aarch64: provide virt2phys command
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static struct target *get_aarch64(struct target *target, int32_t coreid)
283 {
284         struct target_list *head;
285         struct target *curr;
286
287         head = target->head;
288         while (head != (struct target_list *)NULL) {
289                 curr = head->target;
290                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
291                         return curr;
292                 head = head->next;
293         }
294         return target;
295 }
296 static int aarch64_halt(struct target *target);
297
298 static int aarch64_halt_smp(struct target *target)
299 {
300         int retval = ERROR_OK;
301         struct target_list *head = target->head;
302
303         while (head != (struct target_list *)NULL) {
304                 struct target *curr = head->target;
305                 struct armv8_common *armv8 = target_to_armv8(curr);
306
307                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
308                 if (curr->smp)
309                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
310                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
311                 if (retval != ERROR_OK)
312                         break;
313
314                 head = head->next;
315         }
316
317         /* halt the target PE */
318         if (retval == ERROR_OK)
319                 retval = aarch64_halt(target);
320
321         return retval;
322 }
323
324 static int update_halt_gdb(struct target *target)
325 {
326         int retval = 0;
327         if (target->gdb_service && target->gdb_service->core[0] == -1) {
328                 target->gdb_service->target = target;
329                 target->gdb_service->core[0] = target->coreid;
330                 retval += aarch64_halt_smp(target);
331         }
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int aarch64_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct aarch64_common *aarch64 = target_to_aarch64(target);
344         struct armv8_common *armv8 = &aarch64->armv8_common;
345         enum target_state prev_target_state = target->state;
346         /*  toggle to another core is done by gdb as follow */
347         /*  maint packet J core_id */
348         /*  continue */
349         /*  the next polling trigger an halt event sent to gdb */
350         if ((target->state == TARGET_HALTED) && (target->smp) &&
351                 (target->gdb_service) &&
352                 (target->gdb_service->target == NULL)) {
353                 target->gdb_service->target =
354                         get_aarch64(target, target->gdb_service->core[1]);
355                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
356                 return retval;
357         }
358         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
359                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
360         if (retval != ERROR_OK)
361                 return retval;
362         aarch64->cpudbg_dscr = dscr;
363
364         if (DSCR_RUN_MODE(dscr) == 0x3) {
365                 if (prev_target_state != TARGET_HALTED) {
366                         /* We have a halting debug event */
367                         LOG_DEBUG("Target halted");
368                         target->state = TARGET_HALTED;
369                         if ((prev_target_state == TARGET_RUNNING)
370                                 || (prev_target_state == TARGET_UNKNOWN)
371                                 || (prev_target_state == TARGET_RESET)) {
372                                 retval = aarch64_debug_entry(target);
373                                 if (retval != ERROR_OK)
374                                         return retval;
375                                 if (target->smp) {
376                                         retval = update_halt_gdb(target);
377                                         if (retval != ERROR_OK)
378                                                 return retval;
379                                 }
380                                 target_call_event_callbacks(target,
381                                         TARGET_EVENT_HALTED);
382                         }
383                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
384                                 LOG_DEBUG(" ");
385
386                                 retval = aarch64_debug_entry(target);
387                                 if (retval != ERROR_OK)
388                                         return retval;
389                                 if (target->smp) {
390                                         retval = update_halt_gdb(target);
391                                         if (retval != ERROR_OK)
392                                                 return retval;
393                                 }
394
395                                 target_call_event_callbacks(target,
396                                         TARGET_EVENT_DEBUG_HALTED);
397                         }
398                 }
399         } else
400                 target->state = TARGET_RUNNING;
401
402         return retval;
403 }
404
405 static int aarch64_halt(struct target *target)
406 {
407         int retval = ERROR_OK;
408         uint32_t dscr;
409         struct armv8_common *armv8 = target_to_armv8(target);
410
411         /*
412          * add HDE in halting debug mode
413          */
414         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
415                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
416         if (retval == ERROR_OK)
417                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
418                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         /* trigger an event on channel 0, this outputs a halt request to the PE */
423         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
424                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
425         if (retval != ERROR_OK)
426                 return retval;
427
428         long long then = timeval_ms();
429         for (;; ) {
430                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
431                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
432                 if (retval != ERROR_OK)
433                         return retval;
434                 if ((dscr & DSCRV8_HALT_MASK) != 0)
435                         break;
436                 if (timeval_ms() > then + 1000) {
437                         LOG_ERROR("Timeout waiting for halt");
438                         return ERROR_FAIL;
439                 }
440         }
441
442         target->debug_reason = DBG_REASON_DBGRQ;
443
444         return ERROR_OK;
445 }
446
447 static int aarch64_internal_restore(struct target *target, int current,
448         uint64_t *address, int handle_breakpoints, int debug_execution)
449 {
450         struct armv8_common *armv8 = target_to_armv8(target);
451         struct arm *arm = &armv8->arm;
452         int retval;
453         uint64_t resume_pc;
454
455         if (!debug_execution)
456                 target_free_all_working_areas(target);
457
458         /* current = 1: continue on current pc, otherwise continue at <address> */
459         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
460         if (!current)
461                 resume_pc = *address;
462         else
463                 *address = resume_pc;
464
465         /* Make sure that the Armv7 gdb thumb fixups does not
466          * kill the return address
467          */
468         switch (arm->core_state) {
469                 case ARM_STATE_ARM:
470                         resume_pc &= 0xFFFFFFFC;
471                         break;
472                 case ARM_STATE_AARCH64:
473                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
474                         break;
475                 case ARM_STATE_THUMB:
476                 case ARM_STATE_THUMB_EE:
477                         /* When the return address is loaded into PC
478                          * bit 0 must be 1 to stay in Thumb state
479                          */
480                         resume_pc |= 0x1;
481                         break;
482                 case ARM_STATE_JAZELLE:
483                         LOG_ERROR("How do I resume into Jazelle state??");
484                         return ERROR_FAIL;
485         }
486         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
487         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
488         arm->pc->dirty = 1;
489         arm->pc->valid = 1;
490         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
491
492         /* called it now before restoring context because it uses cpu
493          * register r0 for restoring system control register */
494         retval = aarch64_restore_system_control_reg(target);
495         if (retval != ERROR_OK)
496                 return retval;
497         retval = aarch64_restore_context(target, handle_breakpoints);
498         if (retval != ERROR_OK)
499                 return retval;
500         target->debug_reason = DBG_REASON_NOTHALTED;
501         target->state = TARGET_RUNNING;
502
503         /* registers are now invalid */
504         register_cache_invalidate(arm->core_cache);
505
506         return retval;
507 }
508
509 static int aarch64_internal_restart(struct target *target, bool slave_pe)
510 {
511         struct armv8_common *armv8 = target_to_armv8(target);
512         struct arm *arm = &armv8->arm;
513         int retval;
514         uint32_t dscr;
515         /*
516          * * Restart core and wait for it to be started.  Clear ITRen and sticky
517          * * exception flags: see ARMv7 ARM, C5.9.
518          *
519          * REVISIT: for single stepping, we probably want to
520          * disable IRQs by default, with optional override...
521          */
522
523         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
524                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
525         if (retval != ERROR_OK)
526                 return retval;
527
528         if ((dscr & DSCR_ITE) == 0)
529                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
530
531         /* make sure to acknowledge the halt event before resuming */
532         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
533                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
534
535         /*
536          * open the CTI gate for channel 1 so that the restart events
537          * get passed along to all PEs
538          */
539         if (retval == ERROR_OK)
540                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
541                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
542         if (retval != ERROR_OK)
543                 return retval;
544
545         if (!slave_pe) {
546                 /* trigger an event on channel 1, generates a restart request to the PE */
547                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
548                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
549                 if (retval != ERROR_OK)
550                         return retval;
551
552                 long long then = timeval_ms();
553                 for (;; ) {
554                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
555                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
556                         if (retval != ERROR_OK)
557                                 return retval;
558                         if ((dscr & DSCR_HDE) != 0)
559                                 break;
560                         if (timeval_ms() > then + 1000) {
561                                 LOG_ERROR("Timeout waiting for resume");
562                                 return ERROR_FAIL;
563                         }
564                 }
565         }
566
567         target->debug_reason = DBG_REASON_NOTHALTED;
568         target->state = TARGET_RUNNING;
569
570         /* registers are now invalid */
571         register_cache_invalidate(arm->core_cache);
572
573         return ERROR_OK;
574 }
575
576 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
577 {
578         int retval = 0;
579         struct target_list *head;
580         struct target *curr;
581         uint64_t address;
582         head = target->head;
583         while (head != (struct target_list *)NULL) {
584                 curr = head->target;
585                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
586                         /*  resume current address , not in step mode */
587                         retval += aarch64_internal_restore(curr, 1, &address,
588                                         handle_breakpoints, 0);
589                         retval += aarch64_internal_restart(curr, true);
590                 }
591                 head = head->next;
592
593         }
594         return retval;
595 }
596
597 static int aarch64_resume(struct target *target, int current,
598         target_addr_t address, int handle_breakpoints, int debug_execution)
599 {
600         int retval = 0;
601         uint64_t addr = address;
602
603         /* dummy resume for smp toggle in order to reduce gdb impact  */
604         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
605                 /*   simulate a start and halt of target */
606                 target->gdb_service->target = NULL;
607                 target->gdb_service->core[0] = target->gdb_service->core[1];
608                 /*  fake resume at next poll we play the  target core[1], see poll*/
609                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
610                 return 0;
611         }
612         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
613                                  debug_execution);
614         if (target->smp) {
615                 target->gdb_service->core[0] = -1;
616                 retval = aarch64_restore_smp(target, handle_breakpoints);
617                 if (retval != ERROR_OK)
618                         return retval;
619         }
620         aarch64_internal_restart(target, false);
621
622         if (!debug_execution) {
623                 target->state = TARGET_RUNNING;
624                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
625                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
626         } else {
627                 target->state = TARGET_DEBUG_RUNNING;
628                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
629                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
630         }
631
632         return ERROR_OK;
633 }
634
635 static int aarch64_debug_entry(struct target *target)
636 {
637         int retval = ERROR_OK;
638         struct aarch64_common *aarch64 = target_to_aarch64(target);
639         struct armv8_common *armv8 = target_to_armv8(target);
640
641         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
642
643         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
644          * imprecise data aborts get discarded by issuing a Data
645          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
646          */
647
648         /* make sure to clear all sticky errors */
649         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
650                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
651         if (retval != ERROR_OK)
652                 return retval;
653
654         /* Examine debug reason */
655         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
656
657         /* save address of instruction that triggered the watchpoint? */
658         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
659                 uint32_t tmp;
660                 uint64_t wfar = 0;
661
662                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
663                                 armv8->debug_base + CPUV8_DBG_WFAR1,
664                                 &tmp);
665                 if (retval != ERROR_OK)
666                         return retval;
667                 wfar = tmp;
668                 wfar = (wfar << 32);
669                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
670                                 armv8->debug_base + CPUV8_DBG_WFAR0,
671                                 &tmp);
672                 if (retval != ERROR_OK)
673                         return retval;
674                 wfar |= tmp;
675                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
676         }
677
678         retval = armv8_dpm_read_current_registers(&armv8->dpm);
679
680         if (armv8->post_debug_entry) {
681                 retval = armv8->post_debug_entry(target);
682                 if (retval != ERROR_OK)
683                         return retval;
684         }
685
686         return retval;
687 }
688
689 static int aarch64_post_debug_entry(struct target *target)
690 {
691         struct aarch64_common *aarch64 = target_to_aarch64(target);
692         struct armv8_common *armv8 = &aarch64->armv8_common;
693         int retval;
694
695         /* clear sticky errors */
696         mem_ap_write_atomic_u32(armv8->debug_ap,
697                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
698
699         switch (armv8->arm.core_mode) {
700                 case ARMV8_64_EL0T:
701                 case ARMV8_64_EL1T:
702                 case ARMV8_64_EL1H:
703                         retval = armv8->arm.mrs(target, 3, /*op 0*/
704                                         0, 0,   /* op1, op2 */
705                                         1, 0,   /* CRn, CRm */
706                                         &aarch64->system_control_reg);
707                         if (retval != ERROR_OK)
708                                 return retval;
709                 break;
710                 case ARMV8_64_EL2T:
711                 case ARMV8_64_EL2H:
712                         retval = armv8->arm.mrs(target, 3, /*op 0*/
713                                         4, 0,   /* op1, op2 */
714                                         1, 0,   /* CRn, CRm */
715                                         &aarch64->system_control_reg);
716                         if (retval != ERROR_OK)
717                                 return retval;
718                 break;
719                 case ARMV8_64_EL3H:
720                 case ARMV8_64_EL3T:
721                         retval = armv8->arm.mrs(target, 3, /*op 0*/
722                                         6, 0,   /* op1, op2 */
723                                         1, 0,   /* CRn, CRm */
724                                         &aarch64->system_control_reg);
725                         if (retval != ERROR_OK)
726                                 return retval;
727                 break;
728                 default:
729                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
730                         if (retval != ERROR_OK)
731                                 return retval;
732                         break;
733         }
734
735         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
736         aarch64->system_control_reg_curr = aarch64->system_control_reg;
737
738         if (armv8->armv8_mmu.armv8_cache.info == -1) {
739                 armv8_identify_cache(armv8);
740                 armv8_read_mpidr(armv8);
741         }
742
743         armv8->armv8_mmu.mmu_enabled =
744                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
745         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
746                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
747         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
748                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
749         aarch64->curr_mode = armv8->arm.core_mode;
750         return ERROR_OK;
751 }
752
753 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
754 {
755         struct armv8_common *armv8 = target_to_armv8(target);
756         uint32_t dscr;
757
758         /* Read DSCR */
759         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
760                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
761         if (ERROR_OK != retval)
762                 return retval;
763
764         /* clear bitfield */
765         dscr &= ~bit_mask;
766         /* put new value */
767         dscr |= value & bit_mask;
768
769         /* write new DSCR */
770         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
771                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
772         return retval;
773 }
774
775 static int aarch64_step(struct target *target, int current, target_addr_t address,
776         int handle_breakpoints)
777 {
778         struct armv8_common *armv8 = target_to_armv8(target);
779         int retval;
780         uint32_t edecr;
781
782         if (target->state != TARGET_HALTED) {
783                 LOG_WARNING("target not halted");
784                 return ERROR_TARGET_NOT_HALTED;
785         }
786
787         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
788                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
789         if (retval != ERROR_OK)
790                 return retval;
791
792         /* make sure EDECR.SS is not set when restoring the register */
793         edecr &= ~0x4;
794
795         /* set EDECR.SS to enter hardware step mode */
796         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
797                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
798         if (retval != ERROR_OK)
799                 return retval;
800
801         /* disable interrupts while stepping */
802         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
803         if (retval != ERROR_OK)
804                 return ERROR_OK;
805
806         /* resume the target */
807         retval = aarch64_resume(target, current, address, 0, 0);
808         if (retval != ERROR_OK)
809                 return retval;
810
811         long long then = timeval_ms();
812         while (target->state != TARGET_HALTED) {
813                 retval = aarch64_poll(target);
814                 if (retval != ERROR_OK)
815                         return retval;
816                 if (timeval_ms() > then + 1000) {
817                         LOG_ERROR("timeout waiting for target halt");
818                         return ERROR_FAIL;
819                 }
820         }
821
822         /* restore EDECR */
823         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
824                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
825         if (retval != ERROR_OK)
826                 return retval;
827
828         /* restore interrupts */
829         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
830         if (retval != ERROR_OK)
831                 return ERROR_OK;
832
833         return ERROR_OK;
834 }
835
836 static int aarch64_restore_context(struct target *target, bool bpwp)
837 {
838         struct armv8_common *armv8 = target_to_armv8(target);
839
840         LOG_DEBUG(" ");
841
842         if (armv8->pre_restore_context)
843                 armv8->pre_restore_context(target);
844
845         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
846
847 }
848
849 /*
850  * Cortex-A8 Breakpoint and watchpoint functions
851  */
852
853 /* Setup hardware Breakpoint Register Pair */
854 static int aarch64_set_breakpoint(struct target *target,
855         struct breakpoint *breakpoint, uint8_t matchmode)
856 {
857         int retval;
858         int brp_i = 0;
859         uint32_t control;
860         uint8_t byte_addr_select = 0x0F;
861         struct aarch64_common *aarch64 = target_to_aarch64(target);
862         struct armv8_common *armv8 = &aarch64->armv8_common;
863         struct aarch64_brp *brp_list = aarch64->brp_list;
864
865         if (breakpoint->set) {
866                 LOG_WARNING("breakpoint already set");
867                 return ERROR_OK;
868         }
869
870         if (breakpoint->type == BKPT_HARD) {
871                 int64_t bpt_value;
872                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
873                         brp_i++;
874                 if (brp_i >= aarch64->brp_num) {
875                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
876                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
877                 }
878                 breakpoint->set = brp_i + 1;
879                 if (breakpoint->length == 2)
880                         byte_addr_select = (3 << (breakpoint->address & 0x02));
881                 control = ((matchmode & 0x7) << 20)
882                         | (1 << 13)
883                         | (byte_addr_select << 5)
884                         | (3 << 1) | 1;
885                 brp_list[brp_i].used = 1;
886                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
887                 brp_list[brp_i].control = control;
888                 bpt_value = brp_list[brp_i].value;
889
890                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
891                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
892                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
893                 if (retval != ERROR_OK)
894                         return retval;
895                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
896                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
897                                 (uint32_t)(bpt_value >> 32));
898                 if (retval != ERROR_OK)
899                         return retval;
900
901                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
902                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
903                                 brp_list[brp_i].control);
904                 if (retval != ERROR_OK)
905                         return retval;
906                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
907                         brp_list[brp_i].control,
908                         brp_list[brp_i].value);
909
910         } else if (breakpoint->type == BKPT_SOFT) {
911                 uint8_t code[4];
912
913                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
914                 retval = target_read_memory(target,
915                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
916                                 breakpoint->length, 1,
917                                 breakpoint->orig_instr);
918                 if (retval != ERROR_OK)
919                         return retval;
920
921                 armv8_cache_d_inner_flush_virt(armv8,
922                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
923                                 breakpoint->length);
924
925                 retval = target_write_memory(target,
926                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
927                                 breakpoint->length, 1, code);
928                 if (retval != ERROR_OK)
929                         return retval;
930
931                 armv8_cache_d_inner_flush_virt(armv8,
932                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
933                                 breakpoint->length);
934
935                 armv8_cache_i_inner_inval_virt(armv8,
936                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
937                                 breakpoint->length);
938
939                 breakpoint->set = 0x11; /* Any nice value but 0 */
940         }
941
942         /* Ensure that halting debug mode is enable */
943         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
944         if (retval != ERROR_OK) {
945                 LOG_DEBUG("Failed to set DSCR.HDE");
946                 return retval;
947         }
948
949         return ERROR_OK;
950 }
951
952 static int aarch64_set_context_breakpoint(struct target *target,
953         struct breakpoint *breakpoint, uint8_t matchmode)
954 {
955         int retval = ERROR_FAIL;
956         int brp_i = 0;
957         uint32_t control;
958         uint8_t byte_addr_select = 0x0F;
959         struct aarch64_common *aarch64 = target_to_aarch64(target);
960         struct armv8_common *armv8 = &aarch64->armv8_common;
961         struct aarch64_brp *brp_list = aarch64->brp_list;
962
963         if (breakpoint->set) {
964                 LOG_WARNING("breakpoint already set");
965                 return retval;
966         }
967         /*check available context BRPs*/
968         while ((brp_list[brp_i].used ||
969                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
970                 brp_i++;
971
972         if (brp_i >= aarch64->brp_num) {
973                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
974                 return ERROR_FAIL;
975         }
976
977         breakpoint->set = brp_i + 1;
978         control = ((matchmode & 0x7) << 20)
979                 | (1 << 13)
980                 | (byte_addr_select << 5)
981                 | (3 << 1) | 1;
982         brp_list[brp_i].used = 1;
983         brp_list[brp_i].value = (breakpoint->asid);
984         brp_list[brp_i].control = control;
985         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
986                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
987                         brp_list[brp_i].value);
988         if (retval != ERROR_OK)
989                 return retval;
990         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
991                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
992                         brp_list[brp_i].control);
993         if (retval != ERROR_OK)
994                 return retval;
995         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
996                 brp_list[brp_i].control,
997                 brp_list[brp_i].value);
998         return ERROR_OK;
999
1000 }
1001
1002 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1003 {
1004         int retval = ERROR_FAIL;
1005         int brp_1 = 0;  /* holds the contextID pair */
1006         int brp_2 = 0;  /* holds the IVA pair */
1007         uint32_t control_CTX, control_IVA;
1008         uint8_t CTX_byte_addr_select = 0x0F;
1009         uint8_t IVA_byte_addr_select = 0x0F;
1010         uint8_t CTX_machmode = 0x03;
1011         uint8_t IVA_machmode = 0x01;
1012         struct aarch64_common *aarch64 = target_to_aarch64(target);
1013         struct armv8_common *armv8 = &aarch64->armv8_common;
1014         struct aarch64_brp *brp_list = aarch64->brp_list;
1015
1016         if (breakpoint->set) {
1017                 LOG_WARNING("breakpoint already set");
1018                 return retval;
1019         }
1020         /*check available context BRPs*/
1021         while ((brp_list[brp_1].used ||
1022                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1023                 brp_1++;
1024
1025         printf("brp(CTX) found num: %d\n", brp_1);
1026         if (brp_1 >= aarch64->brp_num) {
1027                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1028                 return ERROR_FAIL;
1029         }
1030
1031         while ((brp_list[brp_2].used ||
1032                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1033                 brp_2++;
1034
1035         printf("brp(IVA) found num: %d\n", brp_2);
1036         if (brp_2 >= aarch64->brp_num) {
1037                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1038                 return ERROR_FAIL;
1039         }
1040
1041         breakpoint->set = brp_1 + 1;
1042         breakpoint->linked_BRP = brp_2;
1043         control_CTX = ((CTX_machmode & 0x7) << 20)
1044                 | (brp_2 << 16)
1045                 | (0 << 14)
1046                 | (CTX_byte_addr_select << 5)
1047                 | (3 << 1) | 1;
1048         brp_list[brp_1].used = 1;
1049         brp_list[brp_1].value = (breakpoint->asid);
1050         brp_list[brp_1].control = control_CTX;
1051         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1052                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1053                         brp_list[brp_1].value);
1054         if (retval != ERROR_OK)
1055                 return retval;
1056         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1057                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1058                         brp_list[brp_1].control);
1059         if (retval != ERROR_OK)
1060                 return retval;
1061
1062         control_IVA = ((IVA_machmode & 0x7) << 20)
1063                 | (brp_1 << 16)
1064                 | (1 << 13)
1065                 | (IVA_byte_addr_select << 5)
1066                 | (3 << 1) | 1;
1067         brp_list[brp_2].used = 1;
1068         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1069         brp_list[brp_2].control = control_IVA;
1070         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1071                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1072                         brp_list[brp_2].value & 0xFFFFFFFF);
1073         if (retval != ERROR_OK)
1074                 return retval;
1075         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1076                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1077                         brp_list[brp_2].value >> 32);
1078         if (retval != ERROR_OK)
1079                 return retval;
1080         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1081                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1082                         brp_list[brp_2].control);
1083         if (retval != ERROR_OK)
1084                 return retval;
1085
1086         return ERROR_OK;
1087 }
1088
1089 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1090 {
1091         int retval;
1092         struct aarch64_common *aarch64 = target_to_aarch64(target);
1093         struct armv8_common *armv8 = &aarch64->armv8_common;
1094         struct aarch64_brp *brp_list = aarch64->brp_list;
1095
1096         if (!breakpoint->set) {
1097                 LOG_WARNING("breakpoint not set");
1098                 return ERROR_OK;
1099         }
1100
1101         if (breakpoint->type == BKPT_HARD) {
1102                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1103                         int brp_i = breakpoint->set - 1;
1104                         int brp_j = breakpoint->linked_BRP;
1105                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1106                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1107                                 return ERROR_OK;
1108                         }
1109                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1110                                 brp_list[brp_i].control, brp_list[brp_i].value);
1111                         brp_list[brp_i].used = 0;
1112                         brp_list[brp_i].value = 0;
1113                         brp_list[brp_i].control = 0;
1114                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1115                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1116                                         brp_list[brp_i].control);
1117                         if (retval != ERROR_OK)
1118                                 return retval;
1119                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1120                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1121                                         (uint32_t)brp_list[brp_i].value);
1122                         if (retval != ERROR_OK)
1123                                 return retval;
1124                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1125                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1126                                         (uint32_t)brp_list[brp_i].value);
1127                         if (retval != ERROR_OK)
1128                                 return retval;
1129                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1130                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1131                                 return ERROR_OK;
1132                         }
1133                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1134                                 brp_list[brp_j].control, brp_list[brp_j].value);
1135                         brp_list[brp_j].used = 0;
1136                         brp_list[brp_j].value = 0;
1137                         brp_list[brp_j].control = 0;
1138                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1139                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1140                                         brp_list[brp_j].control);
1141                         if (retval != ERROR_OK)
1142                                 return retval;
1143                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1144                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1145                                         (uint32_t)brp_list[brp_j].value);
1146                         if (retval != ERROR_OK)
1147                                 return retval;
1148                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1149                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1150                                         (uint32_t)brp_list[brp_j].value);
1151                         if (retval != ERROR_OK)
1152                                 return retval;
1153
1154                         breakpoint->linked_BRP = 0;
1155                         breakpoint->set = 0;
1156                         return ERROR_OK;
1157
1158                 } else {
1159                         int brp_i = breakpoint->set - 1;
1160                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1161                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1162                                 return ERROR_OK;
1163                         }
1164                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1165                                 brp_list[brp_i].control, brp_list[brp_i].value);
1166                         brp_list[brp_i].used = 0;
1167                         brp_list[brp_i].value = 0;
1168                         brp_list[brp_i].control = 0;
1169                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1170                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1171                                         brp_list[brp_i].control);
1172                         if (retval != ERROR_OK)
1173                                 return retval;
1174                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1175                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1176                                         brp_list[brp_i].value);
1177                         if (retval != ERROR_OK)
1178                                 return retval;
1179
1180                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1181                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1182                                         (uint32_t)brp_list[brp_i].value);
1183                         if (retval != ERROR_OK)
1184                                 return retval;
1185                         breakpoint->set = 0;
1186                         return ERROR_OK;
1187                 }
1188         } else {
1189                 /* restore original instruction (kept in target endianness) */
1190
1191                 armv8_cache_d_inner_flush_virt(armv8,
1192                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1193                                 breakpoint->length);
1194
1195                 if (breakpoint->length == 4) {
1196                         retval = target_write_memory(target,
1197                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1198                                         4, 1, breakpoint->orig_instr);
1199                         if (retval != ERROR_OK)
1200                                 return retval;
1201                 } else {
1202                         retval = target_write_memory(target,
1203                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1204                                         2, 1, breakpoint->orig_instr);
1205                         if (retval != ERROR_OK)
1206                                 return retval;
1207                 }
1208
1209                 armv8_cache_d_inner_flush_virt(armv8,
1210                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1211                                 breakpoint->length);
1212
1213                 armv8_cache_i_inner_inval_virt(armv8,
1214                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1215                                 breakpoint->length);
1216         }
1217         breakpoint->set = 0;
1218
1219         return ERROR_OK;
1220 }
1221
1222 static int aarch64_add_breakpoint(struct target *target,
1223         struct breakpoint *breakpoint)
1224 {
1225         struct aarch64_common *aarch64 = target_to_aarch64(target);
1226
1227         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1228                 LOG_INFO("no hardware breakpoint available");
1229                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1230         }
1231
1232         if (breakpoint->type == BKPT_HARD)
1233                 aarch64->brp_num_available--;
1234
1235         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1236 }
1237
1238 static int aarch64_add_context_breakpoint(struct target *target,
1239         struct breakpoint *breakpoint)
1240 {
1241         struct aarch64_common *aarch64 = target_to_aarch64(target);
1242
1243         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1244                 LOG_INFO("no hardware breakpoint available");
1245                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1246         }
1247
1248         if (breakpoint->type == BKPT_HARD)
1249                 aarch64->brp_num_available--;
1250
1251         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1252 }
1253
1254 static int aarch64_add_hybrid_breakpoint(struct target *target,
1255         struct breakpoint *breakpoint)
1256 {
1257         struct aarch64_common *aarch64 = target_to_aarch64(target);
1258
1259         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1260                 LOG_INFO("no hardware breakpoint available");
1261                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1262         }
1263
1264         if (breakpoint->type == BKPT_HARD)
1265                 aarch64->brp_num_available--;
1266
1267         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1268 }
1269
1270
1271 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1272 {
1273         struct aarch64_common *aarch64 = target_to_aarch64(target);
1274
1275 #if 0
1276 /* It is perfectly possible to remove breakpoints while the target is running */
1277         if (target->state != TARGET_HALTED) {
1278                 LOG_WARNING("target not halted");
1279                 return ERROR_TARGET_NOT_HALTED;
1280         }
1281 #endif
1282
1283         if (breakpoint->set) {
1284                 aarch64_unset_breakpoint(target, breakpoint);
1285                 if (breakpoint->type == BKPT_HARD)
1286                         aarch64->brp_num_available++;
1287         }
1288
1289         return ERROR_OK;
1290 }
1291
1292 /*
1293  * Cortex-A8 Reset functions
1294  */
1295
1296 static int aarch64_assert_reset(struct target *target)
1297 {
1298         struct armv8_common *armv8 = target_to_armv8(target);
1299
1300         LOG_DEBUG(" ");
1301
1302         /* FIXME when halt is requested, make it work somehow... */
1303
1304         /* Issue some kind of warm reset. */
1305         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1306                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1307         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1308                 /* REVISIT handle "pulls" cases, if there's
1309                  * hardware that needs them to work.
1310                  */
1311                 jtag_add_reset(0, 1);
1312         } else {
1313                 LOG_ERROR("%s: how to reset?", target_name(target));
1314                 return ERROR_FAIL;
1315         }
1316
1317         /* registers are now invalid */
1318         register_cache_invalidate(armv8->arm.core_cache);
1319
1320         target->state = TARGET_RESET;
1321
1322         return ERROR_OK;
1323 }
1324
1325 static int aarch64_deassert_reset(struct target *target)
1326 {
1327         int retval;
1328
1329         LOG_DEBUG(" ");
1330
1331         /* be certain SRST is off */
1332         jtag_add_reset(0, 0);
1333
1334         retval = aarch64_poll(target);
1335         if (retval != ERROR_OK)
1336                 return retval;
1337
1338         if (target->reset_halt) {
1339                 if (target->state != TARGET_HALTED) {
1340                         LOG_WARNING("%s: ran after reset and before halt ...",
1341                                 target_name(target));
1342                         retval = target_halt(target);
1343                         if (retval != ERROR_OK)
1344                                 return retval;
1345                 }
1346         }
1347
1348         return ERROR_OK;
1349 }
1350
1351 static int aarch64_write_apb_ap_memory(struct target *target,
1352         uint64_t address, uint32_t size,
1353         uint32_t count, const uint8_t *buffer)
1354 {
1355         /* write memory through APB-AP */
1356         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1357         struct armv8_common *armv8 = target_to_armv8(target);
1358         struct arm_dpm *dpm = &armv8->dpm;
1359         struct arm *arm = &armv8->arm;
1360         int total_bytes = count * size;
1361         int total_u32;
1362         int start_byte = address & 0x3;
1363         int end_byte   = (address + total_bytes) & 0x3;
1364         struct reg *reg;
1365         uint32_t dscr;
1366         uint8_t *tmp_buff = NULL;
1367
1368         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1369                           address, size, count);
1370         if (target->state != TARGET_HALTED) {
1371                 LOG_WARNING("target not halted");
1372                 return ERROR_TARGET_NOT_HALTED;
1373         }
1374
1375         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1376
1377         /* Mark register R0 as dirty, as it will be used
1378          * for transferring the data.
1379          * It will be restored automatically when exiting
1380          * debug mode
1381          */
1382         reg = armv8_reg_current(arm, 1);
1383         reg->dirty = true;
1384
1385         reg = armv8_reg_current(arm, 0);
1386         reg->dirty = true;
1387
1388         /*  clear any abort  */
1389         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1390                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1391         if (retval != ERROR_OK)
1392                 return retval;
1393
1394
1395         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1396
1397         /* The algorithm only copies 32 bit words, so the buffer
1398          * should be expanded to include the words at either end.
1399          * The first and last words will be read first to avoid
1400          * corruption if needed.
1401          */
1402         tmp_buff = malloc(total_u32 * 4);
1403
1404         if ((start_byte != 0) && (total_u32 > 1)) {
1405                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1406                  * the other bytes in the word.
1407                  */
1408                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1409                 if (retval != ERROR_OK)
1410                         goto error_free_buff_w;
1411         }
1412
1413         /* If end of write is not aligned, or the write is less than 4 bytes */
1414         if ((end_byte != 0) ||
1415                 ((total_u32 == 1) && (total_bytes != 4))) {
1416
1417                 /* Read the last word to avoid corruption during 32 bit write */
1418                 int mem_offset = (total_u32-1) * 4;
1419                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1420                 if (retval != ERROR_OK)
1421                         goto error_free_buff_w;
1422         }
1423
1424         /* Copy the write buffer over the top of the temporary buffer */
1425         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1426
1427         /* We now have a 32 bit aligned buffer that can be written */
1428
1429         /* Read DSCR */
1430         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1431                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1432         if (retval != ERROR_OK)
1433                 goto error_free_buff_w;
1434
1435         /* Set Normal access mode  */
1436         dscr = (dscr & ~DSCR_MA);
1437         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1438                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1439
1440         if (arm->core_state == ARM_STATE_AARCH64) {
1441                 /* Write X0 with value 'address' using write procedure */
1442                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1443                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1444                 retval = dpm->instr_write_data_dcc_64(dpm,
1445                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1446         } else {
1447                 /* Write R0 with value 'address' using write procedure */
1448                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1449                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1450                 dpm->instr_write_data_dcc(dpm,
1451                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), address & ~0x3ULL);
1452
1453         }
1454         /* Step 1.d   - Change DCC to memory mode */
1455         dscr = dscr | DSCR_MA;
1456         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1457                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1458         if (retval != ERROR_OK)
1459                 goto error_unset_dtr_w;
1460
1461
1462         /* Step 2.a   - Do the write */
1463         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1464                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1465         if (retval != ERROR_OK)
1466                 goto error_unset_dtr_w;
1467
1468         /* Step 3.a   - Switch DTR mode back to Normal mode */
1469         dscr = (dscr & ~DSCR_MA);
1470         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1471                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1472         if (retval != ERROR_OK)
1473                 goto error_unset_dtr_w;
1474
1475         /* Check for sticky abort flags in the DSCR */
1476         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1477                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1478         if (retval != ERROR_OK)
1479                 goto error_free_buff_w;
1480         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1481                 /* Abort occurred - clear it and exit */
1482                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1483                 mem_ap_write_atomic_u32(armv8->debug_ap,
1484                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1485                 goto error_free_buff_w;
1486         }
1487
1488         /* Done */
1489         free(tmp_buff);
1490         return ERROR_OK;
1491
1492 error_unset_dtr_w:
1493         /* Unset DTR mode */
1494         mem_ap_read_atomic_u32(armv8->debug_ap,
1495                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1496         dscr = (dscr & ~DSCR_MA);
1497         mem_ap_write_atomic_u32(armv8->debug_ap,
1498                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1499 error_free_buff_w:
1500         LOG_ERROR("error");
1501         free(tmp_buff);
1502         return ERROR_FAIL;
1503 }
1504
1505 static int aarch64_read_apb_ap_memory(struct target *target,
1506         target_addr_t address, uint32_t size,
1507         uint32_t count, uint8_t *buffer)
1508 {
1509         /* read memory through APB-AP */
1510         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1511         struct armv8_common *armv8 = target_to_armv8(target);
1512         struct arm_dpm *dpm = &armv8->dpm;
1513         struct arm *arm = &armv8->arm;
1514         int total_bytes = count * size;
1515         int total_u32;
1516         int start_byte = address & 0x3;
1517         int end_byte   = (address + total_bytes) & 0x3;
1518         struct reg *reg;
1519         uint32_t dscr;
1520         uint8_t *tmp_buff = NULL;
1521         uint8_t *u8buf_ptr;
1522         uint32_t value;
1523
1524         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1525                           address, size, count);
1526         if (target->state != TARGET_HALTED) {
1527                 LOG_WARNING("target not halted");
1528                 return ERROR_TARGET_NOT_HALTED;
1529         }
1530
1531         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1532         /* Mark register X0, X1 as dirty, as it will be used
1533          * for transferring the data.
1534          * It will be restored automatically when exiting
1535          * debug mode
1536          */
1537         reg = armv8_reg_current(arm, 1);
1538         reg->dirty = true;
1539
1540         reg = armv8_reg_current(arm, 0);
1541         reg->dirty = true;
1542
1543         /*      clear any abort  */
1544         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1545                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1546         if (retval != ERROR_OK)
1547                 goto error_free_buff_r;
1548
1549         /* Read DSCR */
1550         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1551                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1552
1553         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1554
1555         /* Set Normal access mode  */
1556         dscr = (dscr & ~DSCR_MA);
1557         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1558                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1559
1560         if (arm->core_state == ARM_STATE_AARCH64) {
1561                 /* Write X0 with value 'address' using write procedure */
1562                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1563                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1564                 retval += dpm->instr_write_data_dcc_64(dpm,
1565                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1566                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1567                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1568                 /* Step 1.e - Change DCC to memory mode */
1569                 dscr = dscr | DSCR_MA;
1570                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1571                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1572                 /* Step 1.f - read DBGDTRTX and discard the value */
1573                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1574                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1575         } else {
1576                 /* Write R0 with value 'address' using write procedure */
1577                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1578                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1579                 retval += dpm->instr_write_data_dcc(dpm,
1580                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), address & ~0x3ULL);
1581                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1582                 retval += dpm->instr_execute(dpm, T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)));
1583                 /* Step 1.e - Change DCC to memory mode */
1584                 dscr = dscr | DSCR_MA;
1585                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1586                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1587                 /* Step 1.f - read DBGDTRTX and discard the value */
1588                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1589                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1590
1591         }
1592         if (retval != ERROR_OK)
1593                 goto error_unset_dtr_r;
1594
1595         /* Optimize the read as much as we can, either way we read in a single pass  */
1596         if ((start_byte) || (end_byte)) {
1597                 /* The algorithm only copies 32 bit words, so the buffer
1598                  * should be expanded to include the words at either end.
1599                  * The first and last words will be read into a temp buffer
1600                  * to avoid corruption
1601                  */
1602                 tmp_buff = malloc(total_u32 * 4);
1603                 if (!tmp_buff)
1604                         goto error_unset_dtr_r;
1605
1606                 /* use the tmp buffer to read the entire data */
1607                 u8buf_ptr = tmp_buff;
1608         } else
1609                 /* address and read length are aligned so read directly into the passed buffer */
1610                 u8buf_ptr = buffer;
1611
1612         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1613          * Abort flags are sticky, so can be read at end of transactions
1614          *
1615          * This data is read in aligned to 32 bit boundary.
1616          */
1617
1618         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1619          * increments X0 by 4. */
1620         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1621                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1622         if (retval != ERROR_OK)
1623                         goto error_unset_dtr_r;
1624
1625         /* Step 3.a - set DTR access mode back to Normal mode   */
1626         dscr = (dscr & ~DSCR_MA);
1627         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1628                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1629         if (retval != ERROR_OK)
1630                 goto error_free_buff_r;
1631
1632         /* Step 3.b - read DBGDTRTX for the final value */
1633         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1634                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1635         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1636
1637         /* Check for sticky abort flags in the DSCR */
1638         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1639                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1640         if (retval != ERROR_OK)
1641                 goto error_free_buff_r;
1642         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1643                 /* Abort occurred - clear it and exit */
1644                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1645                 mem_ap_write_atomic_u32(armv8->debug_ap,
1646                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1647                 goto error_free_buff_r;
1648         }
1649
1650         /* check if we need to copy aligned data by applying any shift necessary */
1651         if (tmp_buff) {
1652                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1653                 free(tmp_buff);
1654         }
1655
1656         /* Done */
1657         return ERROR_OK;
1658
1659 error_unset_dtr_r:
1660         /* Unset DTR mode */
1661         mem_ap_read_atomic_u32(armv8->debug_ap,
1662                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1663         dscr = (dscr & ~DSCR_MA);
1664         mem_ap_write_atomic_u32(armv8->debug_ap,
1665                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1666 error_free_buff_r:
1667         LOG_ERROR("error");
1668         free(tmp_buff);
1669         return ERROR_FAIL;
1670 }
1671
1672 static int aarch64_read_phys_memory(struct target *target,
1673         target_addr_t address, uint32_t size,
1674         uint32_t count, uint8_t *buffer)
1675 {
1676         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1677         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1678                 address, size, count);
1679
1680         if (count && buffer) {
1681                 /* read memory through APB-AP */
1682                 retval = aarch64_mmu_modify(target, 0);
1683                 if (retval != ERROR_OK)
1684                         return retval;
1685                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1686         }
1687         return retval;
1688 }
1689
1690 static int aarch64_read_memory(struct target *target, target_addr_t address,
1691         uint32_t size, uint32_t count, uint8_t *buffer)
1692 {
1693         int mmu_enabled = 0;
1694         int retval;
1695
1696         /* aarch64 handles unaligned memory access */
1697         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1698                 size, count);
1699
1700         /* determine if MMU was enabled on target stop */
1701         retval = aarch64_mmu(target, &mmu_enabled);
1702         if (retval != ERROR_OK)
1703                 return retval;
1704
1705         if (mmu_enabled) {
1706                 retval = aarch64_check_address(target, address);
1707                 if (retval != ERROR_OK)
1708                         return retval;
1709                 /* enable MMU as we could have disabled it for phys access */
1710                 retval = aarch64_mmu_modify(target, 1);
1711                 if (retval != ERROR_OK)
1712                         return retval;
1713         }
1714         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1715 }
1716
1717 static int aarch64_write_phys_memory(struct target *target,
1718         target_addr_t address, uint32_t size,
1719         uint32_t count, const uint8_t *buffer)
1720 {
1721         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1722
1723         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1724                 size, count);
1725
1726         if (count && buffer) {
1727                 /* write memory through APB-AP */
1728                 retval = aarch64_mmu_modify(target, 0);
1729                 if (retval != ERROR_OK)
1730                         return retval;
1731                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1732         }
1733
1734         return retval;
1735 }
1736
1737 static int aarch64_write_memory(struct target *target, target_addr_t address,
1738         uint32_t size, uint32_t count, const uint8_t *buffer)
1739 {
1740         int mmu_enabled = 0;
1741         int retval;
1742
1743         /* aarch64 handles unaligned memory access */
1744         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1745                   "; count %" PRId32, address, size, count);
1746
1747         /* determine if MMU was enabled on target stop */
1748         retval = aarch64_mmu(target, &mmu_enabled);
1749         if (retval != ERROR_OK)
1750                 return retval;
1751
1752         if (mmu_enabled) {
1753                 retval = aarch64_check_address(target, address);
1754                 if (retval != ERROR_OK)
1755                         return retval;
1756                 /* enable MMU as we could have disabled it for phys access */
1757                 retval = aarch64_mmu_modify(target, 1);
1758                 if (retval != ERROR_OK)
1759                         return retval;
1760         }
1761         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1762 }
1763
1764 static int aarch64_handle_target_request(void *priv)
1765 {
1766         struct target *target = priv;
1767         struct armv8_common *armv8 = target_to_armv8(target);
1768         int retval;
1769
1770         if (!target_was_examined(target))
1771                 return ERROR_OK;
1772         if (!target->dbg_msg_enabled)
1773                 return ERROR_OK;
1774
1775         if (target->state == TARGET_RUNNING) {
1776                 uint32_t request;
1777                 uint32_t dscr;
1778                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1779                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1780
1781                 /* check if we have data */
1782                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1783                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1784                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1785                         if (retval == ERROR_OK) {
1786                                 target_request(target, request);
1787                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1788                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1789                         }
1790                 }
1791         }
1792
1793         return ERROR_OK;
1794 }
1795
1796 static int aarch64_examine_first(struct target *target)
1797 {
1798         struct aarch64_common *aarch64 = target_to_aarch64(target);
1799         struct armv8_common *armv8 = &aarch64->armv8_common;
1800         struct adiv5_dap *swjdp = armv8->arm.dap;
1801         int i;
1802         int retval = ERROR_OK;
1803         uint64_t debug, ttypr;
1804         uint32_t cpuid;
1805         uint32_t tmp0, tmp1;
1806         debug = ttypr = cpuid = 0;
1807
1808         /* We do one extra read to ensure DAP is configured,
1809          * we call ahbap_debugport_init(swjdp) instead
1810          */
1811         retval = dap_dp_init(swjdp);
1812         if (retval != ERROR_OK)
1813                 return retval;
1814
1815         /* Search for the APB-AB - it is needed for access to debug registers */
1816         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1817         if (retval != ERROR_OK) {
1818                 LOG_ERROR("Could not find APB-AP for debug access");
1819                 return retval;
1820         }
1821
1822         retval = mem_ap_init(armv8->debug_ap);
1823         if (retval != ERROR_OK) {
1824                 LOG_ERROR("Could not initialize the APB-AP");
1825                 return retval;
1826         }
1827
1828         armv8->debug_ap->memaccess_tck = 80;
1829
1830         if (!target->dbgbase_set) {
1831                 uint32_t dbgbase;
1832                 /* Get ROM Table base */
1833                 uint32_t apid;
1834                 int32_t coreidx = target->coreid;
1835                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1836                 if (retval != ERROR_OK)
1837                         return retval;
1838                 /* Lookup 0x15 -- Processor DAP */
1839                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1840                                 &armv8->debug_base, &coreidx);
1841                 if (retval != ERROR_OK)
1842                         return retval;
1843                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1844                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1845         } else
1846                 armv8->debug_base = target->dbgbase;
1847
1848         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1849                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1850         if (retval != ERROR_OK) {
1851                 LOG_DEBUG("LOCK debug access fail");
1852                 return retval;
1853         }
1854
1855         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1856                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1857         if (retval != ERROR_OK) {
1858                 LOG_DEBUG("Examine %s failed", "oslock");
1859                 return retval;
1860         }
1861
1862         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1863                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1864         if (retval != ERROR_OK) {
1865                 LOG_DEBUG("Examine %s failed", "CPUID");
1866                 return retval;
1867         }
1868
1869         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1870                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1871         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1872                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1873         if (retval != ERROR_OK) {
1874                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1875                 return retval;
1876         }
1877         ttypr |= tmp1;
1878         ttypr = (ttypr << 32) | tmp0;
1879
1880         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1881                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1882         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1883                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1884         if (retval != ERROR_OK) {
1885                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1886                 return retval;
1887         }
1888         debug |= tmp1;
1889         debug = (debug << 32) | tmp0;
1890
1891         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1892         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1893         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1894
1895         if (target->ctibase == 0) {
1896                 /* assume a v8 rom table layout */
1897                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1898                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1899         } else
1900                 armv8->cti_base = target->ctibase;
1901
1902         armv8->arm.core_type = ARM_MODE_MON;
1903         retval = aarch64_dpm_setup(aarch64, debug);
1904         if (retval != ERROR_OK)
1905                 return retval;
1906
1907         /* Setup Breakpoint Register Pairs */
1908         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1909         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1910         aarch64->brp_num_available = aarch64->brp_num;
1911         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1912         for (i = 0; i < aarch64->brp_num; i++) {
1913                 aarch64->brp_list[i].used = 0;
1914                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1915                         aarch64->brp_list[i].type = BRP_NORMAL;
1916                 else
1917                         aarch64->brp_list[i].type = BRP_CONTEXT;
1918                 aarch64->brp_list[i].value = 0;
1919                 aarch64->brp_list[i].control = 0;
1920                 aarch64->brp_list[i].BRPn = i;
1921         }
1922
1923         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1924
1925         target_set_examined(target);
1926         return ERROR_OK;
1927 }
1928
1929 static int aarch64_examine(struct target *target)
1930 {
1931         int retval = ERROR_OK;
1932
1933         /* don't re-probe hardware after each reset */
1934         if (!target_was_examined(target))
1935                 retval = aarch64_examine_first(target);
1936
1937         /* Configure core debug access */
1938         if (retval == ERROR_OK)
1939                 retval = aarch64_init_debug_access(target);
1940
1941         return retval;
1942 }
1943
1944 /*
1945  *      Cortex-A8 target creation and initialization
1946  */
1947
1948 static int aarch64_init_target(struct command_context *cmd_ctx,
1949         struct target *target)
1950 {
1951         /* examine_first() does a bunch of this */
1952         return ERROR_OK;
1953 }
1954
1955 static int aarch64_init_arch_info(struct target *target,
1956         struct aarch64_common *aarch64, struct jtag_tap *tap)
1957 {
1958         struct armv8_common *armv8 = &aarch64->armv8_common;
1959         struct adiv5_dap *dap = armv8->arm.dap;
1960
1961         armv8->arm.dap = dap;
1962
1963         /* Setup struct aarch64_common */
1964         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1965         /*  tap has no dap initialized */
1966         if (!tap->dap) {
1967                 tap->dap = dap_init();
1968
1969                 /* Leave (only) generic DAP stuff for debugport_init() */
1970                 tap->dap->tap = tap;
1971         }
1972
1973         armv8->arm.dap = tap->dap;
1974
1975         aarch64->fast_reg_read = 0;
1976
1977         /* register arch-specific functions */
1978         armv8->examine_debug_reason = NULL;
1979
1980         armv8->post_debug_entry = aarch64_post_debug_entry;
1981
1982         armv8->pre_restore_context = NULL;
1983
1984         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1985
1986         /* REVISIT v7a setup should be in a v7a-specific routine */
1987         armv8_init_arch_info(target, armv8);
1988         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
1989
1990         return ERROR_OK;
1991 }
1992
1993 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
1994 {
1995         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
1996
1997         return aarch64_init_arch_info(target, aarch64, target->tap);
1998 }
1999
2000 static int aarch64_mmu(struct target *target, int *enabled)
2001 {
2002         if (target->state != TARGET_HALTED) {
2003                 LOG_ERROR("%s: target not halted", __func__);
2004                 return ERROR_TARGET_INVALID;
2005         }
2006
2007         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2008         return ERROR_OK;
2009 }
2010
2011 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2012                              target_addr_t *phys)
2013 {
2014         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2015 }
2016
2017 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2018 {
2019         struct target *target = get_current_target(CMD_CTX);
2020         struct armv8_common *armv8 = target_to_armv8(target);
2021
2022         return armv8_handle_cache_info_command(CMD_CTX,
2023                         &armv8->armv8_mmu.armv8_cache);
2024 }
2025
2026
2027 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2028 {
2029         struct target *target = get_current_target(CMD_CTX);
2030         if (!target_was_examined(target)) {
2031                 LOG_ERROR("target not examined yet");
2032                 return ERROR_FAIL;
2033         }
2034
2035         return aarch64_init_debug_access(target);
2036 }
2037 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2038 {
2039         struct target *target = get_current_target(CMD_CTX);
2040         /* check target is an smp target */
2041         struct target_list *head;
2042         struct target *curr;
2043         head = target->head;
2044         target->smp = 0;
2045         if (head != (struct target_list *)NULL) {
2046                 while (head != (struct target_list *)NULL) {
2047                         curr = head->target;
2048                         curr->smp = 0;
2049                         head = head->next;
2050                 }
2051                 /*  fixes the target display to the debugger */
2052                 target->gdb_service->target = target;
2053         }
2054         return ERROR_OK;
2055 }
2056
2057 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2058 {
2059         struct target *target = get_current_target(CMD_CTX);
2060         struct target_list *head;
2061         struct target *curr;
2062         head = target->head;
2063         if (head != (struct target_list *)NULL) {
2064                 target->smp = 1;
2065                 while (head != (struct target_list *)NULL) {
2066                         curr = head->target;
2067                         curr->smp = 1;
2068                         head = head->next;
2069                 }
2070         }
2071         return ERROR_OK;
2072 }
2073
2074 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2075 {
2076         struct target *target = get_current_target(CMD_CTX);
2077         int retval = ERROR_OK;
2078         struct target_list *head;
2079         head = target->head;
2080         if (head != (struct target_list *)NULL) {
2081                 if (CMD_ARGC == 1) {
2082                         int coreid = 0;
2083                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2084                         if (ERROR_OK != retval)
2085                                 return retval;
2086                         target->gdb_service->core[1] = coreid;
2087
2088                 }
2089                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2090                         , target->gdb_service->core[1]);
2091         }
2092         return ERROR_OK;
2093 }
2094
2095 static const struct command_registration aarch64_exec_command_handlers[] = {
2096         {
2097                 .name = "cache_info",
2098                 .handler = aarch64_handle_cache_info_command,
2099                 .mode = COMMAND_EXEC,
2100                 .help = "display information about target caches",
2101                 .usage = "",
2102         },
2103         {
2104                 .name = "dbginit",
2105                 .handler = aarch64_handle_dbginit_command,
2106                 .mode = COMMAND_EXEC,
2107                 .help = "Initialize core debug",
2108                 .usage = "",
2109         },
2110         {       .name = "smp_off",
2111                 .handler = aarch64_handle_smp_off_command,
2112                 .mode = COMMAND_EXEC,
2113                 .help = "Stop smp handling",
2114                 .usage = "",
2115         },
2116         {
2117                 .name = "smp_on",
2118                 .handler = aarch64_handle_smp_on_command,
2119                 .mode = COMMAND_EXEC,
2120                 .help = "Restart smp handling",
2121                 .usage = "",
2122         },
2123         {
2124                 .name = "smp_gdb",
2125                 .handler = aarch64_handle_smp_gdb_command,
2126                 .mode = COMMAND_EXEC,
2127                 .help = "display/fix current core played to gdb",
2128                 .usage = "",
2129         },
2130
2131
2132         COMMAND_REGISTRATION_DONE
2133 };
2134 static const struct command_registration aarch64_command_handlers[] = {
2135         {
2136                 .chain = arm_command_handlers,
2137         },
2138         {
2139                 .chain = armv8_command_handlers,
2140         },
2141         {
2142                 .name = "cortex_a",
2143                 .mode = COMMAND_ANY,
2144                 .help = "Cortex-A command group",
2145                 .usage = "",
2146                 .chain = aarch64_exec_command_handlers,
2147         },
2148         COMMAND_REGISTRATION_DONE
2149 };
2150
2151 struct target_type aarch64_target = {
2152         .name = "aarch64",
2153
2154         .poll = aarch64_poll,
2155         .arch_state = armv8_arch_state,
2156
2157         .halt = aarch64_halt,
2158         .resume = aarch64_resume,
2159         .step = aarch64_step,
2160
2161         .assert_reset = aarch64_assert_reset,
2162         .deassert_reset = aarch64_deassert_reset,
2163
2164         /* REVISIT allow exporting VFP3 registers ... */
2165         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2166
2167         .read_memory = aarch64_read_memory,
2168         .write_memory = aarch64_write_memory,
2169
2170         .checksum_memory = arm_checksum_memory,
2171         .blank_check_memory = arm_blank_check_memory,
2172
2173         .run_algorithm = armv4_5_run_algorithm,
2174
2175         .add_breakpoint = aarch64_add_breakpoint,
2176         .add_context_breakpoint = aarch64_add_context_breakpoint,
2177         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2178         .remove_breakpoint = aarch64_remove_breakpoint,
2179         .add_watchpoint = NULL,
2180         .remove_watchpoint = NULL,
2181
2182         .commands = aarch64_command_handlers,
2183         .target_create = aarch64_target_create,
2184         .init_target = aarch64_init_target,
2185         .examine = aarch64_examine,
2186
2187         .read_phys_memory = aarch64_read_phys_memory,
2188         .write_phys_memory = aarch64_write_phys_memory,
2189         .mmu = aarch64_mmu,
2190         .virt2phys = aarch64_virt2phys,
2191 };