aarch64: use symbolic opcodes instead of hex values
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
61
62                 switch (armv8->arm.core_mode) {
63                         case ARMV8_64_EL0T:
64                         case ARMV8_64_EL1T:
65                         case ARMV8_64_EL1H:
66                                 retval = armv8->arm.msr(target, 3, /*op 0*/
67                                                 0, 1,   /* op1, op2 */
68                                                 0, 0,   /* CRn, CRm */
69                                                 aarch64->system_control_reg);
70                                 if (retval != ERROR_OK)
71                                         return retval;
72                         break;
73                         case ARMV8_64_EL2T:
74                         case ARMV8_64_EL2H:
75                                 retval = armv8->arm.msr(target, 3, /*op 0*/
76                                                 4, 1,   /* op1, op2 */
77                                                 0, 0,   /* CRn, CRm */
78                                                 aarch64->system_control_reg);
79                                 if (retval != ERROR_OK)
80                                         return retval;
81                         break;
82                         case ARMV8_64_EL3H:
83                         case ARMV8_64_EL3T:
84                                 retval = armv8->arm.msr(target, 3, /*op 0*/
85                                                 6, 1,   /* op1, op2 */
86                                                 0, 0,   /* CRn, CRm */
87                                                 aarch64->system_control_reg);
88                                 if (retval != ERROR_OK)
89                                         return retval;
90                         break;
91                         default:
92                                 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
93                         }
94         }
95         return retval;
96 }
97
98 /*  check address before aarch64_apb read write access with mmu on
99  *  remove apb predictible data abort */
100 static int aarch64_check_address(struct target *target, uint32_t address)
101 {
102         /* TODO */
103         return ERROR_OK;
104 }
105 /*  modify system_control_reg in order to enable or disable mmu for :
106  *  - virt2phys address conversion
107  *  - read or write memory in phys or virt address */
108 static int aarch64_mmu_modify(struct target *target, int enable)
109 {
110         struct aarch64_common *aarch64 = target_to_aarch64(target);
111         struct armv8_common *armv8 = &aarch64->armv8_common;
112         int retval = ERROR_OK;
113
114         if (enable) {
115                 /*      if mmu enabled at target stop and mmu not enable */
116                 if (!(aarch64->system_control_reg & 0x1U)) {
117                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
118                         return ERROR_FAIL;
119                 }
120                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
121                         aarch64->system_control_reg_curr |= 0x1U;
122                         switch (armv8->arm.core_mode) {
123                                 case ARMV8_64_EL0T:
124                                 case ARMV8_64_EL1T:
125                                 case ARMV8_64_EL1H:
126                                         retval = armv8->arm.msr(target, 3, /*op 0*/
127                                                         0, 0,   /* op1, op2 */
128                                                         1, 0,   /* CRn, CRm */
129                                                         aarch64->system_control_reg_curr);
130                                         if (retval != ERROR_OK)
131                                                 return retval;
132                                 break;
133                                 case ARMV8_64_EL2T:
134                                 case ARMV8_64_EL2H:
135                                         retval = armv8->arm.msr(target, 3, /*op 0*/
136                                                         4, 0,   /* op1, op2 */
137                                                         1, 0,   /* CRn, CRm */
138                                                         aarch64->system_control_reg_curr);
139                                         if (retval != ERROR_OK)
140                                                 return retval;
141                                 break;
142                                 case ARMV8_64_EL3H:
143                                 case ARMV8_64_EL3T:
144                                         retval = armv8->arm.msr(target, 3, /*op 0*/
145                                                         6, 0,   /* op1, op2 */
146                                                         1, 0,   /* CRn, CRm */
147                                                         aarch64->system_control_reg_curr);
148                                         if (retval != ERROR_OK)
149                                                 return retval;
150                                 break;
151                                 default:
152                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
153                         }
154                 }
155         } else {
156                 if (aarch64->system_control_reg_curr & 0x4U) {
157                         /*  data cache is active */
158                         aarch64->system_control_reg_curr &= ~0x4U;
159                         /* flush data cache armv7 function to be called */
160                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
161                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
162                 }
163                 if ((aarch64->system_control_reg_curr & 0x1U)) {
164                         aarch64->system_control_reg_curr &= ~0x1U;
165                         switch (armv8->arm.core_mode) {
166                                 case ARMV8_64_EL0T:
167                                 case ARMV8_64_EL1T:
168                                 case ARMV8_64_EL1H:
169                                         retval = armv8->arm.msr(target, 3, /*op 0*/
170                                                         0, 0,   /* op1, op2 */
171                                                         1, 0,   /* CRn, CRm */
172                                                         aarch64->system_control_reg_curr);
173                                         if (retval != ERROR_OK)
174                                                 return retval;
175                                         break;
176                                 case ARMV8_64_EL2T:
177                                 case ARMV8_64_EL2H:
178                                         retval = armv8->arm.msr(target, 3, /*op 0*/
179                                                         4, 0,   /* op1, op2 */
180                                                         1, 0,   /* CRn, CRm */
181                                                         aarch64->system_control_reg_curr);
182                                         if (retval != ERROR_OK)
183                                                 return retval;
184                                         break;
185                                 case ARMV8_64_EL3H:
186                                 case ARMV8_64_EL3T:
187                                         retval = armv8->arm.msr(target, 3, /*op 0*/
188                                                         6, 0,   /* op1, op2 */
189                                                         1, 0,   /* CRn, CRm */
190                                                         aarch64->system_control_reg_curr);
191                                         if (retval != ERROR_OK)
192                                                 return retval;
193                                         break;
194                                 default:
195                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
196                                         break;
197                         }
198                 }
199         }
200         return retval;
201 }
202
203 /*
204  * Basic debug access, very low level assumes state is saved
205  */
206 static int aarch64_init_debug_access(struct target *target)
207 {
208         struct armv8_common *armv8 = target_to_armv8(target);
209         int retval;
210         uint32_t dummy;
211
212         LOG_DEBUG(" ");
213
214         /* Unlocking the debug registers for modification
215          * The debugport might be uninitialised so try twice */
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
217                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
218         if (retval != ERROR_OK) {
219                 /* try again */
220                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
221                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
222                 if (retval == ERROR_OK)
223                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
224         }
225         if (retval != ERROR_OK)
226                 return retval;
227         /* Clear Sticky Power Down status Bit in PRSR to enable access to
228            the registers in the Core Power Domain */
229         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
230                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
231         if (retval != ERROR_OK)
232                 return retval;
233
234         /* Enabling of instruction execution in debug mode is done in debug_entry code */
235
236         /* Resync breakpoint registers */
237
238         /* Since this is likely called from init or reset, update target state information*/
239         return aarch64_poll(target);
240 }
241
242 /* To reduce needless round-trips, pass in a pointer to the current
243  * DSCR value.  Initialize it to zero if you just need to know the
244  * value on return from this function; or DSCR_ITE if you
245  * happen to know that no instruction is pending.
246  */
247 static int aarch64_exec_opcode(struct target *target,
248         uint32_t opcode, uint32_t *dscr_p)
249 {
250         uint32_t dscr;
251         int retval;
252         struct armv8_common *armv8 = target_to_armv8(target);
253         dscr = dscr_p ? *dscr_p : 0;
254
255         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
256
257         /* Wait for InstrCompl bit to be set */
258         long long then = timeval_ms();
259         while ((dscr & DSCR_ITE) == 0) {
260                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
261                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
262                 if (retval != ERROR_OK) {
263                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
264                         return retval;
265                 }
266                 if (timeval_ms() > then + 1000) {
267                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
268                         return ERROR_FAIL;
269                 }
270         }
271
272         retval = mem_ap_write_u32(armv8->debug_ap,
273                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         then = timeval_ms();
278         do {
279                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
281                 if (retval != ERROR_OK) {
282                         LOG_ERROR("Could not read DSCR register");
283                         return retval;
284                 }
285                 if (timeval_ms() > then + 1000) {
286                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
287                         return ERROR_FAIL;
288                 }
289         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
290
291         if (dscr_p)
292                 *dscr_p = dscr;
293
294         return retval;
295 }
296
297 /* Write to memory mapped registers directly with no cache or mmu handling */
298 static int aarch64_dap_write_memap_register_u32(struct target *target,
299         uint32_t address,
300         uint32_t value)
301 {
302         int retval;
303         struct armv8_common *armv8 = target_to_armv8(target);
304
305         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
306
307         return retval;
308 }
309
310 /*
311  * AARCH64 implementation of Debug Programmer's Model
312  *
313  * NOTE the invariant:  these routines return with DSCR_ITE set,
314  * so there's no need to poll for it before executing an instruction.
315  *
316  * NOTE that in several of these cases the "stall" mode might be useful.
317  * It'd let us queue a few operations together... prepare/finish might
318  * be the places to enable/disable that mode.
319  */
320
321 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
322 {
323         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
324 }
325
326 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
327 {
328         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
329         return mem_ap_write_u32(armv8->debug_ap,
330                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
331 }
332
333 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
334 {
335         int ret;
336         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
337         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
338         ret = mem_ap_write_u32(armv8->debug_ap,
339                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
340         ret += mem_ap_write_u32(armv8->debug_ap,
341                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
342         return ret;
343 }
344
345 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
346         uint32_t *dscr_p)
347 {
348         uint32_t dscr = DSCR_ITE;
349         int retval;
350
351         if (dscr_p)
352                 dscr = *dscr_p;
353
354         /* Wait for DTRRXfull */
355         long long then = timeval_ms();
356         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
357                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
358                                 armv8->debug_base + CPUV8_DBG_DSCR,
359                                 &dscr);
360                 if (retval != ERROR_OK)
361                         return retval;
362                 if (timeval_ms() > then + 1000) {
363                         LOG_ERROR("Timeout waiting for read dcc");
364                         return ERROR_FAIL;
365                 }
366         }
367
368         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
369                                             armv8->debug_base + CPUV8_DBG_DTRTX,
370                                             data);
371         if (retval != ERROR_OK)
372                 return retval;
373         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
374
375         if (dscr_p)
376                 *dscr_p = dscr;
377
378         return retval;
379 }
380
381 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
382         uint32_t *dscr_p)
383 {
384         uint32_t dscr = DSCR_ITE;
385         uint32_t higher;
386         int retval;
387
388         if (dscr_p)
389                 dscr = *dscr_p;
390
391         /* Wait for DTRRXfull */
392         long long then = timeval_ms();
393         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
394                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
395                                 armv8->debug_base + CPUV8_DBG_DSCR,
396                                 &dscr);
397                 if (retval != ERROR_OK)
398                         return retval;
399                 if (timeval_ms() > then + 1000) {
400                         LOG_ERROR("Timeout waiting for read dcc");
401                         return ERROR_FAIL;
402                 }
403         }
404
405         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
406                                             armv8->debug_base + CPUV8_DBG_DTRTX,
407                                             (uint32_t *)data);
408         if (retval != ERROR_OK)
409                 return retval;
410
411         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
412                                             armv8->debug_base + CPUV8_DBG_DTRRX,
413                                             &higher);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         *data = *(uint32_t *)data | (uint64_t)higher << 32;
418         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
419
420         if (dscr_p)
421                 *dscr_p = dscr;
422
423         return retval;
424 }
425
426 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
427 {
428         struct aarch64_common *a8 = dpm_to_a8(dpm);
429         uint32_t dscr;
430         int retval;
431
432         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
433         long long then = timeval_ms();
434         for (;; ) {
435                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
436                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 if ((dscr & DSCR_ITE) != 0)
441                         break;
442                 if (timeval_ms() > then + 1000) {
443                         LOG_ERROR("Timeout waiting for dpm prepare");
444                         return ERROR_FAIL;
445                 }
446         }
447
448         /* this "should never happen" ... */
449         if (dscr & DSCR_DTR_RX_FULL) {
450                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
451                 /* Clear DCCRX */
452                 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
453                         a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
454                 if (retval != ERROR_OK)
455                         return retval;
456
457                 /* Clear sticky error */
458                 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
459                         a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
460                 if (retval != ERROR_OK)
461                         return retval;
462         }
463
464         return retval;
465 }
466
467 static int aarch64_dpm_finish(struct arm_dpm *dpm)
468 {
469         /* REVISIT what could be done here? */
470         return ERROR_OK;
471 }
472
473 static int aarch64_instr_execute(struct arm_dpm *dpm,
474         uint32_t opcode)
475 {
476         struct aarch64_common *a8 = dpm_to_a8(dpm);
477         uint32_t dscr = DSCR_ITE;
478
479         return aarch64_exec_opcode(
480                         a8->armv8_common.arm.target,
481                         opcode,
482                         &dscr);
483 }
484
485 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
486         uint32_t opcode, uint32_t data)
487 {
488         struct aarch64_common *a8 = dpm_to_a8(dpm);
489         int retval;
490         uint32_t dscr = DSCR_ITE;
491
492         retval = aarch64_write_dcc(&a8->armv8_common, data);
493         if (retval != ERROR_OK)
494                 return retval;
495
496         return aarch64_exec_opcode(
497                         a8->armv8_common.arm.target,
498                         opcode,
499                         &dscr);
500 }
501
502 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
503         uint32_t opcode, uint64_t data)
504 {
505         struct aarch64_common *a8 = dpm_to_a8(dpm);
506         int retval;
507         uint32_t dscr = DSCR_ITE;
508
509         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         return aarch64_exec_opcode(
514                         a8->armv8_common.arm.target,
515                         opcode,
516                         &dscr);
517 }
518
519 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
520         uint32_t opcode, uint32_t data)
521 {
522         struct aarch64_common *a8 = dpm_to_a8(dpm);
523         uint32_t dscr = DSCR_ITE;
524         int retval;
525
526         retval = aarch64_write_dcc(&a8->armv8_common, data);
527         if (retval != ERROR_OK)
528                 return retval;
529
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 0),
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         /* then the opcode, taking data from R0 */
538         retval = aarch64_exec_opcode(
539                         a8->armv8_common.arm.target,
540                         opcode,
541                         &dscr);
542
543         return retval;
544 }
545
546 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
547         uint32_t opcode, uint64_t data)
548 {
549         struct aarch64_common *a8 = dpm_to_a8(dpm);
550         uint32_t dscr = DSCR_ITE;
551         int retval;
552
553         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
554         if (retval != ERROR_OK)
555                 return retval;
556
557         retval = aarch64_exec_opcode(
558                         a8->armv8_common.arm.target,
559                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
560                         &dscr);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         /* then the opcode, taking data from R0 */
565         retval = aarch64_exec_opcode(
566                         a8->armv8_common.arm.target,
567                         opcode,
568                         &dscr);
569
570         return retval;
571 }
572
573 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
574 {
575         struct target *target = dpm->arm->target;
576         uint32_t dscr = DSCR_ITE;
577
578         /* "Prefetch flush" after modifying execution status in CPSR */
579         return aarch64_exec_opcode(target,
580                         DSB_SY,
581                         &dscr);
582 }
583
584 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
585         uint32_t opcode, uint32_t *data)
586 {
587         struct aarch64_common *a8 = dpm_to_a8(dpm);
588         int retval;
589         uint32_t dscr = DSCR_ITE;
590
591         /* the opcode, writing data to DCC */
592         retval = aarch64_exec_opcode(
593                         a8->armv8_common.arm.target,
594                         opcode,
595                         &dscr);
596         if (retval != ERROR_OK)
597                 return retval;
598
599         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
600 }
601
602 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
603         uint32_t opcode, uint64_t *data)
604 {
605         struct aarch64_common *a8 = dpm_to_a8(dpm);
606         int retval;
607         uint32_t dscr = DSCR_ITE;
608
609         /* the opcode, writing data to DCC */
610         retval = aarch64_exec_opcode(
611                         a8->armv8_common.arm.target,
612                         opcode,
613                         &dscr);
614         if (retval != ERROR_OK)
615                 return retval;
616
617         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
618 }
619
620 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
621         uint32_t opcode, uint32_t *data)
622 {
623         struct aarch64_common *a8 = dpm_to_a8(dpm);
624         uint32_t dscr = DSCR_ITE;
625         int retval;
626
627         /* the opcode, writing data to R0 */
628         retval = aarch64_exec_opcode(
629                         a8->armv8_common.arm.target,
630                         opcode,
631                         &dscr);
632         if (retval != ERROR_OK)
633                 return retval;
634
635         /* write R0 to DCC */
636         retval = aarch64_exec_opcode(
637                         a8->armv8_common.arm.target,
638                         ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 0),  /* msr dbgdtr_el0, x0 */
639                         &dscr);
640         if (retval != ERROR_OK)
641                 return retval;
642
643         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
644 }
645
646 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
647         uint32_t opcode, uint64_t *data)
648 {
649         struct aarch64_common *a8 = dpm_to_a8(dpm);
650         uint32_t dscr = DSCR_ITE;
651         int retval;
652
653         /* the opcode, writing data to R0 */
654         retval = aarch64_exec_opcode(
655                         a8->armv8_common.arm.target,
656                         opcode,
657                         &dscr);
658         if (retval != ERROR_OK)
659                 return retval;
660
661         /* write R0 to DCC */
662         retval = aarch64_exec_opcode(
663                         a8->armv8_common.arm.target,
664                         ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0),  /* msr dbgdtr_el0, x0 */
665                         &dscr);
666         if (retval != ERROR_OK)
667                 return retval;
668
669         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
670 }
671
672 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
673         uint32_t addr, uint32_t control)
674 {
675         struct aarch64_common *a8 = dpm_to_a8(dpm);
676         uint32_t vr = a8->armv8_common.debug_base;
677         uint32_t cr = a8->armv8_common.debug_base;
678         int retval;
679
680         switch (index_t) {
681                 case 0 ... 15:  /* breakpoints */
682                         vr += CPUV8_DBG_BVR_BASE;
683                         cr += CPUV8_DBG_BCR_BASE;
684                         break;
685                 case 16 ... 31: /* watchpoints */
686                         vr += CPUV8_DBG_WVR_BASE;
687                         cr += CPUV8_DBG_WCR_BASE;
688                         index_t -= 16;
689                         break;
690                 default:
691                         return ERROR_FAIL;
692         }
693         vr += 4 * index_t;
694         cr += 4 * index_t;
695
696         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
697                 (unsigned) vr, (unsigned) cr);
698
699         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
700                         vr, addr);
701         if (retval != ERROR_OK)
702                 return retval;
703         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
704                         cr, control);
705         return retval;
706 }
707
708 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
709 {
710         return ERROR_OK;
711
712 #if 0
713         struct aarch64_common *a = dpm_to_a8(dpm);
714         uint32_t cr;
715
716         switch (index_t) {
717                 case 0 ... 15:
718                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
719                         break;
720                 case 16 ... 31:
721                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
722                         index_t -= 16;
723                         break;
724                 default:
725                         return ERROR_FAIL;
726         }
727         cr += 4 * index_t;
728
729         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
730
731         /* clear control register */
732         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
733 #endif
734 }
735
736 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
737 {
738         struct arm_dpm *dpm = &a8->armv8_common.dpm;
739         int retval;
740
741         dpm->arm = &a8->armv8_common.arm;
742         dpm->didr = debug;
743
744         dpm->prepare = aarch64_dpm_prepare;
745         dpm->finish = aarch64_dpm_finish;
746
747         dpm->instr_execute = aarch64_instr_execute;
748         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
749         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
750         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
751         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
752         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
753
754         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
755         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
756         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
757         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
758
759         dpm->arm_reg_current = armv8_reg_current;
760
761         dpm->bpwp_enable = aarch64_bpwp_enable;
762         dpm->bpwp_disable = aarch64_bpwp_disable;
763
764         retval = armv8_dpm_setup(dpm);
765         if (retval == ERROR_OK)
766                 retval = armv8_dpm_initialize(dpm);
767
768         return retval;
769 }
770 static struct target *get_aarch64(struct target *target, int32_t coreid)
771 {
772         struct target_list *head;
773         struct target *curr;
774
775         head = target->head;
776         while (head != (struct target_list *)NULL) {
777                 curr = head->target;
778                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
779                         return curr;
780                 head = head->next;
781         }
782         return target;
783 }
784 static int aarch64_halt(struct target *target);
785
786 static int aarch64_halt_smp(struct target *target)
787 {
788         int retval = 0;
789         struct target_list *head;
790         struct target *curr;
791         head = target->head;
792         while (head != (struct target_list *)NULL) {
793                 curr = head->target;
794                 if ((curr != target) && (curr->state != TARGET_HALTED))
795                         retval += aarch64_halt(curr);
796                 head = head->next;
797         }
798         return retval;
799 }
800
801 static int update_halt_gdb(struct target *target)
802 {
803         int retval = 0;
804         if (target->gdb_service && target->gdb_service->core[0] == -1) {
805                 target->gdb_service->target = target;
806                 target->gdb_service->core[0] = target->coreid;
807                 retval += aarch64_halt_smp(target);
808         }
809         return retval;
810 }
811
812 /*
813  * Cortex-A8 Run control
814  */
815
816 static int aarch64_poll(struct target *target)
817 {
818         int retval = ERROR_OK;
819         uint32_t dscr;
820         struct aarch64_common *aarch64 = target_to_aarch64(target);
821         struct armv8_common *armv8 = &aarch64->armv8_common;
822         enum target_state prev_target_state = target->state;
823         /*  toggle to another core is done by gdb as follow */
824         /*  maint packet J core_id */
825         /*  continue */
826         /*  the next polling trigger an halt event sent to gdb */
827         if ((target->state == TARGET_HALTED) && (target->smp) &&
828                 (target->gdb_service) &&
829                 (target->gdb_service->target == NULL)) {
830                 target->gdb_service->target =
831                         get_aarch64(target, target->gdb_service->core[1]);
832                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
833                 return retval;
834         }
835         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
836                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
837         if (retval != ERROR_OK)
838                 return retval;
839         aarch64->cpudbg_dscr = dscr;
840
841         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
842                 if (prev_target_state != TARGET_HALTED) {
843                         /* We have a halting debug event */
844                         LOG_DEBUG("Target halted");
845                         target->state = TARGET_HALTED;
846                         if ((prev_target_state == TARGET_RUNNING)
847                                 || (prev_target_state == TARGET_UNKNOWN)
848                                 || (prev_target_state == TARGET_RESET)) {
849                                 retval = aarch64_debug_entry(target);
850                                 if (retval != ERROR_OK)
851                                         return retval;
852                                 if (target->smp) {
853                                         retval = update_halt_gdb(target);
854                                         if (retval != ERROR_OK)
855                                                 return retval;
856                                 }
857                                 target_call_event_callbacks(target,
858                                         TARGET_EVENT_HALTED);
859                         }
860                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
861                                 LOG_DEBUG(" ");
862
863                                 retval = aarch64_debug_entry(target);
864                                 if (retval != ERROR_OK)
865                                         return retval;
866                                 if (target->smp) {
867                                         retval = update_halt_gdb(target);
868                                         if (retval != ERROR_OK)
869                                                 return retval;
870                                 }
871
872                                 target_call_event_callbacks(target,
873                                         TARGET_EVENT_DEBUG_HALTED);
874                         }
875                 }
876         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
877                 target->state = TARGET_RUNNING;
878         else {
879                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
880                 target->state = TARGET_UNKNOWN;
881         }
882
883         return retval;
884 }
885
886 static int aarch64_halt(struct target *target)
887 {
888         int retval = ERROR_OK;
889         uint32_t dscr;
890         struct armv8_common *armv8 = target_to_armv8(target);
891
892         /* enable CTI*/
893         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
894                         armv8->cti_base + CTI_CTR, 1);
895         if (retval != ERROR_OK)
896                 return retval;
897
898         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
899                         armv8->cti_base + CTI_GATE, 3);
900         if (retval != ERROR_OK)
901                 return retval;
902
903         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
904                         armv8->cti_base + CTI_OUTEN0, 1);
905         if (retval != ERROR_OK)
906                 return retval;
907
908         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
909                         armv8->cti_base + CTI_OUTEN1, 2);
910         if (retval != ERROR_OK)
911                 return retval;
912
913         /*
914          * add HDE in halting debug mode
915          */
916         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
917                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
918         if (retval != ERROR_OK)
919                 return retval;
920
921         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
922                         armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
923         if (retval != ERROR_OK)
924                 return retval;
925
926         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
927                         armv8->cti_base + CTI_APPPULSE, 1);
928         if (retval != ERROR_OK)
929                 return retval;
930
931         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
932                         armv8->cti_base + CTI_INACK, 1);
933         if (retval != ERROR_OK)
934                 return retval;
935
936
937         long long then = timeval_ms();
938         for (;; ) {
939                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
940                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
941                 if (retval != ERROR_OK)
942                         return retval;
943                 if ((dscr & DSCRV8_HALT_MASK) != 0)
944                         break;
945                 if (timeval_ms() > then + 1000) {
946                         LOG_ERROR("Timeout waiting for halt");
947                         return ERROR_FAIL;
948                 }
949         }
950
951         target->debug_reason = DBG_REASON_DBGRQ;
952
953         return ERROR_OK;
954 }
955
956 static int aarch64_internal_restore(struct target *target, int current,
957         uint64_t *address, int handle_breakpoints, int debug_execution)
958 {
959         struct armv8_common *armv8 = target_to_armv8(target);
960         struct arm *arm = &armv8->arm;
961         int retval;
962         uint64_t resume_pc;
963
964         if (!debug_execution)
965                 target_free_all_working_areas(target);
966
967         /* current = 1: continue on current pc, otherwise continue at <address> */
968         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
969         if (!current)
970                 resume_pc = *address;
971         else
972                 *address = resume_pc;
973
974         /* Make sure that the Armv7 gdb thumb fixups does not
975          * kill the return address
976          */
977         switch (arm->core_state) {
978                 case ARM_STATE_ARM:
979                         resume_pc &= 0xFFFFFFFC;
980                         break;
981                 case ARM_STATE_AARCH64:
982                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
983                         break;
984                 case ARM_STATE_THUMB:
985                 case ARM_STATE_THUMB_EE:
986                         /* When the return address is loaded into PC
987                          * bit 0 must be 1 to stay in Thumb state
988                          */
989                         resume_pc |= 0x1;
990                         break;
991                 case ARM_STATE_JAZELLE:
992                         LOG_ERROR("How do I resume into Jazelle state??");
993                         return ERROR_FAIL;
994         }
995         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
996         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
997         arm->pc->dirty = 1;
998         arm->pc->valid = 1;
999         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1000
1001         /* called it now before restoring context because it uses cpu
1002          * register r0 for restoring system control register */
1003         retval = aarch64_restore_system_control_reg(target);
1004         if (retval != ERROR_OK)
1005                 return retval;
1006         retval = aarch64_restore_context(target, handle_breakpoints);
1007         if (retval != ERROR_OK)
1008                 return retval;
1009         target->debug_reason = DBG_REASON_NOTHALTED;
1010         target->state = TARGET_RUNNING;
1011
1012         /* registers are now invalid */
1013         register_cache_invalidate(arm->core_cache);
1014
1015 #if 0
1016         /* the front-end may request us not to handle breakpoints */
1017         if (handle_breakpoints) {
1018                 /* Single step past breakpoint at current address */
1019                 breakpoint = breakpoint_find(target, resume_pc);
1020                 if (breakpoint) {
1021                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1022                         cortex_m3_unset_breakpoint(target, breakpoint);
1023                         cortex_m3_single_step_core(target);
1024                         cortex_m3_set_breakpoint(target, breakpoint);
1025                 }
1026         }
1027 #endif
1028
1029         return retval;
1030 }
1031
1032 static int aarch64_internal_restart(struct target *target)
1033 {
1034         struct armv8_common *armv8 = target_to_armv8(target);
1035         struct arm *arm = &armv8->arm;
1036         int retval;
1037         uint32_t dscr;
1038         /*
1039          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1040          * * exception flags: see ARMv7 ARM, C5.9.
1041          *
1042          * REVISIT: for single stepping, we probably want to
1043          * disable IRQs by default, with optional override...
1044          */
1045
1046         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1047                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1048         if (retval != ERROR_OK)
1049                 return retval;
1050
1051         if ((dscr & DSCR_ITE) == 0)
1052                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1053
1054         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1055                         armv8->cti_base + CTI_APPPULSE, 2);
1056         if (retval != ERROR_OK)
1057                 return retval;
1058
1059         long long then = timeval_ms();
1060         for (;; ) {
1061                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1062                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1063                 if (retval != ERROR_OK)
1064                         return retval;
1065                 if ((dscr & DSCR_HDE) != 0)
1066                         break;
1067                 if (timeval_ms() > then + 1000) {
1068                         LOG_ERROR("Timeout waiting for resume");
1069                         return ERROR_FAIL;
1070                 }
1071         }
1072
1073         target->debug_reason = DBG_REASON_NOTHALTED;
1074         target->state = TARGET_RUNNING;
1075
1076         /* registers are now invalid */
1077         register_cache_invalidate(arm->core_cache);
1078
1079         return ERROR_OK;
1080 }
1081
1082 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1083 {
1084         int retval = 0;
1085         struct target_list *head;
1086         struct target *curr;
1087         uint64_t address;
1088         head = target->head;
1089         while (head != (struct target_list *)NULL) {
1090                 curr = head->target;
1091                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1092                         /*  resume current address , not in step mode */
1093                         retval += aarch64_internal_restore(curr, 1, &address,
1094                                         handle_breakpoints, 0);
1095                         retval += aarch64_internal_restart(curr);
1096                 }
1097                 head = head->next;
1098
1099         }
1100         return retval;
1101 }
1102
1103 static int aarch64_resume(struct target *target, int current,
1104         target_addr_t address, int handle_breakpoints, int debug_execution)
1105 {
1106         int retval = 0;
1107         uint64_t addr = address;
1108
1109         /* dummy resume for smp toggle in order to reduce gdb impact  */
1110         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1111                 /*   simulate a start and halt of target */
1112                 target->gdb_service->target = NULL;
1113                 target->gdb_service->core[0] = target->gdb_service->core[1];
1114                 /*  fake resume at next poll we play the  target core[1], see poll*/
1115                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1116                 return 0;
1117         }
1118         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1119                                  debug_execution);
1120         if (target->smp) {
1121                 target->gdb_service->core[0] = -1;
1122                 retval = aarch64_restore_smp(target, handle_breakpoints);
1123                 if (retval != ERROR_OK)
1124                         return retval;
1125         }
1126         aarch64_internal_restart(target);
1127
1128         if (!debug_execution) {
1129                 target->state = TARGET_RUNNING;
1130                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1131                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1132         } else {
1133                 target->state = TARGET_DEBUG_RUNNING;
1134                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1135                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1136         }
1137
1138         return ERROR_OK;
1139 }
1140
1141 static int aarch64_debug_entry(struct target *target)
1142 {
1143         uint32_t dscr;
1144         int retval = ERROR_OK;
1145         struct aarch64_common *aarch64 = target_to_aarch64(target);
1146         struct armv8_common *armv8 = target_to_armv8(target);
1147         uint32_t tmp;
1148
1149         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1150
1151         /* REVISIT surely we should not re-read DSCR !! */
1152         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1153                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1154         if (retval != ERROR_OK)
1155                 return retval;
1156
1157         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1158          * imprecise data aborts get discarded by issuing a Data
1159          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1160          */
1161
1162         /* Enable the ITR execution once we are in debug mode */
1163         dscr |= DSCR_ITR_EN;
1164         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1165                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1166         if (retval != ERROR_OK)
1167                 return retval;
1168
1169         /* Examine debug reason */
1170         arm_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1171         mem_ap_read_atomic_u32(armv8->debug_ap,
1172                                    armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1173         if ((tmp & 0x7) == 0x4)
1174                 target->debug_reason = DBG_REASON_SINGLESTEP;
1175
1176         /* save address of instruction that triggered the watchpoint? */
1177         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1178                 uint32_t wfar;
1179
1180                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1181                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1182                                 &wfar);
1183                 if (retval != ERROR_OK)
1184                         return retval;
1185                 arm_dpm_report_wfar(&armv8->dpm, wfar);
1186         }
1187
1188         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1189
1190         if (armv8->post_debug_entry) {
1191                 retval = armv8->post_debug_entry(target);
1192                 if (retval != ERROR_OK)
1193                         return retval;
1194         }
1195
1196         return retval;
1197 }
1198
1199 static int aarch64_post_debug_entry(struct target *target)
1200 {
1201         struct aarch64_common *aarch64 = target_to_aarch64(target);
1202         struct armv8_common *armv8 = &aarch64->armv8_common;
1203         int retval;
1204
1205         mem_ap_write_atomic_u32(armv8->debug_ap,
1206                                     armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1207         switch (armv8->arm.core_mode) {
1208                 case ARMV8_64_EL0T:
1209                 case ARMV8_64_EL1T:
1210                 case ARMV8_64_EL1H:
1211                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1212                                         0, 0,   /* op1, op2 */
1213                                         1, 0,   /* CRn, CRm */
1214                                         &aarch64->system_control_reg);
1215                         if (retval != ERROR_OK)
1216                                 return retval;
1217                 break;
1218                 case ARMV8_64_EL2T:
1219                 case ARMV8_64_EL2H:
1220                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1221                                         4, 0,   /* op1, op2 */
1222                                         1, 0,   /* CRn, CRm */
1223                                         &aarch64->system_control_reg);
1224                         if (retval != ERROR_OK)
1225                                 return retval;
1226                 break;
1227                 case ARMV8_64_EL3H:
1228                 case ARMV8_64_EL3T:
1229                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1230                                         6, 0,   /* op1, op2 */
1231                                         1, 0,   /* CRn, CRm */
1232                                         &aarch64->system_control_reg);
1233                         if (retval != ERROR_OK)
1234                                 return retval;
1235                 break;
1236                 default:
1237                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
1238         }
1239         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1240         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1241
1242 #if 0
1243         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1244                 armv8_identify_cache(target);
1245 #endif
1246
1247         armv8->armv8_mmu.mmu_enabled =
1248                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1249         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1250                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1251         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1252                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1253         aarch64->curr_mode = armv8->arm.core_mode;
1254         return ERROR_OK;
1255 }
1256
1257 static int aarch64_step(struct target *target, int current, target_addr_t address,
1258         int handle_breakpoints)
1259 {
1260         struct armv8_common *armv8 = target_to_armv8(target);
1261         int retval;
1262         uint32_t tmp;
1263
1264         if (target->state != TARGET_HALTED) {
1265                 LOG_WARNING("target not halted");
1266                 return ERROR_TARGET_NOT_HALTED;
1267         }
1268
1269         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1270                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1271         if (retval != ERROR_OK)
1272                 return retval;
1273
1274         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1275                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1276         if (retval != ERROR_OK)
1277                 return retval;
1278
1279         target->debug_reason = DBG_REASON_SINGLESTEP;
1280         retval = aarch64_resume(target, 1, address, 0, 0);
1281         if (retval != ERROR_OK)
1282                 return retval;
1283
1284         long long then = timeval_ms();
1285         while (target->state != TARGET_HALTED) {
1286                 mem_ap_read_atomic_u32(armv8->debug_ap,
1287                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1288                 LOG_DEBUG("DESR = %#x", tmp);
1289                 retval = aarch64_poll(target);
1290                 if (retval != ERROR_OK)
1291                         return retval;
1292                 if (timeval_ms() > then + 1000) {
1293                         LOG_ERROR("timeout waiting for target halt");
1294                         return ERROR_FAIL;
1295                 }
1296         }
1297
1298         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1299                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1300         if (retval != ERROR_OK)
1301                 return retval;
1302
1303         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1304         if (target->state == TARGET_HALTED)
1305                 LOG_DEBUG("target stepped");
1306
1307         return ERROR_OK;
1308 }
1309
1310 static int aarch64_restore_context(struct target *target, bool bpwp)
1311 {
1312         struct armv8_common *armv8 = target_to_armv8(target);
1313
1314         LOG_DEBUG(" ");
1315
1316         if (armv8->pre_restore_context)
1317                 armv8->pre_restore_context(target);
1318
1319         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1320
1321 }
1322
1323 /*
1324  * Cortex-A8 Breakpoint and watchpoint functions
1325  */
1326
1327 /* Setup hardware Breakpoint Register Pair */
1328 static int aarch64_set_breakpoint(struct target *target,
1329         struct breakpoint *breakpoint, uint8_t matchmode)
1330 {
1331         int retval;
1332         int brp_i = 0;
1333         uint32_t control;
1334         uint8_t byte_addr_select = 0x0F;
1335         struct aarch64_common *aarch64 = target_to_aarch64(target);
1336         struct armv8_common *armv8 = &aarch64->armv8_common;
1337         struct aarch64_brp *brp_list = aarch64->brp_list;
1338         uint32_t dscr;
1339
1340         if (breakpoint->set) {
1341                 LOG_WARNING("breakpoint already set");
1342                 return ERROR_OK;
1343         }
1344
1345         if (breakpoint->type == BKPT_HARD) {
1346                 int64_t bpt_value;
1347                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1348                         brp_i++;
1349                 if (brp_i >= aarch64->brp_num) {
1350                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1351                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1352                 }
1353                 breakpoint->set = brp_i + 1;
1354                 if (breakpoint->length == 2)
1355                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1356                 control = ((matchmode & 0x7) << 20)
1357                         | (1 << 13)
1358                         | (byte_addr_select << 5)
1359                         | (3 << 1) | 1;
1360                 brp_list[brp_i].used = 1;
1361                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1362                 brp_list[brp_i].control = control;
1363                 bpt_value = brp_list[brp_i].value;
1364
1365                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1366                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1367                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1368                 if (retval != ERROR_OK)
1369                         return retval;
1370                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1371                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1372                                 (uint32_t)(bpt_value >> 32));
1373                 if (retval != ERROR_OK)
1374                         return retval;
1375
1376                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1377                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1378                                 brp_list[brp_i].control);
1379                 if (retval != ERROR_OK)
1380                         return retval;
1381                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1382                         brp_list[brp_i].control,
1383                         brp_list[brp_i].value);
1384
1385         } else if (breakpoint->type == BKPT_SOFT) {
1386                 uint8_t code[4];
1387                 buf_set_u32(code, 0, 32, ARMV8_BKPT(0x11));
1388                 retval = target_read_memory(target,
1389                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1390                                 breakpoint->length, 1,
1391                                 breakpoint->orig_instr);
1392                 if (retval != ERROR_OK)
1393                         return retval;
1394                 retval = target_write_memory(target,
1395                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1396                                 breakpoint->length, 1, code);
1397                 if (retval != ERROR_OK)
1398                         return retval;
1399                 breakpoint->set = 0x11; /* Any nice value but 0 */
1400         }
1401
1402         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1403                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1404         /* Ensure that halting debug mode is enable */
1405         dscr = dscr | DSCR_HDE;
1406         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1407                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1408         if (retval != ERROR_OK) {
1409                 LOG_DEBUG("Failed to set DSCR.HDE");
1410                 return retval;
1411         }
1412
1413         return ERROR_OK;
1414 }
1415
1416 static int aarch64_set_context_breakpoint(struct target *target,
1417         struct breakpoint *breakpoint, uint8_t matchmode)
1418 {
1419         int retval = ERROR_FAIL;
1420         int brp_i = 0;
1421         uint32_t control;
1422         uint8_t byte_addr_select = 0x0F;
1423         struct aarch64_common *aarch64 = target_to_aarch64(target);
1424         struct armv8_common *armv8 = &aarch64->armv8_common;
1425         struct aarch64_brp *brp_list = aarch64->brp_list;
1426
1427         if (breakpoint->set) {
1428                 LOG_WARNING("breakpoint already set");
1429                 return retval;
1430         }
1431         /*check available context BRPs*/
1432         while ((brp_list[brp_i].used ||
1433                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1434                 brp_i++;
1435
1436         if (brp_i >= aarch64->brp_num) {
1437                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1438                 return ERROR_FAIL;
1439         }
1440
1441         breakpoint->set = brp_i + 1;
1442         control = ((matchmode & 0x7) << 20)
1443                 | (1 << 13)
1444                 | (byte_addr_select << 5)
1445                 | (3 << 1) | 1;
1446         brp_list[brp_i].used = 1;
1447         brp_list[brp_i].value = (breakpoint->asid);
1448         brp_list[brp_i].control = control;
1449         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1450                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1451                         brp_list[brp_i].value);
1452         if (retval != ERROR_OK)
1453                 return retval;
1454         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1455                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1456                         brp_list[brp_i].control);
1457         if (retval != ERROR_OK)
1458                 return retval;
1459         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1460                 brp_list[brp_i].control,
1461                 brp_list[brp_i].value);
1462         return ERROR_OK;
1463
1464 }
1465
1466 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1467 {
1468         int retval = ERROR_FAIL;
1469         int brp_1 = 0;  /* holds the contextID pair */
1470         int brp_2 = 0;  /* holds the IVA pair */
1471         uint32_t control_CTX, control_IVA;
1472         uint8_t CTX_byte_addr_select = 0x0F;
1473         uint8_t IVA_byte_addr_select = 0x0F;
1474         uint8_t CTX_machmode = 0x03;
1475         uint8_t IVA_machmode = 0x01;
1476         struct aarch64_common *aarch64 = target_to_aarch64(target);
1477         struct armv8_common *armv8 = &aarch64->armv8_common;
1478         struct aarch64_brp *brp_list = aarch64->brp_list;
1479
1480         if (breakpoint->set) {
1481                 LOG_WARNING("breakpoint already set");
1482                 return retval;
1483         }
1484         /*check available context BRPs*/
1485         while ((brp_list[brp_1].used ||
1486                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1487                 brp_1++;
1488
1489         printf("brp(CTX) found num: %d\n", brp_1);
1490         if (brp_1 >= aarch64->brp_num) {
1491                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1492                 return ERROR_FAIL;
1493         }
1494
1495         while ((brp_list[brp_2].used ||
1496                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1497                 brp_2++;
1498
1499         printf("brp(IVA) found num: %d\n", brp_2);
1500         if (brp_2 >= aarch64->brp_num) {
1501                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1502                 return ERROR_FAIL;
1503         }
1504
1505         breakpoint->set = brp_1 + 1;
1506         breakpoint->linked_BRP = brp_2;
1507         control_CTX = ((CTX_machmode & 0x7) << 20)
1508                 | (brp_2 << 16)
1509                 | (0 << 14)
1510                 | (CTX_byte_addr_select << 5)
1511                 | (3 << 1) | 1;
1512         brp_list[brp_1].used = 1;
1513         brp_list[brp_1].value = (breakpoint->asid);
1514         brp_list[brp_1].control = control_CTX;
1515         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1516                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1517                         brp_list[brp_1].value);
1518         if (retval != ERROR_OK)
1519                 return retval;
1520         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1521                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1522                         brp_list[brp_1].control);
1523         if (retval != ERROR_OK)
1524                 return retval;
1525
1526         control_IVA = ((IVA_machmode & 0x7) << 20)
1527                 | (brp_1 << 16)
1528                 | (1 << 13)
1529                 | (IVA_byte_addr_select << 5)
1530                 | (3 << 1) | 1;
1531         brp_list[brp_2].used = 1;
1532         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1533         brp_list[brp_2].control = control_IVA;
1534         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1535                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1536                         brp_list[brp_2].value & 0xFFFFFFFF);
1537         if (retval != ERROR_OK)
1538                 return retval;
1539         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1540                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1541                         brp_list[brp_2].value >> 32);
1542         if (retval != ERROR_OK)
1543                 return retval;
1544         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1545                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1546                         brp_list[brp_2].control);
1547         if (retval != ERROR_OK)
1548                 return retval;
1549
1550         return ERROR_OK;
1551 }
1552
1553 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1554 {
1555         int retval;
1556         struct aarch64_common *aarch64 = target_to_aarch64(target);
1557         struct armv8_common *armv8 = &aarch64->armv8_common;
1558         struct aarch64_brp *brp_list = aarch64->brp_list;
1559
1560         if (!breakpoint->set) {
1561                 LOG_WARNING("breakpoint not set");
1562                 return ERROR_OK;
1563         }
1564
1565         if (breakpoint->type == BKPT_HARD) {
1566                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1567                         int brp_i = breakpoint->set - 1;
1568                         int brp_j = breakpoint->linked_BRP;
1569                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1570                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1571                                 return ERROR_OK;
1572                         }
1573                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1574                                 brp_list[brp_i].control, brp_list[brp_i].value);
1575                         brp_list[brp_i].used = 0;
1576                         brp_list[brp_i].value = 0;
1577                         brp_list[brp_i].control = 0;
1578                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1579                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1580                                         brp_list[brp_i].control);
1581                         if (retval != ERROR_OK)
1582                                 return retval;
1583                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1584                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1585                                 return ERROR_OK;
1586                         }
1587                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1588                                 brp_list[brp_j].control, brp_list[brp_j].value);
1589                         brp_list[brp_j].used = 0;
1590                         brp_list[brp_j].value = 0;
1591                         brp_list[brp_j].control = 0;
1592                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1593                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1594                                         brp_list[brp_j].control);
1595                         if (retval != ERROR_OK)
1596                                 return retval;
1597                         breakpoint->linked_BRP = 0;
1598                         breakpoint->set = 0;
1599                         return ERROR_OK;
1600
1601                 } else {
1602                         int brp_i = breakpoint->set - 1;
1603                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1604                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1605                                 return ERROR_OK;
1606                         }
1607                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1608                                 brp_list[brp_i].control, brp_list[brp_i].value);
1609                         brp_list[brp_i].used = 0;
1610                         brp_list[brp_i].value = 0;
1611                         brp_list[brp_i].control = 0;
1612                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1613                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1614                                         brp_list[brp_i].control);
1615                         if (retval != ERROR_OK)
1616                                 return retval;
1617                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1618                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1619                                         brp_list[brp_i].value);
1620                         if (retval != ERROR_OK)
1621                                 return retval;
1622                         breakpoint->set = 0;
1623                         return ERROR_OK;
1624                 }
1625         } else {
1626                 /* restore original instruction (kept in target endianness) */
1627                 if (breakpoint->length == 4) {
1628                         retval = target_write_memory(target,
1629                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1630                                         4, 1, breakpoint->orig_instr);
1631                         if (retval != ERROR_OK)
1632                                 return retval;
1633                 } else {
1634                         retval = target_write_memory(target,
1635                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1636                                         2, 1, breakpoint->orig_instr);
1637                         if (retval != ERROR_OK)
1638                                 return retval;
1639                 }
1640         }
1641         breakpoint->set = 0;
1642
1643         return ERROR_OK;
1644 }
1645
1646 static int aarch64_add_breakpoint(struct target *target,
1647         struct breakpoint *breakpoint)
1648 {
1649         struct aarch64_common *aarch64 = target_to_aarch64(target);
1650
1651         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1652                 LOG_INFO("no hardware breakpoint available");
1653                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1654         }
1655
1656         if (breakpoint->type == BKPT_HARD)
1657                 aarch64->brp_num_available--;
1658
1659         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1660 }
1661
1662 static int aarch64_add_context_breakpoint(struct target *target,
1663         struct breakpoint *breakpoint)
1664 {
1665         struct aarch64_common *aarch64 = target_to_aarch64(target);
1666
1667         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1668                 LOG_INFO("no hardware breakpoint available");
1669                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1670         }
1671
1672         if (breakpoint->type == BKPT_HARD)
1673                 aarch64->brp_num_available--;
1674
1675         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1676 }
1677
1678 static int aarch64_add_hybrid_breakpoint(struct target *target,
1679         struct breakpoint *breakpoint)
1680 {
1681         struct aarch64_common *aarch64 = target_to_aarch64(target);
1682
1683         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1684                 LOG_INFO("no hardware breakpoint available");
1685                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1686         }
1687
1688         if (breakpoint->type == BKPT_HARD)
1689                 aarch64->brp_num_available--;
1690
1691         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1692 }
1693
1694
1695 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1696 {
1697         struct aarch64_common *aarch64 = target_to_aarch64(target);
1698
1699 #if 0
1700 /* It is perfectly possible to remove breakpoints while the target is running */
1701         if (target->state != TARGET_HALTED) {
1702                 LOG_WARNING("target not halted");
1703                 return ERROR_TARGET_NOT_HALTED;
1704         }
1705 #endif
1706
1707         if (breakpoint->set) {
1708                 aarch64_unset_breakpoint(target, breakpoint);
1709                 if (breakpoint->type == BKPT_HARD)
1710                         aarch64->brp_num_available++;
1711         }
1712
1713         return ERROR_OK;
1714 }
1715
1716 /*
1717  * Cortex-A8 Reset functions
1718  */
1719
1720 static int aarch64_assert_reset(struct target *target)
1721 {
1722         struct armv8_common *armv8 = target_to_armv8(target);
1723
1724         LOG_DEBUG(" ");
1725
1726         /* FIXME when halt is requested, make it work somehow... */
1727
1728         /* Issue some kind of warm reset. */
1729         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1730                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1731         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1732                 /* REVISIT handle "pulls" cases, if there's
1733                  * hardware that needs them to work.
1734                  */
1735                 jtag_add_reset(0, 1);
1736         } else {
1737                 LOG_ERROR("%s: how to reset?", target_name(target));
1738                 return ERROR_FAIL;
1739         }
1740
1741         /* registers are now invalid */
1742         register_cache_invalidate(armv8->arm.core_cache);
1743
1744         target->state = TARGET_RESET;
1745
1746         return ERROR_OK;
1747 }
1748
1749 static int aarch64_deassert_reset(struct target *target)
1750 {
1751         int retval;
1752
1753         LOG_DEBUG(" ");
1754
1755         /* be certain SRST is off */
1756         jtag_add_reset(0, 0);
1757
1758         retval = aarch64_poll(target);
1759         if (retval != ERROR_OK)
1760                 return retval;
1761
1762         if (target->reset_halt) {
1763                 if (target->state != TARGET_HALTED) {
1764                         LOG_WARNING("%s: ran after reset and before halt ...",
1765                                 target_name(target));
1766                         retval = target_halt(target);
1767                         if (retval != ERROR_OK)
1768                                 return retval;
1769                 }
1770         }
1771
1772         return ERROR_OK;
1773 }
1774
1775 static int aarch64_write_apb_ap_memory(struct target *target,
1776         uint64_t address, uint32_t size,
1777         uint32_t count, const uint8_t *buffer)
1778 {
1779         /* write memory through APB-AP */
1780         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1781         struct armv8_common *armv8 = target_to_armv8(target);
1782         struct arm *arm = &armv8->arm;
1783         int total_bytes = count * size;
1784         int total_u32;
1785         int start_byte = address & 0x3;
1786         int end_byte   = (address + total_bytes) & 0x3;
1787         struct reg *reg;
1788         uint32_t dscr;
1789         uint8_t *tmp_buff = NULL;
1790
1791         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1792                           address, size, count);
1793         if (target->state != TARGET_HALTED) {
1794                 LOG_WARNING("target not halted");
1795                 return ERROR_TARGET_NOT_HALTED;
1796         }
1797
1798         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1799
1800         /* Mark register R0 as dirty, as it will be used
1801          * for transferring the data.
1802          * It will be restored automatically when exiting
1803          * debug mode
1804          */
1805         reg = armv8_reg_current(arm, 1);
1806         reg->dirty = true;
1807
1808         reg = armv8_reg_current(arm, 0);
1809         reg->dirty = true;
1810
1811         /*  clear any abort  */
1812         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1813                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1814         if (retval != ERROR_OK)
1815                 return retval;
1816
1817
1818         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1819
1820         /* The algorithm only copies 32 bit words, so the buffer
1821          * should be expanded to include the words at either end.
1822          * The first and last words will be read first to avoid
1823          * corruption if needed.
1824          */
1825         tmp_buff = malloc(total_u32 * 4);
1826
1827         if ((start_byte != 0) && (total_u32 > 1)) {
1828                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1829                  * the other bytes in the word.
1830                  */
1831                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1832                 if (retval != ERROR_OK)
1833                         goto error_free_buff_w;
1834         }
1835
1836         /* If end of write is not aligned, or the write is less than 4 bytes */
1837         if ((end_byte != 0) ||
1838                 ((total_u32 == 1) && (total_bytes != 4))) {
1839
1840                 /* Read the last word to avoid corruption during 32 bit write */
1841                 int mem_offset = (total_u32-1) * 4;
1842                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1843                 if (retval != ERROR_OK)
1844                         goto error_free_buff_w;
1845         }
1846
1847         /* Copy the write buffer over the top of the temporary buffer */
1848         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1849
1850         /* We now have a 32 bit aligned buffer that can be written */
1851
1852         /* Read DSCR */
1853         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1854                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1855         if (retval != ERROR_OK)
1856                 goto error_free_buff_w;
1857
1858         /* Set Normal access mode  */
1859         dscr = (dscr & ~DSCR_MA);
1860         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1861                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1862
1863         if (arm->core_state == ARM_STATE_AARCH64) {
1864                 /* Write X0 with value 'address' using write procedure */
1865                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1866                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1867                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1868                 retval += aarch64_exec_opcode(target,
1869                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1870         } else {
1871                 /* Write R0 with value 'address' using write procedure */
1872                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1873                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1874                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1875                 retval += aarch64_exec_opcode(target,
1876                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1877
1878         }
1879         /* Step 1.d   - Change DCC to memory mode */
1880         dscr = dscr | DSCR_MA;
1881         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1882                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1883         if (retval != ERROR_OK)
1884                 goto error_unset_dtr_w;
1885
1886
1887         /* Step 2.a   - Do the write */
1888         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1889                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1890         if (retval != ERROR_OK)
1891                 goto error_unset_dtr_w;
1892
1893         /* Step 3.a   - Switch DTR mode back to Normal mode */
1894         dscr = (dscr & ~DSCR_MA);
1895         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1896                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1897         if (retval != ERROR_OK)
1898                 goto error_unset_dtr_w;
1899
1900         /* Check for sticky abort flags in the DSCR */
1901         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1902                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1903         if (retval != ERROR_OK)
1904                 goto error_free_buff_w;
1905         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1906                 /* Abort occurred - clear it and exit */
1907                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1908                 mem_ap_write_atomic_u32(armv8->debug_ap,
1909                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1910                 goto error_free_buff_w;
1911         }
1912
1913         /* Done */
1914         free(tmp_buff);
1915         return ERROR_OK;
1916
1917 error_unset_dtr_w:
1918         /* Unset DTR mode */
1919         mem_ap_read_atomic_u32(armv8->debug_ap,
1920                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1921         dscr = (dscr & ~DSCR_MA);
1922         mem_ap_write_atomic_u32(armv8->debug_ap,
1923                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1924 error_free_buff_w:
1925         LOG_ERROR("error");
1926         free(tmp_buff);
1927         return ERROR_FAIL;
1928 }
1929
1930 static int aarch64_read_apb_ap_memory(struct target *target,
1931         target_addr_t address, uint32_t size,
1932         uint32_t count, uint8_t *buffer)
1933 {
1934         /* read memory through APB-AP */
1935         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1936         struct armv8_common *armv8 = target_to_armv8(target);
1937         struct arm *arm = &armv8->arm;
1938         int total_bytes = count * size;
1939         int total_u32;
1940         int start_byte = address & 0x3;
1941         int end_byte   = (address + total_bytes) & 0x3;
1942         struct reg *reg;
1943         uint32_t dscr;
1944         uint8_t *tmp_buff = NULL;
1945         uint8_t *u8buf_ptr;
1946         uint32_t value;
1947
1948         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1949                           address, size, count);
1950         if (target->state != TARGET_HALTED) {
1951                 LOG_WARNING("target not halted");
1952                 return ERROR_TARGET_NOT_HALTED;
1953         }
1954
1955         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1956         /* Mark register X0, X1 as dirty, as it will be used
1957          * for transferring the data.
1958          * It will be restored automatically when exiting
1959          * debug mode
1960          */
1961         reg = armv8_reg_current(arm, 1);
1962         reg->dirty = true;
1963
1964         reg = armv8_reg_current(arm, 0);
1965         reg->dirty = true;
1966
1967         /*      clear any abort  */
1968         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1969                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1970         if (retval != ERROR_OK)
1971                 goto error_free_buff_r;
1972
1973         /* Read DSCR */
1974         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1975                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1976
1977         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1978
1979         /* Set Normal access mode  */
1980         dscr = (dscr & ~DSCR_MA);
1981         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1982                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1983
1984         if (arm->core_state == ARM_STATE_AARCH64) {
1985                 /* Write X0 with value 'address' using write procedure */
1986                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1987                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1988                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1989                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1990                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1991                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1992                 /* Step 1.e - Change DCC to memory mode */
1993                 dscr = dscr | DSCR_MA;
1994                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1995                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1996                 /* Step 1.f - read DBGDTRTX and discard the value */
1997                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1998                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1999         } else {
2000                 /* Write R0 with value 'address' using write procedure */
2001                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2002                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
2003                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2004                 retval += aarch64_exec_opcode(target,
2005                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
2006                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2007                 retval += aarch64_exec_opcode(target,
2008                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2009                 /* Step 1.e - Change DCC to memory mode */
2010                 dscr = dscr | DSCR_MA;
2011                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2012                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2013                 /* Step 1.f - read DBGDTRTX and discard the value */
2014                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2015                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2016
2017         }
2018         if (retval != ERROR_OK)
2019                 goto error_unset_dtr_r;
2020
2021         /* Optimize the read as much as we can, either way we read in a single pass  */
2022         if ((start_byte) || (end_byte)) {
2023                 /* The algorithm only copies 32 bit words, so the buffer
2024                  * should be expanded to include the words at either end.
2025                  * The first and last words will be read into a temp buffer
2026                  * to avoid corruption
2027                  */
2028                 tmp_buff = malloc(total_u32 * 4);
2029                 if (!tmp_buff)
2030                         goto error_unset_dtr_r;
2031
2032                 /* use the tmp buffer to read the entire data */
2033                 u8buf_ptr = tmp_buff;
2034         } else
2035                 /* address and read length are aligned so read directly into the passed buffer */
2036                 u8buf_ptr = buffer;
2037
2038         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2039          * Abort flags are sticky, so can be read at end of transactions
2040          *
2041          * This data is read in aligned to 32 bit boundary.
2042          */
2043
2044         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2045          * increments X0 by 4. */
2046         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2047                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2048         if (retval != ERROR_OK)
2049                         goto error_unset_dtr_r;
2050
2051         /* Step 3.a - set DTR access mode back to Normal mode   */
2052         dscr = (dscr & ~DSCR_MA);
2053         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2054                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2055         if (retval != ERROR_OK)
2056                 goto error_free_buff_r;
2057
2058         /* Step 3.b - read DBGDTRTX for the final value */
2059         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2060                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2061         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2062
2063         /* Check for sticky abort flags in the DSCR */
2064         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2065                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2066         if (retval != ERROR_OK)
2067                 goto error_free_buff_r;
2068         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2069                 /* Abort occurred - clear it and exit */
2070                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2071                 mem_ap_write_atomic_u32(armv8->debug_ap,
2072                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2073                 goto error_free_buff_r;
2074         }
2075
2076         /* check if we need to copy aligned data by applying any shift necessary */
2077         if (tmp_buff) {
2078                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2079                 free(tmp_buff);
2080         }
2081
2082         /* Done */
2083         return ERROR_OK;
2084
2085 error_unset_dtr_r:
2086         /* Unset DTR mode */
2087         mem_ap_read_atomic_u32(armv8->debug_ap,
2088                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2089         dscr = (dscr & ~DSCR_MA);
2090         mem_ap_write_atomic_u32(armv8->debug_ap,
2091                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2092 error_free_buff_r:
2093         LOG_ERROR("error");
2094         free(tmp_buff);
2095         return ERROR_FAIL;
2096 }
2097
2098 static int aarch64_read_phys_memory(struct target *target,
2099         target_addr_t address, uint32_t size,
2100         uint32_t count, uint8_t *buffer)
2101 {
2102         struct armv8_common *armv8 = target_to_armv8(target);
2103         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2104         struct adiv5_dap *swjdp = armv8->arm.dap;
2105         uint8_t apsel = swjdp->apsel;
2106         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2107                 address, size, count);
2108
2109         if (count && buffer) {
2110
2111                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2112
2113                         /* read memory through AHB-AP */
2114                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2115                 } else {
2116                         /* read memory through APB-AP */
2117                         retval = aarch64_mmu_modify(target, 0);
2118                         if (retval != ERROR_OK)
2119                                 return retval;
2120                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2121                 }
2122         }
2123         return retval;
2124 }
2125
2126 static int aarch64_read_memory(struct target *target, target_addr_t address,
2127         uint32_t size, uint32_t count, uint8_t *buffer)
2128 {
2129         int mmu_enabled = 0;
2130         target_addr_t virt, phys;
2131         int retval;
2132         struct armv8_common *armv8 = target_to_armv8(target);
2133         struct adiv5_dap *swjdp = armv8->arm.dap;
2134         uint8_t apsel = swjdp->apsel;
2135
2136         /* aarch64 handles unaligned memory access */
2137         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2138                 size, count);
2139
2140         /* determine if MMU was enabled on target stop */
2141         if (!armv8->is_armv7r) {
2142                 retval = aarch64_mmu(target, &mmu_enabled);
2143                 if (retval != ERROR_OK)
2144                         return retval;
2145         }
2146
2147         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2148                 if (mmu_enabled) {
2149                         virt = address;
2150                         retval = aarch64_virt2phys(target, virt, &phys);
2151                         if (retval != ERROR_OK)
2152                                 return retval;
2153
2154                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2155                                   virt, phys);
2156                         address = phys;
2157                 }
2158                 retval = aarch64_read_phys_memory(target, address, size, count,
2159                                                   buffer);
2160         } else {
2161                 if (mmu_enabled) {
2162                         retval = aarch64_check_address(target, address);
2163                         if (retval != ERROR_OK)
2164                                 return retval;
2165                         /* enable MMU as we could have disabled it for phys
2166                            access */
2167                         retval = aarch64_mmu_modify(target, 1);
2168                         if (retval != ERROR_OK)
2169                                 return retval;
2170                 }
2171                 retval = aarch64_read_apb_ap_memory(target, address, size,
2172                                                     count, buffer);
2173         }
2174         return retval;
2175 }
2176
2177 static int aarch64_write_phys_memory(struct target *target,
2178         target_addr_t address, uint32_t size,
2179         uint32_t count, const uint8_t *buffer)
2180 {
2181         struct armv8_common *armv8 = target_to_armv8(target);
2182         struct adiv5_dap *swjdp = armv8->arm.dap;
2183         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2184         uint8_t apsel = swjdp->apsel;
2185
2186         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2187                 size, count);
2188
2189         if (count && buffer) {
2190
2191                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2192
2193                         /* write memory through AHB-AP */
2194                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2195                 } else {
2196
2197                         /* write memory through APB-AP */
2198                         if (!armv8->is_armv7r) {
2199                                 retval = aarch64_mmu_modify(target, 0);
2200                                 if (retval != ERROR_OK)
2201                                         return retval;
2202                         }
2203                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2204                 }
2205         }
2206
2207
2208         /* REVISIT this op is generic ARMv7-A/R stuff */
2209         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2210                 struct arm_dpm *dpm = armv8->arm.dpm;
2211
2212                 retval = dpm->prepare(dpm);
2213                 if (retval != ERROR_OK)
2214                         return retval;
2215
2216                 /* The Cache handling will NOT work with MMU active, the
2217                  * wrong addresses will be invalidated!
2218                  *
2219                  * For both ICache and DCache, walk all cache lines in the
2220                  * address range. Cortex-A8 has fixed 64 byte line length.
2221                  *
2222                  * REVISIT per ARMv7, these may trigger watchpoints ...
2223                  */
2224
2225                 /* invalidate I-Cache */
2226                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2227                         /* ICIMVAU - Invalidate Cache single entry
2228                          * with MVA to PoU
2229                          *      MCR p15, 0, r0, c7, c5, 1
2230                          */
2231                         for (uint32_t cacheline = address;
2232                                 cacheline < address + size * count;
2233                                 cacheline += 64) {
2234                                 retval = dpm->instr_write_data_r0(dpm,
2235                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2236                                                 cacheline);
2237                                 if (retval != ERROR_OK)
2238                                         return retval;
2239                         }
2240                 }
2241
2242                 /* invalidate D-Cache */
2243                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2244                         /* DCIMVAC - Invalidate data Cache line
2245                          * with MVA to PoC
2246                          *      MCR p15, 0, r0, c7, c6, 1
2247                          */
2248                         for (uint32_t cacheline = address;
2249                                 cacheline < address + size * count;
2250                                 cacheline += 64) {
2251                                 retval = dpm->instr_write_data_r0(dpm,
2252                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2253                                                 cacheline);
2254                                 if (retval != ERROR_OK)
2255                                         return retval;
2256                         }
2257                 }
2258
2259                 /* (void) */ dpm->finish(dpm);
2260         }
2261
2262         return retval;
2263 }
2264
2265 static int aarch64_write_memory(struct target *target, target_addr_t address,
2266         uint32_t size, uint32_t count, const uint8_t *buffer)
2267 {
2268         int mmu_enabled = 0;
2269         target_addr_t virt, phys;
2270         int retval;
2271         struct armv8_common *armv8 = target_to_armv8(target);
2272         struct adiv5_dap *swjdp = armv8->arm.dap;
2273         uint8_t apsel = swjdp->apsel;
2274
2275         /* aarch64 handles unaligned memory access */
2276         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2277                   "; count %" PRId32, address, size, count);
2278
2279         /* determine if MMU was enabled on target stop */
2280         if (!armv8->is_armv7r) {
2281                 retval = aarch64_mmu(target, &mmu_enabled);
2282                 if (retval != ERROR_OK)
2283                         return retval;
2284         }
2285
2286         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2287                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2288                           PRId32 "; count %" PRId32, address, size, count);
2289                 if (mmu_enabled) {
2290                         virt = address;
2291                         retval = aarch64_virt2phys(target, virt, &phys);
2292                         if (retval != ERROR_OK)
2293                                 return retval;
2294
2295                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2296                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2297                         address = phys;
2298                 }
2299                 retval = aarch64_write_phys_memory(target, address, size,
2300                                 count, buffer);
2301         } else {
2302                 if (mmu_enabled) {
2303                         retval = aarch64_check_address(target, address);
2304                         if (retval != ERROR_OK)
2305                                 return retval;
2306                         /* enable MMU as we could have disabled it for phys access */
2307                         retval = aarch64_mmu_modify(target, 1);
2308                         if (retval != ERROR_OK)
2309                                 return retval;
2310                 }
2311                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2312         }
2313         return retval;
2314 }
2315
2316 static int aarch64_handle_target_request(void *priv)
2317 {
2318         struct target *target = priv;
2319         struct armv8_common *armv8 = target_to_armv8(target);
2320         int retval;
2321
2322         if (!target_was_examined(target))
2323                 return ERROR_OK;
2324         if (!target->dbg_msg_enabled)
2325                 return ERROR_OK;
2326
2327         if (target->state == TARGET_RUNNING) {
2328                 uint32_t request;
2329                 uint32_t dscr;
2330                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2331                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2332
2333                 /* check if we have data */
2334                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2335                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2336                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2337                         if (retval == ERROR_OK) {
2338                                 target_request(target, request);
2339                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2340                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2341                         }
2342                 }
2343         }
2344
2345         return ERROR_OK;
2346 }
2347
2348 static int aarch64_examine_first(struct target *target)
2349 {
2350         struct aarch64_common *aarch64 = target_to_aarch64(target);
2351         struct armv8_common *armv8 = &aarch64->armv8_common;
2352         struct adiv5_dap *swjdp = armv8->arm.dap;
2353         int retval = ERROR_OK;
2354         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2355         int i;
2356
2357         /* We do one extra read to ensure DAP is configured,
2358          * we call ahbap_debugport_init(swjdp) instead
2359          */
2360         retval = dap_dp_init(swjdp);
2361         if (retval != ERROR_OK)
2362                 return retval;
2363
2364         /* Search for the APB-AB - it is needed for access to debug registers */
2365         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2366         if (retval != ERROR_OK) {
2367                 LOG_ERROR("Could not find APB-AP for debug access");
2368                 return retval;
2369         }
2370
2371         retval = mem_ap_init(armv8->debug_ap);
2372         if (retval != ERROR_OK) {
2373                 LOG_ERROR("Could not initialize the APB-AP");
2374                 return retval;
2375         }
2376
2377         armv8->debug_ap->memaccess_tck = 80;
2378
2379         /* Search for the AHB-AB */
2380         armv8->memory_ap_available = false;
2381         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2382         if (retval == ERROR_OK) {
2383                 retval = mem_ap_init(armv8->memory_ap);
2384                 if (retval == ERROR_OK)
2385                         armv8->memory_ap_available = true;
2386         }
2387         if (retval != ERROR_OK) {
2388                 /* AHB-AP not found or unavailable - use the CPU */
2389                 LOG_DEBUG("No AHB-AP available for memory access");
2390         }
2391
2392
2393         if (!target->dbgbase_set) {
2394                 uint32_t dbgbase;
2395                 /* Get ROM Table base */
2396                 uint32_t apid;
2397                 int32_t coreidx = target->coreid;
2398                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2399                 if (retval != ERROR_OK)
2400                         return retval;
2401                 /* Lookup 0x15 -- Processor DAP */
2402                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2403                                 &armv8->debug_base, &coreidx);
2404                 if (retval != ERROR_OK)
2405                         return retval;
2406                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2407                           coreidx, armv8->debug_base);
2408         } else
2409                 armv8->debug_base = target->dbgbase;
2410
2411         LOG_DEBUG("Target ctibase is 0x%x", target->ctibase);
2412         if (target->ctibase == 0)
2413                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x1000;
2414         else
2415                 armv8->cti_base = target->ctibase;
2416
2417         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2418                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2419         if (retval != ERROR_OK) {
2420                 LOG_DEBUG("Examine %s failed", "oslock");
2421                 return retval;
2422         }
2423
2424         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2425                         armv8->debug_base + 0x88, &cpuid);
2426         LOG_DEBUG("0x88 = %x", cpuid);
2427
2428         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2429                         armv8->debug_base + 0x314, &cpuid);
2430         LOG_DEBUG("0x314 = %x", cpuid);
2431
2432         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2433                         armv8->debug_base + 0x310, &cpuid);
2434         LOG_DEBUG("0x310 = %x", cpuid);
2435         if (retval != ERROR_OK)
2436                 return retval;
2437
2438         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2439                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2440         if (retval != ERROR_OK) {
2441                 LOG_DEBUG("Examine %s failed", "CPUID");
2442                 return retval;
2443         }
2444
2445         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2446                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2447         if (retval != ERROR_OK) {
2448                 LOG_DEBUG("Examine %s failed", "CTYPR");
2449                 return retval;
2450         }
2451
2452         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2453                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2454         if (retval != ERROR_OK) {
2455                 LOG_DEBUG("Examine %s failed", "TTYPR");
2456                 return retval;
2457         }
2458
2459         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2460                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2461         if (retval != ERROR_OK) {
2462                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2463                 return retval;
2464         }
2465         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2466                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2467         if (retval != ERROR_OK) {
2468                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2469                 return retval;
2470         }
2471
2472         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2473         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2474         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2475         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2476         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2477
2478         armv8->arm.core_type = ARM_MODE_MON;
2479         armv8->arm.core_state = ARM_STATE_AARCH64;
2480         retval = aarch64_dpm_setup(aarch64, debug);
2481         if (retval != ERROR_OK)
2482                 return retval;
2483
2484         /* Setup Breakpoint Register Pairs */
2485         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2486         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2487
2488         /* hack - no context bpt support yet */
2489         aarch64->brp_num_context = 0;
2490
2491         aarch64->brp_num_available = aarch64->brp_num;
2492         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2493         for (i = 0; i < aarch64->brp_num; i++) {
2494                 aarch64->brp_list[i].used = 0;
2495                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2496                         aarch64->brp_list[i].type = BRP_NORMAL;
2497                 else
2498                         aarch64->brp_list[i].type = BRP_CONTEXT;
2499                 aarch64->brp_list[i].value = 0;
2500                 aarch64->brp_list[i].control = 0;
2501                 aarch64->brp_list[i].BRPn = i;
2502         }
2503
2504         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2505
2506         target_set_examined(target);
2507         return ERROR_OK;
2508 }
2509
2510 static int aarch64_examine(struct target *target)
2511 {
2512         int retval = ERROR_OK;
2513
2514         /* don't re-probe hardware after each reset */
2515         if (!target_was_examined(target))
2516                 retval = aarch64_examine_first(target);
2517
2518         /* Configure core debug access */
2519         if (retval == ERROR_OK)
2520                 retval = aarch64_init_debug_access(target);
2521
2522         return retval;
2523 }
2524
2525 /*
2526  *      Cortex-A8 target creation and initialization
2527  */
2528
2529 static int aarch64_init_target(struct command_context *cmd_ctx,
2530         struct target *target)
2531 {
2532         /* examine_first() does a bunch of this */
2533         return ERROR_OK;
2534 }
2535
2536 static int aarch64_init_arch_info(struct target *target,
2537         struct aarch64_common *aarch64, struct jtag_tap *tap)
2538 {
2539         struct armv8_common *armv8 = &aarch64->armv8_common;
2540         struct adiv5_dap *dap = armv8->arm.dap;
2541
2542         armv8->arm.dap = dap;
2543
2544         /* Setup struct aarch64_common */
2545         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2546         /*  tap has no dap initialized */
2547         if (!tap->dap) {
2548                 tap->dap = dap_init();
2549
2550                 /* Leave (only) generic DAP stuff for debugport_init() */
2551                 tap->dap->tap = tap;
2552         }
2553
2554         armv8->arm.dap = tap->dap;
2555
2556         aarch64->fast_reg_read = 0;
2557
2558         /* register arch-specific functions */
2559         armv8->examine_debug_reason = NULL;
2560
2561         armv8->post_debug_entry = aarch64_post_debug_entry;
2562
2563         armv8->pre_restore_context = NULL;
2564
2565         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2566
2567         /* REVISIT v7a setup should be in a v7a-specific routine */
2568         armv8_init_arch_info(target, armv8);
2569         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2570
2571         return ERROR_OK;
2572 }
2573
2574 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2575 {
2576         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2577
2578         aarch64->armv8_common.is_armv7r = false;
2579
2580         return aarch64_init_arch_info(target, aarch64, target->tap);
2581 }
2582
2583 static int aarch64_mmu(struct target *target, int *enabled)
2584 {
2585         if (target->state != TARGET_HALTED) {
2586                 LOG_ERROR("%s: target not halted", __func__);
2587                 return ERROR_TARGET_INVALID;
2588         }
2589
2590         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2591         return ERROR_OK;
2592 }
2593
2594 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2595                              target_addr_t *phys)
2596 {
2597         int retval = ERROR_FAIL;
2598         struct armv8_common *armv8 = target_to_armv8(target);
2599         struct adiv5_dap *swjdp = armv8->arm.dap;
2600         uint8_t apsel = swjdp->apsel;
2601         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2602                 uint32_t ret;
2603                 retval = armv8_mmu_translate_va(target,
2604                                 virt, &ret);
2605                 if (retval != ERROR_OK)
2606                         goto done;
2607                 *phys = ret;
2608         } else {/*  use this method if armv8->memory_ap not selected
2609                  *  mmu must be enable in order to get a correct translation */
2610                 retval = aarch64_mmu_modify(target, 1);
2611                 if (retval != ERROR_OK)
2612                         goto done;
2613                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2614         }
2615 done:
2616         return retval;
2617 }
2618
2619 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2620 {
2621         struct target *target = get_current_target(CMD_CTX);
2622         struct armv8_common *armv8 = target_to_armv8(target);
2623
2624         return armv8_handle_cache_info_command(CMD_CTX,
2625                         &armv8->armv8_mmu.armv8_cache);
2626 }
2627
2628
2629 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2630 {
2631         struct target *target = get_current_target(CMD_CTX);
2632         if (!target_was_examined(target)) {
2633                 LOG_ERROR("target not examined yet");
2634                 return ERROR_FAIL;
2635         }
2636
2637         return aarch64_init_debug_access(target);
2638 }
2639 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2640 {
2641         struct target *target = get_current_target(CMD_CTX);
2642         /* check target is an smp target */
2643         struct target_list *head;
2644         struct target *curr;
2645         head = target->head;
2646         target->smp = 0;
2647         if (head != (struct target_list *)NULL) {
2648                 while (head != (struct target_list *)NULL) {
2649                         curr = head->target;
2650                         curr->smp = 0;
2651                         head = head->next;
2652                 }
2653                 /*  fixes the target display to the debugger */
2654                 target->gdb_service->target = target;
2655         }
2656         return ERROR_OK;
2657 }
2658
2659 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2660 {
2661         struct target *target = get_current_target(CMD_CTX);
2662         struct target_list *head;
2663         struct target *curr;
2664         head = target->head;
2665         if (head != (struct target_list *)NULL) {
2666                 target->smp = 1;
2667                 while (head != (struct target_list *)NULL) {
2668                         curr = head->target;
2669                         curr->smp = 1;
2670                         head = head->next;
2671                 }
2672         }
2673         return ERROR_OK;
2674 }
2675
2676 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2677 {
2678         struct target *target = get_current_target(CMD_CTX);
2679         int retval = ERROR_OK;
2680         struct target_list *head;
2681         head = target->head;
2682         if (head != (struct target_list *)NULL) {
2683                 if (CMD_ARGC == 1) {
2684                         int coreid = 0;
2685                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2686                         if (ERROR_OK != retval)
2687                                 return retval;
2688                         target->gdb_service->core[1] = coreid;
2689
2690                 }
2691                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2692                         , target->gdb_service->core[1]);
2693         }
2694         return ERROR_OK;
2695 }
2696
2697 static const struct command_registration aarch64_exec_command_handlers[] = {
2698         {
2699                 .name = "cache_info",
2700                 .handler = aarch64_handle_cache_info_command,
2701                 .mode = COMMAND_EXEC,
2702                 .help = "display information about target caches",
2703                 .usage = "",
2704         },
2705         {
2706                 .name = "dbginit",
2707                 .handler = aarch64_handle_dbginit_command,
2708                 .mode = COMMAND_EXEC,
2709                 .help = "Initialize core debug",
2710                 .usage = "",
2711         },
2712         {       .name = "smp_off",
2713                 .handler = aarch64_handle_smp_off_command,
2714                 .mode = COMMAND_EXEC,
2715                 .help = "Stop smp handling",
2716                 .usage = "",
2717         },
2718         {
2719                 .name = "smp_on",
2720                 .handler = aarch64_handle_smp_on_command,
2721                 .mode = COMMAND_EXEC,
2722                 .help = "Restart smp handling",
2723                 .usage = "",
2724         },
2725         {
2726                 .name = "smp_gdb",
2727                 .handler = aarch64_handle_smp_gdb_command,
2728                 .mode = COMMAND_EXEC,
2729                 .help = "display/fix current core played to gdb",
2730                 .usage = "",
2731         },
2732
2733
2734         COMMAND_REGISTRATION_DONE
2735 };
2736 static const struct command_registration aarch64_command_handlers[] = {
2737         {
2738                 .chain = arm_command_handlers,
2739         },
2740         {
2741                 .chain = armv8_command_handlers,
2742         },
2743         {
2744                 .name = "cortex_a",
2745                 .mode = COMMAND_ANY,
2746                 .help = "Cortex-A command group",
2747                 .usage = "",
2748                 .chain = aarch64_exec_command_handlers,
2749         },
2750         COMMAND_REGISTRATION_DONE
2751 };
2752
2753 struct target_type aarch64_target = {
2754         .name = "aarch64",
2755
2756         .poll = aarch64_poll,
2757         .arch_state = armv8_arch_state,
2758
2759         .halt = aarch64_halt,
2760         .resume = aarch64_resume,
2761         .step = aarch64_step,
2762
2763         .assert_reset = aarch64_assert_reset,
2764         .deassert_reset = aarch64_deassert_reset,
2765
2766         /* REVISIT allow exporting VFP3 registers ... */
2767         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2768
2769         .read_memory = aarch64_read_memory,
2770         .write_memory = aarch64_write_memory,
2771
2772         .checksum_memory = arm_checksum_memory,
2773         .blank_check_memory = arm_blank_check_memory,
2774
2775         .run_algorithm = armv4_5_run_algorithm,
2776
2777         .add_breakpoint = aarch64_add_breakpoint,
2778         .add_context_breakpoint = aarch64_add_context_breakpoint,
2779         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2780         .remove_breakpoint = aarch64_remove_breakpoint,
2781         .add_watchpoint = NULL,
2782         .remove_watchpoint = NULL,
2783
2784         .commands = aarch64_command_handlers,
2785         .target_create = aarch64_target_create,
2786         .init_target = aarch64_init_target,
2787         .examine = aarch64_examine,
2788
2789         .read_phys_memory = aarch64_read_phys_memory,
2790         .write_phys_memory = aarch64_write_phys_memory,
2791         .mmu = aarch64_mmu,
2792         .virt2phys = aarch64_virt2phys,
2793 };