openocd: remove NULL comparisons with checkpatch [1/2]
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "a64_disassembler.h"
27 #include "register.h"
28 #include "target_request.h"
29 #include "target_type.h"
30 #include "armv8_opcodes.h"
31 #include "armv8_cache.h"
32 #include "arm_semihosting.h"
33 #include "jtag/interface.h"
34 #include "smp.h"
35 #include <helper/time_support.h>
36
37 enum restart_mode {
38         RESTART_LAZY,
39         RESTART_SYNC,
40 };
41
42 enum halt_mode {
43         HALT_LAZY,
44         HALT_SYNC,
45 };
46
47 struct aarch64_private_config {
48         struct adiv5_private_config adiv5_config;
49         struct arm_cti *cti;
50 };
51
52 static int aarch64_poll(struct target *target);
53 static int aarch64_debug_entry(struct target *target);
54 static int aarch64_restore_context(struct target *target, bool bpwp);
55 static int aarch64_set_breakpoint(struct target *target,
56         struct breakpoint *breakpoint, uint8_t matchmode);
57 static int aarch64_set_context_breakpoint(struct target *target,
58         struct breakpoint *breakpoint, uint8_t matchmode);
59 static int aarch64_set_hybrid_breakpoint(struct target *target,
60         struct breakpoint *breakpoint);
61 static int aarch64_unset_breakpoint(struct target *target,
62         struct breakpoint *breakpoint);
63 static int aarch64_mmu(struct target *target, int *enabled);
64 static int aarch64_virt2phys(struct target *target,
65         target_addr_t virt, target_addr_t *phys);
66 static int aarch64_read_cpu_memory(struct target *target,
67         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
68
69 static int aarch64_restore_system_control_reg(struct target *target)
70 {
71         enum arm_mode target_mode = ARM_MODE_ANY;
72         int retval = ERROR_OK;
73         uint32_t instr;
74
75         struct aarch64_common *aarch64 = target_to_aarch64(target);
76         struct armv8_common *armv8 = target_to_armv8(target);
77
78         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
79                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
80                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
81
82                 switch (armv8->arm.core_mode) {
83                 case ARMV8_64_EL0T:
84                         target_mode = ARMV8_64_EL1H;
85                         /* fall through */
86                 case ARMV8_64_EL1T:
87                 case ARMV8_64_EL1H:
88                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
89                         break;
90                 case ARMV8_64_EL2T:
91                 case ARMV8_64_EL2H:
92                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
93                         break;
94                 case ARMV8_64_EL3H:
95                 case ARMV8_64_EL3T:
96                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
97                         break;
98
99                 case ARM_MODE_SVC:
100                 case ARM_MODE_ABT:
101                 case ARM_MODE_FIQ:
102                 case ARM_MODE_IRQ:
103                 case ARM_MODE_HYP:
104                 case ARM_MODE_SYS:
105                         instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
106                         break;
107
108                 default:
109                         LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
110                                         armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
111                         return ERROR_FAIL;
112                 }
113
114                 if (target_mode != ARM_MODE_ANY)
115                         armv8_dpm_modeswitch(&armv8->dpm, target_mode);
116
117                 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
118                 if (retval != ERROR_OK)
119                         return retval;
120
121                 if (target_mode != ARM_MODE_ANY)
122                         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
123         }
124
125         return retval;
126 }
127
128 /*  modify system_control_reg in order to enable or disable mmu for :
129  *  - virt2phys address conversion
130  *  - read or write memory in phys or virt address */
131 static int aarch64_mmu_modify(struct target *target, int enable)
132 {
133         struct aarch64_common *aarch64 = target_to_aarch64(target);
134         struct armv8_common *armv8 = &aarch64->armv8_common;
135         int retval = ERROR_OK;
136         enum arm_mode target_mode = ARM_MODE_ANY;
137         uint32_t instr = 0;
138
139         if (enable) {
140                 /*      if mmu enabled at target stop and mmu not enable */
141                 if (!(aarch64->system_control_reg & 0x1U)) {
142                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
143                         return ERROR_FAIL;
144                 }
145                 if (!(aarch64->system_control_reg_curr & 0x1U))
146                         aarch64->system_control_reg_curr |= 0x1U;
147         } else {
148                 if (aarch64->system_control_reg_curr & 0x4U) {
149                         /*  data cache is active */
150                         aarch64->system_control_reg_curr &= ~0x4U;
151                         /* flush data cache armv8 function to be called */
152                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
153                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
154                 }
155                 if ((aarch64->system_control_reg_curr & 0x1U)) {
156                         aarch64->system_control_reg_curr &= ~0x1U;
157                 }
158         }
159
160         switch (armv8->arm.core_mode) {
161         case ARMV8_64_EL0T:
162                 target_mode = ARMV8_64_EL1H;
163                 /* fall through */
164         case ARMV8_64_EL1T:
165         case ARMV8_64_EL1H:
166                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
167                 break;
168         case ARMV8_64_EL2T:
169         case ARMV8_64_EL2H:
170                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
171                 break;
172         case ARMV8_64_EL3H:
173         case ARMV8_64_EL3T:
174                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
175                 break;
176
177         case ARM_MODE_SVC:
178         case ARM_MODE_ABT:
179         case ARM_MODE_FIQ:
180         case ARM_MODE_IRQ:
181         case ARM_MODE_HYP:
182         case ARM_MODE_SYS:
183                 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
184                 break;
185
186         default:
187                 LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
188                 break;
189         }
190         if (target_mode != ARM_MODE_ANY)
191                 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
192
193         retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
194                                 aarch64->system_control_reg_curr);
195
196         if (target_mode != ARM_MODE_ANY)
197                 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
198
199         return retval;
200 }
201
202 /*
203  * Basic debug access, very low level assumes state is saved
204  */
205 static int aarch64_init_debug_access(struct target *target)
206 {
207         struct armv8_common *armv8 = target_to_armv8(target);
208         int retval;
209         uint32_t dummy;
210
211         LOG_DEBUG("%s", target_name(target));
212
213         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
214                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
215         if (retval != ERROR_OK) {
216                 LOG_DEBUG("Examine %s failed", "oslock");
217                 return retval;
218         }
219
220         /* Clear Sticky Power Down status Bit in PRSR to enable access to
221            the registers in the Core Power Domain */
222         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
223                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
224         if (retval != ERROR_OK)
225                 return retval;
226
227         /*
228          * Static CTI configuration:
229          * Channel 0 -> trigger outputs HALT request to PE
230          * Channel 1 -> trigger outputs Resume request to PE
231          * Gate all channel trigger events from entering the CTM
232          */
233
234         /* Enable CTI */
235         retval = arm_cti_enable(armv8->cti, true);
236         /* By default, gate all channel events to and from the CTM */
237         if (retval == ERROR_OK)
238                 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
239         /* output halt requests to PE on channel 0 event */
240         if (retval == ERROR_OK)
241                 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
242         /* output restart requests to PE on channel 1 event */
243         if (retval == ERROR_OK)
244                 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         return ERROR_OK;
251 }
252
253 /* Write to memory mapped registers directly with no cache or mmu handling */
254 static int aarch64_dap_write_memap_register_u32(struct target *target,
255         target_addr_t address,
256         uint32_t value)
257 {
258         int retval;
259         struct armv8_common *armv8 = target_to_armv8(target);
260
261         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
262
263         return retval;
264 }
265
266 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
267 {
268         struct arm_dpm *dpm = &a8->armv8_common.dpm;
269         int retval;
270
271         dpm->arm = &a8->armv8_common.arm;
272         dpm->didr = debug;
273
274         retval = armv8_dpm_setup(dpm);
275         if (retval == ERROR_OK)
276                 retval = armv8_dpm_initialize(dpm);
277
278         return retval;
279 }
280
281 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
282 {
283         struct armv8_common *armv8 = target_to_armv8(target);
284         return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
285 }
286
287 static int aarch64_check_state_one(struct target *target,
288                 uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
289 {
290         struct armv8_common *armv8 = target_to_armv8(target);
291         uint32_t prsr;
292         int retval;
293
294         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
295                         armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
296         if (retval != ERROR_OK)
297                 return retval;
298
299         if (p_prsr)
300                 *p_prsr = prsr;
301
302         if (p_result)
303                 *p_result = (prsr & mask) == (val & mask);
304
305         return ERROR_OK;
306 }
307
308 static int aarch64_wait_halt_one(struct target *target)
309 {
310         int retval = ERROR_OK;
311         uint32_t prsr;
312
313         int64_t then = timeval_ms();
314         for (;;) {
315                 int halted;
316
317                 retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
318                 if (retval != ERROR_OK || halted)
319                         break;
320
321                 if (timeval_ms() > then + 1000) {
322                         retval = ERROR_TARGET_TIMEOUT;
323                         LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
324                         break;
325                 }
326         }
327         return retval;
328 }
329
330 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
331 {
332         int retval = ERROR_OK;
333         struct target_list *head = target->head;
334         struct target *first = NULL;
335
336         LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
337
338         while (head) {
339                 struct target *curr = head->target;
340                 struct armv8_common *armv8 = target_to_armv8(curr);
341                 head = head->next;
342
343                 if (exc_target && curr == target)
344                         continue;
345                 if (!target_was_examined(curr))
346                         continue;
347                 if (curr->state != TARGET_RUNNING)
348                         continue;
349
350                 /* HACK: mark this target as prepared for halting */
351                 curr->debug_reason = DBG_REASON_DBGRQ;
352
353                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
354                 retval = arm_cti_ungate_channel(armv8->cti, 0);
355                 if (retval == ERROR_OK)
356                         retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
357                 if (retval != ERROR_OK)
358                         break;
359
360                 LOG_DEBUG("target %s prepared", target_name(curr));
361
362                 if (!first)
363                         first = curr;
364         }
365
366         if (p_first) {
367                 if (exc_target && first)
368                         *p_first = first;
369                 else
370                         *p_first = target;
371         }
372
373         return retval;
374 }
375
376 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
377 {
378         int retval = ERROR_OK;
379         struct armv8_common *armv8 = target_to_armv8(target);
380
381         LOG_DEBUG("%s", target_name(target));
382
383         /* allow Halting Debug Mode */
384         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
385         if (retval != ERROR_OK)
386                 return retval;
387
388         /* trigger an event on channel 0, this outputs a halt request to the PE */
389         retval = arm_cti_pulse_channel(armv8->cti, 0);
390         if (retval != ERROR_OK)
391                 return retval;
392
393         if (mode == HALT_SYNC) {
394                 retval = aarch64_wait_halt_one(target);
395                 if (retval != ERROR_OK) {
396                         if (retval == ERROR_TARGET_TIMEOUT)
397                                 LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
398                         return retval;
399                 }
400         }
401
402         return ERROR_OK;
403 }
404
405 static int aarch64_halt_smp(struct target *target, bool exc_target)
406 {
407         struct target *next = target;
408         int retval;
409
410         /* prepare halt on all PEs of the group */
411         retval = aarch64_prepare_halt_smp(target, exc_target, &next);
412
413         if (exc_target && next == target)
414                 return retval;
415
416         /* halt the target PE */
417         if (retval == ERROR_OK)
418                 retval = aarch64_halt_one(next, HALT_LAZY);
419
420         if (retval != ERROR_OK)
421                 return retval;
422
423         /* wait for all PEs to halt */
424         int64_t then = timeval_ms();
425         for (;;) {
426                 bool all_halted = true;
427                 struct target_list *head;
428                 struct target *curr;
429
430                 foreach_smp_target(head, target->head) {
431                         int halted;
432
433                         curr = head->target;
434
435                         if (!target_was_examined(curr))
436                                 continue;
437
438                         retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
439                         if (retval != ERROR_OK || !halted) {
440                                 all_halted = false;
441                                 break;
442                         }
443                 }
444
445                 if (all_halted)
446                         break;
447
448                 if (timeval_ms() > then + 1000) {
449                         retval = ERROR_TARGET_TIMEOUT;
450                         break;
451                 }
452
453                 /*
454                  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
455                  * and it looks like the CTI's are not connected by a common
456                  * trigger matrix. It seems that we need to halt one core in each
457                  * cluster explicitly. So if we find that a core has not halted
458                  * yet, we trigger an explicit halt for the second cluster.
459                  */
460                 retval = aarch64_halt_one(curr, HALT_LAZY);
461                 if (retval != ERROR_OK)
462                         break;
463         }
464
465         return retval;
466 }
467
468 static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
469 {
470         struct target *gdb_target = NULL;
471         struct target_list *head;
472         struct target *curr;
473
474         if (debug_reason == DBG_REASON_NOTHALTED) {
475                 LOG_DEBUG("Halting remaining targets in SMP group");
476                 aarch64_halt_smp(target, true);
477         }
478
479         /* poll all targets in the group, but skip the target that serves GDB */
480         foreach_smp_target(head, target->head) {
481                 curr = head->target;
482                 /* skip calling context */
483                 if (curr == target)
484                         continue;
485                 if (!target_was_examined(curr))
486                         continue;
487                 /* skip targets that were already halted */
488                 if (curr->state == TARGET_HALTED)
489                         continue;
490                 /* remember the gdb_service->target */
491                 if (curr->gdb_service)
492                         gdb_target = curr->gdb_service->target;
493                 /* skip it */
494                 if (curr == gdb_target)
495                         continue;
496
497                 /* avoid recursion in aarch64_poll() */
498                 curr->smp = 0;
499                 aarch64_poll(curr);
500                 curr->smp = 1;
501         }
502
503         /* after all targets were updated, poll the gdb serving target */
504         if (gdb_target && gdb_target != target)
505                 aarch64_poll(gdb_target);
506
507         return ERROR_OK;
508 }
509
510 /*
511  * Aarch64 Run control
512  */
513
514 static int aarch64_poll(struct target *target)
515 {
516         enum target_state prev_target_state;
517         int retval = ERROR_OK;
518         int halted;
519
520         retval = aarch64_check_state_one(target,
521                                 PRSR_HALT, PRSR_HALT, &halted, NULL);
522         if (retval != ERROR_OK)
523                 return retval;
524
525         if (halted) {
526                 prev_target_state = target->state;
527                 if (prev_target_state != TARGET_HALTED) {
528                         enum target_debug_reason debug_reason = target->debug_reason;
529
530                         /* We have a halting debug event */
531                         target->state = TARGET_HALTED;
532                         LOG_DEBUG("Target %s halted", target_name(target));
533                         retval = aarch64_debug_entry(target);
534                         if (retval != ERROR_OK)
535                                 return retval;
536
537                         if (target->smp)
538                                 update_halt_gdb(target, debug_reason);
539
540                         if (arm_semihosting(target, &retval) != 0)
541                                 return retval;
542
543                         switch (prev_target_state) {
544                         case TARGET_RUNNING:
545                         case TARGET_UNKNOWN:
546                         case TARGET_RESET:
547                                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
548                                 break;
549                         case TARGET_DEBUG_RUNNING:
550                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
551                                 break;
552                         default:
553                                 break;
554                         }
555                 }
556         } else
557                 target->state = TARGET_RUNNING;
558
559         return retval;
560 }
561
562 static int aarch64_halt(struct target *target)
563 {
564         struct armv8_common *armv8 = target_to_armv8(target);
565         armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
566
567         if (target->smp)
568                 return aarch64_halt_smp(target, false);
569
570         return aarch64_halt_one(target, HALT_SYNC);
571 }
572
573 static int aarch64_restore_one(struct target *target, int current,
574         uint64_t *address, int handle_breakpoints, int debug_execution)
575 {
576         struct armv8_common *armv8 = target_to_armv8(target);
577         struct arm *arm = &armv8->arm;
578         int retval;
579         uint64_t resume_pc;
580
581         LOG_DEBUG("%s", target_name(target));
582
583         if (!debug_execution)
584                 target_free_all_working_areas(target);
585
586         /* current = 1: continue on current pc, otherwise continue at <address> */
587         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
588         if (!current)
589                 resume_pc = *address;
590         else
591                 *address = resume_pc;
592
593         /* Make sure that the Armv7 gdb thumb fixups does not
594          * kill the return address
595          */
596         switch (arm->core_state) {
597                 case ARM_STATE_ARM:
598                         resume_pc &= 0xFFFFFFFC;
599                         break;
600                 case ARM_STATE_AARCH64:
601                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
602                         break;
603                 case ARM_STATE_THUMB:
604                 case ARM_STATE_THUMB_EE:
605                         /* When the return address is loaded into PC
606                          * bit 0 must be 1 to stay in Thumb state
607                          */
608                         resume_pc |= 0x1;
609                         break;
610                 case ARM_STATE_JAZELLE:
611                         LOG_ERROR("How do I resume into Jazelle state??");
612                         return ERROR_FAIL;
613         }
614         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
615         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
616         arm->pc->dirty = true;
617         arm->pc->valid = true;
618
619         /* called it now before restoring context because it uses cpu
620          * register r0 for restoring system control register */
621         retval = aarch64_restore_system_control_reg(target);
622         if (retval == ERROR_OK)
623                 retval = aarch64_restore_context(target, handle_breakpoints);
624
625         return retval;
626 }
627
628 /**
629  * prepare single target for restart
630  *
631  *
632  */
633 static int aarch64_prepare_restart_one(struct target *target)
634 {
635         struct armv8_common *armv8 = target_to_armv8(target);
636         int retval;
637         uint32_t dscr;
638         uint32_t tmp;
639
640         LOG_DEBUG("%s", target_name(target));
641
642         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
643                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
644         if (retval != ERROR_OK)
645                 return retval;
646
647         if ((dscr & DSCR_ITE) == 0)
648                 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
649         if ((dscr & DSCR_ERR) != 0)
650                 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
651
652         /* acknowledge a pending CTI halt event */
653         retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
654         /*
655          * open the CTI gate for channel 1 so that the restart events
656          * get passed along to all PEs. Also close gate for channel 0
657          * to isolate the PE from halt events.
658          */
659         if (retval == ERROR_OK)
660                 retval = arm_cti_ungate_channel(armv8->cti, 1);
661         if (retval == ERROR_OK)
662                 retval = arm_cti_gate_channel(armv8->cti, 0);
663
664         /* make sure that DSCR.HDE is set */
665         if (retval == ERROR_OK) {
666                 dscr |= DSCR_HDE;
667                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
668                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
669         }
670
671         if (retval == ERROR_OK) {
672                 /* clear sticky bits in PRSR, SDR is now 0 */
673                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
674                                 armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
675         }
676
677         return retval;
678 }
679
680 static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
681 {
682         struct armv8_common *armv8 = target_to_armv8(target);
683         int retval;
684
685         LOG_DEBUG("%s", target_name(target));
686
687         /* trigger an event on channel 1, generates a restart request to the PE */
688         retval = arm_cti_pulse_channel(armv8->cti, 1);
689         if (retval != ERROR_OK)
690                 return retval;
691
692         if (mode == RESTART_SYNC) {
693                 int64_t then = timeval_ms();
694                 for (;;) {
695                         int resumed;
696                         /*
697                          * if PRSR.SDR is set now, the target did restart, even
698                          * if it's now already halted again (e.g. due to breakpoint)
699                          */
700                         retval = aarch64_check_state_one(target,
701                                                 PRSR_SDR, PRSR_SDR, &resumed, NULL);
702                         if (retval != ERROR_OK || resumed)
703                                 break;
704
705                         if (timeval_ms() > then + 1000) {
706                                 LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
707                                 retval = ERROR_TARGET_TIMEOUT;
708                                 break;
709                         }
710                 }
711         }
712
713         if (retval != ERROR_OK)
714                 return retval;
715
716         target->debug_reason = DBG_REASON_NOTHALTED;
717         target->state = TARGET_RUNNING;
718
719         return ERROR_OK;
720 }
721
722 static int aarch64_restart_one(struct target *target, enum restart_mode mode)
723 {
724         int retval;
725
726         LOG_DEBUG("%s", target_name(target));
727
728         retval = aarch64_prepare_restart_one(target);
729         if (retval == ERROR_OK)
730                 retval = aarch64_do_restart_one(target, mode);
731
732         return retval;
733 }
734
735 /*
736  * prepare all but the current target for restart
737  */
738 static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
739 {
740         int retval = ERROR_OK;
741         struct target_list *head;
742         struct target *first = NULL;
743         uint64_t address;
744
745         foreach_smp_target(head, target->head) {
746                 struct target *curr = head->target;
747
748                 /* skip calling target */
749                 if (curr == target)
750                         continue;
751                 if (!target_was_examined(curr))
752                         continue;
753                 if (curr->state != TARGET_HALTED)
754                         continue;
755
756                 /*  resume at current address, not in step mode */
757                 retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
758                 if (retval == ERROR_OK)
759                         retval = aarch64_prepare_restart_one(curr);
760                 if (retval != ERROR_OK) {
761                         LOG_ERROR("failed to restore target %s", target_name(curr));
762                         break;
763                 }
764                 /* remember the first valid target in the group */
765                 if (!first)
766                         first = curr;
767         }
768
769         if (p_first)
770                 *p_first = first;
771
772         return retval;
773 }
774
775
776 static int aarch64_step_restart_smp(struct target *target)
777 {
778         int retval = ERROR_OK;
779         struct target_list *head;
780         struct target *first = NULL;
781
782         LOG_DEBUG("%s", target_name(target));
783
784         retval = aarch64_prep_restart_smp(target, 0, &first);
785         if (retval != ERROR_OK)
786                 return retval;
787
788         if (first)
789                 retval = aarch64_do_restart_one(first, RESTART_LAZY);
790         if (retval != ERROR_OK) {
791                 LOG_DEBUG("error restarting target %s", target_name(first));
792                 return retval;
793         }
794
795         int64_t then = timeval_ms();
796         for (;;) {
797                 struct target *curr = target;
798                 bool all_resumed = true;
799
800                 foreach_smp_target(head, target->head) {
801                         uint32_t prsr;
802                         int resumed;
803
804                         curr = head->target;
805
806                         if (curr == target)
807                                 continue;
808
809                         if (!target_was_examined(curr))
810                                 continue;
811
812                         retval = aarch64_check_state_one(curr,
813                                         PRSR_SDR, PRSR_SDR, &resumed, &prsr);
814                         if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
815                                 all_resumed = false;
816                                 break;
817                         }
818
819                         if (curr->state != TARGET_RUNNING) {
820                                 curr->state = TARGET_RUNNING;
821                                 curr->debug_reason = DBG_REASON_NOTHALTED;
822                                 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
823                         }
824                 }
825
826                 if (all_resumed)
827                         break;
828
829                 if (timeval_ms() > then + 1000) {
830                         LOG_ERROR("%s: timeout waiting for target resume", __func__);
831                         retval = ERROR_TARGET_TIMEOUT;
832                         break;
833                 }
834                 /*
835                  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
836                  * and it looks like the CTI's are not connected by a common
837                  * trigger matrix. It seems that we need to halt one core in each
838                  * cluster explicitly. So if we find that a core has not halted
839                  * yet, we trigger an explicit resume for the second cluster.
840                  */
841                 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
842                 if (retval != ERROR_OK)
843                         break;
844 }
845
846         return retval;
847 }
848
849 static int aarch64_resume(struct target *target, int current,
850         target_addr_t address, int handle_breakpoints, int debug_execution)
851 {
852         int retval = 0;
853         uint64_t addr = address;
854
855         struct armv8_common *armv8 = target_to_armv8(target);
856         armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
857
858         if (target->state != TARGET_HALTED)
859                 return ERROR_TARGET_NOT_HALTED;
860
861         /*
862          * If this target is part of a SMP group, prepare the others
863          * targets for resuming. This involves restoring the complete
864          * target register context and setting up CTI gates to accept
865          * resume events from the trigger matrix.
866          */
867         if (target->smp) {
868                 retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
869                 if (retval != ERROR_OK)
870                         return retval;
871         }
872
873         /* all targets prepared, restore and restart the current target */
874         retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
875                                  debug_execution);
876         if (retval == ERROR_OK)
877                 retval = aarch64_restart_one(target, RESTART_SYNC);
878         if (retval != ERROR_OK)
879                 return retval;
880
881         if (target->smp) {
882                 int64_t then = timeval_ms();
883                 for (;;) {
884                         struct target *curr = target;
885                         struct target_list *head;
886                         bool all_resumed = true;
887
888                         foreach_smp_target(head, target->head) {
889                                 uint32_t prsr;
890                                 int resumed;
891
892                                 curr = head->target;
893                                 if (curr == target)
894                                         continue;
895                                 if (!target_was_examined(curr))
896                                         continue;
897
898                                 retval = aarch64_check_state_one(curr,
899                                                 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
900                                 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
901                                         all_resumed = false;
902                                         break;
903                                 }
904
905                                 if (curr->state != TARGET_RUNNING) {
906                                         curr->state = TARGET_RUNNING;
907                                         curr->debug_reason = DBG_REASON_NOTHALTED;
908                                         target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
909                                 }
910                         }
911
912                         if (all_resumed)
913                                 break;
914
915                         if (timeval_ms() > then + 1000) {
916                                 LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
917                                 retval = ERROR_TARGET_TIMEOUT;
918                                 break;
919                         }
920
921                         /*
922                          * HACK: on Hi6220 there are 8 cores organized in 2 clusters
923                          * and it looks like the CTI's are not connected by a common
924                          * trigger matrix. It seems that we need to halt one core in each
925                          * cluster explicitly. So if we find that a core has not halted
926                          * yet, we trigger an explicit resume for the second cluster.
927                          */
928                         retval = aarch64_do_restart_one(curr, RESTART_LAZY);
929                         if (retval != ERROR_OK)
930                                 break;
931                 }
932         }
933
934         if (retval != ERROR_OK)
935                 return retval;
936
937         target->debug_reason = DBG_REASON_NOTHALTED;
938
939         if (!debug_execution) {
940                 target->state = TARGET_RUNNING;
941                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
942                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
943         } else {
944                 target->state = TARGET_DEBUG_RUNNING;
945                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
946                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
947         }
948
949         return ERROR_OK;
950 }
951
952 static int aarch64_debug_entry(struct target *target)
953 {
954         int retval = ERROR_OK;
955         struct armv8_common *armv8 = target_to_armv8(target);
956         struct arm_dpm *dpm = &armv8->dpm;
957         enum arm_state core_state;
958         uint32_t dscr;
959
960         /* make sure to clear all sticky errors */
961         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
962                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
963         if (retval == ERROR_OK)
964                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
965                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
966         if (retval == ERROR_OK)
967                 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
968
969         if (retval != ERROR_OK)
970                 return retval;
971
972         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
973
974         dpm->dscr = dscr;
975         core_state = armv8_dpm_get_core_state(dpm);
976         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
977         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
978
979         /* close the CTI gate for all events */
980         if (retval == ERROR_OK)
981                 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
982         /* discard async exceptions */
983         if (retval == ERROR_OK)
984                 retval = dpm->instr_cpsr_sync(dpm);
985         if (retval != ERROR_OK)
986                 return retval;
987
988         /* Examine debug reason */
989         armv8_dpm_report_dscr(dpm, dscr);
990
991         /* save the memory address that triggered the watchpoint */
992         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
993                 uint32_t tmp;
994
995                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
996                                 armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
997                 if (retval != ERROR_OK)
998                         return retval;
999                 target_addr_t edwar = tmp;
1000
1001                 /* EDWAR[63:32] has unknown content in aarch32 state */
1002                 if (core_state == ARM_STATE_AARCH64) {
1003                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1004                                         armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
1005                         if (retval != ERROR_OK)
1006                                 return retval;
1007                         edwar |= ((target_addr_t)tmp) << 32;
1008                 }
1009
1010                 armv8->dpm.wp_addr = edwar;
1011         }
1012
1013         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1014
1015         if (retval == ERROR_OK && armv8->post_debug_entry)
1016                 retval = armv8->post_debug_entry(target);
1017
1018         return retval;
1019 }
1020
1021 static int aarch64_post_debug_entry(struct target *target)
1022 {
1023         struct aarch64_common *aarch64 = target_to_aarch64(target);
1024         struct armv8_common *armv8 = &aarch64->armv8_common;
1025         int retval;
1026         enum arm_mode target_mode = ARM_MODE_ANY;
1027         uint32_t instr;
1028
1029         switch (armv8->arm.core_mode) {
1030         case ARMV8_64_EL0T:
1031                 target_mode = ARMV8_64_EL1H;
1032                 /* fall through */
1033         case ARMV8_64_EL1T:
1034         case ARMV8_64_EL1H:
1035                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1036                 break;
1037         case ARMV8_64_EL2T:
1038         case ARMV8_64_EL2H:
1039                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1040                 break;
1041         case ARMV8_64_EL3H:
1042         case ARMV8_64_EL3T:
1043                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1044                 break;
1045
1046         case ARM_MODE_SVC:
1047         case ARM_MODE_ABT:
1048         case ARM_MODE_FIQ:
1049         case ARM_MODE_IRQ:
1050         case ARM_MODE_HYP:
1051         case ARM_MODE_SYS:
1052                 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1053                 break;
1054
1055         default:
1056                 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
1057                                 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
1058                 return ERROR_FAIL;
1059         }
1060
1061         if (target_mode != ARM_MODE_ANY)
1062                 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1063
1064         retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
1065         if (retval != ERROR_OK)
1066                 return retval;
1067
1068         if (target_mode != ARM_MODE_ANY)
1069                 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1070
1071         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1072         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1073
1074         if (armv8->armv8_mmu.armv8_cache.info == -1) {
1075                 armv8_identify_cache(armv8);
1076                 armv8_read_mpidr(armv8);
1077         }
1078
1079         armv8->armv8_mmu.mmu_enabled =
1080                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1081         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1082                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1083         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1084                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1085         return ERROR_OK;
1086 }
1087
1088 /*
1089  * single-step a target
1090  */
1091 static int aarch64_step(struct target *target, int current, target_addr_t address,
1092         int handle_breakpoints)
1093 {
1094         struct armv8_common *armv8 = target_to_armv8(target);
1095         struct aarch64_common *aarch64 = target_to_aarch64(target);
1096         int saved_retval = ERROR_OK;
1097         int retval;
1098         uint32_t edecr;
1099
1100         armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
1101
1102         if (target->state != TARGET_HALTED) {
1103                 LOG_WARNING("target not halted");
1104                 return ERROR_TARGET_NOT_HALTED;
1105         }
1106
1107         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1108                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1109         /* make sure EDECR.SS is not set when restoring the register */
1110
1111         if (retval == ERROR_OK) {
1112                 edecr &= ~0x4;
1113                 /* set EDECR.SS to enter hardware step mode */
1114                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1115                                 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1116         }
1117         /* disable interrupts while stepping */
1118         if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1119                 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1120         /* bail out if stepping setup has failed */
1121         if (retval != ERROR_OK)
1122                 return retval;
1123
1124         if (target->smp && (current == 1)) {
1125                 /*
1126                  * isolate current target so that it doesn't get resumed
1127                  * together with the others
1128                  */
1129                 retval = arm_cti_gate_channel(armv8->cti, 1);
1130                 /* resume all other targets in the group */
1131                 if (retval == ERROR_OK)
1132                         retval = aarch64_step_restart_smp(target);
1133                 if (retval != ERROR_OK) {
1134                         LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1135                         return retval;
1136                 }
1137                 LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1138         }
1139
1140         /* all other targets running, restore and restart the current target */
1141         retval = aarch64_restore_one(target, current, &address, 0, 0);
1142         if (retval == ERROR_OK)
1143                 retval = aarch64_restart_one(target, RESTART_LAZY);
1144
1145         if (retval != ERROR_OK)
1146                 return retval;
1147
1148         LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1149         if (!handle_breakpoints)
1150                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1151
1152         int64_t then = timeval_ms();
1153         for (;;) {
1154                 int stepped;
1155                 uint32_t prsr;
1156
1157                 retval = aarch64_check_state_one(target,
1158                                         PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1159                 if (retval != ERROR_OK || stepped)
1160                         break;
1161
1162                 if (timeval_ms() > then + 100) {
1163                         LOG_ERROR("timeout waiting for target %s halt after step",
1164                                         target_name(target));
1165                         retval = ERROR_TARGET_TIMEOUT;
1166                         break;
1167                 }
1168         }
1169
1170         /*
1171          * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1172          * causes a timeout. The core takes the step but doesn't complete it and so
1173          * debug state is never entered. However, you can manually halt the core
1174          * as an external debug even is also a WFI wakeup event.
1175          */
1176         if (retval == ERROR_TARGET_TIMEOUT)
1177                 saved_retval = aarch64_halt_one(target, HALT_SYNC);
1178
1179         /* restore EDECR */
1180         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1181                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1182         if (retval != ERROR_OK)
1183                 return retval;
1184
1185         /* restore interrupts */
1186         if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1187                 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1188                 if (retval != ERROR_OK)
1189                         return ERROR_OK;
1190         }
1191
1192         if (saved_retval != ERROR_OK)
1193                 return saved_retval;
1194
1195         return ERROR_OK;
1196 }
1197
1198 static int aarch64_restore_context(struct target *target, bool bpwp)
1199 {
1200         struct armv8_common *armv8 = target_to_armv8(target);
1201         struct arm *arm = &armv8->arm;
1202
1203         int retval;
1204
1205         LOG_DEBUG("%s", target_name(target));
1206
1207         if (armv8->pre_restore_context)
1208                 armv8->pre_restore_context(target);
1209
1210         retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1211         if (retval == ERROR_OK) {
1212                 /* registers are now invalid */
1213                 register_cache_invalidate(arm->core_cache);
1214                 register_cache_invalidate(arm->core_cache->next);
1215         }
1216
1217         return retval;
1218 }
1219
1220 /*
1221  * Cortex-A8 Breakpoint and watchpoint functions
1222  */
1223
1224 /* Setup hardware Breakpoint Register Pair */
1225 static int aarch64_set_breakpoint(struct target *target,
1226         struct breakpoint *breakpoint, uint8_t matchmode)
1227 {
1228         int retval;
1229         int brp_i = 0;
1230         uint32_t control;
1231         uint8_t byte_addr_select = 0x0F;
1232         struct aarch64_common *aarch64 = target_to_aarch64(target);
1233         struct armv8_common *armv8 = &aarch64->armv8_common;
1234         struct aarch64_brp *brp_list = aarch64->brp_list;
1235
1236         if (breakpoint->set) {
1237                 LOG_WARNING("breakpoint already set");
1238                 return ERROR_OK;
1239         }
1240
1241         if (breakpoint->type == BKPT_HARD) {
1242                 int64_t bpt_value;
1243                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1244                         brp_i++;
1245                 if (brp_i >= aarch64->brp_num) {
1246                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1247                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1248                 }
1249                 breakpoint->set = brp_i + 1;
1250                 if (breakpoint->length == 2)
1251                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1252                 control = ((matchmode & 0x7) << 20)
1253                         | (1 << 13)
1254                         | (byte_addr_select << 5)
1255                         | (3 << 1) | 1;
1256                 brp_list[brp_i].used = 1;
1257                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1258                 brp_list[brp_i].control = control;
1259                 bpt_value = brp_list[brp_i].value;
1260
1261                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1262                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1263                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1264                 if (retval != ERROR_OK)
1265                         return retval;
1266                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1267                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1268                                 (uint32_t)(bpt_value >> 32));
1269                 if (retval != ERROR_OK)
1270                         return retval;
1271
1272                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1273                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1274                                 brp_list[brp_i].control);
1275                 if (retval != ERROR_OK)
1276                         return retval;
1277                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1278                         brp_list[brp_i].control,
1279                         brp_list[brp_i].value);
1280
1281         } else if (breakpoint->type == BKPT_SOFT) {
1282                 uint32_t opcode;
1283                 uint8_t code[4];
1284
1285                 if (armv8_dpm_get_core_state(&armv8->dpm) == ARM_STATE_AARCH64) {
1286                         opcode = ARMV8_HLT(11);
1287
1288                         if (breakpoint->length != 4)
1289                                 LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
1290                 } else {
1291                         /**
1292                          * core_state is ARM_STATE_ARM
1293                          * in that case the opcode depends on breakpoint length:
1294                          *  - if length == 4 => A32 opcode
1295                          *  - if length == 2 => T32 opcode
1296                          *  - if length == 3 => T32 opcode (refer to gdb doc : ARM-Breakpoint-Kinds)
1297                          *    in that case the length should be changed from 3 to 4 bytes
1298                          **/
1299                         opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
1300                                         (uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
1301
1302                         if (breakpoint->length == 3)
1303                                 breakpoint->length = 4;
1304                 }
1305
1306                 buf_set_u32(code, 0, 32, opcode);
1307
1308                 retval = target_read_memory(target,
1309                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1310                                 breakpoint->length, 1,
1311                                 breakpoint->orig_instr);
1312                 if (retval != ERROR_OK)
1313                         return retval;
1314
1315                 armv8_cache_d_inner_flush_virt(armv8,
1316                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1317                                 breakpoint->length);
1318
1319                 retval = target_write_memory(target,
1320                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1321                                 breakpoint->length, 1, code);
1322                 if (retval != ERROR_OK)
1323                         return retval;
1324
1325                 armv8_cache_d_inner_flush_virt(armv8,
1326                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1327                                 breakpoint->length);
1328
1329                 armv8_cache_i_inner_inval_virt(armv8,
1330                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1331                                 breakpoint->length);
1332
1333                 breakpoint->set = 0x11; /* Any nice value but 0 */
1334         }
1335
1336         /* Ensure that halting debug mode is enable */
1337         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1338         if (retval != ERROR_OK) {
1339                 LOG_DEBUG("Failed to set DSCR.HDE");
1340                 return retval;
1341         }
1342
1343         return ERROR_OK;
1344 }
1345
1346 static int aarch64_set_context_breakpoint(struct target *target,
1347         struct breakpoint *breakpoint, uint8_t matchmode)
1348 {
1349         int retval = ERROR_FAIL;
1350         int brp_i = 0;
1351         uint32_t control;
1352         uint8_t byte_addr_select = 0x0F;
1353         struct aarch64_common *aarch64 = target_to_aarch64(target);
1354         struct armv8_common *armv8 = &aarch64->armv8_common;
1355         struct aarch64_brp *brp_list = aarch64->brp_list;
1356
1357         if (breakpoint->set) {
1358                 LOG_WARNING("breakpoint already set");
1359                 return retval;
1360         }
1361         /*check available context BRPs*/
1362         while ((brp_list[brp_i].used ||
1363                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1364                 brp_i++;
1365
1366         if (brp_i >= aarch64->brp_num) {
1367                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1368                 return ERROR_FAIL;
1369         }
1370
1371         breakpoint->set = brp_i + 1;
1372         control = ((matchmode & 0x7) << 20)
1373                 | (1 << 13)
1374                 | (byte_addr_select << 5)
1375                 | (3 << 1) | 1;
1376         brp_list[brp_i].used = 1;
1377         brp_list[brp_i].value = (breakpoint->asid);
1378         brp_list[brp_i].control = control;
1379         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1380                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1381                         brp_list[brp_i].value);
1382         if (retval != ERROR_OK)
1383                 return retval;
1384         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1385                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1386                         brp_list[brp_i].control);
1387         if (retval != ERROR_OK)
1388                 return retval;
1389         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1390                 brp_list[brp_i].control,
1391                 brp_list[brp_i].value);
1392         return ERROR_OK;
1393
1394 }
1395
1396 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1397 {
1398         int retval = ERROR_FAIL;
1399         int brp_1 = 0;  /* holds the contextID pair */
1400         int brp_2 = 0;  /* holds the IVA pair */
1401         uint32_t control_ctx, control_iva;
1402         uint8_t ctx_byte_addr_select = 0x0F;
1403         uint8_t iva_byte_addr_select = 0x0F;
1404         uint8_t ctx_machmode = 0x03;
1405         uint8_t iva_machmode = 0x01;
1406         struct aarch64_common *aarch64 = target_to_aarch64(target);
1407         struct armv8_common *armv8 = &aarch64->armv8_common;
1408         struct aarch64_brp *brp_list = aarch64->brp_list;
1409
1410         if (breakpoint->set) {
1411                 LOG_WARNING("breakpoint already set");
1412                 return retval;
1413         }
1414         /*check available context BRPs*/
1415         while ((brp_list[brp_1].used ||
1416                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1417                 brp_1++;
1418
1419         LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1420         if (brp_1 >= aarch64->brp_num) {
1421                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1422                 return ERROR_FAIL;
1423         }
1424
1425         while ((brp_list[brp_2].used ||
1426                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1427                 brp_2++;
1428
1429         LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1430         if (brp_2 >= aarch64->brp_num) {
1431                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1432                 return ERROR_FAIL;
1433         }
1434
1435         breakpoint->set = brp_1 + 1;
1436         breakpoint->linked_brp = brp_2;
1437         control_ctx = ((ctx_machmode & 0x7) << 20)
1438                 | (brp_2 << 16)
1439                 | (0 << 14)
1440                 | (ctx_byte_addr_select << 5)
1441                 | (3 << 1) | 1;
1442         brp_list[brp_1].used = 1;
1443         brp_list[brp_1].value = (breakpoint->asid);
1444         brp_list[brp_1].control = control_ctx;
1445         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1446                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
1447                         brp_list[brp_1].value);
1448         if (retval != ERROR_OK)
1449                 return retval;
1450         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1451                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
1452                         brp_list[brp_1].control);
1453         if (retval != ERROR_OK)
1454                 return retval;
1455
1456         control_iva = ((iva_machmode & 0x7) << 20)
1457                 | (brp_1 << 16)
1458                 | (1 << 13)
1459                 | (iva_byte_addr_select << 5)
1460                 | (3 << 1) | 1;
1461         brp_list[brp_2].used = 1;
1462         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1463         brp_list[brp_2].control = control_iva;
1464         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1465                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
1466                         brp_list[brp_2].value & 0xFFFFFFFF);
1467         if (retval != ERROR_OK)
1468                 return retval;
1469         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1470                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
1471                         brp_list[brp_2].value >> 32);
1472         if (retval != ERROR_OK)
1473                 return retval;
1474         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1475                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
1476                         brp_list[brp_2].control);
1477         if (retval != ERROR_OK)
1478                 return retval;
1479
1480         return ERROR_OK;
1481 }
1482
1483 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1484 {
1485         int retval;
1486         struct aarch64_common *aarch64 = target_to_aarch64(target);
1487         struct armv8_common *armv8 = &aarch64->armv8_common;
1488         struct aarch64_brp *brp_list = aarch64->brp_list;
1489
1490         if (!breakpoint->set) {
1491                 LOG_WARNING("breakpoint not set");
1492                 return ERROR_OK;
1493         }
1494
1495         if (breakpoint->type == BKPT_HARD) {
1496                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1497                         int brp_i = breakpoint->set - 1;
1498                         int brp_j = breakpoint->linked_brp;
1499                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1500                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1501                                 return ERROR_OK;
1502                         }
1503                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1504                                 brp_list[brp_i].control, brp_list[brp_i].value);
1505                         brp_list[brp_i].used = 0;
1506                         brp_list[brp_i].value = 0;
1507                         brp_list[brp_i].control = 0;
1508                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1509                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1510                                         brp_list[brp_i].control);
1511                         if (retval != ERROR_OK)
1512                                 return retval;
1513                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1514                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1515                                         (uint32_t)brp_list[brp_i].value);
1516                         if (retval != ERROR_OK)
1517                                 return retval;
1518                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1519                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1520                                         (uint32_t)brp_list[brp_i].value);
1521                         if (retval != ERROR_OK)
1522                                 return retval;
1523                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1524                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1525                                 return ERROR_OK;
1526                         }
1527                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1528                                 brp_list[brp_j].control, brp_list[brp_j].value);
1529                         brp_list[brp_j].used = 0;
1530                         brp_list[brp_j].value = 0;
1531                         brp_list[brp_j].control = 0;
1532                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1533                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
1534                                         brp_list[brp_j].control);
1535                         if (retval != ERROR_OK)
1536                                 return retval;
1537                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1538                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
1539                                         (uint32_t)brp_list[brp_j].value);
1540                         if (retval != ERROR_OK)
1541                                 return retval;
1542                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1543                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
1544                                         (uint32_t)brp_list[brp_j].value);
1545                         if (retval != ERROR_OK)
1546                                 return retval;
1547
1548                         breakpoint->linked_brp = 0;
1549                         breakpoint->set = 0;
1550                         return ERROR_OK;
1551
1552                 } else {
1553                         int brp_i = breakpoint->set - 1;
1554                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1555                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1556                                 return ERROR_OK;
1557                         }
1558                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1559                                 brp_list[brp_i].control, brp_list[brp_i].value);
1560                         brp_list[brp_i].used = 0;
1561                         brp_list[brp_i].value = 0;
1562                         brp_list[brp_i].control = 0;
1563                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1564                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1565                                         brp_list[brp_i].control);
1566                         if (retval != ERROR_OK)
1567                                 return retval;
1568                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1569                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1570                                         brp_list[brp_i].value);
1571                         if (retval != ERROR_OK)
1572                                 return retval;
1573
1574                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1575                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1576                                         (uint32_t)brp_list[brp_i].value);
1577                         if (retval != ERROR_OK)
1578                                 return retval;
1579                         breakpoint->set = 0;
1580                         return ERROR_OK;
1581                 }
1582         } else {
1583                 /* restore original instruction (kept in target endianness) */
1584
1585                 armv8_cache_d_inner_flush_virt(armv8,
1586                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1587                                 breakpoint->length);
1588
1589                 if (breakpoint->length == 4) {
1590                         retval = target_write_memory(target,
1591                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1592                                         4, 1, breakpoint->orig_instr);
1593                         if (retval != ERROR_OK)
1594                                 return retval;
1595                 } else {
1596                         retval = target_write_memory(target,
1597                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1598                                         2, 1, breakpoint->orig_instr);
1599                         if (retval != ERROR_OK)
1600                                 return retval;
1601                 }
1602
1603                 armv8_cache_d_inner_flush_virt(armv8,
1604                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1605                                 breakpoint->length);
1606
1607                 armv8_cache_i_inner_inval_virt(armv8,
1608                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1609                                 breakpoint->length);
1610         }
1611         breakpoint->set = 0;
1612
1613         return ERROR_OK;
1614 }
1615
1616 static int aarch64_add_breakpoint(struct target *target,
1617         struct breakpoint *breakpoint)
1618 {
1619         struct aarch64_common *aarch64 = target_to_aarch64(target);
1620
1621         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1622                 LOG_INFO("no hardware breakpoint available");
1623                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1624         }
1625
1626         if (breakpoint->type == BKPT_HARD)
1627                 aarch64->brp_num_available--;
1628
1629         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1630 }
1631
1632 static int aarch64_add_context_breakpoint(struct target *target,
1633         struct breakpoint *breakpoint)
1634 {
1635         struct aarch64_common *aarch64 = target_to_aarch64(target);
1636
1637         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1638                 LOG_INFO("no hardware breakpoint available");
1639                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1640         }
1641
1642         if (breakpoint->type == BKPT_HARD)
1643                 aarch64->brp_num_available--;
1644
1645         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1646 }
1647
1648 static int aarch64_add_hybrid_breakpoint(struct target *target,
1649         struct breakpoint *breakpoint)
1650 {
1651         struct aarch64_common *aarch64 = target_to_aarch64(target);
1652
1653         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1654                 LOG_INFO("no hardware breakpoint available");
1655                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1656         }
1657
1658         if (breakpoint->type == BKPT_HARD)
1659                 aarch64->brp_num_available--;
1660
1661         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1662 }
1663
1664 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1665 {
1666         struct aarch64_common *aarch64 = target_to_aarch64(target);
1667
1668 #if 0
1669 /* It is perfectly possible to remove breakpoints while the target is running */
1670         if (target->state != TARGET_HALTED) {
1671                 LOG_WARNING("target not halted");
1672                 return ERROR_TARGET_NOT_HALTED;
1673         }
1674 #endif
1675
1676         if (breakpoint->set) {
1677                 aarch64_unset_breakpoint(target, breakpoint);
1678                 if (breakpoint->type == BKPT_HARD)
1679                         aarch64->brp_num_available++;
1680         }
1681
1682         return ERROR_OK;
1683 }
1684
1685 /* Setup hardware Watchpoint Register Pair */
1686 static int aarch64_set_watchpoint(struct target *target,
1687         struct watchpoint *watchpoint)
1688 {
1689         int retval;
1690         int wp_i = 0;
1691         uint32_t control, offset, length;
1692         struct aarch64_common *aarch64 = target_to_aarch64(target);
1693         struct armv8_common *armv8 = &aarch64->armv8_common;
1694         struct aarch64_brp *wp_list = aarch64->wp_list;
1695
1696         if (watchpoint->set) {
1697                 LOG_WARNING("watchpoint already set");
1698                 return ERROR_OK;
1699         }
1700
1701         while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
1702                 wp_i++;
1703         if (wp_i >= aarch64->wp_num) {
1704                 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1705                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1706         }
1707
1708         control = (1 << 0)      /* enable */
1709                 | (3 << 1)      /* both user and privileged access */
1710                 | (1 << 13);    /* higher mode control */
1711
1712         switch (watchpoint->rw) {
1713         case WPT_READ:
1714                 control |= 1 << 3;
1715                 break;
1716         case WPT_WRITE:
1717                 control |= 2 << 3;
1718                 break;
1719         case WPT_ACCESS:
1720                 control |= 3 << 3;
1721                 break;
1722         }
1723
1724         /* Match up to 8 bytes. */
1725         offset = watchpoint->address & 7;
1726         length = watchpoint->length;
1727         if (offset + length > sizeof(uint64_t)) {
1728                 length = sizeof(uint64_t) - offset;
1729                 LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
1730         }
1731         for (; length > 0; offset++, length--)
1732                 control |= (1 << offset) << 5;
1733
1734         wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
1735         wp_list[wp_i].control = control;
1736
1737         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1738                         + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1739                         (uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
1740         if (retval != ERROR_OK)
1741                 return retval;
1742         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1743                         + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1744                         (uint32_t)(wp_list[wp_i].value >> 32));
1745         if (retval != ERROR_OK)
1746                 return retval;
1747
1748         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1749                         + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1750                         control);
1751         if (retval != ERROR_OK)
1752                 return retval;
1753         LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
1754                 wp_list[wp_i].control, wp_list[wp_i].value);
1755
1756         /* Ensure that halting debug mode is enable */
1757         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1758         if (retval != ERROR_OK) {
1759                 LOG_DEBUG("Failed to set DSCR.HDE");
1760                 return retval;
1761         }
1762
1763         wp_list[wp_i].used = 1;
1764         watchpoint->set = wp_i + 1;
1765
1766         return ERROR_OK;
1767 }
1768
1769 /* Clear hardware Watchpoint Register Pair */
1770 static int aarch64_unset_watchpoint(struct target *target,
1771         struct watchpoint *watchpoint)
1772 {
1773         int retval, wp_i;
1774         struct aarch64_common *aarch64 = target_to_aarch64(target);
1775         struct armv8_common *armv8 = &aarch64->armv8_common;
1776         struct aarch64_brp *wp_list = aarch64->wp_list;
1777
1778         if (!watchpoint->set) {
1779                 LOG_WARNING("watchpoint not set");
1780                 return ERROR_OK;
1781         }
1782
1783         wp_i = watchpoint->set - 1;
1784         if ((wp_i < 0) || (wp_i >= aarch64->wp_num)) {
1785                 LOG_DEBUG("Invalid WP number in watchpoint");
1786                 return ERROR_OK;
1787         }
1788         LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
1789                 wp_list[wp_i].control, wp_list[wp_i].value);
1790         wp_list[wp_i].used = 0;
1791         wp_list[wp_i].value = 0;
1792         wp_list[wp_i].control = 0;
1793         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1794                         + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1795                         wp_list[wp_i].control);
1796         if (retval != ERROR_OK)
1797                 return retval;
1798         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1799                         + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1800                         wp_list[wp_i].value);
1801         if (retval != ERROR_OK)
1802                 return retval;
1803
1804         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1805                         + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1806                         (uint32_t)wp_list[wp_i].value);
1807         if (retval != ERROR_OK)
1808                 return retval;
1809         watchpoint->set = 0;
1810
1811         return ERROR_OK;
1812 }
1813
1814 static int aarch64_add_watchpoint(struct target *target,
1815         struct watchpoint *watchpoint)
1816 {
1817         int retval;
1818         struct aarch64_common *aarch64 = target_to_aarch64(target);
1819
1820         if (aarch64->wp_num_available < 1) {
1821                 LOG_INFO("no hardware watchpoint available");
1822                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1823         }
1824
1825         retval = aarch64_set_watchpoint(target, watchpoint);
1826         if (retval == ERROR_OK)
1827                 aarch64->wp_num_available--;
1828
1829         return retval;
1830 }
1831
1832 static int aarch64_remove_watchpoint(struct target *target,
1833         struct watchpoint *watchpoint)
1834 {
1835         struct aarch64_common *aarch64 = target_to_aarch64(target);
1836
1837         if (watchpoint->set) {
1838                 aarch64_unset_watchpoint(target, watchpoint);
1839                 aarch64->wp_num_available++;
1840         }
1841
1842         return ERROR_OK;
1843 }
1844
1845 /**
1846  * find out which watchpoint hits
1847  * get exception address and compare the address to watchpoints
1848  */
1849 int aarch64_hit_watchpoint(struct target *target,
1850         struct watchpoint **hit_watchpoint)
1851 {
1852         if (target->debug_reason != DBG_REASON_WATCHPOINT)
1853                 return ERROR_FAIL;
1854
1855         struct armv8_common *armv8 = target_to_armv8(target);
1856
1857         target_addr_t exception_address;
1858         struct watchpoint *wp;
1859
1860         exception_address = armv8->dpm.wp_addr;
1861
1862         if (exception_address == 0xFFFFFFFF)
1863                 return ERROR_FAIL;
1864
1865         for (wp = target->watchpoints; wp; wp = wp->next)
1866                 if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
1867                         *hit_watchpoint = wp;
1868                         return ERROR_OK;
1869                 }
1870
1871         return ERROR_FAIL;
1872 }
1873
1874 /*
1875  * Cortex-A8 Reset functions
1876  */
1877
1878 static int aarch64_enable_reset_catch(struct target *target, bool enable)
1879 {
1880         struct armv8_common *armv8 = target_to_armv8(target);
1881         uint32_t edecr;
1882         int retval;
1883
1884         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1885                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1886         LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
1887         if (retval != ERROR_OK)
1888                 return retval;
1889
1890         if (enable)
1891                 edecr |= ECR_RCE;
1892         else
1893                 edecr &= ~ECR_RCE;
1894
1895         return mem_ap_write_atomic_u32(armv8->debug_ap,
1896                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1897 }
1898
1899 static int aarch64_clear_reset_catch(struct target *target)
1900 {
1901         struct armv8_common *armv8 = target_to_armv8(target);
1902         uint32_t edesr;
1903         int retval;
1904         bool was_triggered;
1905
1906         /* check if Reset Catch debug event triggered as expected */
1907         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1908                 armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
1909         if (retval != ERROR_OK)
1910                 return retval;
1911
1912         was_triggered = !!(edesr & ESR_RC);
1913         LOG_DEBUG("Reset Catch debug event %s",
1914                         was_triggered ? "triggered" : "NOT triggered!");
1915
1916         if (was_triggered) {
1917                 /* clear pending Reset Catch debug event */
1918                 edesr &= ~ESR_RC;
1919                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1920                         armv8->debug_base + CPUV8_DBG_EDESR, edesr);
1921                 if (retval != ERROR_OK)
1922                         return retval;
1923         }
1924
1925         return ERROR_OK;
1926 }
1927
1928 static int aarch64_assert_reset(struct target *target)
1929 {
1930         struct armv8_common *armv8 = target_to_armv8(target);
1931         enum reset_types reset_config = jtag_get_reset_config();
1932         int retval;
1933
1934         LOG_DEBUG(" ");
1935
1936         /* Issue some kind of warm reset. */
1937         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1938                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1939         else if (reset_config & RESET_HAS_SRST) {
1940                 bool srst_asserted = false;
1941
1942                 if (target->reset_halt) {
1943                         if (target_was_examined(target)) {
1944
1945                                 if (reset_config & RESET_SRST_NO_GATING) {
1946                                         /*
1947                                          * SRST needs to be asserted *before* Reset Catch
1948                                          * debug event can be set up.
1949                                          */
1950                                         adapter_assert_reset();
1951                                         srst_asserted = true;
1952
1953                                         /* make sure to clear all sticky errors */
1954                                         mem_ap_write_atomic_u32(armv8->debug_ap,
1955                                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1956                                 }
1957
1958                                 /* set up Reset Catch debug event to halt the CPU after reset */
1959                                 retval = aarch64_enable_reset_catch(target, true);
1960                                 if (retval != ERROR_OK)
1961                                         LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
1962                                                         target_name(target));
1963                         } else {
1964                                 LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
1965                                                 target_name(target));
1966                         }
1967                 }
1968
1969                 /* REVISIT handle "pulls" cases, if there's
1970                  * hardware that needs them to work.
1971                  */
1972                 if (!srst_asserted)
1973                         adapter_assert_reset();
1974         } else {
1975                 LOG_ERROR("%s: how to reset?", target_name(target));
1976                 return ERROR_FAIL;
1977         }
1978
1979         /* registers are now invalid */
1980         if (target_was_examined(target)) {
1981                 register_cache_invalidate(armv8->arm.core_cache);
1982                 register_cache_invalidate(armv8->arm.core_cache->next);
1983         }
1984
1985         target->state = TARGET_RESET;
1986
1987         return ERROR_OK;
1988 }
1989
1990 static int aarch64_deassert_reset(struct target *target)
1991 {
1992         int retval;
1993
1994         LOG_DEBUG(" ");
1995
1996         /* be certain SRST is off */
1997         adapter_deassert_reset();
1998
1999         if (!target_was_examined(target))
2000                 return ERROR_OK;
2001
2002         retval = aarch64_init_debug_access(target);
2003         if (retval != ERROR_OK)
2004                 return retval;
2005
2006         retval = aarch64_poll(target);
2007         if (retval != ERROR_OK)
2008                 return retval;
2009
2010         if (target->reset_halt) {
2011                 /* clear pending Reset Catch debug event */
2012                 retval = aarch64_clear_reset_catch(target);
2013                 if (retval != ERROR_OK)
2014                         LOG_WARNING("%s: Clearing Reset Catch debug event failed",
2015                                         target_name(target));
2016
2017                 /* disable Reset Catch debug event */
2018                 retval = aarch64_enable_reset_catch(target, false);
2019                 if (retval != ERROR_OK)
2020                         LOG_WARNING("%s: Disabling Reset Catch debug event failed",
2021                                         target_name(target));
2022
2023                 if (target->state != TARGET_HALTED) {
2024                         LOG_WARNING("%s: ran after reset and before halt ...",
2025                                 target_name(target));
2026                         retval = target_halt(target);
2027                         if (retval != ERROR_OK)
2028                                 return retval;
2029                 }
2030         }
2031
2032         return ERROR_OK;
2033 }
2034
2035 static int aarch64_write_cpu_memory_slow(struct target *target,
2036         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2037 {
2038         struct armv8_common *armv8 = target_to_armv8(target);
2039         struct arm_dpm *dpm = &armv8->dpm;
2040         struct arm *arm = &armv8->arm;
2041         int retval;
2042
2043         armv8_reg_current(arm, 1)->dirty = true;
2044
2045         /* change DCC to normal mode if necessary */
2046         if (*dscr & DSCR_MA) {
2047                 *dscr &= ~DSCR_MA;
2048                 retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2049                                 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2050                 if (retval != ERROR_OK)
2051                         return retval;
2052         }
2053
2054         while (count) {
2055                 uint32_t data, opcode;
2056
2057                 /* write the data to store into DTRRX */
2058                 if (size == 1)
2059                         data = *buffer;
2060                 else if (size == 2)
2061                         data = target_buffer_get_u16(target, buffer);
2062                 else
2063                         data = target_buffer_get_u32(target, buffer);
2064                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2065                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
2066                 if (retval != ERROR_OK)
2067                         return retval;
2068
2069                 if (arm->core_state == ARM_STATE_AARCH64)
2070                         retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
2071                 else
2072                         retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
2073                 if (retval != ERROR_OK)
2074                         return retval;
2075
2076                 if (size == 1)
2077                         opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
2078                 else if (size == 2)
2079                         opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
2080                 else
2081                         opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
2082                 retval = dpm->instr_execute(dpm, opcode);
2083                 if (retval != ERROR_OK)
2084                         return retval;
2085
2086                 /* Advance */
2087                 buffer += size;
2088                 --count;
2089         }
2090
2091         return ERROR_OK;
2092 }
2093
2094 static int aarch64_write_cpu_memory_fast(struct target *target,
2095         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2096 {
2097         struct armv8_common *armv8 = target_to_armv8(target);
2098         struct arm *arm = &armv8->arm;
2099         int retval;
2100
2101         armv8_reg_current(arm, 1)->dirty = true;
2102
2103         /* Step 1.d   - Change DCC to memory mode */
2104         *dscr |= DSCR_MA;
2105         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2106                         armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2107         if (retval != ERROR_OK)
2108                 return retval;
2109
2110
2111         /* Step 2.a   - Do the write */
2112         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
2113                                         buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
2114         if (retval != ERROR_OK)
2115                 return retval;
2116
2117         /* Step 3.a   - Switch DTR mode back to Normal mode */
2118         *dscr &= ~DSCR_MA;
2119         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2120                                 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2121         if (retval != ERROR_OK)
2122                 return retval;
2123
2124         return ERROR_OK;
2125 }
2126
2127 static int aarch64_write_cpu_memory(struct target *target,
2128         uint64_t address, uint32_t size,
2129         uint32_t count, const uint8_t *buffer)
2130 {
2131         /* write memory through APB-AP */
2132         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2133         struct armv8_common *armv8 = target_to_armv8(target);
2134         struct arm_dpm *dpm = &armv8->dpm;
2135         struct arm *arm = &armv8->arm;
2136         uint32_t dscr;
2137
2138         if (target->state != TARGET_HALTED) {
2139                 LOG_WARNING("target not halted");
2140                 return ERROR_TARGET_NOT_HALTED;
2141         }
2142
2143         /* Mark register X0 as dirty, as it will be used
2144          * for transferring the data.
2145          * It will be restored automatically when exiting
2146          * debug mode
2147          */
2148         armv8_reg_current(arm, 0)->dirty = true;
2149
2150         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2151
2152         /* Read DSCR */
2153         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2154                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2155         if (retval != ERROR_OK)
2156                 return retval;
2157
2158         /* Set Normal access mode  */
2159         dscr = (dscr & ~DSCR_MA);
2160         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2161                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2162         if (retval != ERROR_OK)
2163                 return retval;
2164
2165         if (arm->core_state == ARM_STATE_AARCH64) {
2166                 /* Write X0 with value 'address' using write procedure */
2167                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2168                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2169                 retval = dpm->instr_write_data_dcc_64(dpm,
2170                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2171         } else {
2172                 /* Write R0 with value 'address' using write procedure */
2173                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
2174                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2175                 retval = dpm->instr_write_data_dcc(dpm,
2176                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2177         }
2178
2179         if (retval != ERROR_OK)
2180                 return retval;
2181
2182         if (size == 4 && (address % 4) == 0)
2183                 retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
2184         else
2185                 retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2186
2187         if (retval != ERROR_OK) {
2188                 /* Unset DTR mode */
2189                 mem_ap_read_atomic_u32(armv8->debug_ap,
2190                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2191                 dscr &= ~DSCR_MA;
2192                 mem_ap_write_atomic_u32(armv8->debug_ap,
2193                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2194         }
2195
2196         /* Check for sticky abort flags in the DSCR */
2197         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2198                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2199         if (retval != ERROR_OK)
2200                 return retval;
2201
2202         dpm->dscr = dscr;
2203         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2204                 /* Abort occurred - clear it and exit */
2205                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2206                 armv8_dpm_handle_exception(dpm, true);
2207                 return ERROR_FAIL;
2208         }
2209
2210         /* Done */
2211         return ERROR_OK;
2212 }
2213
2214 static int aarch64_read_cpu_memory_slow(struct target *target,
2215         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2216 {
2217         struct armv8_common *armv8 = target_to_armv8(target);
2218         struct arm_dpm *dpm = &armv8->dpm;
2219         struct arm *arm = &armv8->arm;
2220         int retval;
2221
2222         armv8_reg_current(arm, 1)->dirty = true;
2223
2224         /* change DCC to normal mode (if necessary) */
2225         if (*dscr & DSCR_MA) {
2226                 *dscr &= DSCR_MA;
2227                 retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2228                                 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2229                 if (retval != ERROR_OK)
2230                         return retval;
2231         }
2232
2233         while (count) {
2234                 uint32_t opcode, data;
2235
2236                 if (size == 1)
2237                         opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
2238                 else if (size == 2)
2239                         opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
2240                 else
2241                         opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
2242                 retval = dpm->instr_execute(dpm, opcode);
2243                 if (retval != ERROR_OK)
2244                         return retval;
2245
2246                 if (arm->core_state == ARM_STATE_AARCH64)
2247                         retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
2248                 else
2249                         retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
2250                 if (retval != ERROR_OK)
2251                         return retval;
2252
2253                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2254                                 armv8->debug_base + CPUV8_DBG_DTRTX, &data);
2255                 if (retval != ERROR_OK)
2256                         return retval;
2257
2258                 if (size == 1)
2259                         *buffer = (uint8_t)data;
2260                 else if (size == 2)
2261                         target_buffer_set_u16(target, buffer, (uint16_t)data);
2262                 else
2263                         target_buffer_set_u32(target, buffer, data);
2264
2265                 /* Advance */
2266                 buffer += size;
2267                 --count;
2268         }
2269
2270         return ERROR_OK;
2271 }
2272
2273 static int aarch64_read_cpu_memory_fast(struct target *target,
2274         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2275 {
2276         struct armv8_common *armv8 = target_to_armv8(target);
2277         struct arm_dpm *dpm = &armv8->dpm;
2278         struct arm *arm = &armv8->arm;
2279         int retval;
2280         uint32_t value;
2281
2282         /* Mark X1 as dirty */
2283         armv8_reg_current(arm, 1)->dirty = true;
2284
2285         if (arm->core_state == ARM_STATE_AARCH64) {
2286                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2287                 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
2288         } else {
2289                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2290                 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
2291         }
2292
2293         if (retval != ERROR_OK)
2294                 return retval;
2295
2296         /* Step 1.e - Change DCC to memory mode */
2297         *dscr |= DSCR_MA;
2298         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2299                         armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2300         if (retval != ERROR_OK)
2301                 return retval;
2302
2303         /* Step 1.f - read DBGDTRTX and discard the value */
2304         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2305                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2306         if (retval != ERROR_OK)
2307                 return retval;
2308
2309         count--;
2310         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2311          * Abort flags are sticky, so can be read at end of transactions
2312          *
2313          * This data is read in aligned to 32 bit boundary.
2314          */
2315
2316         if (count) {
2317                 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2318                  * increments X0 by 4. */
2319                 retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
2320                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2321                 if (retval != ERROR_OK)
2322                         return retval;
2323         }
2324
2325         /* Step 3.a - set DTR access mode back to Normal mode   */
2326         *dscr &= ~DSCR_MA;
2327         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2328                                         armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2329         if (retval != ERROR_OK)
2330                 return retval;
2331
2332         /* Step 3.b - read DBGDTRTX for the final value */
2333         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2334                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2335         if (retval != ERROR_OK)
2336                 return retval;
2337
2338         target_buffer_set_u32(target, buffer + count * 4, value);
2339         return retval;
2340 }
2341
2342 static int aarch64_read_cpu_memory(struct target *target,
2343         target_addr_t address, uint32_t size,
2344         uint32_t count, uint8_t *buffer)
2345 {
2346         /* read memory through APB-AP */
2347         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2348         struct armv8_common *armv8 = target_to_armv8(target);
2349         struct arm_dpm *dpm = &armv8->dpm;
2350         struct arm *arm = &armv8->arm;
2351         uint32_t dscr;
2352
2353         LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2354                         address, size, count);
2355
2356         if (target->state != TARGET_HALTED) {
2357                 LOG_WARNING("target not halted");
2358                 return ERROR_TARGET_NOT_HALTED;
2359         }
2360
2361         /* Mark register X0 as dirty, as it will be used
2362          * for transferring the data.
2363          * It will be restored automatically when exiting
2364          * debug mode
2365          */
2366         armv8_reg_current(arm, 0)->dirty = true;
2367
2368         /* Read DSCR */
2369         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2370                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2371         if (retval != ERROR_OK)
2372                 return retval;
2373
2374         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2375
2376         /* Set Normal access mode  */
2377         dscr &= ~DSCR_MA;
2378         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2379                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2380         if (retval != ERROR_OK)
2381                 return retval;
2382
2383         if (arm->core_state == ARM_STATE_AARCH64) {
2384                 /* Write X0 with value 'address' using write procedure */
2385                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2386                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2387                 retval = dpm->instr_write_data_dcc_64(dpm,
2388                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2389         } else {
2390                 /* Write R0 with value 'address' using write procedure */
2391                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2392                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2393                 retval = dpm->instr_write_data_dcc(dpm,
2394                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2395         }
2396
2397         if (retval != ERROR_OK)
2398                 return retval;
2399
2400         if (size == 4 && (address % 4) == 0)
2401                 retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2402         else
2403                 retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2404
2405         if (dscr & DSCR_MA) {
2406                 dscr &= ~DSCR_MA;
2407                 mem_ap_write_atomic_u32(armv8->debug_ap,
2408                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2409         }
2410
2411         if (retval != ERROR_OK)
2412                 return retval;
2413
2414         /* Check for sticky abort flags in the DSCR */
2415         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2416                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2417         if (retval != ERROR_OK)
2418                 return retval;
2419
2420         dpm->dscr = dscr;
2421
2422         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2423                 /* Abort occurred - clear it and exit */
2424                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2425                 armv8_dpm_handle_exception(dpm, true);
2426                 return ERROR_FAIL;
2427         }
2428
2429         /* Done */
2430         return ERROR_OK;
2431 }
2432
2433 static int aarch64_read_phys_memory(struct target *target,
2434         target_addr_t address, uint32_t size,
2435         uint32_t count, uint8_t *buffer)
2436 {
2437         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2438
2439         if (count && buffer) {
2440                 /* read memory through APB-AP */
2441                 retval = aarch64_mmu_modify(target, 0);
2442                 if (retval != ERROR_OK)
2443                         return retval;
2444                 retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
2445         }
2446         return retval;
2447 }
2448
2449 static int aarch64_read_memory(struct target *target, target_addr_t address,
2450         uint32_t size, uint32_t count, uint8_t *buffer)
2451 {
2452         int mmu_enabled = 0;
2453         int retval;
2454
2455         /* determine if MMU was enabled on target stop */
2456         retval = aarch64_mmu(target, &mmu_enabled);
2457         if (retval != ERROR_OK)
2458                 return retval;
2459
2460         if (mmu_enabled) {
2461                 /* enable MMU as we could have disabled it for phys access */
2462                 retval = aarch64_mmu_modify(target, 1);
2463                 if (retval != ERROR_OK)
2464                         return retval;
2465         }
2466         return aarch64_read_cpu_memory(target, address, size, count, buffer);
2467 }
2468
2469 static int aarch64_write_phys_memory(struct target *target,
2470         target_addr_t address, uint32_t size,
2471         uint32_t count, const uint8_t *buffer)
2472 {
2473         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2474
2475         if (count && buffer) {
2476                 /* write memory through APB-AP */
2477                 retval = aarch64_mmu_modify(target, 0);
2478                 if (retval != ERROR_OK)
2479                         return retval;
2480                 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2481         }
2482
2483         return retval;
2484 }
2485
2486 static int aarch64_write_memory(struct target *target, target_addr_t address,
2487         uint32_t size, uint32_t count, const uint8_t *buffer)
2488 {
2489         int mmu_enabled = 0;
2490         int retval;
2491
2492         /* determine if MMU was enabled on target stop */
2493         retval = aarch64_mmu(target, &mmu_enabled);
2494         if (retval != ERROR_OK)
2495                 return retval;
2496
2497         if (mmu_enabled) {
2498                 /* enable MMU as we could have disabled it for phys access */
2499                 retval = aarch64_mmu_modify(target, 1);
2500                 if (retval != ERROR_OK)
2501                         return retval;
2502         }
2503         return aarch64_write_cpu_memory(target, address, size, count, buffer);
2504 }
2505
2506 static int aarch64_handle_target_request(void *priv)
2507 {
2508         struct target *target = priv;
2509         struct armv8_common *armv8 = target_to_armv8(target);
2510         int retval;
2511
2512         if (!target_was_examined(target))
2513                 return ERROR_OK;
2514         if (!target->dbg_msg_enabled)
2515                 return ERROR_OK;
2516
2517         if (target->state == TARGET_RUNNING) {
2518                 uint32_t request;
2519                 uint32_t dscr;
2520                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2521                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2522
2523                 /* check if we have data */
2524                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2525                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2526                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2527                         if (retval == ERROR_OK) {
2528                                 target_request(target, request);
2529                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2530                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2531                         }
2532                 }
2533         }
2534
2535         return ERROR_OK;
2536 }
2537
2538 static int aarch64_examine_first(struct target *target)
2539 {
2540         struct aarch64_common *aarch64 = target_to_aarch64(target);
2541         struct armv8_common *armv8 = &aarch64->armv8_common;
2542         struct adiv5_dap *swjdp = armv8->arm.dap;
2543         struct aarch64_private_config *pc = target->private_config;
2544         int i;
2545         int retval = ERROR_OK;
2546         uint64_t debug, ttypr;
2547         uint32_t cpuid;
2548         uint32_t tmp0, tmp1, tmp2, tmp3;
2549         debug = ttypr = cpuid = 0;
2550
2551         if (!pc)
2552                 return ERROR_FAIL;
2553
2554         if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
2555                 /* Search for the APB-AB */
2556                 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2557                 if (retval != ERROR_OK) {
2558                         LOG_ERROR("Could not find APB-AP for debug access");
2559                         return retval;
2560                 }
2561         } else {
2562                 armv8->debug_ap = dap_ap(swjdp, pc->adiv5_config.ap_num);
2563         }
2564
2565         retval = mem_ap_init(armv8->debug_ap);
2566         if (retval != ERROR_OK) {
2567                 LOG_ERROR("Could not initialize the APB-AP");
2568                 return retval;
2569         }
2570
2571         armv8->debug_ap->memaccess_tck = 10;
2572
2573         if (!target->dbgbase_set) {
2574                 target_addr_t dbgbase;
2575                 /* Get ROM Table base */
2576                 uint32_t apid;
2577                 int32_t coreidx = target->coreid;
2578                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2579                 if (retval != ERROR_OK)
2580                         return retval;
2581                 /* Lookup 0x15 -- Processor DAP */
2582                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2583                                 &armv8->debug_base, &coreidx);
2584                 if (retval != ERROR_OK)
2585                         return retval;
2586                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT
2587                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2588         } else
2589                 armv8->debug_base = target->dbgbase;
2590
2591         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2592                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2593         if (retval != ERROR_OK) {
2594                 LOG_DEBUG("Examine %s failed", "oslock");
2595                 return retval;
2596         }
2597
2598         retval = mem_ap_read_u32(armv8->debug_ap,
2599                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2600         if (retval != ERROR_OK) {
2601                 LOG_DEBUG("Examine %s failed", "CPUID");
2602                 return retval;
2603         }
2604
2605         retval = mem_ap_read_u32(armv8->debug_ap,
2606                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2607         retval += mem_ap_read_u32(armv8->debug_ap,
2608                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2609         if (retval != ERROR_OK) {
2610                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2611                 return retval;
2612         }
2613         retval = mem_ap_read_u32(armv8->debug_ap,
2614                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2615         retval += mem_ap_read_u32(armv8->debug_ap,
2616                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2617         if (retval != ERROR_OK) {
2618                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2619                 return retval;
2620         }
2621
2622         retval = dap_run(armv8->debug_ap->dap);
2623         if (retval != ERROR_OK) {
2624                 LOG_ERROR("%s: examination failed\n", target_name(target));
2625                 return retval;
2626         }
2627
2628         ttypr |= tmp1;
2629         ttypr = (ttypr << 32) | tmp0;
2630         debug |= tmp3;
2631         debug = (debug << 32) | tmp2;
2632
2633         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2634         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2635         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2636
2637         if (!pc->cti)
2638                 return ERROR_FAIL;
2639
2640         armv8->cti = pc->cti;
2641
2642         retval = aarch64_dpm_setup(aarch64, debug);
2643         if (retval != ERROR_OK)
2644                 return retval;
2645
2646         /* Setup Breakpoint Register Pairs */
2647         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2648         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2649         aarch64->brp_num_available = aarch64->brp_num;
2650         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2651         for (i = 0; i < aarch64->brp_num; i++) {
2652                 aarch64->brp_list[i].used = 0;
2653                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2654                         aarch64->brp_list[i].type = BRP_NORMAL;
2655                 else
2656                         aarch64->brp_list[i].type = BRP_CONTEXT;
2657                 aarch64->brp_list[i].value = 0;
2658                 aarch64->brp_list[i].control = 0;
2659                 aarch64->brp_list[i].brpn = i;
2660         }
2661
2662         /* Setup Watchpoint Register Pairs */
2663         aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
2664         aarch64->wp_num_available = aarch64->wp_num;
2665         aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
2666         for (i = 0; i < aarch64->wp_num; i++) {
2667                 aarch64->wp_list[i].used = 0;
2668                 aarch64->wp_list[i].type = BRP_NORMAL;
2669                 aarch64->wp_list[i].value = 0;
2670                 aarch64->wp_list[i].control = 0;
2671                 aarch64->wp_list[i].brpn = i;
2672         }
2673
2674         LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
2675                 aarch64->brp_num, aarch64->wp_num);
2676
2677         target->state = TARGET_UNKNOWN;
2678         target->debug_reason = DBG_REASON_NOTHALTED;
2679         aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
2680         target_set_examined(target);
2681         return ERROR_OK;
2682 }
2683
2684 static int aarch64_examine(struct target *target)
2685 {
2686         int retval = ERROR_OK;
2687
2688         /* don't re-probe hardware after each reset */
2689         if (!target_was_examined(target))
2690                 retval = aarch64_examine_first(target);
2691
2692         /* Configure core debug access */
2693         if (retval == ERROR_OK)
2694                 retval = aarch64_init_debug_access(target);
2695
2696         return retval;
2697 }
2698
2699 /*
2700  *      Cortex-A8 target creation and initialization
2701  */
2702
2703 static int aarch64_init_target(struct command_context *cmd_ctx,
2704         struct target *target)
2705 {
2706         /* examine_first() does a bunch of this */
2707         arm_semihosting_init(target);
2708         return ERROR_OK;
2709 }
2710
2711 static int aarch64_init_arch_info(struct target *target,
2712         struct aarch64_common *aarch64, struct adiv5_dap *dap)
2713 {
2714         struct armv8_common *armv8 = &aarch64->armv8_common;
2715
2716         /* Setup struct aarch64_common */
2717         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2718         armv8->arm.dap = dap;
2719
2720         /* register arch-specific functions */
2721         armv8->examine_debug_reason = NULL;
2722         armv8->post_debug_entry = aarch64_post_debug_entry;
2723         armv8->pre_restore_context = NULL;
2724         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2725
2726         armv8_init_arch_info(target, armv8);
2727         target_register_timer_callback(aarch64_handle_target_request, 1,
2728                 TARGET_TIMER_TYPE_PERIODIC, target);
2729
2730         return ERROR_OK;
2731 }
2732
2733 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2734 {
2735         struct aarch64_private_config *pc = target->private_config;
2736         struct aarch64_common *aarch64;
2737
2738         if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2739                 return ERROR_FAIL;
2740
2741         aarch64 = calloc(1, sizeof(struct aarch64_common));
2742         if (!aarch64) {
2743                 LOG_ERROR("Out of memory");
2744                 return ERROR_FAIL;
2745         }
2746
2747         return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2748 }
2749
2750 static void aarch64_deinit_target(struct target *target)
2751 {
2752         struct aarch64_common *aarch64 = target_to_aarch64(target);
2753         struct armv8_common *armv8 = &aarch64->armv8_common;
2754         struct arm_dpm *dpm = &armv8->dpm;
2755
2756         armv8_free_reg_cache(target);
2757         free(aarch64->brp_list);
2758         free(dpm->dbp);
2759         free(dpm->dwp);
2760         free(target->private_config);
2761         free(aarch64);
2762 }
2763
2764 static int aarch64_mmu(struct target *target, int *enabled)
2765 {
2766         if (target->state != TARGET_HALTED) {
2767                 LOG_ERROR("%s: target %s not halted", __func__, target_name(target));
2768                 return ERROR_TARGET_INVALID;
2769         }
2770
2771         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2772         return ERROR_OK;
2773 }
2774
2775 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2776                              target_addr_t *phys)
2777 {
2778         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2779 }
2780
2781 /*
2782  * private target configuration items
2783  */
2784 enum aarch64_cfg_param {
2785         CFG_CTI,
2786 };
2787
2788 static const struct jim_nvp nvp_config_opts[] = {
2789         { .name = "-cti", .value = CFG_CTI },
2790         { .name = NULL, .value = -1 }
2791 };
2792
2793 static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
2794 {
2795         struct aarch64_private_config *pc;
2796         struct jim_nvp *n;
2797         int e;
2798
2799         pc = (struct aarch64_private_config *)target->private_config;
2800         if (!pc) {
2801                         pc = calloc(1, sizeof(struct aarch64_private_config));
2802                         pc->adiv5_config.ap_num = DP_APSEL_INVALID;
2803                         target->private_config = pc;
2804         }
2805
2806         /*
2807          * Call adiv5_jim_configure() to parse the common DAP options
2808          * It will return JIM_CONTINUE if it didn't find any known
2809          * options, JIM_OK if it correctly parsed the topmost option
2810          * and JIM_ERR if an error occurred during parameter evaluation.
2811          * For JIM_CONTINUE, we check our own params.
2812          *
2813          * adiv5_jim_configure() assumes 'private_config' to point to
2814          * 'struct adiv5_private_config'. Override 'private_config'!
2815          */
2816         target->private_config = &pc->adiv5_config;
2817         e = adiv5_jim_configure(target, goi);
2818         target->private_config = pc;
2819         if (e != JIM_CONTINUE)
2820                 return e;
2821
2822         /* parse config or cget options ... */
2823         if (goi->argc > 0) {
2824                 Jim_SetEmptyResult(goi->interp);
2825
2826                 /* check first if topmost item is for us */
2827                 e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
2828                                 goi->argv[0], &n);
2829                 if (e != JIM_OK)
2830                         return JIM_CONTINUE;
2831
2832                 e = jim_getopt_obj(goi, NULL);
2833                 if (e != JIM_OK)
2834                         return e;
2835
2836                 switch (n->value) {
2837                 case CFG_CTI: {
2838                         if (goi->isconfigure) {
2839                                 Jim_Obj *o_cti;
2840                                 struct arm_cti *cti;
2841                                 e = jim_getopt_obj(goi, &o_cti);
2842                                 if (e != JIM_OK)
2843                                         return e;
2844                                 cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2845                                 if (!cti) {
2846                                         Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2847                                         return JIM_ERR;
2848                                 }
2849                                 pc->cti = cti;
2850                         } else {
2851                                 if (goi->argc != 0) {
2852                                         Jim_WrongNumArgs(goi->interp,
2853                                                         goi->argc, goi->argv,
2854                                                         "NO PARAMS");
2855                                         return JIM_ERR;
2856                                 }
2857
2858                                 if (!pc || !pc->cti) {
2859                                         Jim_SetResultString(goi->interp, "CTI not configured", -1);
2860                                         return JIM_ERR;
2861                                 }
2862                                 Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2863                         }
2864                         break;
2865                 }
2866
2867                 default:
2868                         return JIM_CONTINUE;
2869                 }
2870         }
2871
2872         return JIM_OK;
2873 }
2874
2875 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2876 {
2877         struct target *target = get_current_target(CMD_CTX);
2878         struct armv8_common *armv8 = target_to_armv8(target);
2879
2880         return armv8_handle_cache_info_command(CMD,
2881                         &armv8->armv8_mmu.armv8_cache);
2882 }
2883
2884 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2885 {
2886         struct target *target = get_current_target(CMD_CTX);
2887         if (!target_was_examined(target)) {
2888                 LOG_ERROR("target not examined yet");
2889                 return ERROR_FAIL;
2890         }
2891
2892         return aarch64_init_debug_access(target);
2893 }
2894
2895 COMMAND_HANDLER(aarch64_handle_disassemble_command)
2896 {
2897         struct target *target = get_current_target(CMD_CTX);
2898
2899         if (!target) {
2900                 LOG_ERROR("No target selected");
2901                 return ERROR_FAIL;
2902         }
2903
2904         struct aarch64_common *aarch64 = target_to_aarch64(target);
2905
2906         if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
2907                 command_print(CMD, "current target isn't an AArch64");
2908                 return ERROR_FAIL;
2909         }
2910
2911         int count = 1;
2912         target_addr_t address;
2913
2914         switch (CMD_ARGC) {
2915                 case 2:
2916                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
2917                 /* FALL THROUGH */
2918                 case 1:
2919                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
2920                         break;
2921                 default:
2922                         return ERROR_COMMAND_SYNTAX_ERROR;
2923         }
2924
2925         return a64_disassemble(CMD, target, address, count);
2926 }
2927
2928 COMMAND_HANDLER(aarch64_mask_interrupts_command)
2929 {
2930         struct target *target = get_current_target(CMD_CTX);
2931         struct aarch64_common *aarch64 = target_to_aarch64(target);
2932
2933         static const struct jim_nvp nvp_maskisr_modes[] = {
2934                 { .name = "off", .value = AARCH64_ISRMASK_OFF },
2935                 { .name = "on", .value = AARCH64_ISRMASK_ON },
2936                 { .name = NULL, .value = -1 },
2937         };
2938         const struct jim_nvp *n;
2939
2940         if (CMD_ARGC > 0) {
2941                 n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2942                 if (!n->name) {
2943                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
2944                         return ERROR_COMMAND_SYNTAX_ERROR;
2945                 }
2946
2947                 aarch64->isrmasking_mode = n->value;
2948         }
2949
2950         n = jim_nvp_value2name_simple(nvp_maskisr_modes, aarch64->isrmasking_mode);
2951         command_print(CMD, "aarch64 interrupt mask %s", n->name);
2952
2953         return ERROR_OK;
2954 }
2955
2956 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
2957 {
2958         struct command *c = jim_to_command(interp);
2959         struct command_context *context;
2960         struct target *target;
2961         struct arm *arm;
2962         int retval;
2963         bool is_mcr = false;
2964         int arg_cnt = 0;
2965
2966         if (!strcmp(c->name, "mcr")) {
2967                 is_mcr = true;
2968                 arg_cnt = 7;
2969         } else {
2970                 arg_cnt = 6;
2971         }
2972
2973         context = current_command_context(interp);
2974         assert(context);
2975
2976         target = get_current_target(context);
2977         if (!target) {
2978                 LOG_ERROR("%s: no current target", __func__);
2979                 return JIM_ERR;
2980         }
2981         if (!target_was_examined(target)) {
2982                 LOG_ERROR("%s: not yet examined", target_name(target));
2983                 return JIM_ERR;
2984         }
2985
2986         arm = target_to_arm(target);
2987         if (!is_arm(arm)) {
2988                 LOG_ERROR("%s: not an ARM", target_name(target));
2989                 return JIM_ERR;
2990         }
2991
2992         if (target->state != TARGET_HALTED)
2993                 return ERROR_TARGET_NOT_HALTED;
2994
2995         if (arm->core_state == ARM_STATE_AARCH64) {
2996                 LOG_ERROR("%s: not 32-bit arm target", target_name(target));
2997                 return JIM_ERR;
2998         }
2999
3000         if (argc != arg_cnt) {
3001                 LOG_ERROR("%s: wrong number of arguments", __func__);
3002                 return JIM_ERR;
3003         }
3004
3005         int cpnum;
3006         uint32_t op1;
3007         uint32_t op2;
3008         uint32_t crn;
3009         uint32_t crm;
3010         uint32_t value;
3011         long l;
3012
3013         /* NOTE:  parameter sequence matches ARM instruction set usage:
3014          *      MCR     pNUM, op1, rX, CRn, CRm, op2    ; write CP from rX
3015          *      MRC     pNUM, op1, rX, CRn, CRm, op2    ; read CP into rX
3016          * The "rX" is necessarily omitted; it uses Tcl mechanisms.
3017          */
3018         retval = Jim_GetLong(interp, argv[1], &l);
3019         if (retval != JIM_OK)
3020                 return retval;
3021         if (l & ~0xf) {
3022                 LOG_ERROR("%s: %s %d out of range", __func__,
3023                         "coprocessor", (int) l);
3024                 return JIM_ERR;
3025         }
3026         cpnum = l;
3027
3028         retval = Jim_GetLong(interp, argv[2], &l);
3029         if (retval != JIM_OK)
3030                 return retval;
3031         if (l & ~0x7) {
3032                 LOG_ERROR("%s: %s %d out of range", __func__,
3033                         "op1", (int) l);
3034                 return JIM_ERR;
3035         }
3036         op1 = l;
3037
3038         retval = Jim_GetLong(interp, argv[3], &l);
3039         if (retval != JIM_OK)
3040                 return retval;
3041         if (l & ~0xf) {
3042                 LOG_ERROR("%s: %s %d out of range", __func__,
3043                         "CRn", (int) l);
3044                 return JIM_ERR;
3045         }
3046         crn = l;
3047
3048         retval = Jim_GetLong(interp, argv[4], &l);
3049         if (retval != JIM_OK)
3050                 return retval;
3051         if (l & ~0xf) {
3052                 LOG_ERROR("%s: %s %d out of range", __func__,
3053                         "CRm", (int) l);
3054                 return JIM_ERR;
3055         }
3056         crm = l;
3057
3058         retval = Jim_GetLong(interp, argv[5], &l);
3059         if (retval != JIM_OK)
3060                 return retval;
3061         if (l & ~0x7) {
3062                 LOG_ERROR("%s: %s %d out of range", __func__,
3063                         "op2", (int) l);
3064                 return JIM_ERR;
3065         }
3066         op2 = l;
3067
3068         value = 0;
3069
3070         if (is_mcr == true) {
3071                 retval = Jim_GetLong(interp, argv[6], &l);
3072                 if (retval != JIM_OK)
3073                         return retval;
3074                 value = l;
3075
3076                 /* NOTE: parameters reordered! */
3077                 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
3078                 retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
3079                 if (retval != ERROR_OK)
3080                         return JIM_ERR;
3081         } else {
3082                 /* NOTE: parameters reordered! */
3083                 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
3084                 retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
3085                 if (retval != ERROR_OK)
3086                         return JIM_ERR;
3087
3088                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
3089         }
3090
3091         return JIM_OK;
3092 }
3093
3094 static const struct command_registration aarch64_exec_command_handlers[] = {
3095         {
3096                 .name = "cache_info",
3097                 .handler = aarch64_handle_cache_info_command,
3098                 .mode = COMMAND_EXEC,
3099                 .help = "display information about target caches",
3100                 .usage = "",
3101         },
3102         {
3103                 .name = "dbginit",
3104                 .handler = aarch64_handle_dbginit_command,
3105                 .mode = COMMAND_EXEC,
3106                 .help = "Initialize core debug",
3107                 .usage = "",
3108         },
3109         {
3110                 .name = "disassemble",
3111                 .handler = aarch64_handle_disassemble_command,
3112                 .mode = COMMAND_EXEC,
3113                 .help = "Disassemble instructions",
3114                 .usage = "address [count]",
3115         },
3116         {
3117                 .name = "maskisr",
3118                 .handler = aarch64_mask_interrupts_command,
3119                 .mode = COMMAND_ANY,
3120                 .help = "mask aarch64 interrupts during single-step",
3121                 .usage = "['on'|'off']",
3122         },
3123         {
3124                 .name = "mcr",
3125                 .mode = COMMAND_EXEC,
3126                 .jim_handler = jim_mcrmrc,
3127                 .help = "write coprocessor register",
3128                 .usage = "cpnum op1 CRn CRm op2 value",
3129         },
3130         {
3131                 .name = "mrc",
3132                 .mode = COMMAND_EXEC,
3133                 .jim_handler = jim_mcrmrc,
3134                 .help = "read coprocessor register",
3135                 .usage = "cpnum op1 CRn CRm op2",
3136         },
3137         {
3138                 .chain = smp_command_handlers,
3139         },
3140
3141
3142         COMMAND_REGISTRATION_DONE
3143 };
3144
3145 extern const struct command_registration semihosting_common_handlers[];
3146
3147 static const struct command_registration aarch64_command_handlers[] = {
3148         {
3149                 .name = "arm",
3150                 .mode = COMMAND_ANY,
3151                 .help = "ARM Command Group",
3152                 .usage = "",
3153                 .chain = semihosting_common_handlers
3154         },
3155         {
3156                 .chain = armv8_command_handlers,
3157         },
3158         {
3159                 .name = "aarch64",
3160                 .mode = COMMAND_ANY,
3161                 .help = "Aarch64 command group",
3162                 .usage = "",
3163                 .chain = aarch64_exec_command_handlers,
3164         },
3165         COMMAND_REGISTRATION_DONE
3166 };
3167
3168 struct target_type aarch64_target = {
3169         .name = "aarch64",
3170
3171         .poll = aarch64_poll,
3172         .arch_state = armv8_arch_state,
3173
3174         .halt = aarch64_halt,
3175         .resume = aarch64_resume,
3176         .step = aarch64_step,
3177
3178         .assert_reset = aarch64_assert_reset,
3179         .deassert_reset = aarch64_deassert_reset,
3180
3181         /* REVISIT allow exporting VFP3 registers ... */
3182         .get_gdb_arch = armv8_get_gdb_arch,
3183         .get_gdb_reg_list = armv8_get_gdb_reg_list,
3184
3185         .read_memory = aarch64_read_memory,
3186         .write_memory = aarch64_write_memory,
3187
3188         .add_breakpoint = aarch64_add_breakpoint,
3189         .add_context_breakpoint = aarch64_add_context_breakpoint,
3190         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3191         .remove_breakpoint = aarch64_remove_breakpoint,
3192         .add_watchpoint = aarch64_add_watchpoint,
3193         .remove_watchpoint = aarch64_remove_watchpoint,
3194         .hit_watchpoint = aarch64_hit_watchpoint,
3195
3196         .commands = aarch64_command_handlers,
3197         .target_create = aarch64_target_create,
3198         .target_jim_configure = aarch64_jim_configure,
3199         .init_target = aarch64_init_target,
3200         .deinit_target = aarch64_deinit_target,
3201         .examine = aarch64_examine,
3202
3203         .read_phys_memory = aarch64_read_phys_memory,
3204         .write_phys_memory = aarch64_write_phys_memory,
3205         .mmu = aarch64_mmu,
3206         .virt2phys = aarch64_virt2phys,
3207 };