aarch64: fix cache identification
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
61
62                 switch (armv8->arm.core_mode) {
63                         case ARMV8_64_EL0T:
64                         case ARMV8_64_EL1T:
65                         case ARMV8_64_EL1H:
66                                 retval = armv8->arm.msr(target, 3, /*op 0*/
67                                                 0, 1,   /* op1, op2 */
68                                                 0, 0,   /* CRn, CRm */
69                                                 aarch64->system_control_reg);
70                                 if (retval != ERROR_OK)
71                                         return retval;
72                         break;
73                         case ARMV8_64_EL2T:
74                         case ARMV8_64_EL2H:
75                                 retval = armv8->arm.msr(target, 3, /*op 0*/
76                                                 4, 1,   /* op1, op2 */
77                                                 0, 0,   /* CRn, CRm */
78                                                 aarch64->system_control_reg);
79                                 if (retval != ERROR_OK)
80                                         return retval;
81                         break;
82                         case ARMV8_64_EL3H:
83                         case ARMV8_64_EL3T:
84                                 retval = armv8->arm.msr(target, 3, /*op 0*/
85                                                 6, 1,   /* op1, op2 */
86                                                 0, 0,   /* CRn, CRm */
87                                                 aarch64->system_control_reg);
88                                 if (retval != ERROR_OK)
89                                         return retval;
90                         break;
91                         default:
92                                 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
93                         }
94         }
95         return retval;
96 }
97
98 /*  check address before aarch64_apb read write access with mmu on
99  *  remove apb predictible data abort */
100 static int aarch64_check_address(struct target *target, uint32_t address)
101 {
102         /* TODO */
103         return ERROR_OK;
104 }
105 /*  modify system_control_reg in order to enable or disable mmu for :
106  *  - virt2phys address conversion
107  *  - read or write memory in phys or virt address */
108 static int aarch64_mmu_modify(struct target *target, int enable)
109 {
110         struct aarch64_common *aarch64 = target_to_aarch64(target);
111         struct armv8_common *armv8 = &aarch64->armv8_common;
112         int retval = ERROR_OK;
113
114         if (enable) {
115                 /*      if mmu enabled at target stop and mmu not enable */
116                 if (!(aarch64->system_control_reg & 0x1U)) {
117                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
118                         return ERROR_FAIL;
119                 }
120                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
121                         aarch64->system_control_reg_curr |= 0x1U;
122                         switch (armv8->arm.core_mode) {
123                                 case ARMV8_64_EL0T:
124                                 case ARMV8_64_EL1T:
125                                 case ARMV8_64_EL1H:
126                                         retval = armv8->arm.msr(target, 3, /*op 0*/
127                                                         0, 0,   /* op1, op2 */
128                                                         1, 0,   /* CRn, CRm */
129                                                         aarch64->system_control_reg_curr);
130                                         if (retval != ERROR_OK)
131                                                 return retval;
132                                 break;
133                                 case ARMV8_64_EL2T:
134                                 case ARMV8_64_EL2H:
135                                         retval = armv8->arm.msr(target, 3, /*op 0*/
136                                                         4, 0,   /* op1, op2 */
137                                                         1, 0,   /* CRn, CRm */
138                                                         aarch64->system_control_reg_curr);
139                                         if (retval != ERROR_OK)
140                                                 return retval;
141                                 break;
142                                 case ARMV8_64_EL3H:
143                                 case ARMV8_64_EL3T:
144                                         retval = armv8->arm.msr(target, 3, /*op 0*/
145                                                         6, 0,   /* op1, op2 */
146                                                         1, 0,   /* CRn, CRm */
147                                                         aarch64->system_control_reg_curr);
148                                         if (retval != ERROR_OK)
149                                                 return retval;
150                                 break;
151                                 default:
152                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
153                         }
154                 }
155         } else {
156                 if (aarch64->system_control_reg_curr & 0x4U) {
157                         /*  data cache is active */
158                         aarch64->system_control_reg_curr &= ~0x4U;
159                         /* flush data cache armv7 function to be called */
160                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
161                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
162                 }
163                 if ((aarch64->system_control_reg_curr & 0x1U)) {
164                         aarch64->system_control_reg_curr &= ~0x1U;
165                         switch (armv8->arm.core_mode) {
166                                 case ARMV8_64_EL0T:
167                                 case ARMV8_64_EL1T:
168                                 case ARMV8_64_EL1H:
169                                         retval = armv8->arm.msr(target, 3, /*op 0*/
170                                                         0, 0,   /* op1, op2 */
171                                                         1, 0,   /* CRn, CRm */
172                                                         aarch64->system_control_reg_curr);
173                                         if (retval != ERROR_OK)
174                                                 return retval;
175                                         break;
176                                 case ARMV8_64_EL2T:
177                                 case ARMV8_64_EL2H:
178                                         retval = armv8->arm.msr(target, 3, /*op 0*/
179                                                         4, 0,   /* op1, op2 */
180                                                         1, 0,   /* CRn, CRm */
181                                                         aarch64->system_control_reg_curr);
182                                         if (retval != ERROR_OK)
183                                                 return retval;
184                                         break;
185                                 case ARMV8_64_EL3H:
186                                 case ARMV8_64_EL3T:
187                                         retval = armv8->arm.msr(target, 3, /*op 0*/
188                                                         6, 0,   /* op1, op2 */
189                                                         1, 0,   /* CRn, CRm */
190                                                         aarch64->system_control_reg_curr);
191                                         if (retval != ERROR_OK)
192                                                 return retval;
193                                         break;
194                                 default:
195                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
196                                         break;
197                         }
198                 }
199         }
200         return retval;
201 }
202
203 /*
204  * Basic debug access, very low level assumes state is saved
205  */
206 static int aarch64_init_debug_access(struct target *target)
207 {
208         struct armv8_common *armv8 = target_to_armv8(target);
209         int retval;
210         uint32_t dummy;
211
212         LOG_DEBUG(" ");
213
214         /* Unlocking the debug registers for modification
215          * The debugport might be uninitialised so try twice */
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
217                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
218         if (retval != ERROR_OK) {
219                 /* try again */
220                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
221                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
222                 if (retval == ERROR_OK)
223                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
224         }
225         if (retval != ERROR_OK)
226                 return retval;
227         /* Clear Sticky Power Down status Bit in PRSR to enable access to
228            the registers in the Core Power Domain */
229         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
230                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
231         if (retval != ERROR_OK)
232                 return retval;
233
234         /* Enabling of instruction execution in debug mode is done in debug_entry code */
235
236         /* Resync breakpoint registers */
237
238         /* Since this is likely called from init or reset, update target state information*/
239         return aarch64_poll(target);
240 }
241
242 /* To reduce needless round-trips, pass in a pointer to the current
243  * DSCR value.  Initialize it to zero if you just need to know the
244  * value on return from this function; or DSCR_ITE if you
245  * happen to know that no instruction is pending.
246  */
247 static int aarch64_exec_opcode(struct target *target,
248         uint32_t opcode, uint32_t *dscr_p)
249 {
250         uint32_t dscr;
251         int retval;
252         struct armv8_common *armv8 = target_to_armv8(target);
253         dscr = dscr_p ? *dscr_p : 0;
254
255         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
256
257         /* Wait for InstrCompl bit to be set */
258         long long then = timeval_ms();
259         while ((dscr & DSCR_ITE) == 0) {
260                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
261                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
262                 if (retval != ERROR_OK) {
263                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
264                         return retval;
265                 }
266                 if (timeval_ms() > then + 1000) {
267                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
268                         return ERROR_FAIL;
269                 }
270         }
271
272         retval = mem_ap_write_u32(armv8->debug_ap,
273                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         then = timeval_ms();
278         do {
279                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
281                 if (retval != ERROR_OK) {
282                         LOG_ERROR("Could not read DSCR register");
283                         return retval;
284                 }
285                 if (timeval_ms() > then + 1000) {
286                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
287                         return ERROR_FAIL;
288                 }
289         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
290
291         if (dscr_p)
292                 *dscr_p = dscr;
293
294         return retval;
295 }
296
297 /* Write to memory mapped registers directly with no cache or mmu handling */
298 static int aarch64_dap_write_memap_register_u32(struct target *target,
299         uint32_t address,
300         uint32_t value)
301 {
302         int retval;
303         struct armv8_common *armv8 = target_to_armv8(target);
304
305         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
306
307         return retval;
308 }
309
310 /*
311  * AARCH64 implementation of Debug Programmer's Model
312  *
313  * NOTE the invariant:  these routines return with DSCR_ITE set,
314  * so there's no need to poll for it before executing an instruction.
315  *
316  * NOTE that in several of these cases the "stall" mode might be useful.
317  * It'd let us queue a few operations together... prepare/finish might
318  * be the places to enable/disable that mode.
319  */
320
321 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
322 {
323         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
324 }
325
326 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
327 {
328         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
329         return mem_ap_write_u32(armv8->debug_ap,
330                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
331 }
332
333 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
334 {
335         int ret;
336         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
337         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
338         ret = mem_ap_write_u32(armv8->debug_ap,
339                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
340         ret += mem_ap_write_u32(armv8->debug_ap,
341                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
342         return ret;
343 }
344
345 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
346         uint32_t *dscr_p)
347 {
348         uint32_t dscr = DSCR_ITE;
349         int retval;
350
351         if (dscr_p)
352                 dscr = *dscr_p;
353
354         /* Wait for DTRRXfull */
355         long long then = timeval_ms();
356         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
357                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
358                                 armv8->debug_base + CPUV8_DBG_DSCR,
359                                 &dscr);
360                 if (retval != ERROR_OK)
361                         return retval;
362                 if (timeval_ms() > then + 1000) {
363                         LOG_ERROR("Timeout waiting for read dcc");
364                         return ERROR_FAIL;
365                 }
366         }
367
368         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
369                                             armv8->debug_base + CPUV8_DBG_DTRTX,
370                                             data);
371         if (retval != ERROR_OK)
372                 return retval;
373         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
374
375         if (dscr_p)
376                 *dscr_p = dscr;
377
378         return retval;
379 }
380
381 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
382         uint32_t *dscr_p)
383 {
384         uint32_t dscr = DSCR_ITE;
385         uint32_t higher;
386         int retval;
387
388         if (dscr_p)
389                 dscr = *dscr_p;
390
391         /* Wait for DTRRXfull */
392         long long then = timeval_ms();
393         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
394                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
395                                 armv8->debug_base + CPUV8_DBG_DSCR,
396                                 &dscr);
397                 if (retval != ERROR_OK)
398                         return retval;
399                 if (timeval_ms() > then + 1000) {
400                         LOG_ERROR("Timeout waiting for read dcc");
401                         return ERROR_FAIL;
402                 }
403         }
404
405         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
406                                             armv8->debug_base + CPUV8_DBG_DTRTX,
407                                             (uint32_t *)data);
408         if (retval != ERROR_OK)
409                 return retval;
410
411         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
412                                             armv8->debug_base + CPUV8_DBG_DTRRX,
413                                             &higher);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         *data = *(uint32_t *)data | (uint64_t)higher << 32;
418         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
419
420         if (dscr_p)
421                 *dscr_p = dscr;
422
423         return retval;
424 }
425
426 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
427 {
428         struct aarch64_common *a8 = dpm_to_a8(dpm);
429         uint32_t dscr;
430         int retval;
431
432         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
433         long long then = timeval_ms();
434         for (;; ) {
435                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
436                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 if ((dscr & DSCR_ITE) != 0)
441                         break;
442                 if (timeval_ms() > then + 1000) {
443                         LOG_ERROR("Timeout waiting for dpm prepare");
444                         return ERROR_FAIL;
445                 }
446         }
447
448         /* this "should never happen" ... */
449         if (dscr & DSCR_DTR_RX_FULL) {
450                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
451                 /* Clear DCCRX */
452                 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
453                         a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
454                 if (retval != ERROR_OK)
455                         return retval;
456
457                 /* Clear sticky error */
458                 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
459                         a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
460                 if (retval != ERROR_OK)
461                         return retval;
462         }
463
464         return retval;
465 }
466
467 static int aarch64_dpm_finish(struct arm_dpm *dpm)
468 {
469         /* REVISIT what could be done here? */
470         return ERROR_OK;
471 }
472
473 static int aarch64_instr_execute(struct arm_dpm *dpm,
474         uint32_t opcode)
475 {
476         struct aarch64_common *a8 = dpm_to_a8(dpm);
477         uint32_t dscr = DSCR_ITE;
478
479         return aarch64_exec_opcode(
480                         a8->armv8_common.arm.target,
481                         opcode,
482                         &dscr);
483 }
484
485 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
486         uint32_t opcode, uint32_t data)
487 {
488         struct aarch64_common *a8 = dpm_to_a8(dpm);
489         int retval;
490         uint32_t dscr = DSCR_ITE;
491
492         retval = aarch64_write_dcc(&a8->armv8_common, data);
493         if (retval != ERROR_OK)
494                 return retval;
495
496         return aarch64_exec_opcode(
497                         a8->armv8_common.arm.target,
498                         opcode,
499                         &dscr);
500 }
501
502 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
503         uint32_t opcode, uint64_t data)
504 {
505         struct aarch64_common *a8 = dpm_to_a8(dpm);
506         int retval;
507         uint32_t dscr = DSCR_ITE;
508
509         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         return aarch64_exec_opcode(
514                         a8->armv8_common.arm.target,
515                         opcode,
516                         &dscr);
517 }
518
519 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
520         uint32_t opcode, uint32_t data)
521 {
522         struct aarch64_common *a8 = dpm_to_a8(dpm);
523         uint32_t dscr = DSCR_ITE;
524         int retval;
525
526         retval = aarch64_write_dcc(&a8->armv8_common, data);
527         if (retval != ERROR_OK)
528                 return retval;
529
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 0),
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         /* then the opcode, taking data from R0 */
538         retval = aarch64_exec_opcode(
539                         a8->armv8_common.arm.target,
540                         opcode,
541                         &dscr);
542
543         return retval;
544 }
545
546 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
547         uint32_t opcode, uint64_t data)
548 {
549         struct aarch64_common *a8 = dpm_to_a8(dpm);
550         uint32_t dscr = DSCR_ITE;
551         int retval;
552
553         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
554         if (retval != ERROR_OK)
555                 return retval;
556
557         retval = aarch64_exec_opcode(
558                         a8->armv8_common.arm.target,
559                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
560                         &dscr);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         /* then the opcode, taking data from R0 */
565         retval = aarch64_exec_opcode(
566                         a8->armv8_common.arm.target,
567                         opcode,
568                         &dscr);
569
570         return retval;
571 }
572
573 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
574 {
575         struct target *target = dpm->arm->target;
576         uint32_t dscr = DSCR_ITE;
577
578         /* "Prefetch flush" after modifying execution status in CPSR */
579         return aarch64_exec_opcode(target,
580                         DSB_SY,
581                         &dscr);
582 }
583
584 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
585         uint32_t opcode, uint32_t *data)
586 {
587         struct aarch64_common *a8 = dpm_to_a8(dpm);
588         int retval;
589         uint32_t dscr = DSCR_ITE;
590
591         /* the opcode, writing data to DCC */
592         retval = aarch64_exec_opcode(
593                         a8->armv8_common.arm.target,
594                         opcode,
595                         &dscr);
596         if (retval != ERROR_OK)
597                 return retval;
598
599         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
600 }
601
602 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
603         uint32_t opcode, uint64_t *data)
604 {
605         struct aarch64_common *a8 = dpm_to_a8(dpm);
606         int retval;
607         uint32_t dscr = DSCR_ITE;
608
609         /* the opcode, writing data to DCC */
610         retval = aarch64_exec_opcode(
611                         a8->armv8_common.arm.target,
612                         opcode,
613                         &dscr);
614         if (retval != ERROR_OK)
615                 return retval;
616
617         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
618 }
619
620 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
621         uint32_t opcode, uint32_t *data)
622 {
623         struct aarch64_common *a8 = dpm_to_a8(dpm);
624         uint32_t dscr = DSCR_ITE;
625         int retval;
626
627         /* the opcode, writing data to R0 */
628         retval = aarch64_exec_opcode(
629                         a8->armv8_common.arm.target,
630                         opcode,
631                         &dscr);
632         if (retval != ERROR_OK)
633                 return retval;
634
635         /* write R0 to DCC */
636         retval = aarch64_exec_opcode(
637                         a8->armv8_common.arm.target,
638                         ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 0),  /* msr dbgdtr_el0, x0 */
639                         &dscr);
640         if (retval != ERROR_OK)
641                 return retval;
642
643         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
644 }
645
646 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
647         uint32_t opcode, uint64_t *data)
648 {
649         struct aarch64_common *a8 = dpm_to_a8(dpm);
650         uint32_t dscr = DSCR_ITE;
651         int retval;
652
653         /* the opcode, writing data to R0 */
654         retval = aarch64_exec_opcode(
655                         a8->armv8_common.arm.target,
656                         opcode,
657                         &dscr);
658         if (retval != ERROR_OK)
659                 return retval;
660
661         /* write R0 to DCC */
662         retval = aarch64_exec_opcode(
663                         a8->armv8_common.arm.target,
664                         ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0),  /* msr dbgdtr_el0, x0 */
665                         &dscr);
666         if (retval != ERROR_OK)
667                 return retval;
668
669         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
670 }
671
672 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
673         uint32_t addr, uint32_t control)
674 {
675         struct aarch64_common *a8 = dpm_to_a8(dpm);
676         uint32_t vr = a8->armv8_common.debug_base;
677         uint32_t cr = a8->armv8_common.debug_base;
678         int retval;
679
680         switch (index_t) {
681                 case 0 ... 15:  /* breakpoints */
682                         vr += CPUV8_DBG_BVR_BASE;
683                         cr += CPUV8_DBG_BCR_BASE;
684                         break;
685                 case 16 ... 31: /* watchpoints */
686                         vr += CPUV8_DBG_WVR_BASE;
687                         cr += CPUV8_DBG_WCR_BASE;
688                         index_t -= 16;
689                         break;
690                 default:
691                         return ERROR_FAIL;
692         }
693         vr += 4 * index_t;
694         cr += 4 * index_t;
695
696         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
697                 (unsigned) vr, (unsigned) cr);
698
699         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
700                         vr, addr);
701         if (retval != ERROR_OK)
702                 return retval;
703         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
704                         cr, control);
705         return retval;
706 }
707
708 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
709 {
710         return ERROR_OK;
711
712 #if 0
713         struct aarch64_common *a = dpm_to_a8(dpm);
714         uint32_t cr;
715
716         switch (index_t) {
717                 case 0 ... 15:
718                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
719                         break;
720                 case 16 ... 31:
721                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
722                         index_t -= 16;
723                         break;
724                 default:
725                         return ERROR_FAIL;
726         }
727         cr += 4 * index_t;
728
729         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
730
731         /* clear control register */
732         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
733 #endif
734 }
735
736 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
737 {
738         struct arm_dpm *dpm = &a8->armv8_common.dpm;
739         int retval;
740
741         dpm->arm = &a8->armv8_common.arm;
742         dpm->didr = debug;
743
744         dpm->prepare = aarch64_dpm_prepare;
745         dpm->finish = aarch64_dpm_finish;
746
747         dpm->instr_execute = aarch64_instr_execute;
748         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
749         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
750         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
751         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
752         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
753
754         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
755         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
756         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
757         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
758
759         dpm->arm_reg_current = armv8_reg_current;
760
761         dpm->bpwp_enable = aarch64_bpwp_enable;
762         dpm->bpwp_disable = aarch64_bpwp_disable;
763
764         retval = armv8_dpm_setup(dpm);
765         if (retval == ERROR_OK)
766                 retval = armv8_dpm_initialize(dpm);
767
768         return retval;
769 }
770 static struct target *get_aarch64(struct target *target, int32_t coreid)
771 {
772         struct target_list *head;
773         struct target *curr;
774
775         head = target->head;
776         while (head != (struct target_list *)NULL) {
777                 curr = head->target;
778                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
779                         return curr;
780                 head = head->next;
781         }
782         return target;
783 }
784 static int aarch64_halt(struct target *target);
785
786 static int aarch64_halt_smp(struct target *target)
787 {
788         int retval = 0;
789         struct target_list *head;
790         struct target *curr;
791         head = target->head;
792         while (head != (struct target_list *)NULL) {
793                 curr = head->target;
794                 if ((curr != target) && (curr->state != TARGET_HALTED))
795                         retval += aarch64_halt(curr);
796                 head = head->next;
797         }
798         return retval;
799 }
800
801 static int update_halt_gdb(struct target *target)
802 {
803         int retval = 0;
804         if (target->gdb_service && target->gdb_service->core[0] == -1) {
805                 target->gdb_service->target = target;
806                 target->gdb_service->core[0] = target->coreid;
807                 retval += aarch64_halt_smp(target);
808         }
809         return retval;
810 }
811
812 /*
813  * Cortex-A8 Run control
814  */
815
816 static int aarch64_poll(struct target *target)
817 {
818         int retval = ERROR_OK;
819         uint32_t dscr;
820         struct aarch64_common *aarch64 = target_to_aarch64(target);
821         struct armv8_common *armv8 = &aarch64->armv8_common;
822         enum target_state prev_target_state = target->state;
823         /*  toggle to another core is done by gdb as follow */
824         /*  maint packet J core_id */
825         /*  continue */
826         /*  the next polling trigger an halt event sent to gdb */
827         if ((target->state == TARGET_HALTED) && (target->smp) &&
828                 (target->gdb_service) &&
829                 (target->gdb_service->target == NULL)) {
830                 target->gdb_service->target =
831                         get_aarch64(target, target->gdb_service->core[1]);
832                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
833                 return retval;
834         }
835         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
836                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
837         if (retval != ERROR_OK)
838                 return retval;
839         aarch64->cpudbg_dscr = dscr;
840
841         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
842                 if (prev_target_state != TARGET_HALTED) {
843                         /* We have a halting debug event */
844                         LOG_DEBUG("Target halted");
845                         target->state = TARGET_HALTED;
846                         if ((prev_target_state == TARGET_RUNNING)
847                                 || (prev_target_state == TARGET_UNKNOWN)
848                                 || (prev_target_state == TARGET_RESET)) {
849                                 retval = aarch64_debug_entry(target);
850                                 if (retval != ERROR_OK)
851                                         return retval;
852                                 if (target->smp) {
853                                         retval = update_halt_gdb(target);
854                                         if (retval != ERROR_OK)
855                                                 return retval;
856                                 }
857                                 target_call_event_callbacks(target,
858                                         TARGET_EVENT_HALTED);
859                         }
860                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
861                                 LOG_DEBUG(" ");
862
863                                 retval = aarch64_debug_entry(target);
864                                 if (retval != ERROR_OK)
865                                         return retval;
866                                 if (target->smp) {
867                                         retval = update_halt_gdb(target);
868                                         if (retval != ERROR_OK)
869                                                 return retval;
870                                 }
871
872                                 target_call_event_callbacks(target,
873                                         TARGET_EVENT_DEBUG_HALTED);
874                         }
875                 }
876         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
877                 target->state = TARGET_RUNNING;
878         else {
879                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
880                 target->state = TARGET_UNKNOWN;
881         }
882
883         return retval;
884 }
885
886 static int aarch64_halt(struct target *target)
887 {
888         int retval = ERROR_OK;
889         uint32_t dscr;
890         struct armv8_common *armv8 = target_to_armv8(target);
891
892         /* enable CTI*/
893         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
894                         armv8->cti_base + CTI_CTR, 1);
895         if (retval != ERROR_OK)
896                 return retval;
897
898         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
899                         armv8->cti_base + CTI_GATE, 3);
900         if (retval != ERROR_OK)
901                 return retval;
902
903         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
904                         armv8->cti_base + CTI_OUTEN0, 1);
905         if (retval != ERROR_OK)
906                 return retval;
907
908         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
909                         armv8->cti_base + CTI_OUTEN1, 2);
910         if (retval != ERROR_OK)
911                 return retval;
912
913         /*
914          * add HDE in halting debug mode
915          */
916         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
917                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
918         if (retval != ERROR_OK)
919                 return retval;
920
921         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
922                         armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
923         if (retval != ERROR_OK)
924                 return retval;
925
926         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
927                         armv8->cti_base + CTI_APPPULSE, 1);
928         if (retval != ERROR_OK)
929                 return retval;
930
931         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
932                         armv8->cti_base + CTI_INACK, 1);
933         if (retval != ERROR_OK)
934                 return retval;
935
936
937         long long then = timeval_ms();
938         for (;; ) {
939                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
940                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
941                 if (retval != ERROR_OK)
942                         return retval;
943                 if ((dscr & DSCRV8_HALT_MASK) != 0)
944                         break;
945                 if (timeval_ms() > then + 1000) {
946                         LOG_ERROR("Timeout waiting for halt");
947                         return ERROR_FAIL;
948                 }
949         }
950
951         target->debug_reason = DBG_REASON_DBGRQ;
952
953         return ERROR_OK;
954 }
955
956 static int aarch64_internal_restore(struct target *target, int current,
957         uint64_t *address, int handle_breakpoints, int debug_execution)
958 {
959         struct armv8_common *armv8 = target_to_armv8(target);
960         struct arm *arm = &armv8->arm;
961         int retval;
962         uint64_t resume_pc;
963
964         if (!debug_execution)
965                 target_free_all_working_areas(target);
966
967         /* current = 1: continue on current pc, otherwise continue at <address> */
968         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
969         if (!current)
970                 resume_pc = *address;
971         else
972                 *address = resume_pc;
973
974         /* Make sure that the Armv7 gdb thumb fixups does not
975          * kill the return address
976          */
977         switch (arm->core_state) {
978                 case ARM_STATE_ARM:
979                         resume_pc &= 0xFFFFFFFC;
980                         break;
981                 case ARM_STATE_AARCH64:
982                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
983                         break;
984                 case ARM_STATE_THUMB:
985                 case ARM_STATE_THUMB_EE:
986                         /* When the return address is loaded into PC
987                          * bit 0 must be 1 to stay in Thumb state
988                          */
989                         resume_pc |= 0x1;
990                         break;
991                 case ARM_STATE_JAZELLE:
992                         LOG_ERROR("How do I resume into Jazelle state??");
993                         return ERROR_FAIL;
994         }
995         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
996         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
997         arm->pc->dirty = 1;
998         arm->pc->valid = 1;
999         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1000
1001         /* called it now before restoring context because it uses cpu
1002          * register r0 for restoring system control register */
1003         retval = aarch64_restore_system_control_reg(target);
1004         if (retval != ERROR_OK)
1005                 return retval;
1006         retval = aarch64_restore_context(target, handle_breakpoints);
1007         if (retval != ERROR_OK)
1008                 return retval;
1009         target->debug_reason = DBG_REASON_NOTHALTED;
1010         target->state = TARGET_RUNNING;
1011
1012         /* registers are now invalid */
1013         register_cache_invalidate(arm->core_cache);
1014
1015 #if 0
1016         /* the front-end may request us not to handle breakpoints */
1017         if (handle_breakpoints) {
1018                 /* Single step past breakpoint at current address */
1019                 breakpoint = breakpoint_find(target, resume_pc);
1020                 if (breakpoint) {
1021                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1022                         cortex_m3_unset_breakpoint(target, breakpoint);
1023                         cortex_m3_single_step_core(target);
1024                         cortex_m3_set_breakpoint(target, breakpoint);
1025                 }
1026         }
1027 #endif
1028
1029         return retval;
1030 }
1031
1032 static int aarch64_internal_restart(struct target *target)
1033 {
1034         struct armv8_common *armv8 = target_to_armv8(target);
1035         struct arm *arm = &armv8->arm;
1036         int retval;
1037         uint32_t dscr;
1038         /*
1039          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1040          * * exception flags: see ARMv7 ARM, C5.9.
1041          *
1042          * REVISIT: for single stepping, we probably want to
1043          * disable IRQs by default, with optional override...
1044          */
1045
1046         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1047                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1048         if (retval != ERROR_OK)
1049                 return retval;
1050
1051         if ((dscr & DSCR_ITE) == 0)
1052                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1053
1054         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1055                         armv8->cti_base + CTI_APPPULSE, 2);
1056         if (retval != ERROR_OK)
1057                 return retval;
1058
1059         long long then = timeval_ms();
1060         for (;; ) {
1061                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1062                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1063                 if (retval != ERROR_OK)
1064                         return retval;
1065                 if ((dscr & DSCR_HDE) != 0)
1066                         break;
1067                 if (timeval_ms() > then + 1000) {
1068                         LOG_ERROR("Timeout waiting for resume");
1069                         return ERROR_FAIL;
1070                 }
1071         }
1072
1073         target->debug_reason = DBG_REASON_NOTHALTED;
1074         target->state = TARGET_RUNNING;
1075
1076         /* registers are now invalid */
1077         register_cache_invalidate(arm->core_cache);
1078
1079         return ERROR_OK;
1080 }
1081
1082 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1083 {
1084         int retval = 0;
1085         struct target_list *head;
1086         struct target *curr;
1087         uint64_t address;
1088         head = target->head;
1089         while (head != (struct target_list *)NULL) {
1090                 curr = head->target;
1091                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1092                         /*  resume current address , not in step mode */
1093                         retval += aarch64_internal_restore(curr, 1, &address,
1094                                         handle_breakpoints, 0);
1095                         retval += aarch64_internal_restart(curr);
1096                 }
1097                 head = head->next;
1098
1099         }
1100         return retval;
1101 }
1102
1103 static int aarch64_resume(struct target *target, int current,
1104         target_addr_t address, int handle_breakpoints, int debug_execution)
1105 {
1106         int retval = 0;
1107         uint64_t addr = address;
1108
1109         /* dummy resume for smp toggle in order to reduce gdb impact  */
1110         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1111                 /*   simulate a start and halt of target */
1112                 target->gdb_service->target = NULL;
1113                 target->gdb_service->core[0] = target->gdb_service->core[1];
1114                 /*  fake resume at next poll we play the  target core[1], see poll*/
1115                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1116                 return 0;
1117         }
1118         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1119                                  debug_execution);
1120         if (target->smp) {
1121                 target->gdb_service->core[0] = -1;
1122                 retval = aarch64_restore_smp(target, handle_breakpoints);
1123                 if (retval != ERROR_OK)
1124                         return retval;
1125         }
1126         aarch64_internal_restart(target);
1127
1128         if (!debug_execution) {
1129                 target->state = TARGET_RUNNING;
1130                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1131                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1132         } else {
1133                 target->state = TARGET_DEBUG_RUNNING;
1134                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1135                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1136         }
1137
1138         return ERROR_OK;
1139 }
1140
1141 static int aarch64_debug_entry(struct target *target)
1142 {
1143         int retval = ERROR_OK;
1144         struct aarch64_common *aarch64 = target_to_aarch64(target);
1145         struct armv8_common *armv8 = target_to_armv8(target);
1146
1147         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1148
1149         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1150          * imprecise data aborts get discarded by issuing a Data
1151          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1152          */
1153
1154         /* make sure to clear all sticky errors */
1155         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1156                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1157         if (retval != ERROR_OK)
1158                 return retval;
1159
1160         /* Examine debug reason */
1161         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1162
1163         /* save address of instruction that triggered the watchpoint? */
1164         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1165                 uint32_t tmp;
1166                 uint64_t wfar = 0;
1167
1168                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1169                                 armv8->debug_base + CPUV8_DBG_WFAR1,
1170                                 &tmp);
1171                 if (retval != ERROR_OK)
1172                         return retval;
1173                 wfar = tmp;
1174                 wfar = (wfar << 32);
1175                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1176                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1177                                 &tmp);
1178                 if (retval != ERROR_OK)
1179                         return retval;
1180                 wfar |= tmp;
1181                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
1182         }
1183
1184         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1185
1186         if (armv8->post_debug_entry) {
1187                 retval = armv8->post_debug_entry(target);
1188                 if (retval != ERROR_OK)
1189                         return retval;
1190         }
1191
1192         return retval;
1193 }
1194
1195 static int aarch64_post_debug_entry(struct target *target)
1196 {
1197         struct aarch64_common *aarch64 = target_to_aarch64(target);
1198         struct armv8_common *armv8 = &aarch64->armv8_common;
1199         int retval;
1200
1201         mem_ap_write_atomic_u32(armv8->debug_ap,
1202                                     armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1203         switch (armv8->arm.core_mode) {
1204                 case ARMV8_64_EL0T:
1205                 case ARMV8_64_EL1T:
1206                 case ARMV8_64_EL1H:
1207                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1208                                         0, 0,   /* op1, op2 */
1209                                         1, 0,   /* CRn, CRm */
1210                                         &aarch64->system_control_reg);
1211                         if (retval != ERROR_OK)
1212                                 return retval;
1213                 break;
1214                 case ARMV8_64_EL2T:
1215                 case ARMV8_64_EL2H:
1216                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1217                                         4, 0,   /* op1, op2 */
1218                                         1, 0,   /* CRn, CRm */
1219                                         &aarch64->system_control_reg);
1220                         if (retval != ERROR_OK)
1221                                 return retval;
1222                 break;
1223                 case ARMV8_64_EL3H:
1224                 case ARMV8_64_EL3T:
1225                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1226                                         6, 0,   /* op1, op2 */
1227                                         1, 0,   /* CRn, CRm */
1228                                         &aarch64->system_control_reg);
1229                         if (retval != ERROR_OK)
1230                                 return retval;
1231                 break;
1232                 default:
1233                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
1234         }
1235         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1236         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1237
1238         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1239                 armv8_identify_cache(target);
1240
1241         armv8->armv8_mmu.mmu_enabled =
1242                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1243         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1244                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1245         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1246                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1247         aarch64->curr_mode = armv8->arm.core_mode;
1248         return ERROR_OK;
1249 }
1250
1251 static int aarch64_step(struct target *target, int current, target_addr_t address,
1252         int handle_breakpoints)
1253 {
1254         struct armv8_common *armv8 = target_to_armv8(target);
1255         int retval;
1256         uint32_t tmp;
1257
1258         if (target->state != TARGET_HALTED) {
1259                 LOG_WARNING("target not halted");
1260                 return ERROR_TARGET_NOT_HALTED;
1261         }
1262
1263         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1264                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1265         if (retval != ERROR_OK)
1266                 return retval;
1267
1268         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1269                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1270         if (retval != ERROR_OK)
1271                 return retval;
1272
1273         target->debug_reason = DBG_REASON_SINGLESTEP;
1274         retval = aarch64_resume(target, 1, address, 0, 0);
1275         if (retval != ERROR_OK)
1276                 return retval;
1277
1278         long long then = timeval_ms();
1279         while (target->state != TARGET_HALTED) {
1280                 mem_ap_read_atomic_u32(armv8->debug_ap,
1281                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1282                 LOG_DEBUG("DESR = %#x", tmp);
1283                 retval = aarch64_poll(target);
1284                 if (retval != ERROR_OK)
1285                         return retval;
1286                 if (timeval_ms() > then + 1000) {
1287                         LOG_ERROR("timeout waiting for target halt");
1288                         return ERROR_FAIL;
1289                 }
1290         }
1291
1292         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1293                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1294         if (retval != ERROR_OK)
1295                 return retval;
1296
1297         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1298         if (target->state == TARGET_HALTED)
1299                 LOG_DEBUG("target stepped");
1300
1301         return ERROR_OK;
1302 }
1303
1304 static int aarch64_restore_context(struct target *target, bool bpwp)
1305 {
1306         struct armv8_common *armv8 = target_to_armv8(target);
1307
1308         LOG_DEBUG(" ");
1309
1310         if (armv8->pre_restore_context)
1311                 armv8->pre_restore_context(target);
1312
1313         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1314
1315 }
1316
1317 /*
1318  * Cortex-A8 Breakpoint and watchpoint functions
1319  */
1320
1321 /* Setup hardware Breakpoint Register Pair */
1322 static int aarch64_set_breakpoint(struct target *target,
1323         struct breakpoint *breakpoint, uint8_t matchmode)
1324 {
1325         int retval;
1326         int brp_i = 0;
1327         uint32_t control;
1328         uint8_t byte_addr_select = 0x0F;
1329         struct aarch64_common *aarch64 = target_to_aarch64(target);
1330         struct armv8_common *armv8 = &aarch64->armv8_common;
1331         struct aarch64_brp *brp_list = aarch64->brp_list;
1332         uint32_t dscr;
1333
1334         if (breakpoint->set) {
1335                 LOG_WARNING("breakpoint already set");
1336                 return ERROR_OK;
1337         }
1338
1339         if (breakpoint->type == BKPT_HARD) {
1340                 int64_t bpt_value;
1341                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1342                         brp_i++;
1343                 if (brp_i >= aarch64->brp_num) {
1344                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1345                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1346                 }
1347                 breakpoint->set = brp_i + 1;
1348                 if (breakpoint->length == 2)
1349                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1350                 control = ((matchmode & 0x7) << 20)
1351                         | (1 << 13)
1352                         | (byte_addr_select << 5)
1353                         | (3 << 1) | 1;
1354                 brp_list[brp_i].used = 1;
1355                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1356                 brp_list[brp_i].control = control;
1357                 bpt_value = brp_list[brp_i].value;
1358
1359                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1360                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1361                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1362                 if (retval != ERROR_OK)
1363                         return retval;
1364                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1365                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1366                                 (uint32_t)(bpt_value >> 32));
1367                 if (retval != ERROR_OK)
1368                         return retval;
1369
1370                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1371                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1372                                 brp_list[brp_i].control);
1373                 if (retval != ERROR_OK)
1374                         return retval;
1375                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1376                         brp_list[brp_i].control,
1377                         brp_list[brp_i].value);
1378
1379         } else if (breakpoint->type == BKPT_SOFT) {
1380                 uint8_t code[4];
1381                 buf_set_u32(code, 0, 32, ARMV8_BKPT(0x11));
1382                 retval = target_read_memory(target,
1383                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1384                                 breakpoint->length, 1,
1385                                 breakpoint->orig_instr);
1386                 if (retval != ERROR_OK)
1387                         return retval;
1388                 retval = target_write_memory(target,
1389                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1390                                 breakpoint->length, 1, code);
1391                 if (retval != ERROR_OK)
1392                         return retval;
1393                 breakpoint->set = 0x11; /* Any nice value but 0 */
1394         }
1395
1396         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1397                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1398         /* Ensure that halting debug mode is enable */
1399         dscr = dscr | DSCR_HDE;
1400         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1401                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1402         if (retval != ERROR_OK) {
1403                 LOG_DEBUG("Failed to set DSCR.HDE");
1404                 return retval;
1405         }
1406
1407         return ERROR_OK;
1408 }
1409
1410 static int aarch64_set_context_breakpoint(struct target *target,
1411         struct breakpoint *breakpoint, uint8_t matchmode)
1412 {
1413         int retval = ERROR_FAIL;
1414         int brp_i = 0;
1415         uint32_t control;
1416         uint8_t byte_addr_select = 0x0F;
1417         struct aarch64_common *aarch64 = target_to_aarch64(target);
1418         struct armv8_common *armv8 = &aarch64->armv8_common;
1419         struct aarch64_brp *brp_list = aarch64->brp_list;
1420
1421         if (breakpoint->set) {
1422                 LOG_WARNING("breakpoint already set");
1423                 return retval;
1424         }
1425         /*check available context BRPs*/
1426         while ((brp_list[brp_i].used ||
1427                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1428                 brp_i++;
1429
1430         if (brp_i >= aarch64->brp_num) {
1431                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1432                 return ERROR_FAIL;
1433         }
1434
1435         breakpoint->set = brp_i + 1;
1436         control = ((matchmode & 0x7) << 20)
1437                 | (1 << 13)
1438                 | (byte_addr_select << 5)
1439                 | (3 << 1) | 1;
1440         brp_list[brp_i].used = 1;
1441         brp_list[brp_i].value = (breakpoint->asid);
1442         brp_list[brp_i].control = control;
1443         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1444                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1445                         brp_list[brp_i].value);
1446         if (retval != ERROR_OK)
1447                 return retval;
1448         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1449                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1450                         brp_list[brp_i].control);
1451         if (retval != ERROR_OK)
1452                 return retval;
1453         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1454                 brp_list[brp_i].control,
1455                 brp_list[brp_i].value);
1456         return ERROR_OK;
1457
1458 }
1459
1460 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1461 {
1462         int retval = ERROR_FAIL;
1463         int brp_1 = 0;  /* holds the contextID pair */
1464         int brp_2 = 0;  /* holds the IVA pair */
1465         uint32_t control_CTX, control_IVA;
1466         uint8_t CTX_byte_addr_select = 0x0F;
1467         uint8_t IVA_byte_addr_select = 0x0F;
1468         uint8_t CTX_machmode = 0x03;
1469         uint8_t IVA_machmode = 0x01;
1470         struct aarch64_common *aarch64 = target_to_aarch64(target);
1471         struct armv8_common *armv8 = &aarch64->armv8_common;
1472         struct aarch64_brp *brp_list = aarch64->brp_list;
1473
1474         if (breakpoint->set) {
1475                 LOG_WARNING("breakpoint already set");
1476                 return retval;
1477         }
1478         /*check available context BRPs*/
1479         while ((brp_list[brp_1].used ||
1480                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1481                 brp_1++;
1482
1483         printf("brp(CTX) found num: %d\n", brp_1);
1484         if (brp_1 >= aarch64->brp_num) {
1485                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1486                 return ERROR_FAIL;
1487         }
1488
1489         while ((brp_list[brp_2].used ||
1490                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1491                 brp_2++;
1492
1493         printf("brp(IVA) found num: %d\n", brp_2);
1494         if (brp_2 >= aarch64->brp_num) {
1495                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1496                 return ERROR_FAIL;
1497         }
1498
1499         breakpoint->set = brp_1 + 1;
1500         breakpoint->linked_BRP = brp_2;
1501         control_CTX = ((CTX_machmode & 0x7) << 20)
1502                 | (brp_2 << 16)
1503                 | (0 << 14)
1504                 | (CTX_byte_addr_select << 5)
1505                 | (3 << 1) | 1;
1506         brp_list[brp_1].used = 1;
1507         brp_list[brp_1].value = (breakpoint->asid);
1508         brp_list[brp_1].control = control_CTX;
1509         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1510                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1511                         brp_list[brp_1].value);
1512         if (retval != ERROR_OK)
1513                 return retval;
1514         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1515                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1516                         brp_list[brp_1].control);
1517         if (retval != ERROR_OK)
1518                 return retval;
1519
1520         control_IVA = ((IVA_machmode & 0x7) << 20)
1521                 | (brp_1 << 16)
1522                 | (1 << 13)
1523                 | (IVA_byte_addr_select << 5)
1524                 | (3 << 1) | 1;
1525         brp_list[brp_2].used = 1;
1526         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1527         brp_list[brp_2].control = control_IVA;
1528         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1529                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1530                         brp_list[brp_2].value & 0xFFFFFFFF);
1531         if (retval != ERROR_OK)
1532                 return retval;
1533         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1534                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1535                         brp_list[brp_2].value >> 32);
1536         if (retval != ERROR_OK)
1537                 return retval;
1538         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1539                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1540                         brp_list[brp_2].control);
1541         if (retval != ERROR_OK)
1542                 return retval;
1543
1544         return ERROR_OK;
1545 }
1546
1547 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1548 {
1549         int retval;
1550         struct aarch64_common *aarch64 = target_to_aarch64(target);
1551         struct armv8_common *armv8 = &aarch64->armv8_common;
1552         struct aarch64_brp *brp_list = aarch64->brp_list;
1553
1554         if (!breakpoint->set) {
1555                 LOG_WARNING("breakpoint not set");
1556                 return ERROR_OK;
1557         }
1558
1559         if (breakpoint->type == BKPT_HARD) {
1560                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1561                         int brp_i = breakpoint->set - 1;
1562                         int brp_j = breakpoint->linked_BRP;
1563                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1564                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1565                                 return ERROR_OK;
1566                         }
1567                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1568                                 brp_list[brp_i].control, brp_list[brp_i].value);
1569                         brp_list[brp_i].used = 0;
1570                         brp_list[brp_i].value = 0;
1571                         brp_list[brp_i].control = 0;
1572                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1573                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1574                                         brp_list[brp_i].control);
1575                         if (retval != ERROR_OK)
1576                                 return retval;
1577                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1578                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1579                                 return ERROR_OK;
1580                         }
1581                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1582                                 brp_list[brp_j].control, brp_list[brp_j].value);
1583                         brp_list[brp_j].used = 0;
1584                         brp_list[brp_j].value = 0;
1585                         brp_list[brp_j].control = 0;
1586                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1587                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1588                                         brp_list[brp_j].control);
1589                         if (retval != ERROR_OK)
1590                                 return retval;
1591                         breakpoint->linked_BRP = 0;
1592                         breakpoint->set = 0;
1593                         return ERROR_OK;
1594
1595                 } else {
1596                         int brp_i = breakpoint->set - 1;
1597                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1598                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1599                                 return ERROR_OK;
1600                         }
1601                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1602                                 brp_list[brp_i].control, brp_list[brp_i].value);
1603                         brp_list[brp_i].used = 0;
1604                         brp_list[brp_i].value = 0;
1605                         brp_list[brp_i].control = 0;
1606                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1607                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1608                                         brp_list[brp_i].control);
1609                         if (retval != ERROR_OK)
1610                                 return retval;
1611                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1612                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1613                                         brp_list[brp_i].value);
1614                         if (retval != ERROR_OK)
1615                                 return retval;
1616                         breakpoint->set = 0;
1617                         return ERROR_OK;
1618                 }
1619         } else {
1620                 /* restore original instruction (kept in target endianness) */
1621                 if (breakpoint->length == 4) {
1622                         retval = target_write_memory(target,
1623                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1624                                         4, 1, breakpoint->orig_instr);
1625                         if (retval != ERROR_OK)
1626                                 return retval;
1627                 } else {
1628                         retval = target_write_memory(target,
1629                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1630                                         2, 1, breakpoint->orig_instr);
1631                         if (retval != ERROR_OK)
1632                                 return retval;
1633                 }
1634         }
1635         breakpoint->set = 0;
1636
1637         return ERROR_OK;
1638 }
1639
1640 static int aarch64_add_breakpoint(struct target *target,
1641         struct breakpoint *breakpoint)
1642 {
1643         struct aarch64_common *aarch64 = target_to_aarch64(target);
1644
1645         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1646                 LOG_INFO("no hardware breakpoint available");
1647                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1648         }
1649
1650         if (breakpoint->type == BKPT_HARD)
1651                 aarch64->brp_num_available--;
1652
1653         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1654 }
1655
1656 static int aarch64_add_context_breakpoint(struct target *target,
1657         struct breakpoint *breakpoint)
1658 {
1659         struct aarch64_common *aarch64 = target_to_aarch64(target);
1660
1661         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1662                 LOG_INFO("no hardware breakpoint available");
1663                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1664         }
1665
1666         if (breakpoint->type == BKPT_HARD)
1667                 aarch64->brp_num_available--;
1668
1669         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1670 }
1671
1672 static int aarch64_add_hybrid_breakpoint(struct target *target,
1673         struct breakpoint *breakpoint)
1674 {
1675         struct aarch64_common *aarch64 = target_to_aarch64(target);
1676
1677         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1678                 LOG_INFO("no hardware breakpoint available");
1679                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1680         }
1681
1682         if (breakpoint->type == BKPT_HARD)
1683                 aarch64->brp_num_available--;
1684
1685         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1686 }
1687
1688
1689 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1690 {
1691         struct aarch64_common *aarch64 = target_to_aarch64(target);
1692
1693 #if 0
1694 /* It is perfectly possible to remove breakpoints while the target is running */
1695         if (target->state != TARGET_HALTED) {
1696                 LOG_WARNING("target not halted");
1697                 return ERROR_TARGET_NOT_HALTED;
1698         }
1699 #endif
1700
1701         if (breakpoint->set) {
1702                 aarch64_unset_breakpoint(target, breakpoint);
1703                 if (breakpoint->type == BKPT_HARD)
1704                         aarch64->brp_num_available++;
1705         }
1706
1707         return ERROR_OK;
1708 }
1709
1710 /*
1711  * Cortex-A8 Reset functions
1712  */
1713
1714 static int aarch64_assert_reset(struct target *target)
1715 {
1716         struct armv8_common *armv8 = target_to_armv8(target);
1717
1718         LOG_DEBUG(" ");
1719
1720         /* FIXME when halt is requested, make it work somehow... */
1721
1722         /* Issue some kind of warm reset. */
1723         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1724                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1725         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1726                 /* REVISIT handle "pulls" cases, if there's
1727                  * hardware that needs them to work.
1728                  */
1729                 jtag_add_reset(0, 1);
1730         } else {
1731                 LOG_ERROR("%s: how to reset?", target_name(target));
1732                 return ERROR_FAIL;
1733         }
1734
1735         /* registers are now invalid */
1736         register_cache_invalidate(armv8->arm.core_cache);
1737
1738         target->state = TARGET_RESET;
1739
1740         return ERROR_OK;
1741 }
1742
1743 static int aarch64_deassert_reset(struct target *target)
1744 {
1745         int retval;
1746
1747         LOG_DEBUG(" ");
1748
1749         /* be certain SRST is off */
1750         jtag_add_reset(0, 0);
1751
1752         retval = aarch64_poll(target);
1753         if (retval != ERROR_OK)
1754                 return retval;
1755
1756         if (target->reset_halt) {
1757                 if (target->state != TARGET_HALTED) {
1758                         LOG_WARNING("%s: ran after reset and before halt ...",
1759                                 target_name(target));
1760                         retval = target_halt(target);
1761                         if (retval != ERROR_OK)
1762                                 return retval;
1763                 }
1764         }
1765
1766         return ERROR_OK;
1767 }
1768
1769 static int aarch64_write_apb_ap_memory(struct target *target,
1770         uint64_t address, uint32_t size,
1771         uint32_t count, const uint8_t *buffer)
1772 {
1773         /* write memory through APB-AP */
1774         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1775         struct armv8_common *armv8 = target_to_armv8(target);
1776         struct arm *arm = &armv8->arm;
1777         int total_bytes = count * size;
1778         int total_u32;
1779         int start_byte = address & 0x3;
1780         int end_byte   = (address + total_bytes) & 0x3;
1781         struct reg *reg;
1782         uint32_t dscr;
1783         uint8_t *tmp_buff = NULL;
1784
1785         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1786                           address, size, count);
1787         if (target->state != TARGET_HALTED) {
1788                 LOG_WARNING("target not halted");
1789                 return ERROR_TARGET_NOT_HALTED;
1790         }
1791
1792         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1793
1794         /* Mark register R0 as dirty, as it will be used
1795          * for transferring the data.
1796          * It will be restored automatically when exiting
1797          * debug mode
1798          */
1799         reg = armv8_reg_current(arm, 1);
1800         reg->dirty = true;
1801
1802         reg = armv8_reg_current(arm, 0);
1803         reg->dirty = true;
1804
1805         /*  clear any abort  */
1806         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1807                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1808         if (retval != ERROR_OK)
1809                 return retval;
1810
1811
1812         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1813
1814         /* The algorithm only copies 32 bit words, so the buffer
1815          * should be expanded to include the words at either end.
1816          * The first and last words will be read first to avoid
1817          * corruption if needed.
1818          */
1819         tmp_buff = malloc(total_u32 * 4);
1820
1821         if ((start_byte != 0) && (total_u32 > 1)) {
1822                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1823                  * the other bytes in the word.
1824                  */
1825                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1826                 if (retval != ERROR_OK)
1827                         goto error_free_buff_w;
1828         }
1829
1830         /* If end of write is not aligned, or the write is less than 4 bytes */
1831         if ((end_byte != 0) ||
1832                 ((total_u32 == 1) && (total_bytes != 4))) {
1833
1834                 /* Read the last word to avoid corruption during 32 bit write */
1835                 int mem_offset = (total_u32-1) * 4;
1836                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1837                 if (retval != ERROR_OK)
1838                         goto error_free_buff_w;
1839         }
1840
1841         /* Copy the write buffer over the top of the temporary buffer */
1842         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1843
1844         /* We now have a 32 bit aligned buffer that can be written */
1845
1846         /* Read DSCR */
1847         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1848                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1849         if (retval != ERROR_OK)
1850                 goto error_free_buff_w;
1851
1852         /* Set Normal access mode  */
1853         dscr = (dscr & ~DSCR_MA);
1854         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1855                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1856
1857         if (arm->core_state == ARM_STATE_AARCH64) {
1858                 /* Write X0 with value 'address' using write procedure */
1859                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1860                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1861                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1862                 retval += aarch64_exec_opcode(target,
1863                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1864         } else {
1865                 /* Write R0 with value 'address' using write procedure */
1866                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1867                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1868                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1869                 retval += aarch64_exec_opcode(target,
1870                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1871
1872         }
1873         /* Step 1.d   - Change DCC to memory mode */
1874         dscr = dscr | DSCR_MA;
1875         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1876                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1877         if (retval != ERROR_OK)
1878                 goto error_unset_dtr_w;
1879
1880
1881         /* Step 2.a   - Do the write */
1882         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1883                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1884         if (retval != ERROR_OK)
1885                 goto error_unset_dtr_w;
1886
1887         /* Step 3.a   - Switch DTR mode back to Normal mode */
1888         dscr = (dscr & ~DSCR_MA);
1889         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1890                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1891         if (retval != ERROR_OK)
1892                 goto error_unset_dtr_w;
1893
1894         /* Check for sticky abort flags in the DSCR */
1895         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1896                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1897         if (retval != ERROR_OK)
1898                 goto error_free_buff_w;
1899         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1900                 /* Abort occurred - clear it and exit */
1901                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1902                 mem_ap_write_atomic_u32(armv8->debug_ap,
1903                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1904                 goto error_free_buff_w;
1905         }
1906
1907         /* Done */
1908         free(tmp_buff);
1909         return ERROR_OK;
1910
1911 error_unset_dtr_w:
1912         /* Unset DTR mode */
1913         mem_ap_read_atomic_u32(armv8->debug_ap,
1914                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1915         dscr = (dscr & ~DSCR_MA);
1916         mem_ap_write_atomic_u32(armv8->debug_ap,
1917                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1918 error_free_buff_w:
1919         LOG_ERROR("error");
1920         free(tmp_buff);
1921         return ERROR_FAIL;
1922 }
1923
1924 static int aarch64_read_apb_ap_memory(struct target *target,
1925         target_addr_t address, uint32_t size,
1926         uint32_t count, uint8_t *buffer)
1927 {
1928         /* read memory through APB-AP */
1929         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1930         struct armv8_common *armv8 = target_to_armv8(target);
1931         struct arm *arm = &armv8->arm;
1932         int total_bytes = count * size;
1933         int total_u32;
1934         int start_byte = address & 0x3;
1935         int end_byte   = (address + total_bytes) & 0x3;
1936         struct reg *reg;
1937         uint32_t dscr;
1938         uint8_t *tmp_buff = NULL;
1939         uint8_t *u8buf_ptr;
1940         uint32_t value;
1941
1942         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1943                           address, size, count);
1944         if (target->state != TARGET_HALTED) {
1945                 LOG_WARNING("target not halted");
1946                 return ERROR_TARGET_NOT_HALTED;
1947         }
1948
1949         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1950         /* Mark register X0, X1 as dirty, as it will be used
1951          * for transferring the data.
1952          * It will be restored automatically when exiting
1953          * debug mode
1954          */
1955         reg = armv8_reg_current(arm, 1);
1956         reg->dirty = true;
1957
1958         reg = armv8_reg_current(arm, 0);
1959         reg->dirty = true;
1960
1961         /*      clear any abort  */
1962         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1963                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1964         if (retval != ERROR_OK)
1965                 goto error_free_buff_r;
1966
1967         /* Read DSCR */
1968         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1969                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1970
1971         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1972
1973         /* Set Normal access mode  */
1974         dscr = (dscr & ~DSCR_MA);
1975         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1976                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1977
1978         if (arm->core_state == ARM_STATE_AARCH64) {
1979                 /* Write X0 with value 'address' using write procedure */
1980                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1981                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1982                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1983                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1984                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1985                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1986                 /* Step 1.e - Change DCC to memory mode */
1987                 dscr = dscr | DSCR_MA;
1988                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1989                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1990                 /* Step 1.f - read DBGDTRTX and discard the value */
1991                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1992                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1993         } else {
1994                 /* Write R0 with value 'address' using write procedure */
1995                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1996                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1997                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1998                 retval += aarch64_exec_opcode(target,
1999                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
2000                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2001                 retval += aarch64_exec_opcode(target,
2002                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2003                 /* Step 1.e - Change DCC to memory mode */
2004                 dscr = dscr | DSCR_MA;
2005                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2006                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2007                 /* Step 1.f - read DBGDTRTX and discard the value */
2008                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2009                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2010
2011         }
2012         if (retval != ERROR_OK)
2013                 goto error_unset_dtr_r;
2014
2015         /* Optimize the read as much as we can, either way we read in a single pass  */
2016         if ((start_byte) || (end_byte)) {
2017                 /* The algorithm only copies 32 bit words, so the buffer
2018                  * should be expanded to include the words at either end.
2019                  * The first and last words will be read into a temp buffer
2020                  * to avoid corruption
2021                  */
2022                 tmp_buff = malloc(total_u32 * 4);
2023                 if (!tmp_buff)
2024                         goto error_unset_dtr_r;
2025
2026                 /* use the tmp buffer to read the entire data */
2027                 u8buf_ptr = tmp_buff;
2028         } else
2029                 /* address and read length are aligned so read directly into the passed buffer */
2030                 u8buf_ptr = buffer;
2031
2032         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2033          * Abort flags are sticky, so can be read at end of transactions
2034          *
2035          * This data is read in aligned to 32 bit boundary.
2036          */
2037
2038         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2039          * increments X0 by 4. */
2040         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2041                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2042         if (retval != ERROR_OK)
2043                         goto error_unset_dtr_r;
2044
2045         /* Step 3.a - set DTR access mode back to Normal mode   */
2046         dscr = (dscr & ~DSCR_MA);
2047         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2048                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2049         if (retval != ERROR_OK)
2050                 goto error_free_buff_r;
2051
2052         /* Step 3.b - read DBGDTRTX for the final value */
2053         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2054                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2055         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2056
2057         /* Check for sticky abort flags in the DSCR */
2058         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2059                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2060         if (retval != ERROR_OK)
2061                 goto error_free_buff_r;
2062         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2063                 /* Abort occurred - clear it and exit */
2064                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2065                 mem_ap_write_atomic_u32(armv8->debug_ap,
2066                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2067                 goto error_free_buff_r;
2068         }
2069
2070         /* check if we need to copy aligned data by applying any shift necessary */
2071         if (tmp_buff) {
2072                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2073                 free(tmp_buff);
2074         }
2075
2076         /* Done */
2077         return ERROR_OK;
2078
2079 error_unset_dtr_r:
2080         /* Unset DTR mode */
2081         mem_ap_read_atomic_u32(armv8->debug_ap,
2082                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2083         dscr = (dscr & ~DSCR_MA);
2084         mem_ap_write_atomic_u32(armv8->debug_ap,
2085                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2086 error_free_buff_r:
2087         LOG_ERROR("error");
2088         free(tmp_buff);
2089         return ERROR_FAIL;
2090 }
2091
2092 static int aarch64_read_phys_memory(struct target *target,
2093         target_addr_t address, uint32_t size,
2094         uint32_t count, uint8_t *buffer)
2095 {
2096         struct armv8_common *armv8 = target_to_armv8(target);
2097         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2098         struct adiv5_dap *swjdp = armv8->arm.dap;
2099         uint8_t apsel = swjdp->apsel;
2100         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2101                 address, size, count);
2102
2103         if (count && buffer) {
2104
2105                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2106
2107                         /* read memory through AHB-AP */
2108                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2109                 } else {
2110                         /* read memory through APB-AP */
2111                         retval = aarch64_mmu_modify(target, 0);
2112                         if (retval != ERROR_OK)
2113                                 return retval;
2114                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2115                 }
2116         }
2117         return retval;
2118 }
2119
2120 static int aarch64_read_memory(struct target *target, target_addr_t address,
2121         uint32_t size, uint32_t count, uint8_t *buffer)
2122 {
2123         int mmu_enabled = 0;
2124         target_addr_t virt, phys;
2125         int retval;
2126         struct armv8_common *armv8 = target_to_armv8(target);
2127         struct adiv5_dap *swjdp = armv8->arm.dap;
2128         uint8_t apsel = swjdp->apsel;
2129
2130         /* aarch64 handles unaligned memory access */
2131         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2132                 size, count);
2133
2134         /* determine if MMU was enabled on target stop */
2135         if (!armv8->is_armv7r) {
2136                 retval = aarch64_mmu(target, &mmu_enabled);
2137                 if (retval != ERROR_OK)
2138                         return retval;
2139         }
2140
2141         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2142                 if (mmu_enabled) {
2143                         virt = address;
2144                         retval = aarch64_virt2phys(target, virt, &phys);
2145                         if (retval != ERROR_OK)
2146                                 return retval;
2147
2148                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2149                                   virt, phys);
2150                         address = phys;
2151                 }
2152                 retval = aarch64_read_phys_memory(target, address, size, count,
2153                                                   buffer);
2154         } else {
2155                 if (mmu_enabled) {
2156                         retval = aarch64_check_address(target, address);
2157                         if (retval != ERROR_OK)
2158                                 return retval;
2159                         /* enable MMU as we could have disabled it for phys
2160                            access */
2161                         retval = aarch64_mmu_modify(target, 1);
2162                         if (retval != ERROR_OK)
2163                                 return retval;
2164                 }
2165                 retval = aarch64_read_apb_ap_memory(target, address, size,
2166                                                     count, buffer);
2167         }
2168         return retval;
2169 }
2170
2171 static int aarch64_write_phys_memory(struct target *target,
2172         target_addr_t address, uint32_t size,
2173         uint32_t count, const uint8_t *buffer)
2174 {
2175         struct armv8_common *armv8 = target_to_armv8(target);
2176         struct adiv5_dap *swjdp = armv8->arm.dap;
2177         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2178         uint8_t apsel = swjdp->apsel;
2179
2180         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2181                 size, count);
2182
2183         if (count && buffer) {
2184
2185                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2186
2187                         /* write memory through AHB-AP */
2188                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2189                 } else {
2190
2191                         /* write memory through APB-AP */
2192                         if (!armv8->is_armv7r) {
2193                                 retval = aarch64_mmu_modify(target, 0);
2194                                 if (retval != ERROR_OK)
2195                                         return retval;
2196                         }
2197                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2198                 }
2199         }
2200
2201
2202         /* REVISIT this op is generic ARMv7-A/R stuff */
2203         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2204                 struct arm_dpm *dpm = armv8->arm.dpm;
2205
2206                 retval = dpm->prepare(dpm);
2207                 if (retval != ERROR_OK)
2208                         return retval;
2209
2210                 /* The Cache handling will NOT work with MMU active, the
2211                  * wrong addresses will be invalidated!
2212                  *
2213                  * For both ICache and DCache, walk all cache lines in the
2214                  * address range. Cortex-A8 has fixed 64 byte line length.
2215                  *
2216                  * REVISIT per ARMv7, these may trigger watchpoints ...
2217                  */
2218
2219                 /* invalidate I-Cache */
2220                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2221                         /* ICIMVAU - Invalidate Cache single entry
2222                          * with MVA to PoU
2223                          *      MCR p15, 0, r0, c7, c5, 1
2224                          */
2225                         for (uint32_t cacheline = address;
2226                                 cacheline < address + size * count;
2227                                 cacheline += 64) {
2228                                 retval = dpm->instr_write_data_r0(dpm,
2229                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2230                                                 cacheline);
2231                                 if (retval != ERROR_OK)
2232                                         return retval;
2233                         }
2234                 }
2235
2236                 /* invalidate D-Cache */
2237                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2238                         /* DCIMVAC - Invalidate data Cache line
2239                          * with MVA to PoC
2240                          *      MCR p15, 0, r0, c7, c6, 1
2241                          */
2242                         for (uint32_t cacheline = address;
2243                                 cacheline < address + size * count;
2244                                 cacheline += 64) {
2245                                 retval = dpm->instr_write_data_r0(dpm,
2246                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2247                                                 cacheline);
2248                                 if (retval != ERROR_OK)
2249                                         return retval;
2250                         }
2251                 }
2252
2253                 /* (void) */ dpm->finish(dpm);
2254         }
2255
2256         return retval;
2257 }
2258
2259 static int aarch64_write_memory(struct target *target, target_addr_t address,
2260         uint32_t size, uint32_t count, const uint8_t *buffer)
2261 {
2262         int mmu_enabled = 0;
2263         target_addr_t virt, phys;
2264         int retval;
2265         struct armv8_common *armv8 = target_to_armv8(target);
2266         struct adiv5_dap *swjdp = armv8->arm.dap;
2267         uint8_t apsel = swjdp->apsel;
2268
2269         /* aarch64 handles unaligned memory access */
2270         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2271                   "; count %" PRId32, address, size, count);
2272
2273         /* determine if MMU was enabled on target stop */
2274         if (!armv8->is_armv7r) {
2275                 retval = aarch64_mmu(target, &mmu_enabled);
2276                 if (retval != ERROR_OK)
2277                         return retval;
2278         }
2279
2280         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2281                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2282                           PRId32 "; count %" PRId32, address, size, count);
2283                 if (mmu_enabled) {
2284                         virt = address;
2285                         retval = aarch64_virt2phys(target, virt, &phys);
2286                         if (retval != ERROR_OK)
2287                                 return retval;
2288
2289                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2290                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2291                         address = phys;
2292                 }
2293                 retval = aarch64_write_phys_memory(target, address, size,
2294                                 count, buffer);
2295         } else {
2296                 if (mmu_enabled) {
2297                         retval = aarch64_check_address(target, address);
2298                         if (retval != ERROR_OK)
2299                                 return retval;
2300                         /* enable MMU as we could have disabled it for phys access */
2301                         retval = aarch64_mmu_modify(target, 1);
2302                         if (retval != ERROR_OK)
2303                                 return retval;
2304                 }
2305                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2306         }
2307         return retval;
2308 }
2309
2310 static int aarch64_handle_target_request(void *priv)
2311 {
2312         struct target *target = priv;
2313         struct armv8_common *armv8 = target_to_armv8(target);
2314         int retval;
2315
2316         if (!target_was_examined(target))
2317                 return ERROR_OK;
2318         if (!target->dbg_msg_enabled)
2319                 return ERROR_OK;
2320
2321         if (target->state == TARGET_RUNNING) {
2322                 uint32_t request;
2323                 uint32_t dscr;
2324                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2325                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2326
2327                 /* check if we have data */
2328                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2329                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2330                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2331                         if (retval == ERROR_OK) {
2332                                 target_request(target, request);
2333                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2334                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2335                         }
2336                 }
2337         }
2338
2339         return ERROR_OK;
2340 }
2341
2342 static int aarch64_examine_first(struct target *target)
2343 {
2344         struct aarch64_common *aarch64 = target_to_aarch64(target);
2345         struct armv8_common *armv8 = &aarch64->armv8_common;
2346         struct adiv5_dap *swjdp = armv8->arm.dap;
2347         int retval = ERROR_OK;
2348         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2349         int i;
2350
2351         /* We do one extra read to ensure DAP is configured,
2352          * we call ahbap_debugport_init(swjdp) instead
2353          */
2354         retval = dap_dp_init(swjdp);
2355         if (retval != ERROR_OK)
2356                 return retval;
2357
2358         /* Search for the APB-AB - it is needed for access to debug registers */
2359         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2360         if (retval != ERROR_OK) {
2361                 LOG_ERROR("Could not find APB-AP for debug access");
2362                 return retval;
2363         }
2364
2365         retval = mem_ap_init(armv8->debug_ap);
2366         if (retval != ERROR_OK) {
2367                 LOG_ERROR("Could not initialize the APB-AP");
2368                 return retval;
2369         }
2370
2371         armv8->debug_ap->memaccess_tck = 80;
2372
2373         /* Search for the AHB-AB */
2374         armv8->memory_ap_available = false;
2375         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2376         if (retval == ERROR_OK) {
2377                 retval = mem_ap_init(armv8->memory_ap);
2378                 if (retval == ERROR_OK)
2379                         armv8->memory_ap_available = true;
2380         }
2381         if (retval != ERROR_OK) {
2382                 /* AHB-AP not found or unavailable - use the CPU */
2383                 LOG_DEBUG("No AHB-AP available for memory access");
2384         }
2385
2386
2387         if (!target->dbgbase_set) {
2388                 uint32_t dbgbase;
2389                 /* Get ROM Table base */
2390                 uint32_t apid;
2391                 int32_t coreidx = target->coreid;
2392                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2393                 if (retval != ERROR_OK)
2394                         return retval;
2395                 /* Lookup 0x15 -- Processor DAP */
2396                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2397                                 &armv8->debug_base, &coreidx);
2398                 if (retval != ERROR_OK)
2399                         return retval;
2400                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2401                           coreidx, armv8->debug_base);
2402         } else
2403                 armv8->debug_base = target->dbgbase;
2404
2405         LOG_DEBUG("Target ctibase is 0x%x", target->ctibase);
2406         if (target->ctibase == 0)
2407                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x1000;
2408         else
2409                 armv8->cti_base = target->ctibase;
2410
2411         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2412                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2413         if (retval != ERROR_OK) {
2414                 LOG_DEBUG("Examine %s failed", "oslock");
2415                 return retval;
2416         }
2417
2418         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2419                         armv8->debug_base + 0x88, &cpuid);
2420         LOG_DEBUG("0x88 = %x", cpuid);
2421
2422         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2423                         armv8->debug_base + 0x314, &cpuid);
2424         LOG_DEBUG("0x314 = %x", cpuid);
2425
2426         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2427                         armv8->debug_base + 0x310, &cpuid);
2428         LOG_DEBUG("0x310 = %x", cpuid);
2429         if (retval != ERROR_OK)
2430                 return retval;
2431
2432         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2433                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2434         if (retval != ERROR_OK) {
2435                 LOG_DEBUG("Examine %s failed", "CPUID");
2436                 return retval;
2437         }
2438
2439         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2440                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2441         if (retval != ERROR_OK) {
2442                 LOG_DEBUG("Examine %s failed", "CTYPR");
2443                 return retval;
2444         }
2445
2446         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2447                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2448         if (retval != ERROR_OK) {
2449                 LOG_DEBUG("Examine %s failed", "TTYPR");
2450                 return retval;
2451         }
2452
2453         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2454                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2455         if (retval != ERROR_OK) {
2456                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2457                 return retval;
2458         }
2459         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2460                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2461         if (retval != ERROR_OK) {
2462                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2463                 return retval;
2464         }
2465
2466         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2467         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2468         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2469         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2470         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2471
2472         armv8->arm.core_type = ARM_MODE_MON;
2473         armv8->arm.core_state = ARM_STATE_AARCH64;
2474         retval = aarch64_dpm_setup(aarch64, debug);
2475         if (retval != ERROR_OK)
2476                 return retval;
2477
2478         /* Setup Breakpoint Register Pairs */
2479         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2480         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2481
2482         /* hack - no context bpt support yet */
2483         aarch64->brp_num_context = 0;
2484
2485         aarch64->brp_num_available = aarch64->brp_num;
2486         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2487         for (i = 0; i < aarch64->brp_num; i++) {
2488                 aarch64->brp_list[i].used = 0;
2489                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2490                         aarch64->brp_list[i].type = BRP_NORMAL;
2491                 else
2492                         aarch64->brp_list[i].type = BRP_CONTEXT;
2493                 aarch64->brp_list[i].value = 0;
2494                 aarch64->brp_list[i].control = 0;
2495                 aarch64->brp_list[i].BRPn = i;
2496         }
2497
2498         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2499
2500         target_set_examined(target);
2501         return ERROR_OK;
2502 }
2503
2504 static int aarch64_examine(struct target *target)
2505 {
2506         int retval = ERROR_OK;
2507
2508         /* don't re-probe hardware after each reset */
2509         if (!target_was_examined(target))
2510                 retval = aarch64_examine_first(target);
2511
2512         /* Configure core debug access */
2513         if (retval == ERROR_OK)
2514                 retval = aarch64_init_debug_access(target);
2515
2516         return retval;
2517 }
2518
2519 /*
2520  *      Cortex-A8 target creation and initialization
2521  */
2522
2523 static int aarch64_init_target(struct command_context *cmd_ctx,
2524         struct target *target)
2525 {
2526         /* examine_first() does a bunch of this */
2527         return ERROR_OK;
2528 }
2529
2530 static int aarch64_init_arch_info(struct target *target,
2531         struct aarch64_common *aarch64, struct jtag_tap *tap)
2532 {
2533         struct armv8_common *armv8 = &aarch64->armv8_common;
2534         struct adiv5_dap *dap = armv8->arm.dap;
2535
2536         armv8->arm.dap = dap;
2537
2538         /* Setup struct aarch64_common */
2539         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2540         /*  tap has no dap initialized */
2541         if (!tap->dap) {
2542                 tap->dap = dap_init();
2543
2544                 /* Leave (only) generic DAP stuff for debugport_init() */
2545                 tap->dap->tap = tap;
2546         }
2547
2548         armv8->arm.dap = tap->dap;
2549
2550         aarch64->fast_reg_read = 0;
2551
2552         /* register arch-specific functions */
2553         armv8->examine_debug_reason = NULL;
2554
2555         armv8->post_debug_entry = aarch64_post_debug_entry;
2556
2557         armv8->pre_restore_context = NULL;
2558
2559         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2560
2561         /* REVISIT v7a setup should be in a v7a-specific routine */
2562         armv8_init_arch_info(target, armv8);
2563         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2564
2565         return ERROR_OK;
2566 }
2567
2568 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2569 {
2570         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2571
2572         aarch64->armv8_common.is_armv7r = false;
2573
2574         return aarch64_init_arch_info(target, aarch64, target->tap);
2575 }
2576
2577 static int aarch64_mmu(struct target *target, int *enabled)
2578 {
2579         if (target->state != TARGET_HALTED) {
2580                 LOG_ERROR("%s: target not halted", __func__);
2581                 return ERROR_TARGET_INVALID;
2582         }
2583
2584         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2585         return ERROR_OK;
2586 }
2587
2588 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2589                              target_addr_t *phys)
2590 {
2591         int retval = ERROR_FAIL;
2592         struct armv8_common *armv8 = target_to_armv8(target);
2593         struct adiv5_dap *swjdp = armv8->arm.dap;
2594         uint8_t apsel = swjdp->apsel;
2595         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2596                 uint32_t ret;
2597                 retval = armv8_mmu_translate_va(target,
2598                                 virt, &ret);
2599                 if (retval != ERROR_OK)
2600                         goto done;
2601                 *phys = ret;
2602         } else {/*  use this method if armv8->memory_ap not selected
2603                  *  mmu must be enable in order to get a correct translation */
2604                 retval = aarch64_mmu_modify(target, 1);
2605                 if (retval != ERROR_OK)
2606                         goto done;
2607                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2608         }
2609 done:
2610         return retval;
2611 }
2612
2613 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2614 {
2615         struct target *target = get_current_target(CMD_CTX);
2616         struct armv8_common *armv8 = target_to_armv8(target);
2617
2618         return armv8_handle_cache_info_command(CMD_CTX,
2619                         &armv8->armv8_mmu.armv8_cache);
2620 }
2621
2622
2623 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2624 {
2625         struct target *target = get_current_target(CMD_CTX);
2626         if (!target_was_examined(target)) {
2627                 LOG_ERROR("target not examined yet");
2628                 return ERROR_FAIL;
2629         }
2630
2631         return aarch64_init_debug_access(target);
2632 }
2633 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2634 {
2635         struct target *target = get_current_target(CMD_CTX);
2636         /* check target is an smp target */
2637         struct target_list *head;
2638         struct target *curr;
2639         head = target->head;
2640         target->smp = 0;
2641         if (head != (struct target_list *)NULL) {
2642                 while (head != (struct target_list *)NULL) {
2643                         curr = head->target;
2644                         curr->smp = 0;
2645                         head = head->next;
2646                 }
2647                 /*  fixes the target display to the debugger */
2648                 target->gdb_service->target = target;
2649         }
2650         return ERROR_OK;
2651 }
2652
2653 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2654 {
2655         struct target *target = get_current_target(CMD_CTX);
2656         struct target_list *head;
2657         struct target *curr;
2658         head = target->head;
2659         if (head != (struct target_list *)NULL) {
2660                 target->smp = 1;
2661                 while (head != (struct target_list *)NULL) {
2662                         curr = head->target;
2663                         curr->smp = 1;
2664                         head = head->next;
2665                 }
2666         }
2667         return ERROR_OK;
2668 }
2669
2670 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2671 {
2672         struct target *target = get_current_target(CMD_CTX);
2673         int retval = ERROR_OK;
2674         struct target_list *head;
2675         head = target->head;
2676         if (head != (struct target_list *)NULL) {
2677                 if (CMD_ARGC == 1) {
2678                         int coreid = 0;
2679                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2680                         if (ERROR_OK != retval)
2681                                 return retval;
2682                         target->gdb_service->core[1] = coreid;
2683
2684                 }
2685                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2686                         , target->gdb_service->core[1]);
2687         }
2688         return ERROR_OK;
2689 }
2690
2691 static const struct command_registration aarch64_exec_command_handlers[] = {
2692         {
2693                 .name = "cache_info",
2694                 .handler = aarch64_handle_cache_info_command,
2695                 .mode = COMMAND_EXEC,
2696                 .help = "display information about target caches",
2697                 .usage = "",
2698         },
2699         {
2700                 .name = "dbginit",
2701                 .handler = aarch64_handle_dbginit_command,
2702                 .mode = COMMAND_EXEC,
2703                 .help = "Initialize core debug",
2704                 .usage = "",
2705         },
2706         {       .name = "smp_off",
2707                 .handler = aarch64_handle_smp_off_command,
2708                 .mode = COMMAND_EXEC,
2709                 .help = "Stop smp handling",
2710                 .usage = "",
2711         },
2712         {
2713                 .name = "smp_on",
2714                 .handler = aarch64_handle_smp_on_command,
2715                 .mode = COMMAND_EXEC,
2716                 .help = "Restart smp handling",
2717                 .usage = "",
2718         },
2719         {
2720                 .name = "smp_gdb",
2721                 .handler = aarch64_handle_smp_gdb_command,
2722                 .mode = COMMAND_EXEC,
2723                 .help = "display/fix current core played to gdb",
2724                 .usage = "",
2725         },
2726
2727
2728         COMMAND_REGISTRATION_DONE
2729 };
2730 static const struct command_registration aarch64_command_handlers[] = {
2731         {
2732                 .chain = arm_command_handlers,
2733         },
2734         {
2735                 .chain = armv8_command_handlers,
2736         },
2737         {
2738                 .name = "cortex_a",
2739                 .mode = COMMAND_ANY,
2740                 .help = "Cortex-A command group",
2741                 .usage = "",
2742                 .chain = aarch64_exec_command_handlers,
2743         },
2744         COMMAND_REGISTRATION_DONE
2745 };
2746
2747 struct target_type aarch64_target = {
2748         .name = "aarch64",
2749
2750         .poll = aarch64_poll,
2751         .arch_state = armv8_arch_state,
2752
2753         .halt = aarch64_halt,
2754         .resume = aarch64_resume,
2755         .step = aarch64_step,
2756
2757         .assert_reset = aarch64_assert_reset,
2758         .deassert_reset = aarch64_deassert_reset,
2759
2760         /* REVISIT allow exporting VFP3 registers ... */
2761         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2762
2763         .read_memory = aarch64_read_memory,
2764         .write_memory = aarch64_write_memory,
2765
2766         .checksum_memory = arm_checksum_memory,
2767         .blank_check_memory = arm_blank_check_memory,
2768
2769         .run_algorithm = armv4_5_run_algorithm,
2770
2771         .add_breakpoint = aarch64_add_breakpoint,
2772         .add_context_breakpoint = aarch64_add_context_breakpoint,
2773         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2774         .remove_breakpoint = aarch64_remove_breakpoint,
2775         .add_watchpoint = NULL,
2776         .remove_watchpoint = NULL,
2777
2778         .commands = aarch64_command_handlers,
2779         .target_create = aarch64_target_create,
2780         .init_target = aarch64_init_target,
2781         .examine = aarch64_examine,
2782
2783         .read_phys_memory = aarch64_read_phys_memory,
2784         .write_phys_memory = aarch64_write_phys_memory,
2785         .mmu = aarch64_mmu,
2786         .virt2phys = aarch64_virt2phys,
2787 };