aarch64: don't try resuming if target is not halted
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
283 {
284         struct armv8_common *armv8 = target_to_armv8(target);
285         uint32_t dscr;
286
287         /* Read DSCR */
288         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
289                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
290         if (ERROR_OK != retval)
291                 return retval;
292
293         /* clear bitfield */
294         dscr &= ~bit_mask;
295         /* put new value */
296         dscr |= value & bit_mask;
297
298         /* write new DSCR */
299         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
300                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
301         return retval;
302 }
303
304 static struct target *get_aarch64(struct target *target, int32_t coreid)
305 {
306         struct target_list *head;
307         struct target *curr;
308
309         head = target->head;
310         while (head != (struct target_list *)NULL) {
311                 curr = head->target;
312                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
313                         return curr;
314                 head = head->next;
315         }
316         return target;
317 }
318 static int aarch64_halt(struct target *target);
319
320 static int aarch64_halt_smp(struct target *target)
321 {
322         int retval = ERROR_OK;
323         struct target_list *head = target->head;
324
325         while (head != (struct target_list *)NULL) {
326                 struct target *curr = head->target;
327                 struct armv8_common *armv8 = target_to_armv8(curr);
328
329                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
330                 if (curr->smp) {
331                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
332                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
333                         if (retval == ERROR_OK)
334                                 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
335                 }
336                 if (retval != ERROR_OK)
337                         break;
338
339                 head = head->next;
340         }
341
342         /* halt the target PE */
343         if (retval == ERROR_OK)
344                 retval = aarch64_halt(target);
345
346         return retval;
347 }
348
349 static int update_halt_gdb(struct target *target)
350 {
351         int retval = 0;
352         if (target->gdb_service && target->gdb_service->core[0] == -1) {
353                 target->gdb_service->target = target;
354                 target->gdb_service->core[0] = target->coreid;
355                 retval += aarch64_halt_smp(target);
356         }
357         return retval;
358 }
359
360 /*
361  * Cortex-A8 Run control
362  */
363
364 static int aarch64_poll(struct target *target)
365 {
366         int retval = ERROR_OK;
367         uint32_t dscr;
368         struct aarch64_common *aarch64 = target_to_aarch64(target);
369         struct armv8_common *armv8 = &aarch64->armv8_common;
370         enum target_state prev_target_state = target->state;
371         /*  toggle to another core is done by gdb as follow */
372         /*  maint packet J core_id */
373         /*  continue */
374         /*  the next polling trigger an halt event sent to gdb */
375         if ((target->state == TARGET_HALTED) && (target->smp) &&
376                 (target->gdb_service) &&
377                 (target->gdb_service->target == NULL)) {
378                 target->gdb_service->target =
379                         get_aarch64(target, target->gdb_service->core[1]);
380                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
381                 return retval;
382         }
383         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
384                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
385         if (retval != ERROR_OK)
386                 return retval;
387         aarch64->cpudbg_dscr = dscr;
388
389         if (DSCR_RUN_MODE(dscr) == 0x3) {
390                 if (prev_target_state != TARGET_HALTED) {
391                         /* We have a halting debug event */
392                         LOG_DEBUG("Target %s halted", target_name(target));
393                         target->state = TARGET_HALTED;
394                         if ((prev_target_state == TARGET_RUNNING)
395                                 || (prev_target_state == TARGET_UNKNOWN)
396                                 || (prev_target_state == TARGET_RESET)) {
397                                 retval = aarch64_debug_entry(target);
398                                 if (retval != ERROR_OK)
399                                         return retval;
400                                 if (target->smp) {
401                                         retval = update_halt_gdb(target);
402                                         if (retval != ERROR_OK)
403                                                 return retval;
404                                 }
405                                 target_call_event_callbacks(target,
406                                         TARGET_EVENT_HALTED);
407                         }
408                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
409                                 LOG_DEBUG(" ");
410
411                                 retval = aarch64_debug_entry(target);
412                                 if (retval != ERROR_OK)
413                                         return retval;
414                                 if (target->smp) {
415                                         retval = update_halt_gdb(target);
416                                         if (retval != ERROR_OK)
417                                                 return retval;
418                                 }
419
420                                 target_call_event_callbacks(target,
421                                         TARGET_EVENT_DEBUG_HALTED);
422                         }
423                 }
424         } else
425                 target->state = TARGET_RUNNING;
426
427         return retval;
428 }
429
430 static int aarch64_halt(struct target *target)
431 {
432         int retval = ERROR_OK;
433         uint32_t dscr;
434         struct armv8_common *armv8 = target_to_armv8(target);
435
436         /*
437          * add HDE in halting debug mode
438          */
439         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
440         if (retval != ERROR_OK)
441                 return retval;
442
443         /* trigger an event on channel 0, this outputs a halt request to the PE */
444         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
445                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
446         if (retval != ERROR_OK)
447                 return retval;
448
449         long long then = timeval_ms();
450         for (;; ) {
451                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
452                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455                 if ((dscr & DSCRV8_HALT_MASK) != 0)
456                         break;
457                 if (timeval_ms() > then + 1000) {
458                         LOG_ERROR("Timeout waiting for halt");
459                         return ERROR_FAIL;
460                 }
461         }
462
463         target->debug_reason = DBG_REASON_DBGRQ;
464
465         return ERROR_OK;
466 }
467
468 static int aarch64_internal_restore(struct target *target, int current,
469         uint64_t *address, int handle_breakpoints, int debug_execution)
470 {
471         struct armv8_common *armv8 = target_to_armv8(target);
472         struct arm *arm = &armv8->arm;
473         int retval;
474         uint64_t resume_pc;
475
476         if (!debug_execution)
477                 target_free_all_working_areas(target);
478
479         /* current = 1: continue on current pc, otherwise continue at <address> */
480         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
481         if (!current)
482                 resume_pc = *address;
483         else
484                 *address = resume_pc;
485
486         /* Make sure that the Armv7 gdb thumb fixups does not
487          * kill the return address
488          */
489         switch (arm->core_state) {
490                 case ARM_STATE_ARM:
491                         resume_pc &= 0xFFFFFFFC;
492                         break;
493                 case ARM_STATE_AARCH64:
494                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
495                         break;
496                 case ARM_STATE_THUMB:
497                 case ARM_STATE_THUMB_EE:
498                         /* When the return address is loaded into PC
499                          * bit 0 must be 1 to stay in Thumb state
500                          */
501                         resume_pc |= 0x1;
502                         break;
503                 case ARM_STATE_JAZELLE:
504                         LOG_ERROR("How do I resume into Jazelle state??");
505                         return ERROR_FAIL;
506         }
507         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
508         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
509         arm->pc->dirty = 1;
510         arm->pc->valid = 1;
511
512         /* called it now before restoring context because it uses cpu
513          * register r0 for restoring system control register */
514         retval = aarch64_restore_system_control_reg(target);
515         if (retval == ERROR_OK)
516                 retval = aarch64_restore_context(target, handle_breakpoints);
517
518         return retval;
519 }
520
521 static int aarch64_internal_restart(struct target *target, bool slave_pe)
522 {
523         struct armv8_common *armv8 = target_to_armv8(target);
524         struct arm *arm = &armv8->arm;
525         int retval;
526         uint32_t dscr;
527         /*
528          * * Restart core and wait for it to be started.  Clear ITRen and sticky
529          * * exception flags: see ARMv7 ARM, C5.9.
530          *
531          * REVISIT: for single stepping, we probably want to
532          * disable IRQs by default, with optional override...
533          */
534
535         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
536                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
537         if (retval != ERROR_OK)
538                 return retval;
539
540         if ((dscr & DSCR_ITE) == 0)
541                 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
542         if ((dscr & DSCR_ERR) != 0)
543                 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
544
545         /* make sure to acknowledge the halt event before resuming */
546         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
547                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
548
549         /*
550          * open the CTI gate for channel 1 so that the restart events
551          * get passed along to all PEs
552          */
553         if (retval == ERROR_OK)
554                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
555                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
556         if (retval != ERROR_OK)
557                 return retval;
558
559         if (!slave_pe) {
560                 /* trigger an event on channel 1, generates a restart request to the PE */
561                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
562                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
563                 if (retval != ERROR_OK)
564                         return retval;
565
566                 long long then = timeval_ms();
567                 for (;; ) {
568                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
569                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
570                         if (retval != ERROR_OK)
571                                 return retval;
572                         if ((dscr & DSCR_HDE) != 0)
573                                 break;
574                         if (timeval_ms() > then + 1000) {
575                                 LOG_ERROR("Timeout waiting for resume");
576                                 return ERROR_FAIL;
577                         }
578                 }
579         }
580
581         target->debug_reason = DBG_REASON_NOTHALTED;
582         target->state = TARGET_RUNNING;
583
584         /* registers are now invalid */
585         register_cache_invalidate(arm->core_cache);
586         register_cache_invalidate(arm->core_cache->next);
587
588         return ERROR_OK;
589 }
590
591 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
592 {
593         int retval = 0;
594         struct target_list *head;
595         struct target *curr;
596         uint64_t address;
597         head = target->head;
598         while (head != (struct target_list *)NULL) {
599                 curr = head->target;
600                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
601                         /*  resume current address , not in step mode */
602                         retval += aarch64_internal_restore(curr, 1, &address,
603                                         handle_breakpoints, 0);
604                         retval += aarch64_internal_restart(curr, true);
605                 }
606                 head = head->next;
607
608         }
609         return retval;
610 }
611
612 static int aarch64_resume(struct target *target, int current,
613         target_addr_t address, int handle_breakpoints, int debug_execution)
614 {
615         int retval = 0;
616         uint64_t addr = address;
617
618         /* dummy resume for smp toggle in order to reduce gdb impact  */
619         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
620                 /*   simulate a start and halt of target */
621                 target->gdb_service->target = NULL;
622                 target->gdb_service->core[0] = target->gdb_service->core[1];
623                 /*  fake resume at next poll we play the  target core[1], see poll*/
624                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
625                 return 0;
626         }
627
628         if (target->state != TARGET_HALTED)
629                 return ERROR_TARGET_NOT_HALTED;
630
631         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
632                                  debug_execution);
633         if (target->smp) {
634                 target->gdb_service->core[0] = -1;
635                 retval = aarch64_restore_smp(target, handle_breakpoints);
636                 if (retval != ERROR_OK)
637                         return retval;
638         }
639         aarch64_internal_restart(target, false);
640
641         if (!debug_execution) {
642                 target->state = TARGET_RUNNING;
643                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
644                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
645         } else {
646                 target->state = TARGET_DEBUG_RUNNING;
647                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
648                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
649         }
650
651         return ERROR_OK;
652 }
653
654 static int aarch64_debug_entry(struct target *target)
655 {
656         int retval = ERROR_OK;
657         struct aarch64_common *aarch64 = target_to_aarch64(target);
658         struct armv8_common *armv8 = target_to_armv8(target);
659         struct arm_dpm *dpm = &armv8->dpm;
660         enum arm_state core_state;
661
662         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
663
664         dpm->dscr = aarch64->cpudbg_dscr;
665         core_state = armv8_dpm_get_core_state(dpm);
666         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
667         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
668
669         /* make sure to clear all sticky errors */
670         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
671                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
672
673         /* discard async exceptions */
674         if (retval == ERROR_OK)
675                 retval = dpm->instr_cpsr_sync(dpm);
676
677         if (retval != ERROR_OK)
678                 return retval;
679
680         /* Examine debug reason */
681         armv8_dpm_report_dscr(dpm, aarch64->cpudbg_dscr);
682
683         /* save address of instruction that triggered the watchpoint? */
684         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
685                 uint32_t tmp;
686                 uint64_t wfar = 0;
687
688                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
689                                 armv8->debug_base + CPUV8_DBG_WFAR1,
690                                 &tmp);
691                 if (retval != ERROR_OK)
692                         return retval;
693                 wfar = tmp;
694                 wfar = (wfar << 32);
695                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
696                                 armv8->debug_base + CPUV8_DBG_WFAR0,
697                                 &tmp);
698                 if (retval != ERROR_OK)
699                         return retval;
700                 wfar |= tmp;
701                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
702         }
703
704         retval = armv8_dpm_read_current_registers(&armv8->dpm);
705
706         if (retval == ERROR_OK && armv8->post_debug_entry)
707                 retval = armv8->post_debug_entry(target);
708
709         return retval;
710 }
711
712 static int aarch64_post_debug_entry(struct target *target)
713 {
714         struct aarch64_common *aarch64 = target_to_aarch64(target);
715         struct armv8_common *armv8 = &aarch64->armv8_common;
716         int retval;
717
718         switch (armv8->arm.core_mode) {
719                 case ARMV8_64_EL0T:
720                         armv8_dpm_modeswitch(&armv8->dpm, ARMV8_64_EL1H);
721                         /* fall through */
722                 case ARMV8_64_EL1T:
723                 case ARMV8_64_EL1H:
724                         retval = armv8->arm.mrs(target, 3, /*op 0*/
725                                         0, 0,   /* op1, op2 */
726                                         1, 0,   /* CRn, CRm */
727                                         &aarch64->system_control_reg);
728                         if (retval != ERROR_OK)
729                                 return retval;
730                 break;
731                 case ARMV8_64_EL2T:
732                 case ARMV8_64_EL2H:
733                         retval = armv8->arm.mrs(target, 3, /*op 0*/
734                                         4, 0,   /* op1, op2 */
735                                         1, 0,   /* CRn, CRm */
736                                         &aarch64->system_control_reg);
737                         if (retval != ERROR_OK)
738                                 return retval;
739                 break;
740                 case ARMV8_64_EL3H:
741                 case ARMV8_64_EL3T:
742                         retval = armv8->arm.mrs(target, 3, /*op 0*/
743                                         6, 0,   /* op1, op2 */
744                                         1, 0,   /* CRn, CRm */
745                                         &aarch64->system_control_reg);
746                         if (retval != ERROR_OK)
747                                 return retval;
748                 break;
749
750                 case ARM_MODE_SVC:
751                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
752                         if (retval != ERROR_OK)
753                                 return retval;
754                         break;
755
756                 default:
757                         LOG_INFO("cannot read system control register in this mode");
758                         break;
759         }
760
761         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
762
763         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
764         aarch64->system_control_reg_curr = aarch64->system_control_reg;
765
766         if (armv8->armv8_mmu.armv8_cache.info == -1) {
767                 armv8_identify_cache(armv8);
768                 armv8_read_mpidr(armv8);
769         }
770
771         armv8->armv8_mmu.mmu_enabled =
772                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
773         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
774                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
775         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
776                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
777         aarch64->curr_mode = armv8->arm.core_mode;
778         return ERROR_OK;
779 }
780
781 static int aarch64_step(struct target *target, int current, target_addr_t address,
782         int handle_breakpoints)
783 {
784         struct armv8_common *armv8 = target_to_armv8(target);
785         int retval;
786         uint32_t edecr;
787
788         if (target->state != TARGET_HALTED) {
789                 LOG_WARNING("target not halted");
790                 return ERROR_TARGET_NOT_HALTED;
791         }
792
793         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
794                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
795         if (retval != ERROR_OK)
796                 return retval;
797
798         /* make sure EDECR.SS is not set when restoring the register */
799         edecr &= ~0x4;
800
801         /* set EDECR.SS to enter hardware step mode */
802         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
803                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
804         if (retval != ERROR_OK)
805                 return retval;
806
807         /* disable interrupts while stepping */
808         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
809         if (retval != ERROR_OK)
810                 return ERROR_OK;
811
812         /* resume the target */
813         retval = aarch64_resume(target, current, address, 0, 0);
814         if (retval != ERROR_OK)
815                 return retval;
816
817         long long then = timeval_ms();
818         while (target->state != TARGET_HALTED) {
819                 retval = aarch64_poll(target);
820                 if (retval != ERROR_OK)
821                         return retval;
822                 if (timeval_ms() > then + 1000) {
823                         LOG_ERROR("timeout waiting for target halt");
824                         return ERROR_FAIL;
825                 }
826         }
827
828         /* restore EDECR */
829         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
830                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
831         if (retval != ERROR_OK)
832                 return retval;
833
834         /* restore interrupts */
835         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
836         if (retval != ERROR_OK)
837                 return ERROR_OK;
838
839         return ERROR_OK;
840 }
841
842 static int aarch64_restore_context(struct target *target, bool bpwp)
843 {
844         struct armv8_common *armv8 = target_to_armv8(target);
845
846         LOG_DEBUG("%s", target_name(target));
847
848         if (armv8->pre_restore_context)
849                 armv8->pre_restore_context(target);
850
851         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
852 }
853
854 /*
855  * Cortex-A8 Breakpoint and watchpoint functions
856  */
857
858 /* Setup hardware Breakpoint Register Pair */
859 static int aarch64_set_breakpoint(struct target *target,
860         struct breakpoint *breakpoint, uint8_t matchmode)
861 {
862         int retval;
863         int brp_i = 0;
864         uint32_t control;
865         uint8_t byte_addr_select = 0x0F;
866         struct aarch64_common *aarch64 = target_to_aarch64(target);
867         struct armv8_common *armv8 = &aarch64->armv8_common;
868         struct aarch64_brp *brp_list = aarch64->brp_list;
869
870         if (breakpoint->set) {
871                 LOG_WARNING("breakpoint already set");
872                 return ERROR_OK;
873         }
874
875         if (breakpoint->type == BKPT_HARD) {
876                 int64_t bpt_value;
877                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
878                         brp_i++;
879                 if (brp_i >= aarch64->brp_num) {
880                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
881                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
882                 }
883                 breakpoint->set = brp_i + 1;
884                 if (breakpoint->length == 2)
885                         byte_addr_select = (3 << (breakpoint->address & 0x02));
886                 control = ((matchmode & 0x7) << 20)
887                         | (1 << 13)
888                         | (byte_addr_select << 5)
889                         | (3 << 1) | 1;
890                 brp_list[brp_i].used = 1;
891                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
892                 brp_list[brp_i].control = control;
893                 bpt_value = brp_list[brp_i].value;
894
895                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
896                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
897                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
898                 if (retval != ERROR_OK)
899                         return retval;
900                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
901                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
902                                 (uint32_t)(bpt_value >> 32));
903                 if (retval != ERROR_OK)
904                         return retval;
905
906                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
907                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
908                                 brp_list[brp_i].control);
909                 if (retval != ERROR_OK)
910                         return retval;
911                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
912                         brp_list[brp_i].control,
913                         brp_list[brp_i].value);
914
915         } else if (breakpoint->type == BKPT_SOFT) {
916                 uint8_t code[4];
917
918                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
919                 retval = target_read_memory(target,
920                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
921                                 breakpoint->length, 1,
922                                 breakpoint->orig_instr);
923                 if (retval != ERROR_OK)
924                         return retval;
925
926                 armv8_cache_d_inner_flush_virt(armv8,
927                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
928                                 breakpoint->length);
929
930                 retval = target_write_memory(target,
931                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
932                                 breakpoint->length, 1, code);
933                 if (retval != ERROR_OK)
934                         return retval;
935
936                 armv8_cache_d_inner_flush_virt(armv8,
937                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
938                                 breakpoint->length);
939
940                 armv8_cache_i_inner_inval_virt(armv8,
941                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
942                                 breakpoint->length);
943
944                 breakpoint->set = 0x11; /* Any nice value but 0 */
945         }
946
947         /* Ensure that halting debug mode is enable */
948         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
949         if (retval != ERROR_OK) {
950                 LOG_DEBUG("Failed to set DSCR.HDE");
951                 return retval;
952         }
953
954         return ERROR_OK;
955 }
956
957 static int aarch64_set_context_breakpoint(struct target *target,
958         struct breakpoint *breakpoint, uint8_t matchmode)
959 {
960         int retval = ERROR_FAIL;
961         int brp_i = 0;
962         uint32_t control;
963         uint8_t byte_addr_select = 0x0F;
964         struct aarch64_common *aarch64 = target_to_aarch64(target);
965         struct armv8_common *armv8 = &aarch64->armv8_common;
966         struct aarch64_brp *brp_list = aarch64->brp_list;
967
968         if (breakpoint->set) {
969                 LOG_WARNING("breakpoint already set");
970                 return retval;
971         }
972         /*check available context BRPs*/
973         while ((brp_list[brp_i].used ||
974                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
975                 brp_i++;
976
977         if (brp_i >= aarch64->brp_num) {
978                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
979                 return ERROR_FAIL;
980         }
981
982         breakpoint->set = brp_i + 1;
983         control = ((matchmode & 0x7) << 20)
984                 | (1 << 13)
985                 | (byte_addr_select << 5)
986                 | (3 << 1) | 1;
987         brp_list[brp_i].used = 1;
988         brp_list[brp_i].value = (breakpoint->asid);
989         brp_list[brp_i].control = control;
990         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
991                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
992                         brp_list[brp_i].value);
993         if (retval != ERROR_OK)
994                 return retval;
995         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
996                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
997                         brp_list[brp_i].control);
998         if (retval != ERROR_OK)
999                 return retval;
1000         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1001                 brp_list[brp_i].control,
1002                 brp_list[brp_i].value);
1003         return ERROR_OK;
1004
1005 }
1006
1007 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1008 {
1009         int retval = ERROR_FAIL;
1010         int brp_1 = 0;  /* holds the contextID pair */
1011         int brp_2 = 0;  /* holds the IVA pair */
1012         uint32_t control_CTX, control_IVA;
1013         uint8_t CTX_byte_addr_select = 0x0F;
1014         uint8_t IVA_byte_addr_select = 0x0F;
1015         uint8_t CTX_machmode = 0x03;
1016         uint8_t IVA_machmode = 0x01;
1017         struct aarch64_common *aarch64 = target_to_aarch64(target);
1018         struct armv8_common *armv8 = &aarch64->armv8_common;
1019         struct aarch64_brp *brp_list = aarch64->brp_list;
1020
1021         if (breakpoint->set) {
1022                 LOG_WARNING("breakpoint already set");
1023                 return retval;
1024         }
1025         /*check available context BRPs*/
1026         while ((brp_list[brp_1].used ||
1027                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1028                 brp_1++;
1029
1030         printf("brp(CTX) found num: %d\n", brp_1);
1031         if (brp_1 >= aarch64->brp_num) {
1032                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1033                 return ERROR_FAIL;
1034         }
1035
1036         while ((brp_list[brp_2].used ||
1037                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1038                 brp_2++;
1039
1040         printf("brp(IVA) found num: %d\n", brp_2);
1041         if (brp_2 >= aarch64->brp_num) {
1042                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1043                 return ERROR_FAIL;
1044         }
1045
1046         breakpoint->set = brp_1 + 1;
1047         breakpoint->linked_BRP = brp_2;
1048         control_CTX = ((CTX_machmode & 0x7) << 20)
1049                 | (brp_2 << 16)
1050                 | (0 << 14)
1051                 | (CTX_byte_addr_select << 5)
1052                 | (3 << 1) | 1;
1053         brp_list[brp_1].used = 1;
1054         brp_list[brp_1].value = (breakpoint->asid);
1055         brp_list[brp_1].control = control_CTX;
1056         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1057                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1058                         brp_list[brp_1].value);
1059         if (retval != ERROR_OK)
1060                 return retval;
1061         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1062                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1063                         brp_list[brp_1].control);
1064         if (retval != ERROR_OK)
1065                 return retval;
1066
1067         control_IVA = ((IVA_machmode & 0x7) << 20)
1068                 | (brp_1 << 16)
1069                 | (1 << 13)
1070                 | (IVA_byte_addr_select << 5)
1071                 | (3 << 1) | 1;
1072         brp_list[brp_2].used = 1;
1073         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1074         brp_list[brp_2].control = control_IVA;
1075         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1076                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1077                         brp_list[brp_2].value & 0xFFFFFFFF);
1078         if (retval != ERROR_OK)
1079                 return retval;
1080         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1081                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1082                         brp_list[brp_2].value >> 32);
1083         if (retval != ERROR_OK)
1084                 return retval;
1085         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1086                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1087                         brp_list[brp_2].control);
1088         if (retval != ERROR_OK)
1089                 return retval;
1090
1091         return ERROR_OK;
1092 }
1093
1094 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1095 {
1096         int retval;
1097         struct aarch64_common *aarch64 = target_to_aarch64(target);
1098         struct armv8_common *armv8 = &aarch64->armv8_common;
1099         struct aarch64_brp *brp_list = aarch64->brp_list;
1100
1101         if (!breakpoint->set) {
1102                 LOG_WARNING("breakpoint not set");
1103                 return ERROR_OK;
1104         }
1105
1106         if (breakpoint->type == BKPT_HARD) {
1107                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1108                         int brp_i = breakpoint->set - 1;
1109                         int brp_j = breakpoint->linked_BRP;
1110                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1111                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1112                                 return ERROR_OK;
1113                         }
1114                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1115                                 brp_list[brp_i].control, brp_list[brp_i].value);
1116                         brp_list[brp_i].used = 0;
1117                         brp_list[brp_i].value = 0;
1118                         brp_list[brp_i].control = 0;
1119                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1120                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1121                                         brp_list[brp_i].control);
1122                         if (retval != ERROR_OK)
1123                                 return retval;
1124                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1125                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1126                                         (uint32_t)brp_list[brp_i].value);
1127                         if (retval != ERROR_OK)
1128                                 return retval;
1129                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1130                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1131                                         (uint32_t)brp_list[brp_i].value);
1132                         if (retval != ERROR_OK)
1133                                 return retval;
1134                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1135                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1136                                 return ERROR_OK;
1137                         }
1138                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1139                                 brp_list[brp_j].control, brp_list[brp_j].value);
1140                         brp_list[brp_j].used = 0;
1141                         brp_list[brp_j].value = 0;
1142                         brp_list[brp_j].control = 0;
1143                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1144                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1145                                         brp_list[brp_j].control);
1146                         if (retval != ERROR_OK)
1147                                 return retval;
1148                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1149                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1150                                         (uint32_t)brp_list[brp_j].value);
1151                         if (retval != ERROR_OK)
1152                                 return retval;
1153                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1154                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1155                                         (uint32_t)brp_list[brp_j].value);
1156                         if (retval != ERROR_OK)
1157                                 return retval;
1158
1159                         breakpoint->linked_BRP = 0;
1160                         breakpoint->set = 0;
1161                         return ERROR_OK;
1162
1163                 } else {
1164                         int brp_i = breakpoint->set - 1;
1165                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1166                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1167                                 return ERROR_OK;
1168                         }
1169                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1170                                 brp_list[brp_i].control, brp_list[brp_i].value);
1171                         brp_list[brp_i].used = 0;
1172                         brp_list[brp_i].value = 0;
1173                         brp_list[brp_i].control = 0;
1174                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1175                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1176                                         brp_list[brp_i].control);
1177                         if (retval != ERROR_OK)
1178                                 return retval;
1179                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1180                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1181                                         brp_list[brp_i].value);
1182                         if (retval != ERROR_OK)
1183                                 return retval;
1184
1185                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1186                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1187                                         (uint32_t)brp_list[brp_i].value);
1188                         if (retval != ERROR_OK)
1189                                 return retval;
1190                         breakpoint->set = 0;
1191                         return ERROR_OK;
1192                 }
1193         } else {
1194                 /* restore original instruction (kept in target endianness) */
1195
1196                 armv8_cache_d_inner_flush_virt(armv8,
1197                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1198                                 breakpoint->length);
1199
1200                 if (breakpoint->length == 4) {
1201                         retval = target_write_memory(target,
1202                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1203                                         4, 1, breakpoint->orig_instr);
1204                         if (retval != ERROR_OK)
1205                                 return retval;
1206                 } else {
1207                         retval = target_write_memory(target,
1208                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1209                                         2, 1, breakpoint->orig_instr);
1210                         if (retval != ERROR_OK)
1211                                 return retval;
1212                 }
1213
1214                 armv8_cache_d_inner_flush_virt(armv8,
1215                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1216                                 breakpoint->length);
1217
1218                 armv8_cache_i_inner_inval_virt(armv8,
1219                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1220                                 breakpoint->length);
1221         }
1222         breakpoint->set = 0;
1223
1224         return ERROR_OK;
1225 }
1226
1227 static int aarch64_add_breakpoint(struct target *target,
1228         struct breakpoint *breakpoint)
1229 {
1230         struct aarch64_common *aarch64 = target_to_aarch64(target);
1231
1232         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1233                 LOG_INFO("no hardware breakpoint available");
1234                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1235         }
1236
1237         if (breakpoint->type == BKPT_HARD)
1238                 aarch64->brp_num_available--;
1239
1240         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1241 }
1242
1243 static int aarch64_add_context_breakpoint(struct target *target,
1244         struct breakpoint *breakpoint)
1245 {
1246         struct aarch64_common *aarch64 = target_to_aarch64(target);
1247
1248         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1249                 LOG_INFO("no hardware breakpoint available");
1250                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1251         }
1252
1253         if (breakpoint->type == BKPT_HARD)
1254                 aarch64->brp_num_available--;
1255
1256         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1257 }
1258
1259 static int aarch64_add_hybrid_breakpoint(struct target *target,
1260         struct breakpoint *breakpoint)
1261 {
1262         struct aarch64_common *aarch64 = target_to_aarch64(target);
1263
1264         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1265                 LOG_INFO("no hardware breakpoint available");
1266                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267         }
1268
1269         if (breakpoint->type == BKPT_HARD)
1270                 aarch64->brp_num_available--;
1271
1272         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1273 }
1274
1275
1276 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1277 {
1278         struct aarch64_common *aarch64 = target_to_aarch64(target);
1279
1280 #if 0
1281 /* It is perfectly possible to remove breakpoints while the target is running */
1282         if (target->state != TARGET_HALTED) {
1283                 LOG_WARNING("target not halted");
1284                 return ERROR_TARGET_NOT_HALTED;
1285         }
1286 #endif
1287
1288         if (breakpoint->set) {
1289                 aarch64_unset_breakpoint(target, breakpoint);
1290                 if (breakpoint->type == BKPT_HARD)
1291                         aarch64->brp_num_available++;
1292         }
1293
1294         return ERROR_OK;
1295 }
1296
1297 /*
1298  * Cortex-A8 Reset functions
1299  */
1300
1301 static int aarch64_assert_reset(struct target *target)
1302 {
1303         struct armv8_common *armv8 = target_to_armv8(target);
1304
1305         LOG_DEBUG(" ");
1306
1307         /* FIXME when halt is requested, make it work somehow... */
1308
1309         /* Issue some kind of warm reset. */
1310         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1311                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1312         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1313                 /* REVISIT handle "pulls" cases, if there's
1314                  * hardware that needs them to work.
1315                  */
1316                 jtag_add_reset(0, 1);
1317         } else {
1318                 LOG_ERROR("%s: how to reset?", target_name(target));
1319                 return ERROR_FAIL;
1320         }
1321
1322         /* registers are now invalid */
1323         if (target_was_examined(target))
1324                 register_cache_invalidate(armv8->arm.core_cache);
1325
1326         target->state = TARGET_RESET;
1327
1328         return ERROR_OK;
1329 }
1330
1331 static int aarch64_deassert_reset(struct target *target)
1332 {
1333         int retval;
1334
1335         LOG_DEBUG(" ");
1336
1337         /* be certain SRST is off */
1338         jtag_add_reset(0, 0);
1339
1340         if (!target_was_examined(target))
1341                 return ERROR_OK;
1342
1343         retval = aarch64_poll(target);
1344         if (retval != ERROR_OK)
1345                 return retval;
1346
1347         if (target->reset_halt) {
1348                 if (target->state != TARGET_HALTED) {
1349                         LOG_WARNING("%s: ran after reset and before halt ...",
1350                                 target_name(target));
1351                         retval = target_halt(target);
1352                         if (retval != ERROR_OK)
1353                                 return retval;
1354                 }
1355         }
1356
1357         return ERROR_OK;
1358 }
1359
1360 static int aarch64_write_apb_ap_memory(struct target *target,
1361         uint64_t address, uint32_t size,
1362         uint32_t count, const uint8_t *buffer)
1363 {
1364         /* write memory through APB-AP */
1365         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1366         struct armv8_common *armv8 = target_to_armv8(target);
1367         struct arm_dpm *dpm = &armv8->dpm;
1368         struct arm *arm = &armv8->arm;
1369         int total_bytes = count * size;
1370         int total_u32;
1371         int start_byte = address & 0x3;
1372         int end_byte   = (address + total_bytes) & 0x3;
1373         struct reg *reg;
1374         uint32_t dscr;
1375         uint8_t *tmp_buff = NULL;
1376
1377         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count %"  PRIu32,
1378                           address, size, count);
1379
1380         if (target->state != TARGET_HALTED) {
1381                 LOG_WARNING("target not halted");
1382                 return ERROR_TARGET_NOT_HALTED;
1383         }
1384
1385         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1386
1387         /* Mark register R0 as dirty, as it will be used
1388          * for transferring the data.
1389          * It will be restored automatically when exiting
1390          * debug mode
1391          */
1392         reg = armv8_reg_current(arm, 1);
1393         reg->dirty = true;
1394
1395         reg = armv8_reg_current(arm, 0);
1396         reg->dirty = true;
1397
1398         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1399
1400         /* The algorithm only copies 32 bit words, so the buffer
1401          * should be expanded to include the words at either end.
1402          * The first and last words will be read first to avoid
1403          * corruption if needed.
1404          */
1405         tmp_buff = malloc(total_u32 * 4);
1406
1407         if ((start_byte != 0) && (total_u32 > 1)) {
1408                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1409                  * the other bytes in the word.
1410                  */
1411                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1412                 if (retval != ERROR_OK)
1413                         goto error_free_buff_w;
1414         }
1415
1416         /* If end of write is not aligned, or the write is less than 4 bytes */
1417         if ((end_byte != 0) ||
1418                 ((total_u32 == 1) && (total_bytes != 4))) {
1419
1420                 /* Read the last word to avoid corruption during 32 bit write */
1421                 int mem_offset = (total_u32-1) * 4;
1422                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1423                 if (retval != ERROR_OK)
1424                         goto error_free_buff_w;
1425         }
1426
1427         /* Copy the write buffer over the top of the temporary buffer */
1428         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1429
1430         /* We now have a 32 bit aligned buffer that can be written */
1431
1432         /* Read DSCR */
1433         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1434                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1435         if (retval != ERROR_OK)
1436                 goto error_free_buff_w;
1437
1438         /* Set Normal access mode  */
1439         dscr = (dscr & ~DSCR_MA);
1440         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1441                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1442
1443         if (arm->core_state == ARM_STATE_AARCH64) {
1444                 /* Write X0 with value 'address' using write procedure */
1445                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1446                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1447                 retval = dpm->instr_write_data_dcc_64(dpm,
1448                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1449         } else {
1450                 /* Write R0 with value 'address' using write procedure */
1451                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1452                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1453                 dpm->instr_write_data_dcc(dpm,
1454                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1455
1456         }
1457         /* Step 1.d   - Change DCC to memory mode */
1458         dscr = dscr | DSCR_MA;
1459         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1460                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1461         if (retval != ERROR_OK)
1462                 goto error_unset_dtr_w;
1463
1464
1465         /* Step 2.a   - Do the write */
1466         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1467                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1468         if (retval != ERROR_OK)
1469                 goto error_unset_dtr_w;
1470
1471         /* Step 3.a   - Switch DTR mode back to Normal mode */
1472         dscr = (dscr & ~DSCR_MA);
1473         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1474                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1475         if (retval != ERROR_OK)
1476                 goto error_unset_dtr_w;
1477
1478         /* Check for sticky abort flags in the DSCR */
1479         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1480                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1481         if (retval != ERROR_OK)
1482                 goto error_free_buff_w;
1483
1484         dpm->dscr = dscr;
1485         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1486                 /* Abort occurred - clear it and exit */
1487                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1488                 armv8_dpm_handle_exception(dpm);
1489                 goto error_free_buff_w;
1490         }
1491
1492         /* Done */
1493         free(tmp_buff);
1494         return ERROR_OK;
1495
1496 error_unset_dtr_w:
1497         /* Unset DTR mode */
1498         mem_ap_read_atomic_u32(armv8->debug_ap,
1499                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1500         dscr = (dscr & ~DSCR_MA);
1501         mem_ap_write_atomic_u32(armv8->debug_ap,
1502                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1503 error_free_buff_w:
1504         LOG_ERROR("error");
1505         free(tmp_buff);
1506         return ERROR_FAIL;
1507 }
1508
1509 static int aarch64_read_apb_ap_memory(struct target *target,
1510         target_addr_t address, uint32_t size,
1511         uint32_t count, uint8_t *buffer)
1512 {
1513         /* read memory through APB-AP */
1514         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1515         struct armv8_common *armv8 = target_to_armv8(target);
1516         struct arm_dpm *dpm = &armv8->dpm;
1517         struct arm *arm = &armv8->arm;
1518         int total_bytes = count * size;
1519         int total_u32;
1520         int start_byte = address & 0x3;
1521         int end_byte   = (address + total_bytes) & 0x3;
1522         struct reg *reg;
1523         uint32_t dscr;
1524         uint8_t *tmp_buff = NULL;
1525         uint8_t *u8buf_ptr;
1526         uint32_t value;
1527
1528         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count %"  PRIu32,
1529                           address, size, count);
1530
1531         if (target->state != TARGET_HALTED) {
1532                 LOG_WARNING("target not halted");
1533                 return ERROR_TARGET_NOT_HALTED;
1534         }
1535
1536         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1537         /* Mark register X0, X1 as dirty, as it will be used
1538          * for transferring the data.
1539          * It will be restored automatically when exiting
1540          * debug mode
1541          */
1542         reg = armv8_reg_current(arm, 1);
1543         reg->dirty = true;
1544
1545         reg = armv8_reg_current(arm, 0);
1546         reg->dirty = true;
1547
1548         /* Read DSCR */
1549         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1550                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1551
1552         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1553
1554         /* Set Normal access mode  */
1555         dscr = (dscr & ~DSCR_MA);
1556         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1557                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1558
1559         if (arm->core_state == ARM_STATE_AARCH64) {
1560                 /* Write X0 with value 'address' using write procedure */
1561                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1562                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1563                 retval += dpm->instr_write_data_dcc_64(dpm,
1564                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1565                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1566                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1567                 /* Step 1.e - Change DCC to memory mode */
1568                 dscr = dscr | DSCR_MA;
1569                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1570                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1571                 /* Step 1.f - read DBGDTRTX and discard the value */
1572                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1573                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1574         } else {
1575                 /* Write R0 with value 'address' using write procedure */
1576                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1577                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1578                 retval += dpm->instr_write_data_dcc(dpm,
1579                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1580                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1581                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1582                 /* Step 1.e - Change DCC to memory mode */
1583                 dscr = dscr | DSCR_MA;
1584                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1585                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1586                 /* Step 1.f - read DBGDTRTX and discard the value */
1587                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1588                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1589
1590         }
1591         if (retval != ERROR_OK)
1592                 goto error_unset_dtr_r;
1593
1594         /* Optimize the read as much as we can, either way we read in a single pass  */
1595         if ((start_byte) || (end_byte)) {
1596                 /* The algorithm only copies 32 bit words, so the buffer
1597                  * should be expanded to include the words at either end.
1598                  * The first and last words will be read into a temp buffer
1599                  * to avoid corruption
1600                  */
1601                 tmp_buff = malloc(total_u32 * 4);
1602                 if (!tmp_buff)
1603                         goto error_unset_dtr_r;
1604
1605                 /* use the tmp buffer to read the entire data */
1606                 u8buf_ptr = tmp_buff;
1607         } else
1608                 /* address and read length are aligned so read directly into the passed buffer */
1609                 u8buf_ptr = buffer;
1610
1611         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1612          * Abort flags are sticky, so can be read at end of transactions
1613          *
1614          * This data is read in aligned to 32 bit boundary.
1615          */
1616
1617         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1618          * increments X0 by 4. */
1619         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1620                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1621         if (retval != ERROR_OK)
1622                         goto error_unset_dtr_r;
1623
1624         /* Step 3.a - set DTR access mode back to Normal mode   */
1625         dscr = (dscr & ~DSCR_MA);
1626         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1627                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1628         if (retval != ERROR_OK)
1629                 goto error_free_buff_r;
1630
1631         /* Step 3.b - read DBGDTRTX for the final value */
1632         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1633                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1634         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1635
1636         /* Check for sticky abort flags in the DSCR */
1637         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1638                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1639         if (retval != ERROR_OK)
1640                 goto error_free_buff_r;
1641
1642         dpm->dscr = dscr;
1643
1644         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1645                 /* Abort occurred - clear it and exit */
1646                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1647                 armv8_dpm_handle_exception(dpm);
1648                 goto error_free_buff_r;
1649         }
1650
1651         /* check if we need to copy aligned data by applying any shift necessary */
1652         if (tmp_buff) {
1653                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1654                 free(tmp_buff);
1655         }
1656
1657         /* Done */
1658         return ERROR_OK;
1659
1660 error_unset_dtr_r:
1661         /* Unset DTR mode */
1662         mem_ap_read_atomic_u32(armv8->debug_ap,
1663                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1664         dscr = (dscr & ~DSCR_MA);
1665         mem_ap_write_atomic_u32(armv8->debug_ap,
1666                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1667 error_free_buff_r:
1668         LOG_ERROR("error");
1669         free(tmp_buff);
1670         return ERROR_FAIL;
1671 }
1672
1673 static int aarch64_read_phys_memory(struct target *target,
1674         target_addr_t address, uint32_t size,
1675         uint32_t count, uint8_t *buffer)
1676 {
1677         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1678         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1679                 address, size, count);
1680
1681         if (count && buffer) {
1682                 /* read memory through APB-AP */
1683                 retval = aarch64_mmu_modify(target, 0);
1684                 if (retval != ERROR_OK)
1685                         return retval;
1686                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1687         }
1688         return retval;
1689 }
1690
1691 static int aarch64_read_memory(struct target *target, target_addr_t address,
1692         uint32_t size, uint32_t count, uint8_t *buffer)
1693 {
1694         int mmu_enabled = 0;
1695         int retval;
1696
1697         /* aarch64 handles unaligned memory access */
1698         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1699                 size, count);
1700
1701         /* determine if MMU was enabled on target stop */
1702         retval = aarch64_mmu(target, &mmu_enabled);
1703         if (retval != ERROR_OK)
1704                 return retval;
1705
1706         if (mmu_enabled) {
1707                 retval = aarch64_check_address(target, address);
1708                 if (retval != ERROR_OK)
1709                         return retval;
1710                 /* enable MMU as we could have disabled it for phys access */
1711                 retval = aarch64_mmu_modify(target, 1);
1712                 if (retval != ERROR_OK)
1713                         return retval;
1714         }
1715         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1716 }
1717
1718 static int aarch64_write_phys_memory(struct target *target,
1719         target_addr_t address, uint32_t size,
1720         uint32_t count, const uint8_t *buffer)
1721 {
1722         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1723
1724         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1725                 size, count);
1726
1727         if (count && buffer) {
1728                 /* write memory through APB-AP */
1729                 retval = aarch64_mmu_modify(target, 0);
1730                 if (retval != ERROR_OK)
1731                         return retval;
1732                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1733         }
1734
1735         return retval;
1736 }
1737
1738 static int aarch64_write_memory(struct target *target, target_addr_t address,
1739         uint32_t size, uint32_t count, const uint8_t *buffer)
1740 {
1741         int mmu_enabled = 0;
1742         int retval;
1743
1744         /* aarch64 handles unaligned memory access */
1745         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1746                   "; count %" PRId32, address, size, count);
1747
1748         /* determine if MMU was enabled on target stop */
1749         retval = aarch64_mmu(target, &mmu_enabled);
1750         if (retval != ERROR_OK)
1751                 return retval;
1752
1753         if (mmu_enabled) {
1754                 retval = aarch64_check_address(target, address);
1755                 if (retval != ERROR_OK)
1756                         return retval;
1757                 /* enable MMU as we could have disabled it for phys access */
1758                 retval = aarch64_mmu_modify(target, 1);
1759                 if (retval != ERROR_OK)
1760                         return retval;
1761         }
1762         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1763 }
1764
1765 static int aarch64_handle_target_request(void *priv)
1766 {
1767         struct target *target = priv;
1768         struct armv8_common *armv8 = target_to_armv8(target);
1769         int retval;
1770
1771         if (!target_was_examined(target))
1772                 return ERROR_OK;
1773         if (!target->dbg_msg_enabled)
1774                 return ERROR_OK;
1775
1776         if (target->state == TARGET_RUNNING) {
1777                 uint32_t request;
1778                 uint32_t dscr;
1779                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1780                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1781
1782                 /* check if we have data */
1783                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1784                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1785                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1786                         if (retval == ERROR_OK) {
1787                                 target_request(target, request);
1788                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1789                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1790                         }
1791                 }
1792         }
1793
1794         return ERROR_OK;
1795 }
1796
1797 static int aarch64_examine_first(struct target *target)
1798 {
1799         struct aarch64_common *aarch64 = target_to_aarch64(target);
1800         struct armv8_common *armv8 = &aarch64->armv8_common;
1801         struct adiv5_dap *swjdp = armv8->arm.dap;
1802         int i;
1803         int retval = ERROR_OK;
1804         uint64_t debug, ttypr;
1805         uint32_t cpuid;
1806         uint32_t tmp0, tmp1;
1807         debug = ttypr = cpuid = 0;
1808
1809         /* We do one extra read to ensure DAP is configured,
1810          * we call ahbap_debugport_init(swjdp) instead
1811          */
1812         retval = dap_dp_init(swjdp);
1813         if (retval != ERROR_OK)
1814                 return retval;
1815
1816         /* Search for the APB-AB - it is needed for access to debug registers */
1817         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1818         if (retval != ERROR_OK) {
1819                 LOG_ERROR("Could not find APB-AP for debug access");
1820                 return retval;
1821         }
1822
1823         retval = mem_ap_init(armv8->debug_ap);
1824         if (retval != ERROR_OK) {
1825                 LOG_ERROR("Could not initialize the APB-AP");
1826                 return retval;
1827         }
1828
1829         armv8->debug_ap->memaccess_tck = 80;
1830
1831         if (!target->dbgbase_set) {
1832                 uint32_t dbgbase;
1833                 /* Get ROM Table base */
1834                 uint32_t apid;
1835                 int32_t coreidx = target->coreid;
1836                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1837                 if (retval != ERROR_OK)
1838                         return retval;
1839                 /* Lookup 0x15 -- Processor DAP */
1840                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1841                                 &armv8->debug_base, &coreidx);
1842                 if (retval != ERROR_OK)
1843                         return retval;
1844                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1845                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1846         } else
1847                 armv8->debug_base = target->dbgbase;
1848
1849         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1850                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1851         if (retval != ERROR_OK) {
1852                 LOG_DEBUG("LOCK debug access fail");
1853                 return retval;
1854         }
1855
1856         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1857                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1858         if (retval != ERROR_OK) {
1859                 LOG_DEBUG("Examine %s failed", "oslock");
1860                 return retval;
1861         }
1862
1863         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1864                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1865         if (retval != ERROR_OK) {
1866                 LOG_DEBUG("Examine %s failed", "CPUID");
1867                 return retval;
1868         }
1869
1870         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1871                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1872         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1873                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1874         if (retval != ERROR_OK) {
1875                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1876                 return retval;
1877         }
1878         ttypr |= tmp1;
1879         ttypr = (ttypr << 32) | tmp0;
1880
1881         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1882                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1883         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1884                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1885         if (retval != ERROR_OK) {
1886                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1887                 return retval;
1888         }
1889         debug |= tmp1;
1890         debug = (debug << 32) | tmp0;
1891
1892         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1893         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1894         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1895
1896         if (target->ctibase == 0) {
1897                 /* assume a v8 rom table layout */
1898                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1899                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1900         } else
1901                 armv8->cti_base = target->ctibase;
1902
1903         armv8->arm.core_type = ARM_MODE_MON;
1904         retval = aarch64_dpm_setup(aarch64, debug);
1905         if (retval != ERROR_OK)
1906                 return retval;
1907
1908         /* Setup Breakpoint Register Pairs */
1909         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1910         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1911         aarch64->brp_num_available = aarch64->brp_num;
1912         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1913         for (i = 0; i < aarch64->brp_num; i++) {
1914                 aarch64->brp_list[i].used = 0;
1915                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1916                         aarch64->brp_list[i].type = BRP_NORMAL;
1917                 else
1918                         aarch64->brp_list[i].type = BRP_CONTEXT;
1919                 aarch64->brp_list[i].value = 0;
1920                 aarch64->brp_list[i].control = 0;
1921                 aarch64->brp_list[i].BRPn = i;
1922         }
1923
1924         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1925
1926         target_set_examined(target);
1927         return ERROR_OK;
1928 }
1929
1930 static int aarch64_examine(struct target *target)
1931 {
1932         int retval = ERROR_OK;
1933
1934         /* don't re-probe hardware after each reset */
1935         if (!target_was_examined(target))
1936                 retval = aarch64_examine_first(target);
1937
1938         /* Configure core debug access */
1939         if (retval == ERROR_OK)
1940                 retval = aarch64_init_debug_access(target);
1941
1942         return retval;
1943 }
1944
1945 /*
1946  *      Cortex-A8 target creation and initialization
1947  */
1948
1949 static int aarch64_init_target(struct command_context *cmd_ctx,
1950         struct target *target)
1951 {
1952         /* examine_first() does a bunch of this */
1953         return ERROR_OK;
1954 }
1955
1956 static int aarch64_init_arch_info(struct target *target,
1957         struct aarch64_common *aarch64, struct jtag_tap *tap)
1958 {
1959         struct armv8_common *armv8 = &aarch64->armv8_common;
1960         struct adiv5_dap *dap = armv8->arm.dap;
1961
1962         armv8->arm.dap = dap;
1963
1964         /* Setup struct aarch64_common */
1965         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1966         /*  tap has no dap initialized */
1967         if (!tap->dap) {
1968                 tap->dap = dap_init();
1969
1970                 /* Leave (only) generic DAP stuff for debugport_init() */
1971                 tap->dap->tap = tap;
1972         }
1973
1974         armv8->arm.dap = tap->dap;
1975
1976         aarch64->fast_reg_read = 0;
1977
1978         /* register arch-specific functions */
1979         armv8->examine_debug_reason = NULL;
1980
1981         armv8->post_debug_entry = aarch64_post_debug_entry;
1982
1983         armv8->pre_restore_context = NULL;
1984
1985         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1986
1987         /* REVISIT v7a setup should be in a v7a-specific routine */
1988         armv8_init_arch_info(target, armv8);
1989         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
1990
1991         return ERROR_OK;
1992 }
1993
1994 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
1995 {
1996         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
1997
1998         return aarch64_init_arch_info(target, aarch64, target->tap);
1999 }
2000
2001 static int aarch64_mmu(struct target *target, int *enabled)
2002 {
2003         if (target->state != TARGET_HALTED) {
2004                 LOG_ERROR("%s: target not halted", __func__);
2005                 return ERROR_TARGET_INVALID;
2006         }
2007
2008         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2009         return ERROR_OK;
2010 }
2011
2012 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2013                              target_addr_t *phys)
2014 {
2015         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2016 }
2017
2018 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2019 {
2020         struct target *target = get_current_target(CMD_CTX);
2021         struct armv8_common *armv8 = target_to_armv8(target);
2022
2023         return armv8_handle_cache_info_command(CMD_CTX,
2024                         &armv8->armv8_mmu.armv8_cache);
2025 }
2026
2027
2028 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2029 {
2030         struct target *target = get_current_target(CMD_CTX);
2031         if (!target_was_examined(target)) {
2032                 LOG_ERROR("target not examined yet");
2033                 return ERROR_FAIL;
2034         }
2035
2036         return aarch64_init_debug_access(target);
2037 }
2038 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2039 {
2040         struct target *target = get_current_target(CMD_CTX);
2041         /* check target is an smp target */
2042         struct target_list *head;
2043         struct target *curr;
2044         head = target->head;
2045         target->smp = 0;
2046         if (head != (struct target_list *)NULL) {
2047                 while (head != (struct target_list *)NULL) {
2048                         curr = head->target;
2049                         curr->smp = 0;
2050                         head = head->next;
2051                 }
2052                 /*  fixes the target display to the debugger */
2053                 target->gdb_service->target = target;
2054         }
2055         return ERROR_OK;
2056 }
2057
2058 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2059 {
2060         struct target *target = get_current_target(CMD_CTX);
2061         struct target_list *head;
2062         struct target *curr;
2063         head = target->head;
2064         if (head != (struct target_list *)NULL) {
2065                 target->smp = 1;
2066                 while (head != (struct target_list *)NULL) {
2067                         curr = head->target;
2068                         curr->smp = 1;
2069                         head = head->next;
2070                 }
2071         }
2072         return ERROR_OK;
2073 }
2074
2075 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2076 {
2077         struct target *target = get_current_target(CMD_CTX);
2078         int retval = ERROR_OK;
2079         struct target_list *head;
2080         head = target->head;
2081         if (head != (struct target_list *)NULL) {
2082                 if (CMD_ARGC == 1) {
2083                         int coreid = 0;
2084                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2085                         if (ERROR_OK != retval)
2086                                 return retval;
2087                         target->gdb_service->core[1] = coreid;
2088
2089                 }
2090                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2091                         , target->gdb_service->core[1]);
2092         }
2093         return ERROR_OK;
2094 }
2095
2096 static const struct command_registration aarch64_exec_command_handlers[] = {
2097         {
2098                 .name = "cache_info",
2099                 .handler = aarch64_handle_cache_info_command,
2100                 .mode = COMMAND_EXEC,
2101                 .help = "display information about target caches",
2102                 .usage = "",
2103         },
2104         {
2105                 .name = "dbginit",
2106                 .handler = aarch64_handle_dbginit_command,
2107                 .mode = COMMAND_EXEC,
2108                 .help = "Initialize core debug",
2109                 .usage = "",
2110         },
2111         {       .name = "smp_off",
2112                 .handler = aarch64_handle_smp_off_command,
2113                 .mode = COMMAND_EXEC,
2114                 .help = "Stop smp handling",
2115                 .usage = "",
2116         },
2117         {
2118                 .name = "smp_on",
2119                 .handler = aarch64_handle_smp_on_command,
2120                 .mode = COMMAND_EXEC,
2121                 .help = "Restart smp handling",
2122                 .usage = "",
2123         },
2124         {
2125                 .name = "smp_gdb",
2126                 .handler = aarch64_handle_smp_gdb_command,
2127                 .mode = COMMAND_EXEC,
2128                 .help = "display/fix current core played to gdb",
2129                 .usage = "",
2130         },
2131
2132
2133         COMMAND_REGISTRATION_DONE
2134 };
2135 static const struct command_registration aarch64_command_handlers[] = {
2136         {
2137                 .chain = armv8_command_handlers,
2138         },
2139         {
2140                 .name = "cortex_a",
2141                 .mode = COMMAND_ANY,
2142                 .help = "Cortex-A command group",
2143                 .usage = "",
2144                 .chain = aarch64_exec_command_handlers,
2145         },
2146         COMMAND_REGISTRATION_DONE
2147 };
2148
2149 struct target_type aarch64_target = {
2150         .name = "aarch64",
2151
2152         .poll = aarch64_poll,
2153         .arch_state = armv8_arch_state,
2154
2155         .halt = aarch64_halt,
2156         .resume = aarch64_resume,
2157         .step = aarch64_step,
2158
2159         .assert_reset = aarch64_assert_reset,
2160         .deassert_reset = aarch64_deassert_reset,
2161
2162         /* REVISIT allow exporting VFP3 registers ... */
2163         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2164
2165         .read_memory = aarch64_read_memory,
2166         .write_memory = aarch64_write_memory,
2167
2168         .checksum_memory = arm_checksum_memory,
2169         .blank_check_memory = arm_blank_check_memory,
2170
2171         .run_algorithm = armv4_5_run_algorithm,
2172
2173         .add_breakpoint = aarch64_add_breakpoint,
2174         .add_context_breakpoint = aarch64_add_context_breakpoint,
2175         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2176         .remove_breakpoint = aarch64_remove_breakpoint,
2177         .add_watchpoint = NULL,
2178         .remove_watchpoint = NULL,
2179
2180         .commands = aarch64_command_handlers,
2181         .target_create = aarch64_target_create,
2182         .init_target = aarch64_init_target,
2183         .examine = aarch64_examine,
2184
2185         .read_phys_memory = aarch64_read_phys_memory,
2186         .write_phys_memory = aarch64_write_phys_memory,
2187         .mmu = aarch64_mmu,
2188         .virt2phys = aarch64_virt2phys,
2189 };