aarch64: clean up target specific commands
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         enum arm_mode target_mode = ARM_MODE_ANY;
53         int retval = ERROR_OK;
54         uint32_t instr;
55
56         struct aarch64_common *aarch64 = target_to_aarch64(target);
57         struct armv8_common *armv8 = target_to_armv8(target);
58
59         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
60                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
61                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
62
63                 switch (armv8->arm.core_mode) {
64                 case ARMV8_64_EL0T:
65                         target_mode = ARMV8_64_EL1H;
66                         /* fall through */
67                 case ARMV8_64_EL1T:
68                 case ARMV8_64_EL1H:
69                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
70                         break;
71                 case ARMV8_64_EL2T:
72                 case ARMV8_64_EL2H:
73                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
74                         break;
75                 case ARMV8_64_EL3H:
76                 case ARMV8_64_EL3T:
77                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
78                         break;
79
80                 case ARM_MODE_SVC:
81                 case ARM_MODE_ABT:
82                 case ARM_MODE_FIQ:
83                 case ARM_MODE_IRQ:
84                         instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
85                         break;
86
87                 default:
88                         LOG_INFO("cannot read system control register in this mode");
89                         return ERROR_FAIL;
90                 }
91
92                 if (target_mode != ARM_MODE_ANY)
93                         armv8_dpm_modeswitch(&armv8->dpm, target_mode);
94
95                 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
96                 if (retval != ERROR_OK)
97                         return retval;
98
99                 if (target_mode != ARM_MODE_ANY)
100                         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
101         }
102
103         return retval;
104 }
105
106 /*  modify system_control_reg in order to enable or disable mmu for :
107  *  - virt2phys address conversion
108  *  - read or write memory in phys or virt address */
109 static int aarch64_mmu_modify(struct target *target, int enable)
110 {
111         struct aarch64_common *aarch64 = target_to_aarch64(target);
112         struct armv8_common *armv8 = &aarch64->armv8_common;
113         int retval = ERROR_OK;
114         uint32_t instr = 0;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U))
123                         aarch64->system_control_reg_curr |= 0x1U;
124         } else {
125                 if (aarch64->system_control_reg_curr & 0x4U) {
126                         /*  data cache is active */
127                         aarch64->system_control_reg_curr &= ~0x4U;
128                         /* flush data cache armv8 function to be called */
129                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
130                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
131                 }
132                 if ((aarch64->system_control_reg_curr & 0x1U)) {
133                         aarch64->system_control_reg_curr &= ~0x1U;
134                 }
135         }
136
137         switch (armv8->arm.core_mode) {
138         case ARMV8_64_EL0T:
139         case ARMV8_64_EL1T:
140         case ARMV8_64_EL1H:
141                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
142                 break;
143         case ARMV8_64_EL2T:
144         case ARMV8_64_EL2H:
145                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
146                 break;
147         case ARMV8_64_EL3H:
148         case ARMV8_64_EL3T:
149                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
150                 break;
151         default:
152                 LOG_DEBUG("unknown cpu state 0x%x" PRIx32, armv8->arm.core_state);
153                 break;
154         }
155
156         retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
157                                 aarch64->system_control_reg_curr);
158         return retval;
159 }
160
161 /*
162  * Basic debug access, very low level assumes state is saved
163  */
164 static int aarch64_init_debug_access(struct target *target)
165 {
166         struct armv8_common *armv8 = target_to_armv8(target);
167         int retval;
168         uint32_t dummy;
169
170         LOG_DEBUG(" ");
171
172         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
173                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
174         if (retval != ERROR_OK) {
175                 LOG_DEBUG("Examine %s failed", "oslock");
176                 return retval;
177         }
178
179         /* Clear Sticky Power Down status Bit in PRSR to enable access to
180            the registers in the Core Power Domain */
181         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
182                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
183         if (retval != ERROR_OK)
184                 return retval;
185
186         /*
187          * Static CTI configuration:
188          * Channel 0 -> trigger outputs HALT request to PE
189          * Channel 1 -> trigger outputs Resume request to PE
190          * Gate all channel trigger events from entering the CTM
191          */
192
193         /* Enable CTI */
194         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
195                         armv8->cti_base + CTI_CTR, 1);
196         /* By default, gate all channel triggers to and from the CTM */
197         if (retval == ERROR_OK)
198                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
199                                 armv8->cti_base + CTI_GATE, 0);
200         /* output halt requests to PE on channel 0 trigger */
201         if (retval == ERROR_OK)
202                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
203                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
204         /* output restart requests to PE on channel 1 trigger */
205         if (retval == ERROR_OK)
206                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
207                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
208         if (retval != ERROR_OK)
209                 return retval;
210
211         /* Resync breakpoint registers */
212
213         /* Since this is likely called from init or reset, update target state information*/
214         return aarch64_poll(target);
215 }
216
217 /* Write to memory mapped registers directly with no cache or mmu handling */
218 static int aarch64_dap_write_memap_register_u32(struct target *target,
219         uint32_t address,
220         uint32_t value)
221 {
222         int retval;
223         struct armv8_common *armv8 = target_to_armv8(target);
224
225         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
226
227         return retval;
228 }
229
230 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
231 {
232         struct arm_dpm *dpm = &a8->armv8_common.dpm;
233         int retval;
234
235         dpm->arm = &a8->armv8_common.arm;
236         dpm->didr = debug;
237
238         retval = armv8_dpm_setup(dpm);
239         if (retval == ERROR_OK)
240                 retval = armv8_dpm_initialize(dpm);
241
242         return retval;
243 }
244
245 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
246 {
247         struct armv8_common *armv8 = target_to_armv8(target);
248         return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
249 }
250
251 static struct target *get_aarch64(struct target *target, int32_t coreid)
252 {
253         struct target_list *head;
254         struct target *curr;
255
256         head = target->head;
257         while (head != (struct target_list *)NULL) {
258                 curr = head->target;
259                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
260                         return curr;
261                 head = head->next;
262         }
263         return target;
264 }
265 static int aarch64_halt(struct target *target);
266
267 static int aarch64_halt_smp(struct target *target)
268 {
269         int retval = ERROR_OK;
270         struct target_list *head = target->head;
271
272         while (head != (struct target_list *)NULL) {
273                 struct target *curr = head->target;
274                 struct armv8_common *armv8 = target_to_armv8(curr);
275
276                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
277                 if (curr->smp) {
278                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
279                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
280                         if (retval == ERROR_OK)
281                                 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
282                 }
283                 if (retval != ERROR_OK)
284                         break;
285
286                 head = head->next;
287         }
288
289         /* halt the target PE */
290         if (retval == ERROR_OK)
291                 retval = aarch64_halt(target);
292
293         return retval;
294 }
295
296 static int update_halt_gdb(struct target *target)
297 {
298         int retval = 0;
299         if (target->gdb_service && target->gdb_service->core[0] == -1) {
300                 target->gdb_service->target = target;
301                 target->gdb_service->core[0] = target->coreid;
302                 retval += aarch64_halt_smp(target);
303         }
304         return retval;
305 }
306
307 /*
308  * Cortex-A8 Run control
309  */
310
311 static int aarch64_poll(struct target *target)
312 {
313         int retval = ERROR_OK;
314         uint32_t dscr;
315         struct aarch64_common *aarch64 = target_to_aarch64(target);
316         struct armv8_common *armv8 = &aarch64->armv8_common;
317         enum target_state prev_target_state = target->state;
318         /*  toggle to another core is done by gdb as follow */
319         /*  maint packet J core_id */
320         /*  continue */
321         /*  the next polling trigger an halt event sent to gdb */
322         if ((target->state == TARGET_HALTED) && (target->smp) &&
323                 (target->gdb_service) &&
324                 (target->gdb_service->target == NULL)) {
325                 target->gdb_service->target =
326                         get_aarch64(target, target->gdb_service->core[1]);
327                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
328                 return retval;
329         }
330         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
331                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
332         if (retval != ERROR_OK)
333                 return retval;
334         aarch64->cpudbg_dscr = dscr;
335
336         if (DSCR_RUN_MODE(dscr) == 0x3) {
337                 if (prev_target_state != TARGET_HALTED) {
338                         /* We have a halting debug event */
339                         LOG_DEBUG("Target %s halted", target_name(target));
340                         target->state = TARGET_HALTED;
341                         if ((prev_target_state == TARGET_RUNNING)
342                                 || (prev_target_state == TARGET_UNKNOWN)
343                                 || (prev_target_state == TARGET_RESET)) {
344                                 retval = aarch64_debug_entry(target);
345                                 if (retval != ERROR_OK)
346                                         return retval;
347                                 if (target->smp) {
348                                         retval = update_halt_gdb(target);
349                                         if (retval != ERROR_OK)
350                                                 return retval;
351                                 }
352                                 target_call_event_callbacks(target,
353                                         TARGET_EVENT_HALTED);
354                         }
355                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
356                                 LOG_DEBUG(" ");
357
358                                 retval = aarch64_debug_entry(target);
359                                 if (retval != ERROR_OK)
360                                         return retval;
361                                 if (target->smp) {
362                                         retval = update_halt_gdb(target);
363                                         if (retval != ERROR_OK)
364                                                 return retval;
365                                 }
366
367                                 target_call_event_callbacks(target,
368                                         TARGET_EVENT_DEBUG_HALTED);
369                         }
370                 }
371         } else
372                 target->state = TARGET_RUNNING;
373
374         return retval;
375 }
376
377 static int aarch64_halt(struct target *target)
378 {
379         int retval = ERROR_OK;
380         uint32_t dscr;
381         struct armv8_common *armv8 = target_to_armv8(target);
382
383         /*
384          * add HDE in halting debug mode
385          */
386         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
387         if (retval != ERROR_OK)
388                 return retval;
389
390         /* trigger an event on channel 0, this outputs a halt request to the PE */
391         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
392                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
393         if (retval != ERROR_OK)
394                 return retval;
395
396         long long then = timeval_ms();
397         for (;; ) {
398                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
399                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
400                 if (retval != ERROR_OK)
401                         return retval;
402                 if ((dscr & DSCRV8_HALT_MASK) != 0)
403                         break;
404                 if (timeval_ms() > then + 1000) {
405                         LOG_ERROR("Timeout waiting for halt");
406                         return ERROR_FAIL;
407                 }
408         }
409
410         target->debug_reason = DBG_REASON_DBGRQ;
411
412         return ERROR_OK;
413 }
414
415 static int aarch64_internal_restore(struct target *target, int current,
416         uint64_t *address, int handle_breakpoints, int debug_execution)
417 {
418         struct armv8_common *armv8 = target_to_armv8(target);
419         struct arm *arm = &armv8->arm;
420         int retval;
421         uint64_t resume_pc;
422
423         if (!debug_execution)
424                 target_free_all_working_areas(target);
425
426         /* current = 1: continue on current pc, otherwise continue at <address> */
427         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
428         if (!current)
429                 resume_pc = *address;
430         else
431                 *address = resume_pc;
432
433         /* Make sure that the Armv7 gdb thumb fixups does not
434          * kill the return address
435          */
436         switch (arm->core_state) {
437                 case ARM_STATE_ARM:
438                         resume_pc &= 0xFFFFFFFC;
439                         break;
440                 case ARM_STATE_AARCH64:
441                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
442                         break;
443                 case ARM_STATE_THUMB:
444                 case ARM_STATE_THUMB_EE:
445                         /* When the return address is loaded into PC
446                          * bit 0 must be 1 to stay in Thumb state
447                          */
448                         resume_pc |= 0x1;
449                         break;
450                 case ARM_STATE_JAZELLE:
451                         LOG_ERROR("How do I resume into Jazelle state??");
452                         return ERROR_FAIL;
453         }
454         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
455         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
456         arm->pc->dirty = 1;
457         arm->pc->valid = 1;
458
459         /* called it now before restoring context because it uses cpu
460          * register r0 for restoring system control register */
461         retval = aarch64_restore_system_control_reg(target);
462         if (retval == ERROR_OK)
463                 retval = aarch64_restore_context(target, handle_breakpoints);
464
465         return retval;
466 }
467
468 static int aarch64_internal_restart(struct target *target, bool slave_pe)
469 {
470         struct armv8_common *armv8 = target_to_armv8(target);
471         struct arm *arm = &armv8->arm;
472         int retval;
473         uint32_t dscr;
474         /*
475          * * Restart core and wait for it to be started.  Clear ITRen and sticky
476          * * exception flags: see ARMv7 ARM, C5.9.
477          *
478          * REVISIT: for single stepping, we probably want to
479          * disable IRQs by default, with optional override...
480          */
481
482         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
483                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
484         if (retval != ERROR_OK)
485                 return retval;
486
487         if ((dscr & DSCR_ITE) == 0)
488                 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
489         if ((dscr & DSCR_ERR) != 0)
490                 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
491
492         /* make sure to acknowledge the halt event before resuming */
493         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
494                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
495
496         /*
497          * open the CTI gate for channel 1 so that the restart events
498          * get passed along to all PEs
499          */
500         if (retval == ERROR_OK)
501                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
502                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
503         if (retval != ERROR_OK)
504                 return retval;
505
506         if (!slave_pe) {
507                 /* trigger an event on channel 1, generates a restart request to the PE */
508                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
509                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
510                 if (retval != ERROR_OK)
511                         return retval;
512
513                 long long then = timeval_ms();
514                 for (;; ) {
515                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
516                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
517                         if (retval != ERROR_OK)
518                                 return retval;
519                         if ((dscr & DSCR_HDE) != 0)
520                                 break;
521                         if (timeval_ms() > then + 1000) {
522                                 LOG_ERROR("Timeout waiting for resume");
523                                 return ERROR_FAIL;
524                         }
525                 }
526         }
527
528         target->debug_reason = DBG_REASON_NOTHALTED;
529         target->state = TARGET_RUNNING;
530
531         /* registers are now invalid */
532         register_cache_invalidate(arm->core_cache);
533         register_cache_invalidate(arm->core_cache->next);
534
535         return ERROR_OK;
536 }
537
538 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
539 {
540         int retval = 0;
541         struct target_list *head;
542         struct target *curr;
543         uint64_t address;
544         head = target->head;
545         while (head != (struct target_list *)NULL) {
546                 curr = head->target;
547                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
548                         /*  resume current address , not in step mode */
549                         retval += aarch64_internal_restore(curr, 1, &address,
550                                         handle_breakpoints, 0);
551                         retval += aarch64_internal_restart(curr, true);
552                 }
553                 head = head->next;
554
555         }
556         return retval;
557 }
558
559 static int aarch64_resume(struct target *target, int current,
560         target_addr_t address, int handle_breakpoints, int debug_execution)
561 {
562         int retval = 0;
563         uint64_t addr = address;
564
565         /* dummy resume for smp toggle in order to reduce gdb impact  */
566         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
567                 /*   simulate a start and halt of target */
568                 target->gdb_service->target = NULL;
569                 target->gdb_service->core[0] = target->gdb_service->core[1];
570                 /*  fake resume at next poll we play the  target core[1], see poll*/
571                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
572                 return 0;
573         }
574
575         if (target->state != TARGET_HALTED)
576                 return ERROR_TARGET_NOT_HALTED;
577
578         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
579                                  debug_execution);
580         if (target->smp) {
581                 target->gdb_service->core[0] = -1;
582                 retval = aarch64_restore_smp(target, handle_breakpoints);
583                 if (retval != ERROR_OK)
584                         return retval;
585         }
586         aarch64_internal_restart(target, false);
587
588         if (!debug_execution) {
589                 target->state = TARGET_RUNNING;
590                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
591                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
592         } else {
593                 target->state = TARGET_DEBUG_RUNNING;
594                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
595                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
596         }
597
598         return ERROR_OK;
599 }
600
601 static int aarch64_debug_entry(struct target *target)
602 {
603         int retval = ERROR_OK;
604         struct aarch64_common *aarch64 = target_to_aarch64(target);
605         struct armv8_common *armv8 = target_to_armv8(target);
606         struct arm_dpm *dpm = &armv8->dpm;
607         enum arm_state core_state;
608
609         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
610
611         dpm->dscr = aarch64->cpudbg_dscr;
612         core_state = armv8_dpm_get_core_state(dpm);
613         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
614         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
615
616         /* make sure to clear all sticky errors */
617         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
618                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
619
620         /* discard async exceptions */
621         if (retval == ERROR_OK)
622                 retval = dpm->instr_cpsr_sync(dpm);
623
624         if (retval != ERROR_OK)
625                 return retval;
626
627         /* Examine debug reason */
628         armv8_dpm_report_dscr(dpm, aarch64->cpudbg_dscr);
629
630         /* save address of instruction that triggered the watchpoint? */
631         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
632                 uint32_t tmp;
633                 uint64_t wfar = 0;
634
635                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
636                                 armv8->debug_base + CPUV8_DBG_WFAR1,
637                                 &tmp);
638                 if (retval != ERROR_OK)
639                         return retval;
640                 wfar = tmp;
641                 wfar = (wfar << 32);
642                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
643                                 armv8->debug_base + CPUV8_DBG_WFAR0,
644                                 &tmp);
645                 if (retval != ERROR_OK)
646                         return retval;
647                 wfar |= tmp;
648                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
649         }
650
651         retval = armv8_dpm_read_current_registers(&armv8->dpm);
652
653         if (retval == ERROR_OK && armv8->post_debug_entry)
654                 retval = armv8->post_debug_entry(target);
655
656         return retval;
657 }
658
659 static int aarch64_post_debug_entry(struct target *target)
660 {
661         struct aarch64_common *aarch64 = target_to_aarch64(target);
662         struct armv8_common *armv8 = &aarch64->armv8_common;
663         int retval;
664         enum arm_mode target_mode = ARM_MODE_ANY;
665         uint32_t instr;
666
667         switch (armv8->arm.core_mode) {
668         case ARMV8_64_EL0T:
669                 target_mode = ARMV8_64_EL1H;
670                 /* fall through */
671         case ARMV8_64_EL1T:
672         case ARMV8_64_EL1H:
673                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
674                 break;
675         case ARMV8_64_EL2T:
676         case ARMV8_64_EL2H:
677                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
678                 break;
679         case ARMV8_64_EL3H:
680         case ARMV8_64_EL3T:
681                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
682                 break;
683
684         case ARM_MODE_SVC:
685         case ARM_MODE_ABT:
686         case ARM_MODE_FIQ:
687         case ARM_MODE_IRQ:
688                 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
689                 break;
690
691         default:
692                 LOG_INFO("cannot read system control register in this mode");
693                 return ERROR_FAIL;
694         }
695
696         if (target_mode != ARM_MODE_ANY)
697                 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
698
699         retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
700         if (retval != ERROR_OK)
701                 return retval;
702
703         if (target_mode != ARM_MODE_ANY)
704                 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
705
706         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
707         aarch64->system_control_reg_curr = aarch64->system_control_reg;
708
709         if (armv8->armv8_mmu.armv8_cache.info == -1) {
710                 armv8_identify_cache(armv8);
711                 armv8_read_mpidr(armv8);
712         }
713
714         armv8->armv8_mmu.mmu_enabled =
715                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
716         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
717                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
718         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
719                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
720         aarch64->curr_mode = armv8->arm.core_mode;
721         return ERROR_OK;
722 }
723
724 static int aarch64_step(struct target *target, int current, target_addr_t address,
725         int handle_breakpoints)
726 {
727         struct armv8_common *armv8 = target_to_armv8(target);
728         int retval;
729         uint32_t edecr;
730
731         if (target->state != TARGET_HALTED) {
732                 LOG_WARNING("target not halted");
733                 return ERROR_TARGET_NOT_HALTED;
734         }
735
736         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
737                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
738         if (retval != ERROR_OK)
739                 return retval;
740
741         /* make sure EDECR.SS is not set when restoring the register */
742         edecr &= ~0x4;
743
744         /* set EDECR.SS to enter hardware step mode */
745         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
746                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
747         if (retval != ERROR_OK)
748                 return retval;
749
750         /* disable interrupts while stepping */
751         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
752         if (retval != ERROR_OK)
753                 return ERROR_OK;
754
755         /* resume the target */
756         retval = aarch64_resume(target, current, address, 0, 0);
757         if (retval != ERROR_OK)
758                 return retval;
759
760         long long then = timeval_ms();
761         while (target->state != TARGET_HALTED) {
762                 retval = aarch64_poll(target);
763                 if (retval != ERROR_OK)
764                         return retval;
765                 if (timeval_ms() > then + 1000) {
766                         LOG_ERROR("timeout waiting for target halt");
767                         return ERROR_FAIL;
768                 }
769         }
770
771         /* restore EDECR */
772         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
773                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
774         if (retval != ERROR_OK)
775                 return retval;
776
777         /* restore interrupts */
778         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
779         if (retval != ERROR_OK)
780                 return ERROR_OK;
781
782         return ERROR_OK;
783 }
784
785 static int aarch64_restore_context(struct target *target, bool bpwp)
786 {
787         struct armv8_common *armv8 = target_to_armv8(target);
788
789         LOG_DEBUG("%s", target_name(target));
790
791         if (armv8->pre_restore_context)
792                 armv8->pre_restore_context(target);
793
794         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
795 }
796
797 /*
798  * Cortex-A8 Breakpoint and watchpoint functions
799  */
800
801 /* Setup hardware Breakpoint Register Pair */
802 static int aarch64_set_breakpoint(struct target *target,
803         struct breakpoint *breakpoint, uint8_t matchmode)
804 {
805         int retval;
806         int brp_i = 0;
807         uint32_t control;
808         uint8_t byte_addr_select = 0x0F;
809         struct aarch64_common *aarch64 = target_to_aarch64(target);
810         struct armv8_common *armv8 = &aarch64->armv8_common;
811         struct aarch64_brp *brp_list = aarch64->brp_list;
812
813         if (breakpoint->set) {
814                 LOG_WARNING("breakpoint already set");
815                 return ERROR_OK;
816         }
817
818         if (breakpoint->type == BKPT_HARD) {
819                 int64_t bpt_value;
820                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
821                         brp_i++;
822                 if (brp_i >= aarch64->brp_num) {
823                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
824                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
825                 }
826                 breakpoint->set = brp_i + 1;
827                 if (breakpoint->length == 2)
828                         byte_addr_select = (3 << (breakpoint->address & 0x02));
829                 control = ((matchmode & 0x7) << 20)
830                         | (1 << 13)
831                         | (byte_addr_select << 5)
832                         | (3 << 1) | 1;
833                 brp_list[brp_i].used = 1;
834                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
835                 brp_list[brp_i].control = control;
836                 bpt_value = brp_list[brp_i].value;
837
838                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
839                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
840                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
841                 if (retval != ERROR_OK)
842                         return retval;
843                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
844                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
845                                 (uint32_t)(bpt_value >> 32));
846                 if (retval != ERROR_OK)
847                         return retval;
848
849                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
850                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
851                                 brp_list[brp_i].control);
852                 if (retval != ERROR_OK)
853                         return retval;
854                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
855                         brp_list[brp_i].control,
856                         brp_list[brp_i].value);
857
858         } else if (breakpoint->type == BKPT_SOFT) {
859                 uint8_t code[4];
860
861                 buf_set_u32(code, 0, 32, armv8_opcode(armv8, ARMV8_OPC_HLT));
862                 retval = target_read_memory(target,
863                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
864                                 breakpoint->length, 1,
865                                 breakpoint->orig_instr);
866                 if (retval != ERROR_OK)
867                         return retval;
868
869                 armv8_cache_d_inner_flush_virt(armv8,
870                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
871                                 breakpoint->length);
872
873                 retval = target_write_memory(target,
874                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
875                                 breakpoint->length, 1, code);
876                 if (retval != ERROR_OK)
877                         return retval;
878
879                 armv8_cache_d_inner_flush_virt(armv8,
880                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
881                                 breakpoint->length);
882
883                 armv8_cache_i_inner_inval_virt(armv8,
884                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
885                                 breakpoint->length);
886
887                 breakpoint->set = 0x11; /* Any nice value but 0 */
888         }
889
890         /* Ensure that halting debug mode is enable */
891         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
892         if (retval != ERROR_OK) {
893                 LOG_DEBUG("Failed to set DSCR.HDE");
894                 return retval;
895         }
896
897         return ERROR_OK;
898 }
899
900 static int aarch64_set_context_breakpoint(struct target *target,
901         struct breakpoint *breakpoint, uint8_t matchmode)
902 {
903         int retval = ERROR_FAIL;
904         int brp_i = 0;
905         uint32_t control;
906         uint8_t byte_addr_select = 0x0F;
907         struct aarch64_common *aarch64 = target_to_aarch64(target);
908         struct armv8_common *armv8 = &aarch64->armv8_common;
909         struct aarch64_brp *brp_list = aarch64->brp_list;
910
911         if (breakpoint->set) {
912                 LOG_WARNING("breakpoint already set");
913                 return retval;
914         }
915         /*check available context BRPs*/
916         while ((brp_list[brp_i].used ||
917                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
918                 brp_i++;
919
920         if (brp_i >= aarch64->brp_num) {
921                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
922                 return ERROR_FAIL;
923         }
924
925         breakpoint->set = brp_i + 1;
926         control = ((matchmode & 0x7) << 20)
927                 | (1 << 13)
928                 | (byte_addr_select << 5)
929                 | (3 << 1) | 1;
930         brp_list[brp_i].used = 1;
931         brp_list[brp_i].value = (breakpoint->asid);
932         brp_list[brp_i].control = control;
933         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
934                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
935                         brp_list[brp_i].value);
936         if (retval != ERROR_OK)
937                 return retval;
938         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
939                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
940                         brp_list[brp_i].control);
941         if (retval != ERROR_OK)
942                 return retval;
943         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
944                 brp_list[brp_i].control,
945                 brp_list[brp_i].value);
946         return ERROR_OK;
947
948 }
949
950 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
951 {
952         int retval = ERROR_FAIL;
953         int brp_1 = 0;  /* holds the contextID pair */
954         int brp_2 = 0;  /* holds the IVA pair */
955         uint32_t control_CTX, control_IVA;
956         uint8_t CTX_byte_addr_select = 0x0F;
957         uint8_t IVA_byte_addr_select = 0x0F;
958         uint8_t CTX_machmode = 0x03;
959         uint8_t IVA_machmode = 0x01;
960         struct aarch64_common *aarch64 = target_to_aarch64(target);
961         struct armv8_common *armv8 = &aarch64->armv8_common;
962         struct aarch64_brp *brp_list = aarch64->brp_list;
963
964         if (breakpoint->set) {
965                 LOG_WARNING("breakpoint already set");
966                 return retval;
967         }
968         /*check available context BRPs*/
969         while ((brp_list[brp_1].used ||
970                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
971                 brp_1++;
972
973         printf("brp(CTX) found num: %d\n", brp_1);
974         if (brp_1 >= aarch64->brp_num) {
975                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
976                 return ERROR_FAIL;
977         }
978
979         while ((brp_list[brp_2].used ||
980                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
981                 brp_2++;
982
983         printf("brp(IVA) found num: %d\n", brp_2);
984         if (brp_2 >= aarch64->brp_num) {
985                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
986                 return ERROR_FAIL;
987         }
988
989         breakpoint->set = brp_1 + 1;
990         breakpoint->linked_BRP = brp_2;
991         control_CTX = ((CTX_machmode & 0x7) << 20)
992                 | (brp_2 << 16)
993                 | (0 << 14)
994                 | (CTX_byte_addr_select << 5)
995                 | (3 << 1) | 1;
996         brp_list[brp_1].used = 1;
997         brp_list[brp_1].value = (breakpoint->asid);
998         brp_list[brp_1].control = control_CTX;
999         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1000                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1001                         brp_list[brp_1].value);
1002         if (retval != ERROR_OK)
1003                 return retval;
1004         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1005                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1006                         brp_list[brp_1].control);
1007         if (retval != ERROR_OK)
1008                 return retval;
1009
1010         control_IVA = ((IVA_machmode & 0x7) << 20)
1011                 | (brp_1 << 16)
1012                 | (1 << 13)
1013                 | (IVA_byte_addr_select << 5)
1014                 | (3 << 1) | 1;
1015         brp_list[brp_2].used = 1;
1016         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1017         brp_list[brp_2].control = control_IVA;
1018         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1019                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1020                         brp_list[brp_2].value & 0xFFFFFFFF);
1021         if (retval != ERROR_OK)
1022                 return retval;
1023         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1024                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1025                         brp_list[brp_2].value >> 32);
1026         if (retval != ERROR_OK)
1027                 return retval;
1028         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1029                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1030                         brp_list[brp_2].control);
1031         if (retval != ERROR_OK)
1032                 return retval;
1033
1034         return ERROR_OK;
1035 }
1036
1037 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1038 {
1039         int retval;
1040         struct aarch64_common *aarch64 = target_to_aarch64(target);
1041         struct armv8_common *armv8 = &aarch64->armv8_common;
1042         struct aarch64_brp *brp_list = aarch64->brp_list;
1043
1044         if (!breakpoint->set) {
1045                 LOG_WARNING("breakpoint not set");
1046                 return ERROR_OK;
1047         }
1048
1049         if (breakpoint->type == BKPT_HARD) {
1050                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1051                         int brp_i = breakpoint->set - 1;
1052                         int brp_j = breakpoint->linked_BRP;
1053                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1054                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1055                                 return ERROR_OK;
1056                         }
1057                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1058                                 brp_list[brp_i].control, brp_list[brp_i].value);
1059                         brp_list[brp_i].used = 0;
1060                         brp_list[brp_i].value = 0;
1061                         brp_list[brp_i].control = 0;
1062                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1063                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1064                                         brp_list[brp_i].control);
1065                         if (retval != ERROR_OK)
1066                                 return retval;
1067                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1068                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1069                                         (uint32_t)brp_list[brp_i].value);
1070                         if (retval != ERROR_OK)
1071                                 return retval;
1072                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1073                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1074                                         (uint32_t)brp_list[brp_i].value);
1075                         if (retval != ERROR_OK)
1076                                 return retval;
1077                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1078                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1079                                 return ERROR_OK;
1080                         }
1081                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1082                                 brp_list[brp_j].control, brp_list[brp_j].value);
1083                         brp_list[brp_j].used = 0;
1084                         brp_list[brp_j].value = 0;
1085                         brp_list[brp_j].control = 0;
1086                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1087                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1088                                         brp_list[brp_j].control);
1089                         if (retval != ERROR_OK)
1090                                 return retval;
1091                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1092                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1093                                         (uint32_t)brp_list[brp_j].value);
1094                         if (retval != ERROR_OK)
1095                                 return retval;
1096                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1097                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1098                                         (uint32_t)brp_list[brp_j].value);
1099                         if (retval != ERROR_OK)
1100                                 return retval;
1101
1102                         breakpoint->linked_BRP = 0;
1103                         breakpoint->set = 0;
1104                         return ERROR_OK;
1105
1106                 } else {
1107                         int brp_i = breakpoint->set - 1;
1108                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1109                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1110                                 return ERROR_OK;
1111                         }
1112                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1113                                 brp_list[brp_i].control, brp_list[brp_i].value);
1114                         brp_list[brp_i].used = 0;
1115                         brp_list[brp_i].value = 0;
1116                         brp_list[brp_i].control = 0;
1117                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1118                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1119                                         brp_list[brp_i].control);
1120                         if (retval != ERROR_OK)
1121                                 return retval;
1122                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1123                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1124                                         brp_list[brp_i].value);
1125                         if (retval != ERROR_OK)
1126                                 return retval;
1127
1128                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1129                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1130                                         (uint32_t)brp_list[brp_i].value);
1131                         if (retval != ERROR_OK)
1132                                 return retval;
1133                         breakpoint->set = 0;
1134                         return ERROR_OK;
1135                 }
1136         } else {
1137                 /* restore original instruction (kept in target endianness) */
1138
1139                 armv8_cache_d_inner_flush_virt(armv8,
1140                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1141                                 breakpoint->length);
1142
1143                 if (breakpoint->length == 4) {
1144                         retval = target_write_memory(target,
1145                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1146                                         4, 1, breakpoint->orig_instr);
1147                         if (retval != ERROR_OK)
1148                                 return retval;
1149                 } else {
1150                         retval = target_write_memory(target,
1151                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1152                                         2, 1, breakpoint->orig_instr);
1153                         if (retval != ERROR_OK)
1154                                 return retval;
1155                 }
1156
1157                 armv8_cache_d_inner_flush_virt(armv8,
1158                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1159                                 breakpoint->length);
1160
1161                 armv8_cache_i_inner_inval_virt(armv8,
1162                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1163                                 breakpoint->length);
1164         }
1165         breakpoint->set = 0;
1166
1167         return ERROR_OK;
1168 }
1169
1170 static int aarch64_add_breakpoint(struct target *target,
1171         struct breakpoint *breakpoint)
1172 {
1173         struct aarch64_common *aarch64 = target_to_aarch64(target);
1174
1175         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1176                 LOG_INFO("no hardware breakpoint available");
1177                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1178         }
1179
1180         if (breakpoint->type == BKPT_HARD)
1181                 aarch64->brp_num_available--;
1182
1183         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1184 }
1185
1186 static int aarch64_add_context_breakpoint(struct target *target,
1187         struct breakpoint *breakpoint)
1188 {
1189         struct aarch64_common *aarch64 = target_to_aarch64(target);
1190
1191         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1192                 LOG_INFO("no hardware breakpoint available");
1193                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1194         }
1195
1196         if (breakpoint->type == BKPT_HARD)
1197                 aarch64->brp_num_available--;
1198
1199         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1200 }
1201
1202 static int aarch64_add_hybrid_breakpoint(struct target *target,
1203         struct breakpoint *breakpoint)
1204 {
1205         struct aarch64_common *aarch64 = target_to_aarch64(target);
1206
1207         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1208                 LOG_INFO("no hardware breakpoint available");
1209                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1210         }
1211
1212         if (breakpoint->type == BKPT_HARD)
1213                 aarch64->brp_num_available--;
1214
1215         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1216 }
1217
1218
1219 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1220 {
1221         struct aarch64_common *aarch64 = target_to_aarch64(target);
1222
1223 #if 0
1224 /* It is perfectly possible to remove breakpoints while the target is running */
1225         if (target->state != TARGET_HALTED) {
1226                 LOG_WARNING("target not halted");
1227                 return ERROR_TARGET_NOT_HALTED;
1228         }
1229 #endif
1230
1231         if (breakpoint->set) {
1232                 aarch64_unset_breakpoint(target, breakpoint);
1233                 if (breakpoint->type == BKPT_HARD)
1234                         aarch64->brp_num_available++;
1235         }
1236
1237         return ERROR_OK;
1238 }
1239
1240 /*
1241  * Cortex-A8 Reset functions
1242  */
1243
1244 static int aarch64_assert_reset(struct target *target)
1245 {
1246         struct armv8_common *armv8 = target_to_armv8(target);
1247
1248         LOG_DEBUG(" ");
1249
1250         /* FIXME when halt is requested, make it work somehow... */
1251
1252         /* Issue some kind of warm reset. */
1253         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1254                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1255         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1256                 /* REVISIT handle "pulls" cases, if there's
1257                  * hardware that needs them to work.
1258                  */
1259                 jtag_add_reset(0, 1);
1260         } else {
1261                 LOG_ERROR("%s: how to reset?", target_name(target));
1262                 return ERROR_FAIL;
1263         }
1264
1265         /* registers are now invalid */
1266         if (target_was_examined(target)) {
1267                 register_cache_invalidate(armv8->arm.core_cache);
1268                 register_cache_invalidate(armv8->arm.core_cache->next);
1269         }
1270
1271         target->state = TARGET_RESET;
1272
1273         return ERROR_OK;
1274 }
1275
1276 static int aarch64_deassert_reset(struct target *target)
1277 {
1278         int retval;
1279
1280         LOG_DEBUG(" ");
1281
1282         /* be certain SRST is off */
1283         jtag_add_reset(0, 0);
1284
1285         if (!target_was_examined(target))
1286                 return ERROR_OK;
1287
1288         retval = aarch64_poll(target);
1289         if (retval != ERROR_OK)
1290                 return retval;
1291
1292         if (target->reset_halt) {
1293                 if (target->state != TARGET_HALTED) {
1294                         LOG_WARNING("%s: ran after reset and before halt ...",
1295                                 target_name(target));
1296                         retval = target_halt(target);
1297                         if (retval != ERROR_OK)
1298                                 return retval;
1299                 }
1300         }
1301
1302         return aarch64_init_debug_access(target);
1303 }
1304
1305 static int aarch64_write_apb_ap_memory(struct target *target,
1306         uint64_t address, uint32_t size,
1307         uint32_t count, const uint8_t *buffer)
1308 {
1309         /* write memory through APB-AP */
1310         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1311         struct armv8_common *armv8 = target_to_armv8(target);
1312         struct arm_dpm *dpm = &armv8->dpm;
1313         struct arm *arm = &armv8->arm;
1314         int total_bytes = count * size;
1315         int total_u32;
1316         int start_byte = address & 0x3;
1317         int end_byte   = (address + total_bytes) & 0x3;
1318         struct reg *reg;
1319         uint32_t dscr;
1320         uint8_t *tmp_buff = NULL;
1321
1322         if (target->state != TARGET_HALTED) {
1323                 LOG_WARNING("target not halted");
1324                 return ERROR_TARGET_NOT_HALTED;
1325         }
1326
1327         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1328
1329         /* Mark register R0 as dirty, as it will be used
1330          * for transferring the data.
1331          * It will be restored automatically when exiting
1332          * debug mode
1333          */
1334         reg = armv8_reg_current(arm, 1);
1335         reg->dirty = true;
1336
1337         reg = armv8_reg_current(arm, 0);
1338         reg->dirty = true;
1339
1340         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1341
1342         /* The algorithm only copies 32 bit words, so the buffer
1343          * should be expanded to include the words at either end.
1344          * The first and last words will be read first to avoid
1345          * corruption if needed.
1346          */
1347         tmp_buff = malloc(total_u32 * 4);
1348
1349         if ((start_byte != 0) && (total_u32 > 1)) {
1350                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1351                  * the other bytes in the word.
1352                  */
1353                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1354                 if (retval != ERROR_OK)
1355                         goto error_free_buff_w;
1356         }
1357
1358         /* If end of write is not aligned, or the write is less than 4 bytes */
1359         if ((end_byte != 0) ||
1360                 ((total_u32 == 1) && (total_bytes != 4))) {
1361
1362                 /* Read the last word to avoid corruption during 32 bit write */
1363                 int mem_offset = (total_u32-1) * 4;
1364                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1365                 if (retval != ERROR_OK)
1366                         goto error_free_buff_w;
1367         }
1368
1369         /* Copy the write buffer over the top of the temporary buffer */
1370         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1371
1372         /* We now have a 32 bit aligned buffer that can be written */
1373
1374         /* Read DSCR */
1375         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1376                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1377         if (retval != ERROR_OK)
1378                 goto error_free_buff_w;
1379
1380         /* Set Normal access mode  */
1381         dscr = (dscr & ~DSCR_MA);
1382         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1383                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1384
1385         if (arm->core_state == ARM_STATE_AARCH64) {
1386                 /* Write X0 with value 'address' using write procedure */
1387                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1388                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1389                 retval = dpm->instr_write_data_dcc_64(dpm,
1390                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1391         } else {
1392                 /* Write R0 with value 'address' using write procedure */
1393                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1394                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1395                 dpm->instr_write_data_dcc(dpm,
1396                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1397
1398         }
1399         /* Step 1.d   - Change DCC to memory mode */
1400         dscr = dscr | DSCR_MA;
1401         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1402                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1403         if (retval != ERROR_OK)
1404                 goto error_unset_dtr_w;
1405
1406
1407         /* Step 2.a   - Do the write */
1408         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1409                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1410         if (retval != ERROR_OK)
1411                 goto error_unset_dtr_w;
1412
1413         /* Step 3.a   - Switch DTR mode back to Normal mode */
1414         dscr = (dscr & ~DSCR_MA);
1415         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1416                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1417         if (retval != ERROR_OK)
1418                 goto error_unset_dtr_w;
1419
1420         /* Check for sticky abort flags in the DSCR */
1421         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1422                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1423         if (retval != ERROR_OK)
1424                 goto error_free_buff_w;
1425
1426         dpm->dscr = dscr;
1427         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1428                 /* Abort occurred - clear it and exit */
1429                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1430                 armv8_dpm_handle_exception(dpm);
1431                 goto error_free_buff_w;
1432         }
1433
1434         /* Done */
1435         free(tmp_buff);
1436         return ERROR_OK;
1437
1438 error_unset_dtr_w:
1439         /* Unset DTR mode */
1440         mem_ap_read_atomic_u32(armv8->debug_ap,
1441                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1442         dscr = (dscr & ~DSCR_MA);
1443         mem_ap_write_atomic_u32(armv8->debug_ap,
1444                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1445 error_free_buff_w:
1446         LOG_ERROR("error");
1447         free(tmp_buff);
1448         return ERROR_FAIL;
1449 }
1450
1451 static int aarch64_read_apb_ap_memory(struct target *target,
1452         target_addr_t address, uint32_t size,
1453         uint32_t count, uint8_t *buffer)
1454 {
1455         /* read memory through APB-AP */
1456         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1457         struct armv8_common *armv8 = target_to_armv8(target);
1458         struct arm_dpm *dpm = &armv8->dpm;
1459         struct arm *arm = &armv8->arm;
1460         int total_bytes = count * size;
1461         int total_u32;
1462         int start_byte = address & 0x3;
1463         int end_byte   = (address + total_bytes) & 0x3;
1464         struct reg *reg;
1465         uint32_t dscr;
1466         uint8_t *tmp_buff = NULL;
1467         uint8_t *u8buf_ptr;
1468         uint32_t value;
1469
1470         if (target->state != TARGET_HALTED) {
1471                 LOG_WARNING("target not halted");
1472                 return ERROR_TARGET_NOT_HALTED;
1473         }
1474
1475         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1476         /* Mark register X0, X1 as dirty, as it will be used
1477          * for transferring the data.
1478          * It will be restored automatically when exiting
1479          * debug mode
1480          */
1481         reg = armv8_reg_current(arm, 1);
1482         reg->dirty = true;
1483
1484         reg = armv8_reg_current(arm, 0);
1485         reg->dirty = true;
1486
1487         /* Read DSCR */
1488         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1489                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1490
1491         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1492
1493         /* Set Normal access mode  */
1494         dscr = (dscr & ~DSCR_MA);
1495         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1496                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1497
1498         if (arm->core_state == ARM_STATE_AARCH64) {
1499                 /* Write X0 with value 'address' using write procedure */
1500                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1501                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1502                 retval += dpm->instr_write_data_dcc_64(dpm,
1503                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1504                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1505                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1506                 /* Step 1.e - Change DCC to memory mode */
1507                 dscr = dscr | DSCR_MA;
1508                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1509                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1510                 /* Step 1.f - read DBGDTRTX and discard the value */
1511                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1512                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1513         } else {
1514                 /* Write R0 with value 'address' using write procedure */
1515                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1516                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1517                 retval += dpm->instr_write_data_dcc(dpm,
1518                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1519                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1520                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1521                 /* Step 1.e - Change DCC to memory mode */
1522                 dscr = dscr | DSCR_MA;
1523                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1524                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1525                 /* Step 1.f - read DBGDTRTX and discard the value */
1526                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1527                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1528
1529         }
1530         if (retval != ERROR_OK)
1531                 goto error_unset_dtr_r;
1532
1533         /* Optimize the read as much as we can, either way we read in a single pass  */
1534         if ((start_byte) || (end_byte)) {
1535                 /* The algorithm only copies 32 bit words, so the buffer
1536                  * should be expanded to include the words at either end.
1537                  * The first and last words will be read into a temp buffer
1538                  * to avoid corruption
1539                  */
1540                 tmp_buff = malloc(total_u32 * 4);
1541                 if (!tmp_buff)
1542                         goto error_unset_dtr_r;
1543
1544                 /* use the tmp buffer to read the entire data */
1545                 u8buf_ptr = tmp_buff;
1546         } else
1547                 /* address and read length are aligned so read directly into the passed buffer */
1548                 u8buf_ptr = buffer;
1549
1550         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1551          * Abort flags are sticky, so can be read at end of transactions
1552          *
1553          * This data is read in aligned to 32 bit boundary.
1554          */
1555
1556         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1557          * increments X0 by 4. */
1558         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1559                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1560         if (retval != ERROR_OK)
1561                         goto error_unset_dtr_r;
1562
1563         /* Step 3.a - set DTR access mode back to Normal mode   */
1564         dscr = (dscr & ~DSCR_MA);
1565         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1566                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1567         if (retval != ERROR_OK)
1568                 goto error_free_buff_r;
1569
1570         /* Step 3.b - read DBGDTRTX for the final value */
1571         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1572                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1573         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1574
1575         /* Check for sticky abort flags in the DSCR */
1576         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1577                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1578         if (retval != ERROR_OK)
1579                 goto error_free_buff_r;
1580
1581         dpm->dscr = dscr;
1582
1583         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1584                 /* Abort occurred - clear it and exit */
1585                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1586                 armv8_dpm_handle_exception(dpm);
1587                 goto error_free_buff_r;
1588         }
1589
1590         /* check if we need to copy aligned data by applying any shift necessary */
1591         if (tmp_buff) {
1592                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1593                 free(tmp_buff);
1594         }
1595
1596         /* Done */
1597         return ERROR_OK;
1598
1599 error_unset_dtr_r:
1600         /* Unset DTR mode */
1601         mem_ap_read_atomic_u32(armv8->debug_ap,
1602                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1603         dscr = (dscr & ~DSCR_MA);
1604         mem_ap_write_atomic_u32(armv8->debug_ap,
1605                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1606 error_free_buff_r:
1607         LOG_ERROR("error");
1608         free(tmp_buff);
1609         return ERROR_FAIL;
1610 }
1611
1612 static int aarch64_read_phys_memory(struct target *target,
1613         target_addr_t address, uint32_t size,
1614         uint32_t count, uint8_t *buffer)
1615 {
1616         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1617
1618         if (count && buffer) {
1619                 /* read memory through APB-AP */
1620                 retval = aarch64_mmu_modify(target, 0);
1621                 if (retval != ERROR_OK)
1622                         return retval;
1623                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1624         }
1625         return retval;
1626 }
1627
1628 static int aarch64_read_memory(struct target *target, target_addr_t address,
1629         uint32_t size, uint32_t count, uint8_t *buffer)
1630 {
1631         int mmu_enabled = 0;
1632         int retval;
1633
1634         /* determine if MMU was enabled on target stop */
1635         retval = aarch64_mmu(target, &mmu_enabled);
1636         if (retval != ERROR_OK)
1637                 return retval;
1638
1639         if (mmu_enabled) {
1640                 /* enable MMU as we could have disabled it for phys access */
1641                 retval = aarch64_mmu_modify(target, 1);
1642                 if (retval != ERROR_OK)
1643                         return retval;
1644         }
1645         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1646 }
1647
1648 static int aarch64_write_phys_memory(struct target *target,
1649         target_addr_t address, uint32_t size,
1650         uint32_t count, const uint8_t *buffer)
1651 {
1652         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1653
1654         if (count && buffer) {
1655                 /* write memory through APB-AP */
1656                 retval = aarch64_mmu_modify(target, 0);
1657                 if (retval != ERROR_OK)
1658                         return retval;
1659                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1660         }
1661
1662         return retval;
1663 }
1664
1665 static int aarch64_write_memory(struct target *target, target_addr_t address,
1666         uint32_t size, uint32_t count, const uint8_t *buffer)
1667 {
1668         int mmu_enabled = 0;
1669         int retval;
1670
1671         /* determine if MMU was enabled on target stop */
1672         retval = aarch64_mmu(target, &mmu_enabled);
1673         if (retval != ERROR_OK)
1674                 return retval;
1675
1676         if (mmu_enabled) {
1677                 /* enable MMU as we could have disabled it for phys access */
1678                 retval = aarch64_mmu_modify(target, 1);
1679                 if (retval != ERROR_OK)
1680                         return retval;
1681         }
1682         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1683 }
1684
1685 static int aarch64_handle_target_request(void *priv)
1686 {
1687         struct target *target = priv;
1688         struct armv8_common *armv8 = target_to_armv8(target);
1689         int retval;
1690
1691         if (!target_was_examined(target))
1692                 return ERROR_OK;
1693         if (!target->dbg_msg_enabled)
1694                 return ERROR_OK;
1695
1696         if (target->state == TARGET_RUNNING) {
1697                 uint32_t request;
1698                 uint32_t dscr;
1699                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1700                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1701
1702                 /* check if we have data */
1703                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1704                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1705                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1706                         if (retval == ERROR_OK) {
1707                                 target_request(target, request);
1708                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1709                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1710                         }
1711                 }
1712         }
1713
1714         return ERROR_OK;
1715 }
1716
1717 static int aarch64_examine_first(struct target *target)
1718 {
1719         struct aarch64_common *aarch64 = target_to_aarch64(target);
1720         struct armv8_common *armv8 = &aarch64->armv8_common;
1721         struct adiv5_dap *swjdp = armv8->arm.dap;
1722         int i;
1723         int retval = ERROR_OK;
1724         uint64_t debug, ttypr;
1725         uint32_t cpuid;
1726         uint32_t tmp0, tmp1;
1727         debug = ttypr = cpuid = 0;
1728
1729         /* We do one extra read to ensure DAP is configured,
1730          * we call ahbap_debugport_init(swjdp) instead
1731          */
1732         retval = dap_dp_init(swjdp);
1733         if (retval != ERROR_OK)
1734                 return retval;
1735
1736         /* Search for the APB-AB - it is needed for access to debug registers */
1737         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1738         if (retval != ERROR_OK) {
1739                 LOG_ERROR("Could not find APB-AP for debug access");
1740                 return retval;
1741         }
1742
1743         retval = mem_ap_init(armv8->debug_ap);
1744         if (retval != ERROR_OK) {
1745                 LOG_ERROR("Could not initialize the APB-AP");
1746                 return retval;
1747         }
1748
1749         armv8->debug_ap->memaccess_tck = 80;
1750
1751         if (!target->dbgbase_set) {
1752                 uint32_t dbgbase;
1753                 /* Get ROM Table base */
1754                 uint32_t apid;
1755                 int32_t coreidx = target->coreid;
1756                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1757                 if (retval != ERROR_OK)
1758                         return retval;
1759                 /* Lookup 0x15 -- Processor DAP */
1760                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1761                                 &armv8->debug_base, &coreidx);
1762                 if (retval != ERROR_OK)
1763                         return retval;
1764                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1765                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1766         } else
1767                 armv8->debug_base = target->dbgbase;
1768
1769         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1770                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1771         if (retval != ERROR_OK) {
1772                 LOG_DEBUG("LOCK debug access fail");
1773                 return retval;
1774         }
1775
1776         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1777                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1778         if (retval != ERROR_OK) {
1779                 LOG_DEBUG("Examine %s failed", "oslock");
1780                 return retval;
1781         }
1782
1783         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1784                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1785         if (retval != ERROR_OK) {
1786                 LOG_DEBUG("Examine %s failed", "CPUID");
1787                 return retval;
1788         }
1789
1790         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1791                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1792         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1793                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1794         if (retval != ERROR_OK) {
1795                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1796                 return retval;
1797         }
1798         ttypr |= tmp1;
1799         ttypr = (ttypr << 32) | tmp0;
1800
1801         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1802                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1803         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1804                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1805         if (retval != ERROR_OK) {
1806                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1807                 return retval;
1808         }
1809         debug |= tmp1;
1810         debug = (debug << 32) | tmp0;
1811
1812         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1813         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1814         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1815
1816         if (target->ctibase == 0) {
1817                 /* assume a v8 rom table layout */
1818                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1819                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1820         } else
1821                 armv8->cti_base = target->ctibase;
1822
1823         armv8->arm.core_type = ARM_MODE_MON;
1824         retval = aarch64_dpm_setup(aarch64, debug);
1825         if (retval != ERROR_OK)
1826                 return retval;
1827
1828         /* Setup Breakpoint Register Pairs */
1829         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1830         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1831         aarch64->brp_num_available = aarch64->brp_num;
1832         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1833         for (i = 0; i < aarch64->brp_num; i++) {
1834                 aarch64->brp_list[i].used = 0;
1835                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1836                         aarch64->brp_list[i].type = BRP_NORMAL;
1837                 else
1838                         aarch64->brp_list[i].type = BRP_CONTEXT;
1839                 aarch64->brp_list[i].value = 0;
1840                 aarch64->brp_list[i].control = 0;
1841                 aarch64->brp_list[i].BRPn = i;
1842         }
1843
1844         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1845
1846         target_set_examined(target);
1847         return ERROR_OK;
1848 }
1849
1850 static int aarch64_examine(struct target *target)
1851 {
1852         int retval = ERROR_OK;
1853
1854         /* don't re-probe hardware after each reset */
1855         if (!target_was_examined(target))
1856                 retval = aarch64_examine_first(target);
1857
1858         /* Configure core debug access */
1859         if (retval == ERROR_OK)
1860                 retval = aarch64_init_debug_access(target);
1861
1862         return retval;
1863 }
1864
1865 /*
1866  *      Cortex-A8 target creation and initialization
1867  */
1868
1869 static int aarch64_init_target(struct command_context *cmd_ctx,
1870         struct target *target)
1871 {
1872         /* examine_first() does a bunch of this */
1873         return ERROR_OK;
1874 }
1875
1876 static int aarch64_init_arch_info(struct target *target,
1877         struct aarch64_common *aarch64, struct jtag_tap *tap)
1878 {
1879         struct armv8_common *armv8 = &aarch64->armv8_common;
1880         struct adiv5_dap *dap = armv8->arm.dap;
1881
1882         armv8->arm.dap = dap;
1883
1884         /* Setup struct aarch64_common */
1885         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1886         /*  tap has no dap initialized */
1887         if (!tap->dap) {
1888                 tap->dap = dap_init();
1889
1890                 /* Leave (only) generic DAP stuff for debugport_init() */
1891                 tap->dap->tap = tap;
1892         }
1893
1894         armv8->arm.dap = tap->dap;
1895
1896         aarch64->fast_reg_read = 0;
1897
1898         /* register arch-specific functions */
1899         armv8->examine_debug_reason = NULL;
1900
1901         armv8->post_debug_entry = aarch64_post_debug_entry;
1902
1903         armv8->pre_restore_context = NULL;
1904
1905         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1906
1907         /* REVISIT v7a setup should be in a v7a-specific routine */
1908         armv8_init_arch_info(target, armv8);
1909         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
1910
1911         return ERROR_OK;
1912 }
1913
1914 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
1915 {
1916         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
1917
1918         return aarch64_init_arch_info(target, aarch64, target->tap);
1919 }
1920
1921 static int aarch64_mmu(struct target *target, int *enabled)
1922 {
1923         if (target->state != TARGET_HALTED) {
1924                 LOG_ERROR("%s: target not halted", __func__);
1925                 return ERROR_TARGET_INVALID;
1926         }
1927
1928         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
1929         return ERROR_OK;
1930 }
1931
1932 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
1933                              target_addr_t *phys)
1934 {
1935         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
1936 }
1937
1938 COMMAND_HANDLER(aarch64_handle_cache_info_command)
1939 {
1940         struct target *target = get_current_target(CMD_CTX);
1941         struct armv8_common *armv8 = target_to_armv8(target);
1942
1943         return armv8_handle_cache_info_command(CMD_CTX,
1944                         &armv8->armv8_mmu.armv8_cache);
1945 }
1946
1947
1948 COMMAND_HANDLER(aarch64_handle_dbginit_command)
1949 {
1950         struct target *target = get_current_target(CMD_CTX);
1951         if (!target_was_examined(target)) {
1952                 LOG_ERROR("target not examined yet");
1953                 return ERROR_FAIL;
1954         }
1955
1956         return aarch64_init_debug_access(target);
1957 }
1958 COMMAND_HANDLER(aarch64_handle_smp_off_command)
1959 {
1960         struct target *target = get_current_target(CMD_CTX);
1961         /* check target is an smp target */
1962         struct target_list *head;
1963         struct target *curr;
1964         head = target->head;
1965         target->smp = 0;
1966         if (head != (struct target_list *)NULL) {
1967                 while (head != (struct target_list *)NULL) {
1968                         curr = head->target;
1969                         curr->smp = 0;
1970                         head = head->next;
1971                 }
1972                 /*  fixes the target display to the debugger */
1973                 target->gdb_service->target = target;
1974         }
1975         return ERROR_OK;
1976 }
1977
1978 COMMAND_HANDLER(aarch64_handle_smp_on_command)
1979 {
1980         struct target *target = get_current_target(CMD_CTX);
1981         struct target_list *head;
1982         struct target *curr;
1983         head = target->head;
1984         if (head != (struct target_list *)NULL) {
1985                 target->smp = 1;
1986                 while (head != (struct target_list *)NULL) {
1987                         curr = head->target;
1988                         curr->smp = 1;
1989                         head = head->next;
1990                 }
1991         }
1992         return ERROR_OK;
1993 }
1994
1995 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
1996 {
1997         struct target *target = get_current_target(CMD_CTX);
1998         int retval = ERROR_OK;
1999         struct target_list *head;
2000         head = target->head;
2001         if (head != (struct target_list *)NULL) {
2002                 if (CMD_ARGC == 1) {
2003                         int coreid = 0;
2004                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2005                         if (ERROR_OK != retval)
2006                                 return retval;
2007                         target->gdb_service->core[1] = coreid;
2008
2009                 }
2010                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2011                         , target->gdb_service->core[1]);
2012         }
2013         return ERROR_OK;
2014 }
2015
2016 static const struct command_registration aarch64_exec_command_handlers[] = {
2017         {
2018                 .name = "cache_info",
2019                 .handler = aarch64_handle_cache_info_command,
2020                 .mode = COMMAND_EXEC,
2021                 .help = "display information about target caches",
2022                 .usage = "",
2023         },
2024         {
2025                 .name = "dbginit",
2026                 .handler = aarch64_handle_dbginit_command,
2027                 .mode = COMMAND_EXEC,
2028                 .help = "Initialize core debug",
2029                 .usage = "",
2030         },
2031         {       .name = "smp_off",
2032                 .handler = aarch64_handle_smp_off_command,
2033                 .mode = COMMAND_EXEC,
2034                 .help = "Stop smp handling",
2035                 .usage = "",
2036         },
2037         {
2038                 .name = "smp_on",
2039                 .handler = aarch64_handle_smp_on_command,
2040                 .mode = COMMAND_EXEC,
2041                 .help = "Restart smp handling",
2042                 .usage = "",
2043         },
2044         {
2045                 .name = "smp_gdb",
2046                 .handler = aarch64_handle_smp_gdb_command,
2047                 .mode = COMMAND_EXEC,
2048                 .help = "display/fix current core played to gdb",
2049                 .usage = "",
2050         },
2051
2052
2053         COMMAND_REGISTRATION_DONE
2054 };
2055 static const struct command_registration aarch64_command_handlers[] = {
2056         {
2057                 .chain = armv8_command_handlers,
2058         },
2059         {
2060                 .name = "aarch64",
2061                 .mode = COMMAND_ANY,
2062                 .help = "Aarch64 command group",
2063                 .usage = "",
2064                 .chain = aarch64_exec_command_handlers,
2065         },
2066         COMMAND_REGISTRATION_DONE
2067 };
2068
2069 struct target_type aarch64_target = {
2070         .name = "aarch64",
2071
2072         .poll = aarch64_poll,
2073         .arch_state = armv8_arch_state,
2074
2075         .halt = aarch64_halt,
2076         .resume = aarch64_resume,
2077         .step = aarch64_step,
2078
2079         .assert_reset = aarch64_assert_reset,
2080         .deassert_reset = aarch64_deassert_reset,
2081
2082         /* REVISIT allow exporting VFP3 registers ... */
2083         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2084
2085         .read_memory = aarch64_read_memory,
2086         .write_memory = aarch64_write_memory,
2087
2088         .add_breakpoint = aarch64_add_breakpoint,
2089         .add_context_breakpoint = aarch64_add_context_breakpoint,
2090         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2091         .remove_breakpoint = aarch64_remove_breakpoint,
2092         .add_watchpoint = NULL,
2093         .remove_watchpoint = NULL,
2094
2095         .commands = aarch64_command_handlers,
2096         .target_create = aarch64_target_create,
2097         .init_target = aarch64_init_target,
2098         .examine = aarch64_examine,
2099
2100         .read_phys_memory = aarch64_read_phys_memory,
2101         .write_phys_memory = aarch64_write_phys_memory,
2102         .mmu = aarch64_mmu,
2103         .virt2phys = aarch64_virt2phys,
2104 };