303         uint64_t debug, ttypr;
2304         uint32_t cpuid;
2305         uint32_t tmp0, tmp1;
2306         debug = ttypr = cpuid = 0;
2307
2308         /* We do one extra read to ensure DAP is configured,
2309          * we call ahbap_debugport_init(swjdp) instead
2310          */
2311         retval = dap_dp_init(swjdp);
2312         if (retval != ERROR_OK)
2313                 return retval;
2314
2315         /* Search for the APB-AB - it is needed for access to debug registers */
2316         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2317         if (retval != ERROR_OK) {
2318                 LOG_ERROR("Could not find APB-AP for debug access");
2319                 return retval;
2320         }
2321
2322         retval = mem_ap_init(armv8->debug_ap);
2323         if (retval != ERROR_OK) {
2324                 LOG_ERROR("Could not initialize the APB-AP");
2325                 return retval;
2326         }
2327
2328         armv8->debug_ap->memaccess_tck = 80;
2329
2330         if (!target->dbgbase_set) {
2331                 uint32_t dbgbase;
2332                 /* Get ROM Table base */
2333                 uint32_t apid;
2334                 int32_t coreidx = target->coreid;
2335                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2336                 if (retval != ERROR_OK)
2337                         return retval;
2338                 /* Lookup 0x15 -- Processor DAP */
2339                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2340                                 &armv8->debug_base, &coreidx);
2341                 if (retval != ERROR_OK)
2342                         return retval;
2343                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
2344                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2345         } else
2346                 armv8->debug_base = target->dbgbase;
2347
2348         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2349                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2350         if (retval != ERROR_OK) {
2351                 LOG_DEBUG("LOCK debug access fail");
2352                 return retval;
2353         }
2354
2355         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2356                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2357         if (retval != ERROR_OK) {
2358                 LOG_DEBUG("Examine %s failed", "oslock");
2359                 return retval;
2360         }
2361
2362         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2363                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2364         if (retval != ERROR_OK) {
2365                 LOG_DEBUG("Examine %s failed", "CPUID");
2366                 return retval;
2367         }
2368
2369         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2370                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2371         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2372                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2373         if (retval != ERROR_OK) {
2374                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2375                 return retval;
2376         }
2377         ttypr |= tmp1;
2378         ttypr = (ttypr << 32) | tmp0;
2379
2380         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2381                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
2382         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2383                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
2384         if (retval != ERROR_OK) {
2385                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2386                 return retval;
2387         }
2388         debug |= tmp1;
2389         debug = (debug << 32) | tmp0;
2390
2391         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2392         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2393         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2394
2395         if (target->ctibase == 0) {
2396                 /* assume a v8 rom table layout */
2397                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
2398                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
2399         } else
2400                 armv8->cti_base = target->ctibase;
2401
2402         armv8->arm.core_type = ARM_MODE_MON;
2403         retval = aarch64_dpm_setup(aarch64, debug);
2404         if (retval != ERROR_OK)
2405                 return retval;
2406
2407         /* Setup Breakpoint Register Pairs */
2408         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2409         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2410         aarch64->brp_num_available = aarch64->brp_num;
2411         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2412         for (i = 0; i < aarch64->brp_num; i++) {
2413                 aarch64->brp_list[i].used = 0;
2414                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2415                         aarch64->brp_list[i].type = BRP_NORMAL;
2416                 else
2417                         aarch64->brp_list[i].type = BRP_CONTEXT;
2418                 aarch64->brp_list[i].value = 0;
2419                 aarch64->brp_list[i].control = 0;
2420                 aarch64->brp_list[i].BRPn = i;
2421         }
2422
2423         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2424
2425         target_set_examined(target);
2426         return ERROR_OK;
2427 }
2428
2429 static int aarch64_examine(struct target *target)
2430 {
2431         int retval = ERROR_OK;
2432
2433         /* don't re-probe hardware after each reset */
2434         if (!target_was_examined(target))
2435                 retval = aarch64_examine_first(target);
2436
2437         /* Configure core debug access */
2438         if (retval == ERROR_OK)
2439                 retval = aarch64_init_debug_access(target);
2440
2441         return retval;
2442 }
2443
2444 /*
2445  *      Cortex-A8 target creation and initialization
2446  */
2447
2448 static int aarch64_init_target(struct command_context *cmd_ctx,
2449         struct target *target)
2450 {
2451         /* examine_first() does a bunch of this */
2452         return ERROR_OK;
2453 }
2454
2455 static int aarch64_init_arch_info(struct target *target,
2456         struct aarch64_common *aarch64, struct jtag_tap *tap)
2457 {
2458         struct armv8_common *armv8 = &aarch64->armv8_common;
2459         struct adiv5_dap *dap = armv8->arm.dap;
2460
2461         armv8->arm.dap = dap;
2462
2463         /* Setup struct aarch64_common */
2464         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2465         /*  tap has no dap initialized */
2466         if (!tap->dap) {
2467                 tap->dap = dap_init();
2468
2469                 /* Leave (only) generic DAP stuff for debugport_init() */
2470                 tap->dap->tap = tap;
2471         }
2472
2473         armv8->arm.dap = tap->dap;
2474
2475         aarch64->fast_reg_read = 0;
2476
2477         /* register arch-specific functions */
2478         armv8->examine_debug_reason = NULL;
2479
2480         armv8->post_debug_entry = aarch64_post_debug_entry;
2481
2482         armv8->pre_restore_context = NULL;
2483
2484         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2485
2486         /* REVISIT v7a setup should be in a v7a-specific routine */
2487         armv8_init_arch_info(target, armv8);
2488         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2489
2490         return ERROR_OK;
2491 }
2492
2493 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2494 {
2495         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2496
2497         return aarch64_init_arch_info(target, aarch64, target->tap);
2498 }
2499
2500 static int aarch64_mmu(struct target *target, int *enabled)
2501 {
2502         if (target->state != TARGET_HALTED) {
2503                 LOG_ERROR("%s: target not halted", __func__);
2504                 return ERROR_TARGET_INVALID;
2505         }
2506
2507         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2508         return ERROR_OK;
2509 }
2510
2511 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2512                              target_addr_t *phys)
2513 {
2514         return armv8_mmu_translate_va(target, virt, phys);
2515 }
2516
2517 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2518 {
2519         struct target *target = get_current_target(CMD_CTX);
2520         struct armv8_common *armv8 = target_to_armv8(target);
2521
2522         return armv8_handle_cache_info_command(CMD_CTX,
2523                         &armv8->armv8_mmu.armv8_cache);
2524 }
2525
2526
2527 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2528 {
2529         struct target *target = get_current_target(CMD_CTX);
2530         if (!target_was_examined(target)) {
2531                 LOG_ERROR("target not examined yet");
2532                 return ERROR_FAIL;
2533         }
2534
2535         return aarch64_init_debug_access(target);
2536 }
2537 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2538 {
2539         struct target *target = get_current_target(CMD_CTX);
2540         /* check target is an smp target */
2541         struct target_list *head;
2542         struct target *curr;
2543         head = target->head;
2544         target->smp = 0;
2545         if (head != (struct target_list *)NULL) {
2546                 while (head != (struct target_list *)NULL) {
2547                         curr = head->target;
2548                         curr->smp = 0;
2549                         head = head->next;
2550                 }
2551                 /*  fixes the target display to the debugger */
2552                 target->gdb_service->target = target;
2553         }
2554         return ERROR_OK;
2555 }
2556
2557 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2558 {
2559         struct target *target = get_current_target(CMD_CTX);
2560         struct target_list *head;
2561         struct target *curr;
2562         head = target->head;
2563         if (head != (struct target_list *)NULL) {
2564                 target->smp = 1;
2565                 while (head != (struct target_list *)NULL) {
2566                         curr = head->target;
2567                         curr->smp = 1;
2568                         head = head->next;
2569                 }
2570         }
2571         return ERROR_OK;
2572 }
2573
2574 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2575 {
2576         struct target *target = get_current_target(CMD_CTX);
2577         int retval = ERROR_OK;
2578         struct target_list *head;
2579         head = target->head;
2580         if (head != (struct target_list *)NULL) {
2581                 if (CMD_ARGC == 1) {
2582                         int coreid = 0;
2583                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2584                         if (ERROR_OK != retval)
2585                                 return retval;
2586                         target->gdb_service->core[1] = coreid;
2587
2588                 }
2589                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2590                         , target->gdb_service->core[1]);
2591         }
2592         return ERROR_OK;
2593 }
2594
2595 static const struct command_registration aarch64_exec_command_handlers[] = {
2596         {
2597                 .name = "cache_info",
2598                 .handler = aarch64_handle_cache_info_command,
2599                 .mode = COMMAND_EXEC,
2600                 .help = "display information about target caches",
2601                 .usage = "",
2602         },
2603         {
2604                 .name = "dbginit",
2605                 .handler = aarch64_handle_dbginit_command,
2606                 .mode = COMMAND_EXEC,
2607                 .help = "Initialize core debug",
2608                 .usage = "",
2609         },
2610         {       .name = "smp_off",
2611                 .handler = aarch64_handle_smp_off_command,
2612                 .mode = COMMAND_EXEC,
2613                 .help = "Stop smp handling",
2614                 .usage = "",
2615         },
2616         {
2617                 .name = "smp_on",
2618                 .handler = aarch64_handle_smp_on_command,
2619                 .mode = COMMAND_EXEC,
2620                 .help = "Restart smp handling",
2621                 .usage = "",
2622         },
2623         {
2624                 .name = "smp_gdb",
2625                 .handler = aarch64_handle_smp_gdb_command,
2626                 .mode = COMMAND_EXEC,
2627                 .help = "display/fix current core played to gdb",
2628                 .usage = "",
2629         },
2630
2631
2632         COMMAND_REGISTRATION_DONE
2633 };
2634 static const struct command_registration aarch64_command_handlers[] = {
2635         {
2636                 .chain = arm_command_handlers,
2637         },
2638         {
2639                 .chain = armv8_command_handlers,
2640         },
2641         {
2642                 .name = "cortex_a",
2643                 .mode = COMMAND_ANY,
2644                 .help = "Cortex-A command group",
2645                 .usage = "",
2646                 .chain = aarch64_exec_command_handlers,
2647         },
2648         COMMAND_REGISTRATION_DONE
2649 };
2650
2651 struct target_type aarch64_target = {
2652         .name = "aarch64",
2653
2654         .poll = aarch64_poll,
2655         .arch_state = armv8_arch_state,
2656
2657         .halt = aarch64_halt,
2658         .resume = aarch64_resume,
2659         .step = aarch64_step,
2660
2661         .assert_reset = aarch64_assert_reset,
2662         .deassert_reset = aarch64_deassert_reset,
2663
2664         /* REVISIT allow exporting VFP3 registers ... */
2665         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2666
2667         .read_memory = aarch64_read_memory,
2668         .write_memory = aarch64_write_memory,
2669
2670         .checksum_memory = arm_checksum_memory,
2671         .blank_check_memory = arm_blank_check_memory,
2672
2673         .run_algorithm = armv4_5_run_algorithm,
2674
2675         .add_breakpoint = aarch64_add_breakpoint,
2676         .add_context_breakpoint = aarch64_add_context_breakpoint,
2677         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2678         .remove_breakpoint = aarch64_remove_breakpoint,
2679         .add_watchpoint = NULL,
2680         .remove_watchpoint = NULL,
2681
2682         .commands = aarch64_command_handlers,
2683         .target_create = aarch64_target_create,
2684         .init_target = aarch64_init_target,
2685         .examine = aarch64_examine,
2686
2687         .read_phys_memory = aarch64_read_phys_memory,
2688         .write_phys_memory = aarch64_write_phys_memory,
2689         .mmu = aarch64_mmu,
2690         .virt2phys = aarch64_virt2phys,
2691 };