aarch64: discard async aborts on entering debug state
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
283 {
284         struct armv8_common *armv8 = target_to_armv8(target);
285         uint32_t dscr;
286
287         /* Read DSCR */
288         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
289                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
290         if (ERROR_OK != retval)
291                 return retval;
292
293         /* clear bitfield */
294         dscr &= ~bit_mask;
295         /* put new value */
296         dscr |= value & bit_mask;
297
298         /* write new DSCR */
299         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
300                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
301         return retval;
302 }
303
304 static struct target *get_aarch64(struct target *target, int32_t coreid)
305 {
306         struct target_list *head;
307         struct target *curr;
308
309         head = target->head;
310         while (head != (struct target_list *)NULL) {
311                 curr = head->target;
312                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
313                         return curr;
314                 head = head->next;
315         }
316         return target;
317 }
318 static int aarch64_halt(struct target *target);
319
320 static int aarch64_halt_smp(struct target *target)
321 {
322         int retval = ERROR_OK;
323         struct target_list *head = target->head;
324
325         while (head != (struct target_list *)NULL) {
326                 struct target *curr = head->target;
327                 struct armv8_common *armv8 = target_to_armv8(curr);
328
329                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
330                 if (curr->smp) {
331                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
332                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
333                         if (retval == ERROR_OK)
334                                 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
335                 }
336                 if (retval != ERROR_OK)
337                         break;
338
339                 head = head->next;
340         }
341
342         /* halt the target PE */
343         if (retval == ERROR_OK)
344                 retval = aarch64_halt(target);
345
346         return retval;
347 }
348
349 static int update_halt_gdb(struct target *target)
350 {
351         int retval = 0;
352         if (target->gdb_service && target->gdb_service->core[0] == -1) {
353                 target->gdb_service->target = target;
354                 target->gdb_service->core[0] = target->coreid;
355                 retval += aarch64_halt_smp(target);
356         }
357         return retval;
358 }
359
360 /*
361  * Cortex-A8 Run control
362  */
363
364 static int aarch64_poll(struct target *target)
365 {
366         int retval = ERROR_OK;
367         uint32_t dscr;
368         struct aarch64_common *aarch64 = target_to_aarch64(target);
369         struct armv8_common *armv8 = &aarch64->armv8_common;
370         enum target_state prev_target_state = target->state;
371         /*  toggle to another core is done by gdb as follow */
372         /*  maint packet J core_id */
373         /*  continue */
374         /*  the next polling trigger an halt event sent to gdb */
375         if ((target->state == TARGET_HALTED) && (target->smp) &&
376                 (target->gdb_service) &&
377                 (target->gdb_service->target == NULL)) {
378                 target->gdb_service->target =
379                         get_aarch64(target, target->gdb_service->core[1]);
380                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
381                 return retval;
382         }
383         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
384                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
385         if (retval != ERROR_OK)
386                 return retval;
387         aarch64->cpudbg_dscr = dscr;
388
389         if (DSCR_RUN_MODE(dscr) == 0x3) {
390                 if (prev_target_state != TARGET_HALTED) {
391                         /* We have a halting debug event */
392                         LOG_DEBUG("Target halted");
393                         target->state = TARGET_HALTED;
394                         if ((prev_target_state == TARGET_RUNNING)
395                                 || (prev_target_state == TARGET_UNKNOWN)
396                                 || (prev_target_state == TARGET_RESET)) {
397                                 retval = aarch64_debug_entry(target);
398                                 if (retval != ERROR_OK)
399                                         return retval;
400                                 if (target->smp) {
401                                         retval = update_halt_gdb(target);
402                                         if (retval != ERROR_OK)
403                                                 return retval;
404                                 }
405                                 target_call_event_callbacks(target,
406                                         TARGET_EVENT_HALTED);
407                         }
408                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
409                                 LOG_DEBUG(" ");
410
411                                 retval = aarch64_debug_entry(target);
412                                 if (retval != ERROR_OK)
413                                         return retval;
414                                 if (target->smp) {
415                                         retval = update_halt_gdb(target);
416                                         if (retval != ERROR_OK)
417                                                 return retval;
418                                 }
419
420                                 target_call_event_callbacks(target,
421                                         TARGET_EVENT_DEBUG_HALTED);
422                         }
423                 }
424         } else
425                 target->state = TARGET_RUNNING;
426
427         return retval;
428 }
429
430 static int aarch64_halt(struct target *target)
431 {
432         int retval = ERROR_OK;
433         uint32_t dscr;
434         struct armv8_common *armv8 = target_to_armv8(target);
435
436         /*
437          * add HDE in halting debug mode
438          */
439         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
440         if (retval != ERROR_OK)
441                 return retval;
442
443         /* trigger an event on channel 0, this outputs a halt request to the PE */
444         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
445                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
446         if (retval != ERROR_OK)
447                 return retval;
448
449         long long then = timeval_ms();
450         for (;; ) {
451                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
452                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455                 if ((dscr & DSCRV8_HALT_MASK) != 0)
456                         break;
457                 if (timeval_ms() > then + 1000) {
458                         LOG_ERROR("Timeout waiting for halt");
459                         return ERROR_FAIL;
460                 }
461         }
462
463         target->debug_reason = DBG_REASON_DBGRQ;
464
465         return ERROR_OK;
466 }
467
468 static int aarch64_internal_restore(struct target *target, int current,
469         uint64_t *address, int handle_breakpoints, int debug_execution)
470 {
471         struct armv8_common *armv8 = target_to_armv8(target);
472         struct arm *arm = &armv8->arm;
473         int retval;
474         uint64_t resume_pc;
475
476         if (!debug_execution)
477                 target_free_all_working_areas(target);
478
479         /* current = 1: continue on current pc, otherwise continue at <address> */
480         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
481         if (!current)
482                 resume_pc = *address;
483         else
484                 *address = resume_pc;
485
486         /* Make sure that the Armv7 gdb thumb fixups does not
487          * kill the return address
488          */
489         switch (arm->core_state) {
490                 case ARM_STATE_ARM:
491                         resume_pc &= 0xFFFFFFFC;
492                         break;
493                 case ARM_STATE_AARCH64:
494                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
495                         break;
496                 case ARM_STATE_THUMB:
497                 case ARM_STATE_THUMB_EE:
498                         /* When the return address is loaded into PC
499                          * bit 0 must be 1 to stay in Thumb state
500                          */
501                         resume_pc |= 0x1;
502                         break;
503                 case ARM_STATE_JAZELLE:
504                         LOG_ERROR("How do I resume into Jazelle state??");
505                         return ERROR_FAIL;
506         }
507         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
508         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
509         arm->pc->dirty = 1;
510         arm->pc->valid = 1;
511
512         /* called it now before restoring context because it uses cpu
513          * register r0 for restoring system control register */
514         retval = aarch64_restore_system_control_reg(target);
515         if (retval == ERROR_OK)
516                 retval = aarch64_restore_context(target, handle_breakpoints);
517
518         return retval;
519 }
520
521 static int aarch64_internal_restart(struct target *target, bool slave_pe)
522 {
523         struct armv8_common *armv8 = target_to_armv8(target);
524         struct arm *arm = &armv8->arm;
525         int retval;
526         uint32_t dscr;
527         /*
528          * * Restart core and wait for it to be started.  Clear ITRen and sticky
529          * * exception flags: see ARMv7 ARM, C5.9.
530          *
531          * REVISIT: for single stepping, we probably want to
532          * disable IRQs by default, with optional override...
533          */
534
535         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
536                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
537         if (retval != ERROR_OK)
538                 return retval;
539
540         if ((dscr & DSCR_ITE) == 0)
541                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
542
543         /* make sure to acknowledge the halt event before resuming */
544         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
545                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
546
547         /*
548          * open the CTI gate for channel 1 so that the restart events
549          * get passed along to all PEs
550          */
551         if (retval == ERROR_OK)
552                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
553                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
554         if (retval != ERROR_OK)
555                 return retval;
556
557         if (!slave_pe) {
558                 /* trigger an event on channel 1, generates a restart request to the PE */
559                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
560                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
561                 if (retval != ERROR_OK)
562                         return retval;
563
564                 long long then = timeval_ms();
565                 for (;; ) {
566                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
567                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
568                         if (retval != ERROR_OK)
569                                 return retval;
570                         if ((dscr & DSCR_HDE) != 0)
571                                 break;
572                         if (timeval_ms() > then + 1000) {
573                                 LOG_ERROR("Timeout waiting for resume");
574                                 return ERROR_FAIL;
575                         }
576                 }
577         }
578
579         target->debug_reason = DBG_REASON_NOTHALTED;
580         target->state = TARGET_RUNNING;
581
582         /* registers are now invalid */
583         register_cache_invalidate(arm->core_cache);
584         register_cache_invalidate(arm->core_cache->next);
585
586         return ERROR_OK;
587 }
588
589 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
590 {
591         int retval = 0;
592         struct target_list *head;
593         struct target *curr;
594         uint64_t address;
595         head = target->head;
596         while (head != (struct target_list *)NULL) {
597                 curr = head->target;
598                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
599                         /*  resume current address , not in step mode */
600                         retval += aarch64_internal_restore(curr, 1, &address,
601                                         handle_breakpoints, 0);
602                         retval += aarch64_internal_restart(curr, true);
603                 }
604                 head = head->next;
605
606         }
607         return retval;
608 }
609
610 static int aarch64_resume(struct target *target, int current,
611         target_addr_t address, int handle_breakpoints, int debug_execution)
612 {
613         int retval = 0;
614         uint64_t addr = address;
615
616         /* dummy resume for smp toggle in order to reduce gdb impact  */
617         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
618                 /*   simulate a start and halt of target */
619                 target->gdb_service->target = NULL;
620                 target->gdb_service->core[0] = target->gdb_service->core[1];
621                 /*  fake resume at next poll we play the  target core[1], see poll*/
622                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
623                 return 0;
624         }
625         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
626                                  debug_execution);
627         if (target->smp) {
628                 target->gdb_service->core[0] = -1;
629                 retval = aarch64_restore_smp(target, handle_breakpoints);
630                 if (retval != ERROR_OK)
631                         return retval;
632         }
633         aarch64_internal_restart(target, false);
634
635         if (!debug_execution) {
636                 target->state = TARGET_RUNNING;
637                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
638                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
639         } else {
640                 target->state = TARGET_DEBUG_RUNNING;
641                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
642                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
643         }
644
645         return ERROR_OK;
646 }
647
648 static int aarch64_debug_entry(struct target *target)
649 {
650         int retval = ERROR_OK;
651         struct aarch64_common *aarch64 = target_to_aarch64(target);
652         struct armv8_common *armv8 = target_to_armv8(target);
653         struct arm_dpm *dpm = &armv8->dpm;
654         enum arm_state core_state;
655
656         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
657
658         dpm->dscr = aarch64->cpudbg_dscr;
659         core_state = armv8_dpm_get_core_state(dpm);
660         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
661         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
662
663         /* make sure to clear all sticky errors */
664         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
665                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
666
667         /* discard async exceptions */
668         if (retval == ERROR_OK)
669                 retval = dpm->instr_cpsr_sync(dpm);
670
671         if (retval != ERROR_OK)
672                 return retval;
673
674         /* Examine debug reason */
675         armv8_dpm_report_dscr(dpm, aarch64->cpudbg_dscr);
676
677         /* save address of instruction that triggered the watchpoint? */
678         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
679                 uint32_t tmp;
680                 uint64_t wfar = 0;
681
682                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
683                                 armv8->debug_base + CPUV8_DBG_WFAR1,
684                                 &tmp);
685                 if (retval != ERROR_OK)
686                         return retval;
687                 wfar = tmp;
688                 wfar = (wfar << 32);
689                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
690                                 armv8->debug_base + CPUV8_DBG_WFAR0,
691                                 &tmp);
692                 if (retval != ERROR_OK)
693                         return retval;
694                 wfar |= tmp;
695                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
696         }
697
698         retval = armv8_dpm_read_current_registers(&armv8->dpm);
699
700         if (retval == ERROR_OK && armv8->post_debug_entry)
701                 retval = armv8->post_debug_entry(target);
702
703         return retval;
704 }
705
706 static int aarch64_post_debug_entry(struct target *target)
707 {
708         struct aarch64_common *aarch64 = target_to_aarch64(target);
709         struct armv8_common *armv8 = &aarch64->armv8_common;
710         int retval;
711
712         /* clear sticky errors */
713         mem_ap_write_atomic_u32(armv8->debug_ap,
714                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
715
716         switch (armv8->arm.core_mode) {
717                 case ARMV8_64_EL0T:
718                         armv8_dpm_modeswitch(&armv8->dpm, ARMV8_64_EL1H);
719                         /* fall through */
720                 case ARMV8_64_EL1T:
721                 case ARMV8_64_EL1H:
722                         retval = armv8->arm.mrs(target, 3, /*op 0*/
723                                         0, 0,   /* op1, op2 */
724                                         1, 0,   /* CRn, CRm */
725                                         &aarch64->system_control_reg);
726                         if (retval != ERROR_OK)
727                                 return retval;
728                 break;
729                 case ARMV8_64_EL2T:
730                 case ARMV8_64_EL2H:
731                         retval = armv8->arm.mrs(target, 3, /*op 0*/
732                                         4, 0,   /* op1, op2 */
733                                         1, 0,   /* CRn, CRm */
734                                         &aarch64->system_control_reg);
735                         if (retval != ERROR_OK)
736                                 return retval;
737                 break;
738                 case ARMV8_64_EL3H:
739                 case ARMV8_64_EL3T:
740                         retval = armv8->arm.mrs(target, 3, /*op 0*/
741                                         6, 0,   /* op1, op2 */
742                                         1, 0,   /* CRn, CRm */
743                                         &aarch64->system_control_reg);
744                         if (retval != ERROR_OK)
745                                 return retval;
746                 break;
747
748                 case ARM_MODE_SVC:
749                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
750                         if (retval != ERROR_OK)
751                                 return retval;
752                         break;
753
754                 default:
755                         LOG_INFO("cannot read system control register in this mode");
756                         break;
757         }
758
759         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
760
761         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
762         aarch64->system_control_reg_curr = aarch64->system_control_reg;
763
764         if (armv8->armv8_mmu.armv8_cache.info == -1) {
765                 armv8_identify_cache(armv8);
766                 armv8_read_mpidr(armv8);
767         }
768
769         armv8->armv8_mmu.mmu_enabled =
770                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
771         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
772                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
773         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
774                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
775         aarch64->curr_mode = armv8->arm.core_mode;
776         return ERROR_OK;
777 }
778
779 static int aarch64_step(struct target *target, int current, target_addr_t address,
780         int handle_breakpoints)
781 {
782         struct armv8_common *armv8 = target_to_armv8(target);
783         int retval;
784         uint32_t edecr;
785
786         if (target->state != TARGET_HALTED) {
787                 LOG_WARNING("target not halted");
788                 return ERROR_TARGET_NOT_HALTED;
789         }
790
791         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
792                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
793         if (retval != ERROR_OK)
794                 return retval;
795
796         /* make sure EDECR.SS is not set when restoring the register */
797         edecr &= ~0x4;
798
799         /* set EDECR.SS to enter hardware step mode */
800         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
801                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
802         if (retval != ERROR_OK)
803                 return retval;
804
805         /* disable interrupts while stepping */
806         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
807         if (retval != ERROR_OK)
808                 return ERROR_OK;
809
810         /* resume the target */
811         retval = aarch64_resume(target, current, address, 0, 0);
812         if (retval != ERROR_OK)
813                 return retval;
814
815         long long then = timeval_ms();
816         while (target->state != TARGET_HALTED) {
817                 retval = aarch64_poll(target);
818                 if (retval != ERROR_OK)
819                         return retval;
820                 if (timeval_ms() > then + 1000) {
821                         LOG_ERROR("timeout waiting for target halt");
822                         return ERROR_FAIL;
823                 }
824         }
825
826         /* restore EDECR */
827         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
828                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
829         if (retval != ERROR_OK)
830                 return retval;
831
832         /* restore interrupts */
833         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
834         if (retval != ERROR_OK)
835                 return ERROR_OK;
836
837         return ERROR_OK;
838 }
839
840 static int aarch64_restore_context(struct target *target, bool bpwp)
841 {
842         struct armv8_common *armv8 = target_to_armv8(target);
843
844         LOG_DEBUG(" ");
845
846         if (armv8->pre_restore_context)
847                 armv8->pre_restore_context(target);
848
849         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
850
851 }
852
853 /*
854  * Cortex-A8 Breakpoint and watchpoint functions
855  */
856
857 /* Setup hardware Breakpoint Register Pair */
858 static int aarch64_set_breakpoint(struct target *target,
859         struct breakpoint *breakpoint, uint8_t matchmode)
860 {
861         int retval;
862         int brp_i = 0;
863         uint32_t control;
864         uint8_t byte_addr_select = 0x0F;
865         struct aarch64_common *aarch64 = target_to_aarch64(target);
866         struct armv8_common *armv8 = &aarch64->armv8_common;
867         struct aarch64_brp *brp_list = aarch64->brp_list;
868
869         if (breakpoint->set) {
870                 LOG_WARNING("breakpoint already set");
871                 return ERROR_OK;
872         }
873
874         if (breakpoint->type == BKPT_HARD) {
875                 int64_t bpt_value;
876                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
877                         brp_i++;
878                 if (brp_i >= aarch64->brp_num) {
879                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
880                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
881                 }
882                 breakpoint->set = brp_i + 1;
883                 if (breakpoint->length == 2)
884                         byte_addr_select = (3 << (breakpoint->address & 0x02));
885                 control = ((matchmode & 0x7) << 20)
886                         | (1 << 13)
887                         | (byte_addr_select << 5)
888                         | (3 << 1) | 1;
889                 brp_list[brp_i].used = 1;
890                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
891                 brp_list[brp_i].control = control;
892                 bpt_value = brp_list[brp_i].value;
893
894                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
895                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
896                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
897                 if (retval != ERROR_OK)
898                         return retval;
899                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
900                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
901                                 (uint32_t)(bpt_value >> 32));
902                 if (retval != ERROR_OK)
903                         return retval;
904
905                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
906                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
907                                 brp_list[brp_i].control);
908                 if (retval != ERROR_OK)
909                         return retval;
910                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
911                         brp_list[brp_i].control,
912                         brp_list[brp_i].value);
913
914         } else if (breakpoint->type == BKPT_SOFT) {
915                 uint8_t code[4];
916
917                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
918                 retval = target_read_memory(target,
919                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
920                                 breakpoint->length, 1,
921                                 breakpoint->orig_instr);
922                 if (retval != ERROR_OK)
923                         return retval;
924
925                 armv8_cache_d_inner_flush_virt(armv8,
926                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
927                                 breakpoint->length);
928
929                 retval = target_write_memory(target,
930                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
931                                 breakpoint->length, 1, code);
932                 if (retval != ERROR_OK)
933                         return retval;
934
935                 armv8_cache_d_inner_flush_virt(armv8,
936                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
937                                 breakpoint->length);
938
939                 armv8_cache_i_inner_inval_virt(armv8,
940                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
941                                 breakpoint->length);
942
943                 breakpoint->set = 0x11; /* Any nice value but 0 */
944         }
945
946         /* Ensure that halting debug mode is enable */
947         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
948         if (retval != ERROR_OK) {
949                 LOG_DEBUG("Failed to set DSCR.HDE");
950                 return retval;
951         }
952
953         return ERROR_OK;
954 }
955
956 static int aarch64_set_context_breakpoint(struct target *target,
957         struct breakpoint *breakpoint, uint8_t matchmode)
958 {
959         int retval = ERROR_FAIL;
960         int brp_i = 0;
961         uint32_t control;
962         uint8_t byte_addr_select = 0x0F;
963         struct aarch64_common *aarch64 = target_to_aarch64(target);
964         struct armv8_common *armv8 = &aarch64->armv8_common;
965         struct aarch64_brp *brp_list = aarch64->brp_list;
966
967         if (breakpoint->set) {
968                 LOG_WARNING("breakpoint already set");
969                 return retval;
970         }
971         /*check available context BRPs*/
972         while ((brp_list[brp_i].used ||
973                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
974                 brp_i++;
975
976         if (brp_i >= aarch64->brp_num) {
977                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
978                 return ERROR_FAIL;
979         }
980
981         breakpoint->set = brp_i + 1;
982         control = ((matchmode & 0x7) << 20)
983                 | (1 << 13)
984                 | (byte_addr_select << 5)
985                 | (3 << 1) | 1;
986         brp_list[brp_i].used = 1;
987         brp_list[brp_i].value = (breakpoint->asid);
988         brp_list[brp_i].control = control;
989         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
990                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
991                         brp_list[brp_i].value);
992         if (retval != ERROR_OK)
993                 return retval;
994         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
995                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
996                         brp_list[brp_i].control);
997         if (retval != ERROR_OK)
998                 return retval;
999         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1000                 brp_list[brp_i].control,
1001                 brp_list[brp_i].value);
1002         return ERROR_OK;
1003
1004 }
1005
1006 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1007 {
1008         int retval = ERROR_FAIL;
1009         int brp_1 = 0;  /* holds the contextID pair */
1010         int brp_2 = 0;  /* holds the IVA pair */
1011         uint32_t control_CTX, control_IVA;
1012         uint8_t CTX_byte_addr_select = 0x0F;
1013         uint8_t IVA_byte_addr_select = 0x0F;
1014         uint8_t CTX_machmode = 0x03;
1015         uint8_t IVA_machmode = 0x01;
1016         struct aarch64_common *aarch64 = target_to_aarch64(target);
1017         struct armv8_common *armv8 = &aarch64->armv8_common;
1018         struct aarch64_brp *brp_list = aarch64->brp_list;
1019
1020         if (breakpoint->set) {
1021                 LOG_WARNING("breakpoint already set");
1022                 return retval;
1023         }
1024         /*check available context BRPs*/
1025         while ((brp_list[brp_1].used ||
1026                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1027                 brp_1++;
1028
1029         printf("brp(CTX) found num: %d\n", brp_1);
1030         if (brp_1 >= aarch64->brp_num) {
1031                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1032                 return ERROR_FAIL;
1033         }
1034
1035         while ((brp_list[brp_2].used ||
1036                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1037                 brp_2++;
1038
1039         printf("brp(IVA) found num: %d\n", brp_2);
1040         if (brp_2 >= aarch64->brp_num) {
1041                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1042                 return ERROR_FAIL;
1043         }
1044
1045         breakpoint->set = brp_1 + 1;
1046         breakpoint->linked_BRP = brp_2;
1047         control_CTX = ((CTX_machmode & 0x7) << 20)
1048                 | (brp_2 << 16)
1049                 | (0 << 14)
1050                 | (CTX_byte_addr_select << 5)
1051                 | (3 << 1) | 1;
1052         brp_list[brp_1].used = 1;
1053         brp_list[brp_1].value = (breakpoint->asid);
1054         brp_list[brp_1].control = control_CTX;
1055         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1056                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1057                         brp_list[brp_1].value);
1058         if (retval != ERROR_OK)
1059                 return retval;
1060         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1061                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1062                         brp_list[brp_1].control);
1063         if (retval != ERROR_OK)
1064                 return retval;
1065
1066         control_IVA = ((IVA_machmode & 0x7) << 20)
1067                 | (brp_1 << 16)
1068                 | (1 << 13)
1069                 | (IVA_byte_addr_select << 5)
1070                 | (3 << 1) | 1;
1071         brp_list[brp_2].used = 1;
1072         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1073         brp_list[brp_2].control = control_IVA;
1074         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1075                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1076                         brp_list[brp_2].value & 0xFFFFFFFF);
1077         if (retval != ERROR_OK)
1078                 return retval;
1079         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1080                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1081                         brp_list[brp_2].value >> 32);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1085                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1086                         brp_list[brp_2].control);
1087         if (retval != ERROR_OK)
1088                 return retval;
1089
1090         return ERROR_OK;
1091 }
1092
1093 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1094 {
1095         int retval;
1096         struct aarch64_common *aarch64 = target_to_aarch64(target);
1097         struct armv8_common *armv8 = &aarch64->armv8_common;
1098         struct aarch64_brp *brp_list = aarch64->brp_list;
1099
1100         if (!breakpoint->set) {
1101                 LOG_WARNING("breakpoint not set");
1102                 return ERROR_OK;
1103         }
1104
1105         if (breakpoint->type == BKPT_HARD) {
1106                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1107                         int brp_i = breakpoint->set - 1;
1108                         int brp_j = breakpoint->linked_BRP;
1109                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1110                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1111                                 return ERROR_OK;
1112                         }
1113                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1114                                 brp_list[brp_i].control, brp_list[brp_i].value);
1115                         brp_list[brp_i].used = 0;
1116                         brp_list[brp_i].value = 0;
1117                         brp_list[brp_i].control = 0;
1118                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1119                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1120                                         brp_list[brp_i].control);
1121                         if (retval != ERROR_OK)
1122                                 return retval;
1123                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1124                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1125                                         (uint32_t)brp_list[brp_i].value);
1126                         if (retval != ERROR_OK)
1127                                 return retval;
1128                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1129                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1130                                         (uint32_t)brp_list[brp_i].value);
1131                         if (retval != ERROR_OK)
1132                                 return retval;
1133                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1134                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1135                                 return ERROR_OK;
1136                         }
1137                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1138                                 brp_list[brp_j].control, brp_list[brp_j].value);
1139                         brp_list[brp_j].used = 0;
1140                         brp_list[brp_j].value = 0;
1141                         brp_list[brp_j].control = 0;
1142                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1143                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1144                                         brp_list[brp_j].control);
1145                         if (retval != ERROR_OK)
1146                                 return retval;
1147                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1148                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1149                                         (uint32_t)brp_list[brp_j].value);
1150                         if (retval != ERROR_OK)
1151                                 return retval;
1152                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1153                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1154                                         (uint32_t)brp_list[brp_j].value);
1155                         if (retval != ERROR_OK)
1156                                 return retval;
1157
1158                         breakpoint->linked_BRP = 0;
1159                         breakpoint->set = 0;
1160                         return ERROR_OK;
1161
1162                 } else {
1163                         int brp_i = breakpoint->set - 1;
1164                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1165                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1166                                 return ERROR_OK;
1167                         }
1168                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1169                                 brp_list[brp_i].control, brp_list[brp_i].value);
1170                         brp_list[brp_i].used = 0;
1171                         brp_list[brp_i].value = 0;
1172                         brp_list[brp_i].control = 0;
1173                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1174                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1175                                         brp_list[brp_i].control);
1176                         if (retval != ERROR_OK)
1177                                 return retval;
1178                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1179                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1180                                         brp_list[brp_i].value);
1181                         if (retval != ERROR_OK)
1182                                 return retval;
1183
1184                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1185                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1186                                         (uint32_t)brp_list[brp_i].value);
1187                         if (retval != ERROR_OK)
1188                                 return retval;
1189                         breakpoint->set = 0;
1190                         return ERROR_OK;
1191                 }
1192         } else {
1193                 /* restore original instruction (kept in target endianness) */
1194
1195                 armv8_cache_d_inner_flush_virt(armv8,
1196                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1197                                 breakpoint->length);
1198
1199                 if (breakpoint->length == 4) {
1200                         retval = target_write_memory(target,
1201                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1202                                         4, 1, breakpoint->orig_instr);
1203                         if (retval != ERROR_OK)
1204                                 return retval;
1205                 } else {
1206                         retval = target_write_memory(target,
1207                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1208                                         2, 1, breakpoint->orig_instr);
1209                         if (retval != ERROR_OK)
1210                                 return retval;
1211                 }
1212
1213                 armv8_cache_d_inner_flush_virt(armv8,
1214                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1215                                 breakpoint->length);
1216
1217                 armv8_cache_i_inner_inval_virt(armv8,
1218                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1219                                 breakpoint->length);
1220         }
1221         breakpoint->set = 0;
1222
1223         return ERROR_OK;
1224 }
1225
1226 static int aarch64_add_breakpoint(struct target *target,
1227         struct breakpoint *breakpoint)
1228 {
1229         struct aarch64_common *aarch64 = target_to_aarch64(target);
1230
1231         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1232                 LOG_INFO("no hardware breakpoint available");
1233                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1234         }
1235
1236         if (breakpoint->type == BKPT_HARD)
1237                 aarch64->brp_num_available--;
1238
1239         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1240 }
1241
1242 static int aarch64_add_context_breakpoint(struct target *target,
1243         struct breakpoint *breakpoint)
1244 {
1245         struct aarch64_common *aarch64 = target_to_aarch64(target);
1246
1247         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1248                 LOG_INFO("no hardware breakpoint available");
1249                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1250         }
1251
1252         if (breakpoint->type == BKPT_HARD)
1253                 aarch64->brp_num_available--;
1254
1255         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1256 }
1257
1258 static int aarch64_add_hybrid_breakpoint(struct target *target,
1259         struct breakpoint *breakpoint)
1260 {
1261         struct aarch64_common *aarch64 = target_to_aarch64(target);
1262
1263         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1264                 LOG_INFO("no hardware breakpoint available");
1265                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1266         }
1267
1268         if (breakpoint->type == BKPT_HARD)
1269                 aarch64->brp_num_available--;
1270
1271         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1272 }
1273
1274
1275 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1276 {
1277         struct aarch64_common *aarch64 = target_to_aarch64(target);
1278
1279 #if 0
1280 /* It is perfectly possible to remove breakpoints while the target is running */
1281         if (target->state != TARGET_HALTED) {
1282                 LOG_WARNING("target not halted");
1283                 return ERROR_TARGET_NOT_HALTED;
1284         }
1285 #endif
1286
1287         if (breakpoint->set) {
1288                 aarch64_unset_breakpoint(target, breakpoint);
1289                 if (breakpoint->type == BKPT_HARD)
1290                         aarch64->brp_num_available++;
1291         }
1292
1293         return ERROR_OK;
1294 }
1295
1296 /*
1297  * Cortex-A8 Reset functions
1298  */
1299
1300 static int aarch64_assert_reset(struct target *target)
1301 {
1302         struct armv8_common *armv8 = target_to_armv8(target);
1303
1304         LOG_DEBUG(" ");
1305
1306         /* FIXME when halt is requested, make it work somehow... */
1307
1308         /* Issue some kind of warm reset. */
1309         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1310                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1311         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1312                 /* REVISIT handle "pulls" cases, if there's
1313                  * hardware that needs them to work.
1314                  */
1315                 jtag_add_reset(0, 1);
1316         } else {
1317                 LOG_ERROR("%s: how to reset?", target_name(target));
1318                 return ERROR_FAIL;
1319         }
1320
1321         /* registers are now invalid */
1322         register_cache_invalidate(armv8->arm.core_cache);
1323
1324         target->state = TARGET_RESET;
1325
1326         return ERROR_OK;
1327 }
1328
1329 static int aarch64_deassert_reset(struct target *target)
1330 {
1331         int retval;
1332
1333         LOG_DEBUG(" ");
1334
1335         /* be certain SRST is off */
1336         jtag_add_reset(0, 0);
1337
1338         retval = aarch64_poll(target);
1339         if (retval != ERROR_OK)
1340                 return retval;
1341
1342         if (target->reset_halt) {
1343                 if (target->state != TARGET_HALTED) {
1344                         LOG_WARNING("%s: ran after reset and before halt ...",
1345                                 target_name(target));
1346                         retval = target_halt(target);
1347                         if (retval != ERROR_OK)
1348                                 return retval;
1349                 }
1350         }
1351
1352         return ERROR_OK;
1353 }
1354
1355 static int aarch64_write_apb_ap_memory(struct target *target,
1356         uint64_t address, uint32_t size,
1357         uint32_t count, const uint8_t *buffer)
1358 {
1359         /* write memory through APB-AP */
1360         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1361         struct armv8_common *armv8 = target_to_armv8(target);
1362         struct arm_dpm *dpm = &armv8->dpm;
1363         struct arm *arm = &armv8->arm;
1364         int total_bytes = count * size;
1365         int total_u32;
1366         int start_byte = address & 0x3;
1367         int end_byte   = (address + total_bytes) & 0x3;
1368         struct reg *reg;
1369         uint32_t dscr;
1370         uint8_t *tmp_buff = NULL;
1371
1372         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1373                           address, size, count);
1374         if (target->state != TARGET_HALTED) {
1375                 LOG_WARNING("target not halted");
1376                 return ERROR_TARGET_NOT_HALTED;
1377         }
1378
1379         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1380
1381         /* Mark register R0 as dirty, as it will be used
1382          * for transferring the data.
1383          * It will be restored automatically when exiting
1384          * debug mode
1385          */
1386         reg = armv8_reg_current(arm, 1);
1387         reg->dirty = true;
1388
1389         reg = armv8_reg_current(arm, 0);
1390         reg->dirty = true;
1391
1392         /*  clear any abort  */
1393         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1394                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1395         if (retval != ERROR_OK)
1396                 return retval;
1397
1398
1399         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1400
1401         /* The algorithm only copies 32 bit words, so the buffer
1402          * should be expanded to include the words at either end.
1403          * The first and last words will be read first to avoid
1404          * corruption if needed.
1405          */
1406         tmp_buff = malloc(total_u32 * 4);
1407
1408         if ((start_byte != 0) && (total_u32 > 1)) {
1409                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1410                  * the other bytes in the word.
1411                  */
1412                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1413                 if (retval != ERROR_OK)
1414                         goto error_free_buff_w;
1415         }
1416
1417         /* If end of write is not aligned, or the write is less than 4 bytes */
1418         if ((end_byte != 0) ||
1419                 ((total_u32 == 1) && (total_bytes != 4))) {
1420
1421                 /* Read the last word to avoid corruption during 32 bit write */
1422                 int mem_offset = (total_u32-1) * 4;
1423                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1424                 if (retval != ERROR_OK)
1425                         goto error_free_buff_w;
1426         }
1427
1428         /* Copy the write buffer over the top of the temporary buffer */
1429         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1430
1431         /* We now have a 32 bit aligned buffer that can be written */
1432
1433         /* Read DSCR */
1434         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1435                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1436         if (retval != ERROR_OK)
1437                 goto error_free_buff_w;
1438
1439         /* Set Normal access mode  */
1440         dscr = (dscr & ~DSCR_MA);
1441         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1442                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1443
1444         if (arm->core_state == ARM_STATE_AARCH64) {
1445                 /* Write X0 with value 'address' using write procedure */
1446                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1447                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1448                 retval = dpm->instr_write_data_dcc_64(dpm,
1449                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1450         } else {
1451                 /* Write R0 with value 'address' using write procedure */
1452                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1453                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1454                 dpm->instr_write_data_dcc(dpm,
1455                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1456
1457         }
1458         /* Step 1.d   - Change DCC to memory mode */
1459         dscr = dscr | DSCR_MA;
1460         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1461                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1462         if (retval != ERROR_OK)
1463                 goto error_unset_dtr_w;
1464
1465
1466         /* Step 2.a   - Do the write */
1467         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1468                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1469         if (retval != ERROR_OK)
1470                 goto error_unset_dtr_w;
1471
1472         /* Step 3.a   - Switch DTR mode back to Normal mode */
1473         dscr = (dscr & ~DSCR_MA);
1474         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1475                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1476         if (retval != ERROR_OK)
1477                 goto error_unset_dtr_w;
1478
1479         /* Check for sticky abort flags in the DSCR */
1480         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1481                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1482         if (retval != ERROR_OK)
1483                 goto error_free_buff_w;
1484
1485         dpm->dscr = dscr;
1486         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1487                 /* Abort occurred - clear it and exit */
1488                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1489                 mem_ap_write_atomic_u32(armv8->debug_ap,
1490                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1491                 armv8_dpm_handle_exception(dpm);
1492                 goto error_free_buff_w;
1493         }
1494
1495         /* Done */
1496         free(tmp_buff);
1497         return ERROR_OK;
1498
1499 error_unset_dtr_w:
1500         /* Unset DTR mode */
1501         mem_ap_read_atomic_u32(armv8->debug_ap,
1502                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1503         dscr = (dscr & ~DSCR_MA);
1504         mem_ap_write_atomic_u32(armv8->debug_ap,
1505                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1506 error_free_buff_w:
1507         LOG_ERROR("error");
1508         free(tmp_buff);
1509         return ERROR_FAIL;
1510 }
1511
1512 static int aarch64_read_apb_ap_memory(struct target *target,
1513         target_addr_t address, uint32_t size,
1514         uint32_t count, uint8_t *buffer)
1515 {
1516         /* read memory through APB-AP */
1517         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1518         struct armv8_common *armv8 = target_to_armv8(target);
1519         struct arm_dpm *dpm = &armv8->dpm;
1520         struct arm *arm = &armv8->arm;
1521         int total_bytes = count * size;
1522         int total_u32;
1523         int start_byte = address & 0x3;
1524         int end_byte   = (address + total_bytes) & 0x3;
1525         struct reg *reg;
1526         uint32_t dscr;
1527         uint8_t *tmp_buff = NULL;
1528         uint8_t *u8buf_ptr;
1529         uint32_t value;
1530
1531         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1532                           address, size, count);
1533         if (target->state != TARGET_HALTED) {
1534                 LOG_WARNING("target not halted");
1535                 return ERROR_TARGET_NOT_HALTED;
1536         }
1537
1538         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1539         /* Mark register X0, X1 as dirty, as it will be used
1540          * for transferring the data.
1541          * It will be restored automatically when exiting
1542          * debug mode
1543          */
1544         reg = armv8_reg_current(arm, 1);
1545         reg->dirty = true;
1546
1547         reg = armv8_reg_current(arm, 0);
1548         reg->dirty = true;
1549
1550         /*      clear any abort  */
1551         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1552                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1553         if (retval != ERROR_OK)
1554                 goto error_free_buff_r;
1555
1556         /* Read DSCR */
1557         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1558                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1559
1560         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1561
1562         /* Set Normal access mode  */
1563         dscr = (dscr & ~DSCR_MA);
1564         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1565                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1566
1567         if (arm->core_state == ARM_STATE_AARCH64) {
1568                 /* Write X0 with value 'address' using write procedure */
1569                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1570                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1571                 retval += dpm->instr_write_data_dcc_64(dpm,
1572                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1573                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1574                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1575                 /* Step 1.e - Change DCC to memory mode */
1576                 dscr = dscr | DSCR_MA;
1577                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1578                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1579                 /* Step 1.f - read DBGDTRTX and discard the value */
1580                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1581                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1582         } else {
1583                 /* Write R0 with value 'address' using write procedure */
1584                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1585                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1586                 retval += dpm->instr_write_data_dcc(dpm,
1587                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1588                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1589                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1590                 /* Step 1.e - Change DCC to memory mode */
1591                 dscr = dscr | DSCR_MA;
1592                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1593                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1594                 /* Step 1.f - read DBGDTRTX and discard the value */
1595                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1596                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1597
1598         }
1599         if (retval != ERROR_OK)
1600                 goto error_unset_dtr_r;
1601
1602         /* Optimize the read as much as we can, either way we read in a single pass  */
1603         if ((start_byte) || (end_byte)) {
1604                 /* The algorithm only copies 32 bit words, so the buffer
1605                  * should be expanded to include the words at either end.
1606                  * The first and last words will be read into a temp buffer
1607                  * to avoid corruption
1608                  */
1609                 tmp_buff = malloc(total_u32 * 4);
1610                 if (!tmp_buff)
1611                         goto error_unset_dtr_r;
1612
1613                 /* use the tmp buffer to read the entire data */
1614                 u8buf_ptr = tmp_buff;
1615         } else
1616                 /* address and read length are aligned so read directly into the passed buffer */
1617                 u8buf_ptr = buffer;
1618
1619         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1620          * Abort flags are sticky, so can be read at end of transactions
1621          *
1622          * This data is read in aligned to 32 bit boundary.
1623          */
1624
1625         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1626          * increments X0 by 4. */
1627         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1628                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1629         if (retval != ERROR_OK)
1630                         goto error_unset_dtr_r;
1631
1632         /* Step 3.a - set DTR access mode back to Normal mode   */
1633         dscr = (dscr & ~DSCR_MA);
1634         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1635                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1636         if (retval != ERROR_OK)
1637                 goto error_free_buff_r;
1638
1639         /* Step 3.b - read DBGDTRTX for the final value */
1640         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1641                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1642         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1643
1644         /* Check for sticky abort flags in the DSCR */
1645         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1646                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1647         if (retval != ERROR_OK)
1648                 goto error_free_buff_r;
1649
1650         dpm->dscr = dscr;
1651
1652         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1653                 /* Abort occurred - clear it and exit */
1654                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1655                 mem_ap_write_atomic_u32(armv8->debug_ap,
1656                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1657                 armv8_dpm_handle_exception(dpm);
1658                 goto error_free_buff_r;
1659         }
1660
1661         /* check if we need to copy aligned data by applying any shift necessary */
1662         if (tmp_buff) {
1663                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1664                 free(tmp_buff);
1665         }
1666
1667         /* Done */
1668         return ERROR_OK;
1669
1670 error_unset_dtr_r:
1671         /* Unset DTR mode */
1672         mem_ap_read_atomic_u32(armv8->debug_ap,
1673                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1674         dscr = (dscr & ~DSCR_MA);
1675         mem_ap_write_atomic_u32(armv8->debug_ap,
1676                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1677 error_free_buff_r:
1678         LOG_ERROR("error");
1679         free(tmp_buff);
1680         return ERROR_FAIL;
1681 }
1682
1683 static int aarch64_read_phys_memory(struct target *target,
1684         target_addr_t address, uint32_t size,
1685         uint32_t count, uint8_t *buffer)
1686 {
1687         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1688         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1689                 address, size, count);
1690
1691         if (count && buffer) {
1692                 /* read memory through APB-AP */
1693                 retval = aarch64_mmu_modify(target, 0);
1694                 if (retval != ERROR_OK)
1695                         return retval;
1696                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1697         }
1698         return retval;
1699 }
1700
1701 static int aarch64_read_memory(struct target *target, target_addr_t address,
1702         uint32_t size, uint32_t count, uint8_t *buffer)
1703 {
1704         int mmu_enabled = 0;
1705         int retval;
1706
1707         /* aarch64 handles unaligned memory access */
1708         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1709                 size, count);
1710
1711         /* determine if MMU was enabled on target stop */
1712         retval = aarch64_mmu(target, &mmu_enabled);
1713         if (retval != ERROR_OK)
1714                 return retval;
1715
1716         if (mmu_enabled) {
1717                 retval = aarch64_check_address(target, address);
1718                 if (retval != ERROR_OK)
1719                         return retval;
1720                 /* enable MMU as we could have disabled it for phys access */
1721                 retval = aarch64_mmu_modify(target, 1);
1722                 if (retval != ERROR_OK)
1723                         return retval;
1724         }
1725         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1726 }
1727
1728 static int aarch64_write_phys_memory(struct target *target,
1729         target_addr_t address, uint32_t size,
1730         uint32_t count, const uint8_t *buffer)
1731 {
1732         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1733
1734         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1735                 size, count);
1736
1737         if (count && buffer) {
1738                 /* write memory through APB-AP */
1739                 retval = aarch64_mmu_modify(target, 0);
1740                 if (retval != ERROR_OK)
1741                         return retval;
1742                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1743         }
1744
1745         return retval;
1746 }
1747
1748 static int aarch64_write_memory(struct target *target, target_addr_t address,
1749         uint32_t size, uint32_t count, const uint8_t *buffer)
1750 {
1751         int mmu_enabled = 0;
1752         int retval;
1753
1754         /* aarch64 handles unaligned memory access */
1755         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1756                   "; count %" PRId32, address, size, count);
1757
1758         /* determine if MMU was enabled on target stop */
1759         retval = aarch64_mmu(target, &mmu_enabled);
1760         if (retval != ERROR_OK)
1761                 return retval;
1762
1763         if (mmu_enabled) {
1764                 retval = aarch64_check_address(target, address);
1765                 if (retval != ERROR_OK)
1766                         return retval;
1767                 /* enable MMU as we could have disabled it for phys access */
1768                 retval = aarch64_mmu_modify(target, 1);
1769                 if (retval != ERROR_OK)
1770                         return retval;
1771         }
1772         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1773 }
1774
1775 static int aarch64_handle_target_request(void *priv)
1776 {
1777         struct target *target = priv;
1778         struct armv8_common *armv8 = target_to_armv8(target);
1779         int retval;
1780
1781         if (!target_was_examined(target))
1782                 return ERROR_OK;
1783         if (!target->dbg_msg_enabled)
1784                 return ERROR_OK;
1785
1786         if (target->state == TARGET_RUNNING) {
1787                 uint32_t request;
1788                 uint32_t dscr;
1789                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1790                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1791
1792                 /* check if we have data */
1793                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1794                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1795                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1796                         if (retval == ERROR_OK) {
1797                                 target_request(target, request);
1798                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1799                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1800                         }
1801                 }
1802         }
1803
1804         return ERROR_OK;
1805 }
1806
1807 static int aarch64_examine_first(struct target *target)
1808 {
1809         struct aarch64_common *aarch64 = target_to_aarch64(target);
1810         struct armv8_common *armv8 = &aarch64->armv8_common;
1811         struct adiv5_dap *swjdp = armv8->arm.dap;
1812         int i;
1813         int retval = ERROR_OK;
1814         uint64_t debug, ttypr;
1815         uint32_t cpuid;
1816         uint32_t tmp0, tmp1;
1817         debug = ttypr = cpuid = 0;
1818
1819         /* We do one extra read to ensure DAP is configured,
1820          * we call ahbap_debugport_init(swjdp) instead
1821          */
1822         retval = dap_dp_init(swjdp);
1823         if (retval != ERROR_OK)
1824                 return retval;
1825
1826         /* Search for the APB-AB - it is needed for access to debug registers */
1827         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1828         if (retval != ERROR_OK) {
1829                 LOG_ERROR("Could not find APB-AP for debug access");
1830                 return retval;
1831         }
1832
1833         retval = mem_ap_init(armv8->debug_ap);
1834         if (retval != ERROR_OK) {
1835                 LOG_ERROR("Could not initialize the APB-AP");
1836                 return retval;
1837         }
1838
1839         armv8->debug_ap->memaccess_tck = 80;
1840
1841         if (!target->dbgbase_set) {
1842                 uint32_t dbgbase;
1843                 /* Get ROM Table base */
1844                 uint32_t apid;
1845                 int32_t coreidx = target->coreid;
1846                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1847                 if (retval != ERROR_OK)
1848                         return retval;
1849                 /* Lookup 0x15 -- Processor DAP */
1850                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1851                                 &armv8->debug_base, &coreidx);
1852                 if (retval != ERROR_OK)
1853                         return retval;
1854                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1855                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1856         } else
1857                 armv8->debug_base = target->dbgbase;
1858
1859         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1860                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1861         if (retval != ERROR_OK) {
1862                 LOG_DEBUG("LOCK debug access fail");
1863                 return retval;
1864         }
1865
1866         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1867                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1868         if (retval != ERROR_OK) {
1869                 LOG_DEBUG("Examine %s failed", "oslock");
1870                 return retval;
1871         }
1872
1873         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1874                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1875         if (retval != ERROR_OK) {
1876                 LOG_DEBUG("Examine %s failed", "CPUID");
1877                 return retval;
1878         }
1879
1880         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1881                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1882         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1883                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1884         if (retval != ERROR_OK) {
1885                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1886                 return retval;
1887         }
1888         ttypr |= tmp1;
1889         ttypr = (ttypr << 32) | tmp0;
1890
1891         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1892                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1893         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1894                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1895         if (retval != ERROR_OK) {
1896                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1897                 return retval;
1898         }
1899         debug |= tmp1;
1900         debug = (debug << 32) | tmp0;
1901
1902         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1903         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1904         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1905
1906         if (target->ctibase == 0) {
1907                 /* assume a v8 rom table layout */
1908                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1909                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1910         } else
1911                 armv8->cti_base = target->ctibase;
1912
1913         armv8->arm.core_type = ARM_MODE_MON;
1914         retval = aarch64_dpm_setup(aarch64, debug);
1915         if (retval != ERROR_OK)
1916                 return retval;
1917
1918         /* Setup Breakpoint Register Pairs */
1919         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1920         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1921         aarch64->brp_num_available = aarch64->brp_num;
1922         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1923         for (i = 0; i < aarch64->brp_num; i++) {
1924                 aarch64->brp_list[i].used = 0;
1925                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1926                         aarch64->brp_list[i].type = BRP_NORMAL;
1927                 else
1928                         aarch64->brp_list[i].type = BRP_CONTEXT;
1929                 aarch64->brp_list[i].value = 0;
1930                 aarch64->brp_list[i].control = 0;
1931                 aarch64->brp_list[i].BRPn = i;
1932         }
1933
1934         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1935
1936         target_set_examined(target);
1937         return ERROR_OK;
1938 }
1939
1940 static int aarch64_examine(struct target *target)
1941 {
1942         int retval = ERROR_OK;
1943
1944         /* don't re-probe hardware after each reset */
1945         if (!target_was_examined(target))
1946                 retval = aarch64_examine_first(target);
1947
1948         /* Configure core debug access */
1949         if (retval == ERROR_OK)
1950                 retval = aarch64_init_debug_access(target);
1951
1952         return retval;
1953 }
1954
1955 /*
1956  *      Cortex-A8 target creation and initialization
1957  */
1958
1959 static int aarch64_init_target(struct command_context *cmd_ctx,
1960         struct target *target)
1961 {
1962         /* examine_first() does a bunch of this */
1963         return ERROR_OK;
1964 }
1965
1966 static int aarch64_init_arch_info(struct target *target,
1967         struct aarch64_common *aarch64, struct jtag_tap *tap)
1968 {
1969         struct armv8_common *armv8 = &aarch64->armv8_common;
1970         struct adiv5_dap *dap = armv8->arm.dap;
1971
1972         armv8->arm.dap = dap;
1973
1974         /* Setup struct aarch64_common */
1975         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1976         /*  tap has no dap initialized */
1977         if (!tap->dap) {
1978                 tap->dap = dap_init();
1979
1980                 /* Leave (only) generic DAP stuff for debugport_init() */
1981                 tap->dap->tap = tap;
1982         }
1983
1984         armv8->arm.dap = tap->dap;
1985
1986         aarch64->fast_reg_read = 0;
1987
1988         /* register arch-specific functions */
1989         armv8->examine_debug_reason = NULL;
1990
1991         armv8->post_debug_entry = aarch64_post_debug_entry;
1992
1993         armv8->pre_restore_context = NULL;
1994
1995         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1996
1997         /* REVISIT v7a setup should be in a v7a-specific routine */
1998         armv8_init_arch_info(target, armv8);
1999         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2000
2001         return ERROR_OK;
2002 }
2003
2004 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2005 {
2006         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2007
2008         return aarch64_init_arch_info(target, aarch64, target->tap);
2009 }
2010
2011 static int aarch64_mmu(struct target *target, int *enabled)
2012 {
2013         if (target->state != TARGET_HALTED) {
2014                 LOG_ERROR("%s: target not halted", __func__);
2015                 return ERROR_TARGET_INVALID;
2016         }
2017
2018         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2019         return ERROR_OK;
2020 }
2021
2022 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2023                              target_addr_t *phys)
2024 {
2025         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2026 }
2027
2028 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2029 {
2030         struct target *target = get_current_target(CMD_CTX);
2031         struct armv8_common *armv8 = target_to_armv8(target);
2032
2033         return armv8_handle_cache_info_command(CMD_CTX,
2034                         &armv8->armv8_mmu.armv8_cache);
2035 }
2036
2037
2038 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2039 {
2040         struct target *target = get_current_target(CMD_CTX);
2041         if (!target_was_examined(target)) {
2042                 LOG_ERROR("target not examined yet");
2043                 return ERROR_FAIL;
2044         }
2045
2046         return aarch64_init_debug_access(target);
2047 }
2048 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2049 {
2050         struct target *target = get_current_target(CMD_CTX);
2051         /* check target is an smp target */
2052         struct target_list *head;
2053         struct target *curr;
2054         head = target->head;
2055         target->smp = 0;
2056         if (head != (struct target_list *)NULL) {
2057                 while (head != (struct target_list *)NULL) {
2058                         curr = head->target;
2059                         curr->smp = 0;
2060                         head = head->next;
2061                 }
2062                 /*  fixes the target display to the debugger */
2063                 target->gdb_service->target = target;
2064         }
2065         return ERROR_OK;
2066 }
2067
2068 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2069 {
2070         struct target *target = get_current_target(CMD_CTX);
2071         struct target_list *head;
2072         struct target *curr;
2073         head = target->head;
2074         if (head != (struct target_list *)NULL) {
2075                 target->smp = 1;
2076                 while (head != (struct target_list *)NULL) {
2077                         curr = head->target;
2078                         curr->smp = 1;
2079                         head = head->next;
2080                 }
2081         }
2082         return ERROR_OK;
2083 }
2084
2085 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2086 {
2087         struct target *target = get_current_target(CMD_CTX);
2088         int retval = ERROR_OK;
2089         struct target_list *head;
2090         head = target->head;
2091         if (head != (struct target_list *)NULL) {
2092                 if (CMD_ARGC == 1) {
2093                         int coreid = 0;
2094                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2095                         if (ERROR_OK != retval)
2096                                 return retval;
2097                         target->gdb_service->core[1] = coreid;
2098
2099                 }
2100                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2101                         , target->gdb_service->core[1]);
2102         }
2103         return ERROR_OK;
2104 }
2105
2106 static const struct command_registration aarch64_exec_command_handlers[] = {
2107         {
2108                 .name = "cache_info",
2109                 .handler = aarch64_handle_cache_info_command,
2110                 .mode = COMMAND_EXEC,
2111                 .help = "display information about target caches",
2112                 .usage = "",
2113         },
2114         {
2115                 .name = "dbginit",
2116                 .handler = aarch64_handle_dbginit_command,
2117                 .mode = COMMAND_EXEC,
2118                 .help = "Initialize core debug",
2119                 .usage = "",
2120         },
2121         {       .name = "smp_off",
2122                 .handler = aarch64_handle_smp_off_command,
2123                 .mode = COMMAND_EXEC,
2124                 .help = "Stop smp handling",
2125                 .usage = "",
2126         },
2127         {
2128                 .name = "smp_on",
2129                 .handler = aarch64_handle_smp_on_command,
2130                 .mode = COMMAND_EXEC,
2131                 .help = "Restart smp handling",
2132                 .usage = "",
2133         },
2134         {
2135                 .name = "smp_gdb",
2136                 .handler = aarch64_handle_smp_gdb_command,
2137                 .mode = COMMAND_EXEC,
2138                 .help = "display/fix current core played to gdb",
2139                 .usage = "",
2140         },
2141
2142
2143         COMMAND_REGISTRATION_DONE
2144 };
2145 static const struct command_registration aarch64_command_handlers[] = {
2146         {
2147                 .chain = arm_command_handlers,
2148         },
2149         {
2150                 .chain = armv8_command_handlers,
2151         },
2152         {
2153                 .name = "cortex_a",
2154                 .mode = COMMAND_ANY,
2155                 .help = "Cortex-A command group",
2156                 .usage = "",
2157                 .chain = aarch64_exec_command_handlers,
2158         },
2159         COMMAND_REGISTRATION_DONE
2160 };
2161
2162 struct target_type aarch64_target = {
2163         .name = "aarch64",
2164
2165         .poll = aarch64_poll,
2166         .arch_state = armv8_arch_state,
2167
2168         .halt = aarch64_halt,
2169         .resume = aarch64_resume,
2170         .step = aarch64_step,
2171
2172         .assert_reset = aarch64_assert_reset,
2173         .deassert_reset = aarch64_deassert_reset,
2174
2175         /* REVISIT allow exporting VFP3 registers ... */
2176         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2177
2178         .read_memory = aarch64_read_memory,
2179         .write_memory = aarch64_write_memory,
2180
2181         .checksum_memory = arm_checksum_memory,
2182         .blank_check_memory = arm_blank_check_memory,
2183
2184         .run_algorithm = armv4_5_run_algorithm,
2185
2186         .add_breakpoint = aarch64_add_breakpoint,
2187         .add_context_breakpoint = aarch64_add_context_breakpoint,
2188         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2189         .remove_breakpoint = aarch64_remove_breakpoint,
2190         .add_watchpoint = NULL,
2191         .remove_watchpoint = NULL,
2192
2193         .commands = aarch64_command_handlers,
2194         .target_create = aarch64_target_create,
2195         .init_target = aarch64_init_target,
2196         .examine = aarch64_examine,
2197
2198         .read_phys_memory = aarch64_read_phys_memory,
2199         .write_phys_memory = aarch64_write_phys_memory,
2200         .mmu = aarch64_mmu,
2201         .virt2phys = aarch64_virt2phys,
2202 };