aarch64: Add hardware breakpoint support
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "arm_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ab_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
61                                                      0xd5181000,
62                                                      aarch64->system_control_reg);
63         }
64
65         return retval;
66 }
67
68 /*  check address before aarch64_apb read write access with mmu on
69  *  remove apb predictible data abort */
70 static int aarch64_check_address(struct target *target, uint32_t address)
71 {
72         /* TODO */
73         return ERROR_OK;
74 }
75 /*  modify system_control_reg in order to enable or disable mmu for :
76  *  - virt2phys address conversion
77  *  - read or write memory in phys or virt address */
78 static int aarch64_mmu_modify(struct target *target, int enable)
79 {
80         struct aarch64_common *aarch64 = target_to_aarch64(target);
81         struct armv8_common *armv8 = &aarch64->armv8_common;
82         int retval = ERROR_OK;
83
84         if (enable) {
85                 /*  if mmu enabled at target stop and mmu not enable */
86                 if (!(aarch64->system_control_reg & 0x1U)) {
87                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
88                         return ERROR_FAIL;
89                 }
90                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
91                         aarch64->system_control_reg_curr |= 0x1U;
92                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
93                                                              0xd5181000,
94                                                              aarch64->system_control_reg_curr);
95                 }
96         } else {
97                 if (aarch64->system_control_reg_curr & 0x4U) {
98                         /*  data cache is active */
99                         aarch64->system_control_reg_curr &= ~0x4U;
100                         /* flush data cache armv7 function to be called */
101                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
102                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
103                 }
104                 if ((aarch64->system_control_reg_curr & 0x1U)) {
105                         aarch64->system_control_reg_curr &= ~0x1U;
106                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
107                                                              0xd5181000,
108                                                              aarch64->system_control_reg_curr);
109                 }
110         }
111         return retval;
112 }
113
114 /*
115  * Basic debug access, very low level assumes state is saved
116  */
117 static int aarch64_init_debug_access(struct target *target)
118 {
119         struct armv8_common *armv8 = target_to_armv8(target);
120         int retval;
121         uint32_t dummy;
122
123         LOG_DEBUG(" ");
124
125         /* Unlocking the debug registers for modification
126          * The debugport might be uninitialised so try twice */
127         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
128                              armv8->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
129         if (retval != ERROR_OK) {
130                 /* try again */
131                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
132                              armv8->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
133                 if (retval == ERROR_OK)
134                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
135         }
136         if (retval != ERROR_OK)
137                 return retval;
138         /* Clear Sticky Power Down status Bit in PRSR to enable access to
139            the registers in the Core Power Domain */
140         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
141                         armv8->debug_base + CPUDBG_PRSR, &dummy);
142         if (retval != ERROR_OK)
143                 return retval;
144
145         /* Enabling of instruction execution in debug mode is done in debug_entry code */
146
147         /* Resync breakpoint registers */
148
149         /* Since this is likely called from init or reset, update target state information*/
150         return aarch64_poll(target);
151 }
152
153 /* To reduce needless round-trips, pass in a pointer to the current
154  * DSCR value.  Initialize it to zero if you just need to know the
155  * value on return from this function; or DSCR_INSTR_COMP if you
156  * happen to know that no instruction is pending.
157  */
158 static int aarch64_exec_opcode(struct target *target,
159         uint32_t opcode, uint32_t *dscr_p)
160 {
161         uint32_t dscr;
162         int retval;
163         struct armv8_common *armv8 = target_to_armv8(target);
164         dscr = dscr_p ? *dscr_p : 0;
165
166         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
167
168         /* Wait for InstrCompl bit to be set */
169         long long then = timeval_ms();
170         while ((dscr & DSCR_INSTR_COMP) == 0) {
171                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
172                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
173                 if (retval != ERROR_OK) {
174                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
175                         return retval;
176                 }
177                 if (timeval_ms() > then + 1000) {
178                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
179                         return ERROR_FAIL;
180                 }
181         }
182
183         retval = mem_ap_write_u32(armv8->debug_ap,
184                         armv8->debug_base + CPUDBG_ITR, opcode);
185         if (retval != ERROR_OK)
186                 return retval;
187
188         then = timeval_ms();
189         do {
190                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
191                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
192                 if (retval != ERROR_OK) {
193                         LOG_ERROR("Could not read DSCR register");
194                         return retval;
195                 }
196                 if (timeval_ms() > then + 1000) {
197                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
198                         return ERROR_FAIL;
199                 }
200         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
201
202         if (dscr_p)
203                 *dscr_p = dscr;
204
205         return retval;
206 }
207
208 /* Write to memory mapped registers directly with no cache or mmu handling */
209 static int aarch64_dap_write_memap_register_u32(struct target *target,
210         uint32_t address,
211         uint32_t value)
212 {
213         int retval;
214         struct armv8_common *armv8 = target_to_armv8(target);
215
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
217
218         return retval;
219 }
220
221 /*
222  * AARCH64 implementation of Debug Programmer's Model
223  *
224  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
225  * so there's no need to poll for it before executing an instruction.
226  *
227  * NOTE that in several of these cases the "stall" mode might be useful.
228  * It'd let us queue a few operations together... prepare/finish might
229  * be the places to enable/disable that mode.
230  */
231
232 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
233 {
234         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
235 }
236
237 static int aarch64_write_dcc(struct aarch64_common *a8, uint32_t data)
238 {
239         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
240         return mem_ap_write_u32(a8->armv8_common.debug_ap,
241                                 a8->armv8_common.debug_base + CPUDBG_DTRRX, data);
242 }
243
244 static int aarch64_write_dcc_64(struct aarch64_common *a8, uint64_t data)
245 {
246         int ret;
247         LOG_DEBUG("write DCC 0x%08" PRIx32, (unsigned)data);
248         LOG_DEBUG("write DCC 0x%08" PRIx32, (unsigned)(data >> 32));
249         ret = mem_ap_write_u32(a8->armv8_common.debug_ap,
250                                a8->armv8_common.debug_base + CPUDBG_DTRRX, data);
251         ret += mem_ap_write_u32(a8->armv8_common.debug_ap,
252                                 a8->armv8_common.debug_base + CPUDBG_DTRTX, data >> 32);
253         return ret;
254 }
255
256 static int aarch64_read_dcc(struct aarch64_common *a8, uint32_t *data,
257         uint32_t *dscr_p)
258 {
259         uint32_t dscr = DSCR_INSTR_COMP;
260         int retval;
261
262         if (dscr_p)
263                 dscr = *dscr_p;
264
265         /* Wait for DTRRXfull */
266         long long then = timeval_ms();
267         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
268                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
269                                 a8->armv8_common.debug_base + CPUDBG_DSCR,
270                                 &dscr);
271                 if (retval != ERROR_OK)
272                         return retval;
273                 if (timeval_ms() > then + 1000) {
274                         LOG_ERROR("Timeout waiting for read dcc");
275                         return ERROR_FAIL;
276                 }
277         }
278
279         retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
280                                             a8->armv8_common.debug_base + CPUDBG_DTRTX,
281                                             data);
282         if (retval != ERROR_OK)
283                 return retval;
284         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
285
286         if (dscr_p)
287                 *dscr_p = dscr;
288
289         return retval;
290 }
291 static int aarch64_read_dcc_64(struct aarch64_common *a8, uint64_t *data,
292         uint32_t *dscr_p)
293 {
294         uint32_t dscr = DSCR_INSTR_COMP;
295         uint32_t higher;
296         int retval;
297
298         if (dscr_p)
299                 dscr = *dscr_p;
300
301         /* Wait for DTRRXfull */
302         long long then = timeval_ms();
303         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
304                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
305                                 a8->armv8_common.debug_base + CPUDBG_DSCR,
306                                 &dscr);
307                 if (retval != ERROR_OK)
308                         return retval;
309                 if (timeval_ms() > then + 1000) {
310                         LOG_ERROR("Timeout waiting for read dcc");
311                         return ERROR_FAIL;
312                 }
313         }
314
315         retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
316                                             a8->armv8_common.debug_base + CPUDBG_DTRTX,
317                                             (uint32_t *)data);
318         if (retval != ERROR_OK)
319                 return retval;
320
321         retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
322                                             a8->armv8_common.debug_base + CPUDBG_DTRRX,
323                                             &higher);
324         if (retval != ERROR_OK)
325                 return retval;
326
327         *data = *(uint32_t *)data | (uint64_t)higher << 32;
328         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
329
330         if (dscr_p)
331                 *dscr_p = dscr;
332
333         return retval;
334 }
335
336 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
337 {
338         struct aarch64_common *a8 = dpm_to_a8(dpm);
339         uint32_t dscr;
340         int retval;
341
342         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
343         long long then = timeval_ms();
344         for (;; ) {
345                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
346                                 a8->armv8_common.debug_base + CPUDBG_DSCR,
347                                 &dscr);
348                 if (retval != ERROR_OK)
349                         return retval;
350                 if ((dscr & DSCR_INSTR_COMP) != 0)
351                         break;
352                 if (timeval_ms() > then + 1000) {
353                         LOG_ERROR("Timeout waiting for dpm prepare");
354                         return ERROR_FAIL;
355                 }
356         }
357
358         /* this "should never happen" ... */
359         if (dscr & DSCR_DTR_RX_FULL) {
360                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
361                 /* Clear DCCRX */
362                 retval = aarch64_exec_opcode(
363                                 a8->armv8_common.arm.target,
364                                 0xd5130400,
365                                 &dscr);
366                 if (retval != ERROR_OK)
367                         return retval;
368         }
369
370         return retval;
371 }
372
373 static int aarch64_dpm_finish(struct arm_dpm *dpm)
374 {
375         /* REVISIT what could be done here? */
376         return ERROR_OK;
377 }
378
379 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
380         uint32_t opcode, uint32_t data)
381 {
382         struct aarch64_common *a8 = dpm_to_a8(dpm);
383         int retval;
384         uint32_t dscr = DSCR_INSTR_COMP;
385
386         retval = aarch64_write_dcc(a8, data);
387         if (retval != ERROR_OK)
388                 return retval;
389
390         return aarch64_exec_opcode(
391                         a8->armv8_common.arm.target,
392                         opcode,
393                         &dscr);
394 }
395
396 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
397         uint32_t opcode, uint64_t data)
398 {
399         struct aarch64_common *a8 = dpm_to_a8(dpm);
400         int retval;
401         uint32_t dscr = DSCR_INSTR_COMP;
402
403         retval = aarch64_write_dcc_64(a8, data);
404         if (retval != ERROR_OK)
405                 return retval;
406
407         return aarch64_exec_opcode(
408                         a8->armv8_common.arm.target,
409                         opcode,
410                         &dscr);
411 }
412
413 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
414         uint32_t opcode, uint32_t data)
415 {
416         struct aarch64_common *a8 = dpm_to_a8(dpm);
417         uint32_t dscr = DSCR_INSTR_COMP;
418         int retval;
419
420         retval = aarch64_write_dcc(a8, data);
421         if (retval != ERROR_OK)
422                 return retval;
423
424         retval = aarch64_exec_opcode(
425                         a8->armv8_common.arm.target,
426                         0xd5330500,
427                         &dscr);
428         if (retval != ERROR_OK)
429                 return retval;
430
431         /* then the opcode, taking data from R0 */
432         retval = aarch64_exec_opcode(
433                         a8->armv8_common.arm.target,
434                         opcode,
435                         &dscr);
436
437         return retval;
438 }
439
440 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
441         uint32_t opcode, uint64_t data)
442 {
443         struct aarch64_common *a8 = dpm_to_a8(dpm);
444         uint32_t dscr = DSCR_INSTR_COMP;
445         int retval;
446
447         retval = aarch64_write_dcc_64(a8, data);
448         if (retval != ERROR_OK)
449                 return retval;
450
451         retval = aarch64_exec_opcode(
452                         a8->armv8_common.arm.target,
453                         0xd5330400,
454                         &dscr);
455         if (retval != ERROR_OK)
456                 return retval;
457
458         /* then the opcode, taking data from R0 */
459         retval = aarch64_exec_opcode(
460                         a8->armv8_common.arm.target,
461                         opcode,
462                         &dscr);
463
464         return retval;
465 }
466
467 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
468 {
469         struct target *target = dpm->arm->target;
470         uint32_t dscr = DSCR_INSTR_COMP;
471
472         /* "Prefetch flush" after modifying execution status in CPSR */
473         return aarch64_exec_opcode(target,
474                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
475                         &dscr);
476 }
477
478 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
479         uint32_t opcode, uint32_t *data)
480 {
481         struct aarch64_common *a8 = dpm_to_a8(dpm);
482         int retval;
483         uint32_t dscr = DSCR_INSTR_COMP;
484
485         /* the opcode, writing data to DCC */
486         retval = aarch64_exec_opcode(
487                         a8->armv8_common.arm.target,
488                         opcode,
489                         &dscr);
490         if (retval != ERROR_OK)
491                 return retval;
492
493         return aarch64_read_dcc(a8, data, &dscr);
494 }
495
496 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
497         uint32_t opcode, uint64_t *data)
498 {
499         struct aarch64_common *a8 = dpm_to_a8(dpm);
500         int retval;
501         uint32_t dscr = DSCR_INSTR_COMP;
502
503         /* the opcode, writing data to DCC */
504         retval = aarch64_exec_opcode(
505                         a8->armv8_common.arm.target,
506                         opcode,
507                         &dscr);
508         if (retval != ERROR_OK)
509                 return retval;
510
511         return aarch64_read_dcc_64(a8, data, &dscr);
512 }
513
514 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
515         uint32_t opcode, uint32_t *data)
516 {
517         struct aarch64_common *a8 = dpm_to_a8(dpm);
518         uint32_t dscr = DSCR_INSTR_COMP;
519         int retval;
520
521         /* the opcode, writing data to R0 */
522         retval = aarch64_exec_opcode(
523                         a8->armv8_common.arm.target,
524                         opcode,
525                         &dscr);
526         if (retval != ERROR_OK)
527                 return retval;
528
529         /* write R0 to DCC */
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         0xd5130400,  /* msr dbgdtr_el0, x0 */
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         return aarch64_read_dcc(a8, data, &dscr);
538 }
539
540 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
541         uint32_t opcode, uint64_t *data)
542 {
543         struct aarch64_common *a8 = dpm_to_a8(dpm);
544         uint32_t dscr = DSCR_INSTR_COMP;
545         int retval;
546
547         /* the opcode, writing data to R0 */
548         retval = aarch64_exec_opcode(
549                         a8->armv8_common.arm.target,
550                         opcode,
551                         &dscr);
552         if (retval != ERROR_OK)
553                 return retval;
554
555         /* write R0 to DCC */
556         retval = aarch64_exec_opcode(
557                         a8->armv8_common.arm.target,
558                         0xd5130400,  /* msr dbgdtr_el0, x0 */
559                         &dscr);
560         if (retval != ERROR_OK)
561                 return retval;
562
563         return aarch64_read_dcc_64(a8, data, &dscr);
564 }
565
566 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
567         uint32_t addr, uint32_t control)
568 {
569         struct aarch64_common *a8 = dpm_to_a8(dpm);
570         uint32_t vr = a8->armv8_common.debug_base;
571         uint32_t cr = a8->armv8_common.debug_base;
572         int retval;
573
574         switch (index_t) {
575                 case 0 ... 15:  /* breakpoints */
576                         vr += CPUDBG_BVR_BASE;
577                         cr += CPUDBG_BCR_BASE;
578                         break;
579                 case 16 ... 31: /* watchpoints */
580                         vr += CPUDBG_WVR_BASE;
581                         cr += CPUDBG_WCR_BASE;
582                         index_t -= 16;
583                         break;
584                 default:
585                         return ERROR_FAIL;
586         }
587         vr += 4 * index_t;
588         cr += 4 * index_t;
589
590         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
591                 (unsigned) vr, (unsigned) cr);
592
593         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
594                         vr, addr);
595         if (retval != ERROR_OK)
596                 return retval;
597         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
598                         cr, control);
599         return retval;
600 }
601
602 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
603 {
604         return ERROR_OK;
605
606 #if 0
607         struct aarch64_common *a8 = dpm_to_a8(dpm);
608         uint32_t cr;
609
610         switch (index_t) {
611                 case 0 ... 15:
612                         cr = a8->armv8_common.debug_base + CPUDBG_BCR_BASE;
613                         break;
614                 case 16 ... 31:
615                         cr = a8->armv8_common.debug_base + CPUDBG_WCR_BASE;
616                         index_t -= 16;
617                         break;
618                 default:
619                         return ERROR_FAIL;
620         }
621         cr += 4 * index_t;
622
623         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
624
625         /* clear control register */
626         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
627 #endif
628 }
629
630 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
631 {
632         struct arm_dpm *dpm = &a8->armv8_common.dpm;
633         int retval;
634
635         dpm->arm = &a8->armv8_common.arm;
636         dpm->didr = debug;
637
638         dpm->prepare = aarch64_dpm_prepare;
639         dpm->finish = aarch64_dpm_finish;
640
641         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
642         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
643         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
644         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
645         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
646
647         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
648         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
649         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
650         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
651
652         dpm->arm_reg_current = armv8_reg_current;
653
654         dpm->bpwp_enable = aarch64_bpwp_enable;
655         dpm->bpwp_disable = aarch64_bpwp_disable;
656
657         retval = arm_dpm_setup(dpm);
658         if (retval == ERROR_OK)
659                 retval = arm_dpm_initialize(dpm);
660
661         return retval;
662 }
663 static struct target *get_aarch64(struct target *target, int32_t coreid)
664 {
665         struct target_list *head;
666         struct target *curr;
667
668         head = target->head;
669         while (head != (struct target_list *)NULL) {
670                 curr = head->target;
671                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
672                         return curr;
673                 head = head->next;
674         }
675         return target;
676 }
677 static int aarch64_halt(struct target *target);
678
679 static int aarch64_halt_smp(struct target *target)
680 {
681         int retval = 0;
682         struct target_list *head;
683         struct target *curr;
684         head = target->head;
685         while (head != (struct target_list *)NULL) {
686                 curr = head->target;
687                 if ((curr != target) && (curr->state != TARGET_HALTED))
688                         retval += aarch64_halt(curr);
689                 head = head->next;
690         }
691         return retval;
692 }
693
694 static int update_halt_gdb(struct target *target)
695 {
696         int retval = 0;
697         if (target->gdb_service && target->gdb_service->core[0] == -1) {
698                 target->gdb_service->target = target;
699                 target->gdb_service->core[0] = target->coreid;
700                 retval += aarch64_halt_smp(target);
701         }
702         return retval;
703 }
704
705 /*
706  * Cortex-A8 Run control
707  */
708
709 static int aarch64_poll(struct target *target)
710 {
711         int retval = ERROR_OK;
712         uint32_t dscr;
713         struct aarch64_common *aarch64 = target_to_aarch64(target);
714         struct armv8_common *armv8 = &aarch64->armv8_common;
715         enum target_state prev_target_state = target->state;
716         /*  toggle to another core is done by gdb as follow */
717         /*  maint packet J core_id */
718         /*  continue */
719         /*  the next polling trigger an halt event sent to gdb */
720         if ((target->state == TARGET_HALTED) && (target->smp) &&
721                 (target->gdb_service) &&
722                 (target->gdb_service->target == NULL)) {
723                 target->gdb_service->target =
724                         get_aarch64(target, target->gdb_service->core[1]);
725                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
726                 return retval;
727         }
728         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
729                         armv8->debug_base + CPUDBG_DSCR, &dscr);
730         if (retval != ERROR_OK)
731                 return retval;
732         aarch64->cpudbg_dscr = dscr;
733
734         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
735                 if (prev_target_state != TARGET_HALTED) {
736                         /* We have a halting debug event */
737                         LOG_DEBUG("Target halted");
738                         target->state = TARGET_HALTED;
739                         if ((prev_target_state == TARGET_RUNNING)
740                                 || (prev_target_state == TARGET_UNKNOWN)
741                                 || (prev_target_state == TARGET_RESET)) {
742                                 retval = aarch64_debug_entry(target);
743                                 if (retval != ERROR_OK)
744                                         return retval;
745                                 if (target->smp) {
746                                         retval = update_halt_gdb(target);
747                                         if (retval != ERROR_OK)
748                                                 return retval;
749                                 }
750                                 target_call_event_callbacks(target,
751                                         TARGET_EVENT_HALTED);
752                         }
753                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
754                                 LOG_DEBUG(" ");
755
756                                 retval = aarch64_debug_entry(target);
757                                 if (retval != ERROR_OK)
758                                         return retval;
759                                 if (target->smp) {
760                                         retval = update_halt_gdb(target);
761                                         if (retval != ERROR_OK)
762                                                 return retval;
763                                 }
764
765                                 target_call_event_callbacks(target,
766                                         TARGET_EVENT_DEBUG_HALTED);
767                         }
768                 }
769         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
770                 target->state = TARGET_RUNNING;
771         else {
772                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
773                 target->state = TARGET_UNKNOWN;
774         }
775
776         return retval;
777 }
778
779 static int aarch64_halt(struct target *target)
780 {
781         int retval = ERROR_OK;
782         uint32_t dscr;
783         struct armv8_common *armv8 = target_to_armv8(target);
784
785         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
786                         armv8->debug_base + 0x10000 + 0, &dscr);
787         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
788                         armv8->debug_base + 0x10000 + 0, 1);
789         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
790                         armv8->debug_base + 0x10000 + 0, &dscr);
791
792         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
793                         armv8->debug_base + 0x10000 + 0x140, &dscr);
794         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
795                         armv8->debug_base + 0x10000 + 0x140, 6);
796         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
797                         armv8->debug_base + 0x10000 + 0x140, &dscr);
798
799         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
800                         armv8->debug_base + 0x10000 + 0xa0, &dscr);
801         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
802                         armv8->debug_base + 0x10000 + 0xa0, 5);
803         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
804                         armv8->debug_base + 0x10000 + 0xa0, &dscr);
805
806         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
807                         armv8->debug_base + 0x10000 + 0xa4, &dscr);
808         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
809                         armv8->debug_base + 0x10000 + 0xa4, 2);
810         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
811                         armv8->debug_base + 0x10000 + 0xa4, &dscr);
812
813         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
814                         armv8->debug_base + 0x10000 + 0x20, &dscr);
815         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
816                         armv8->debug_base + 0x10000 + 0x20, 4);
817         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
818                         armv8->debug_base + 0x10000 + 0x20, &dscr);
819
820         /*
821          * enter halting debug mode
822          */
823         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
824                         armv8->debug_base + CPUDBG_DSCR, &dscr);
825         if (retval != ERROR_OK)
826                 return retval;
827
828 #       /* STATUS */
829         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
830                         armv8->debug_base + 0x10000 + 0x134, &dscr);
831
832         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
833                         armv8->debug_base + 0x10000 + 0x1c, &dscr);
834         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
835                         armv8->debug_base + 0x10000 + 0x1c, 1);
836         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
837                         armv8->debug_base + 0x10000 + 0x1c, &dscr);
838
839
840         long long then = timeval_ms();
841         for (;; ) {
842                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
843                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
844                 if (retval != ERROR_OK)
845                         return retval;
846                 if ((dscr & DSCR_CORE_HALTED) != 0)
847                         break;
848                 if (timeval_ms() > then + 1000) {
849                         LOG_ERROR("Timeout waiting for halt");
850                         return ERROR_FAIL;
851                 }
852         }
853
854         target->debug_reason = DBG_REASON_DBGRQ;
855
856         return ERROR_OK;
857 }
858
859 static int aarch64_internal_restore(struct target *target, int current,
860         uint64_t *address, int handle_breakpoints, int debug_execution)
861 {
862         struct armv8_common *armv8 = target_to_armv8(target);
863         struct arm *arm = &armv8->arm;
864         int retval;
865         uint64_t resume_pc;
866
867         if (!debug_execution)
868                 target_free_all_working_areas(target);
869
870         /* current = 1: continue on current pc, otherwise continue at <address> */
871         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
872         if (!current)
873                 resume_pc = *address;
874         else
875                 *address = resume_pc;
876
877         /* Make sure that the Armv7 gdb thumb fixups does not
878          * kill the return address
879          */
880         switch (arm->core_state) {
881                 case ARM_STATE_ARM:
882                 case ARM_STATE_AARCH64:
883                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
884                         break;
885                 case ARM_STATE_THUMB:
886                 case ARM_STATE_THUMB_EE:
887                         /* When the return address is loaded into PC
888                          * bit 0 must be 1 to stay in Thumb state
889                          */
890                         resume_pc |= 0x1;
891                         break;
892                 case ARM_STATE_JAZELLE:
893                         LOG_ERROR("How do I resume into Jazelle state??");
894                         return ERROR_FAIL;
895         }
896         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
897         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
898         arm->pc->dirty = 1;
899         arm->pc->valid = 1;
900 #if 0
901         /* restore dpm_mode at system halt */
902         dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
903 #endif
904         /* called it now before restoring context because it uses cpu
905          * register r0 for restoring system control register */
906         retval = aarch64_restore_system_control_reg(target);
907         if (retval != ERROR_OK)
908                 return retval;
909         retval = aarch64_restore_context(target, handle_breakpoints);
910         if (retval != ERROR_OK)
911                 return retval;
912         target->debug_reason = DBG_REASON_NOTHALTED;
913         target->state = TARGET_RUNNING;
914
915         /* registers are now invalid */
916         register_cache_invalidate(arm->core_cache);
917
918 #if 0
919         /* the front-end may request us not to handle breakpoints */
920         if (handle_breakpoints) {
921                 /* Single step past breakpoint at current address */
922                 breakpoint = breakpoint_find(target, resume_pc);
923                 if (breakpoint) {
924                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
925                         cortex_m3_unset_breakpoint(target, breakpoint);
926                         cortex_m3_single_step_core(target);
927                         cortex_m3_set_breakpoint(target, breakpoint);
928                 }
929         }
930 #endif
931
932         return retval;
933 }
934
935 static int aarch64_internal_restart(struct target *target)
936 {
937         struct armv8_common *armv8 = target_to_armv8(target);
938         struct arm *arm = &armv8->arm;
939         int retval;
940         uint32_t dscr;
941         /*
942          * * Restart core and wait for it to be started.  Clear ITRen and sticky
943          * * exception flags: see ARMv7 ARM, C5.9.
944          *
945          * REVISIT: for single stepping, we probably want to
946          * disable IRQs by default, with optional override...
947          */
948
949         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
950                         armv8->debug_base + CPUDBG_DSCR, &dscr);
951         if (retval != ERROR_OK)
952                 return retval;
953
954         if ((dscr & DSCR_INSTR_COMP) == 0)
955                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
956
957         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
958                         armv8->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
959         if (retval != ERROR_OK)
960                 return retval;
961
962         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
963                         armv8->debug_base + CPUDBG_DRCR, DRCR_RESTART |
964                         DRCR_CLEAR_EXCEPTIONS);
965         if (retval != ERROR_OK)
966                 return retval;
967
968         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
969                         armv8->debug_base + 0x10000 + 0x10, 1);
970         if (retval != ERROR_OK)
971                 return retval;
972
973         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
974                         armv8->debug_base + 0x10000 + 0x1c, 2);
975         if (retval != ERROR_OK)
976                 return retval;
977
978         long long then = timeval_ms();
979         for (;; ) {
980                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
981                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
982                 if (retval != ERROR_OK)
983                         return retval;
984                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
985                         break;
986                 if (timeval_ms() > then + 1000) {
987                         LOG_ERROR("Timeout waiting for resume");
988                         return ERROR_FAIL;
989                 }
990         }
991
992         target->debug_reason = DBG_REASON_NOTHALTED;
993         target->state = TARGET_RUNNING;
994
995         /* registers are now invalid */
996         register_cache_invalidate(arm->core_cache);
997
998         return ERROR_OK;
999 }
1000
1001 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1002 {
1003         int retval = 0;
1004         struct target_list *head;
1005         struct target *curr;
1006         uint64_t address;
1007         head = target->head;
1008         while (head != (struct target_list *)NULL) {
1009                 curr = head->target;
1010                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1011                         /*  resume current address , not in step mode */
1012                         retval += aarch64_internal_restore(curr, 1, &address,
1013                                         handle_breakpoints, 0);
1014                         retval += aarch64_internal_restart(curr);
1015                 }
1016                 head = head->next;
1017
1018         }
1019         return retval;
1020 }
1021
1022 static int aarch64_resume(struct target *target, int current,
1023         target_addr_t address, int handle_breakpoints, int debug_execution)
1024 {
1025         int retval = 0;
1026         uint64_t resume_addr;
1027
1028         if (address) {
1029                 LOG_DEBUG("resuming with custom address not supported");
1030                 return ERROR_FAIL;
1031         }
1032
1033         /* dummy resume for smp toggle in order to reduce gdb impact  */
1034         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1035                 /*   simulate a start and halt of target */
1036                 target->gdb_service->target = NULL;
1037                 target->gdb_service->core[0] = target->gdb_service->core[1];
1038                 /*  fake resume at next poll we play the  target core[1], see poll*/
1039                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1040                 return 0;
1041         }
1042         aarch64_internal_restore(target, current, &resume_addr, handle_breakpoints, debug_execution);
1043         if (target->smp) {
1044                 target->gdb_service->core[0] = -1;
1045                 retval = aarch64_restore_smp(target, handle_breakpoints);
1046                 if (retval != ERROR_OK)
1047                         return retval;
1048         }
1049         aarch64_internal_restart(target);
1050
1051         if (!debug_execution) {
1052                 target->state = TARGET_RUNNING;
1053                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1054                 LOG_DEBUG("target resumed at 0x%" PRIx64, resume_addr);
1055         } else {
1056                 target->state = TARGET_DEBUG_RUNNING;
1057                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1058                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, resume_addr);
1059         }
1060
1061         return ERROR_OK;
1062 }
1063
1064 static int aarch64_debug_entry(struct target *target)
1065 {
1066         uint32_t dscr;
1067         int retval = ERROR_OK;
1068         struct aarch64_common *aarch64 = target_to_aarch64(target);
1069         struct armv8_common *armv8 = target_to_armv8(target);
1070
1071         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1072
1073         /* REVISIT surely we should not re-read DSCR !! */
1074         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1075                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1076         if (retval != ERROR_OK)
1077                 return retval;
1078
1079         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1080          * imprecise data aborts get discarded by issuing a Data
1081          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1082          */
1083
1084         /* Enable the ITR execution once we are in debug mode */
1085         dscr |= DSCR_ITR_EN;
1086         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1087                         armv8->debug_base + CPUDBG_DSCR, dscr);
1088         if (retval != ERROR_OK)
1089                 return retval;
1090
1091         /* Examine debug reason */
1092         arm_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1093
1094         /* save address of instruction that triggered the watchpoint? */
1095         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1096                 uint32_t wfar;
1097
1098                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1099                                 armv8->debug_base + CPUDBG_WFAR,
1100                                 &wfar);
1101                 if (retval != ERROR_OK)
1102                         return retval;
1103                 arm_dpm_report_wfar(&armv8->dpm, wfar);
1104         }
1105
1106         retval = arm_dpm_read_current_registers_64(&armv8->dpm);
1107
1108         if (armv8->post_debug_entry) {
1109                 retval = armv8->post_debug_entry(target);
1110                 if (retval != ERROR_OK)
1111                         return retval;
1112         }
1113
1114         return retval;
1115 }
1116
1117 static int aarch64_post_debug_entry(struct target *target)
1118 {
1119         struct aarch64_common *aarch64 = target_to_aarch64(target);
1120         struct armv8_common *armv8 = &aarch64->armv8_common;
1121         struct armv8_mmu_common *armv8_mmu = &armv8->armv8_mmu;
1122         uint32_t sctlr_el1 = 0;
1123         int retval;
1124
1125         mem_ap_write_atomic_u32(armv8->debug_ap,
1126                                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1127         retval = aarch64_instr_read_data_r0(armv8->arm.dpm,
1128                                             0xd5381000, &sctlr_el1);
1129         if (retval != ERROR_OK)
1130                 return retval;
1131
1132         LOG_DEBUG("sctlr_el1 = %#8.8x", sctlr_el1);
1133         aarch64->system_control_reg = sctlr_el1;
1134         aarch64->system_control_reg_curr = sctlr_el1;
1135         aarch64->curr_mode = armv8->arm.core_mode;
1136
1137         armv8_mmu->mmu_enabled = sctlr_el1 & 0x1U ? 1 : 0;
1138         armv8_mmu->armv8_cache.d_u_cache_enabled = sctlr_el1 & 0x4U ? 1 : 0;
1139         armv8_mmu->armv8_cache.i_cache_enabled = sctlr_el1 & 0x1000U ? 1 : 0;
1140
1141 #if 0
1142         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1143                 armv8_identify_cache(target);
1144 #endif
1145
1146         return ERROR_OK;
1147 }
1148
1149 static int aarch64_step(struct target *target, int current, target_addr_t address,
1150         int handle_breakpoints)
1151 {
1152         struct armv8_common *armv8 = target_to_armv8(target);
1153         struct arm *arm = &armv8->arm;
1154         struct breakpoint *breakpoint = NULL;
1155         struct breakpoint stepbreakpoint;
1156         struct reg *r;
1157         int retval;
1158
1159         if (target->state != TARGET_HALTED) {
1160                 LOG_WARNING("target not halted");
1161                 return ERROR_TARGET_NOT_HALTED;
1162         }
1163
1164         /* current = 1: continue on current pc, otherwise continue at <address> */
1165         r = arm->pc;
1166         if (!current)
1167                 buf_set_u64(r->value, 0, 64, address);
1168         else
1169                 address = buf_get_u64(r->value, 0, 64);
1170
1171         /* The front-end may request us not to handle breakpoints.
1172          * But since Cortex-A8 uses breakpoint for single step,
1173          * we MUST handle breakpoints.
1174          */
1175         handle_breakpoints = 1;
1176         if (handle_breakpoints) {
1177                 breakpoint = breakpoint_find(target, address);
1178                 if (breakpoint)
1179                         aarch64_unset_breakpoint(target, breakpoint);
1180         }
1181
1182         /* Setup single step breakpoint */
1183         stepbreakpoint.address = address;
1184         stepbreakpoint.length = 4;
1185         stepbreakpoint.type = BKPT_HARD;
1186         stepbreakpoint.set = 0;
1187
1188         /* Break on IVA mismatch */
1189         aarch64_set_breakpoint(target, &stepbreakpoint, 0x04);
1190
1191         target->debug_reason = DBG_REASON_SINGLESTEP;
1192
1193         retval = aarch64_resume(target, 1, address, 0, 0);
1194         if (retval != ERROR_OK)
1195                 return retval;
1196
1197         long long then = timeval_ms();
1198         while (target->state != TARGET_HALTED) {
1199                 retval = aarch64_poll(target);
1200                 if (retval != ERROR_OK)
1201                         return retval;
1202                 if (timeval_ms() > then + 1000) {
1203                         LOG_ERROR("timeout waiting for target halt");
1204                         return ERROR_FAIL;
1205                 }
1206         }
1207
1208         aarch64_unset_breakpoint(target, &stepbreakpoint);
1209
1210         target->debug_reason = DBG_REASON_BREAKPOINT;
1211
1212         if (breakpoint)
1213                 aarch64_set_breakpoint(target, breakpoint, 0);
1214
1215         if (target->state != TARGET_HALTED)
1216                 LOG_DEBUG("target stepped");
1217
1218         return ERROR_OK;
1219 }
1220
1221 static int aarch64_restore_context(struct target *target, bool bpwp)
1222 {
1223         struct armv8_common *armv8 = target_to_armv8(target);
1224
1225         LOG_DEBUG(" ");
1226
1227         if (armv8->pre_restore_context)
1228                 armv8->pre_restore_context(target);
1229
1230         return arm_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1231
1232         return ERROR_OK;
1233 }
1234
1235 /*
1236  * Cortex-A8 Breakpoint and watchpoint functions
1237  */
1238
1239 /* Setup hardware Breakpoint Register Pair */
1240 static int aarch64_set_breakpoint(struct target *target,
1241         struct breakpoint *breakpoint, uint8_t matchmode)
1242 {
1243         int retval;
1244         int brp_i = 0;
1245         uint32_t control;
1246         uint8_t byte_addr_select = 0x0F;
1247         struct aarch64_common *aarch64 = target_to_aarch64(target);
1248         struct armv8_common *armv8 = &aarch64->armv8_common;
1249         struct aarch64_brp *brp_list = aarch64->brp_list;
1250
1251         if (breakpoint->set) {
1252                 LOG_WARNING("breakpoint already set");
1253                 return ERROR_OK;
1254         }
1255
1256         if (breakpoint->type == BKPT_HARD) {
1257                 int64_t bpt_value;
1258                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1259                         brp_i++;
1260                 if (brp_i >= aarch64->brp_num) {
1261                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1262                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1263                 }
1264                 breakpoint->set = brp_i + 1;
1265                 if (breakpoint->length == 2)
1266                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1267                 control = ((matchmode & 0x7) << 20)
1268                         | (1 << 13)
1269                         | (byte_addr_select << 5)
1270                         | (3 << 1) | 1;
1271                 brp_list[brp_i].used = 1;
1272                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1273                 brp_list[brp_i].control = control;
1274                 bpt_value = brp_list[brp_i].value;
1275
1276                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1277                                 + CPUDBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1278                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1279                 if (retval != ERROR_OK)
1280                         return retval;
1281                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1282                                 + CPUDBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1283                                 (uint32_t)(bpt_value >> 32));
1284                 if (retval != ERROR_OK)
1285                         return retval;
1286
1287                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1288                                 + CPUDBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1289                                 brp_list[brp_i].control);
1290                 if (retval != ERROR_OK)
1291                         return retval;
1292                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1293                         brp_list[brp_i].control,
1294                         brp_list[brp_i].value);
1295
1296         } else if (breakpoint->type == BKPT_SOFT) {
1297                 uint8_t code[4];
1298                 buf_set_u32(code, 0, 32, 0xD4400000);
1299
1300                 retval = target_read_memory(target,
1301                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1302                                 breakpoint->length, 1,
1303                                 breakpoint->orig_instr);
1304                 if (retval != ERROR_OK)
1305                         return retval;
1306                 retval = target_write_memory(target,
1307                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1308                                 breakpoint->length, 1, code);
1309                 if (retval != ERROR_OK)
1310                         return retval;
1311                 breakpoint->set = 0x11; /* Any nice value but 0 */
1312         }
1313
1314         return ERROR_OK;
1315 }
1316
1317 static int aarch64_set_context_breakpoint(struct target *target,
1318         struct breakpoint *breakpoint, uint8_t matchmode)
1319 {
1320         int retval = ERROR_FAIL;
1321         int brp_i = 0;
1322         uint32_t control;
1323         uint8_t byte_addr_select = 0x0F;
1324         struct aarch64_common *aarch64 = target_to_aarch64(target);
1325         struct armv8_common *armv8 = &aarch64->armv8_common;
1326         struct aarch64_brp *brp_list = aarch64->brp_list;
1327
1328         if (breakpoint->set) {
1329                 LOG_WARNING("breakpoint already set");
1330                 return retval;
1331         }
1332         /*check available context BRPs*/
1333         while ((brp_list[brp_i].used ||
1334                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1335                 brp_i++;
1336
1337         if (brp_i >= aarch64->brp_num) {
1338                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1339                 return ERROR_FAIL;
1340         }
1341
1342         breakpoint->set = brp_i + 1;
1343         control = ((matchmode & 0x7) << 20)
1344                 | (byte_addr_select << 5)
1345                 | (3 << 1) | 1;
1346         brp_list[brp_i].used = 1;
1347         brp_list[brp_i].value = (breakpoint->asid);
1348         brp_list[brp_i].control = control;
1349         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1350                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1351                         brp_list[brp_i].value);
1352         if (retval != ERROR_OK)
1353                 return retval;
1354         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1355                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1356                         brp_list[brp_i].control);
1357         if (retval != ERROR_OK)
1358                 return retval;
1359         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1360                 brp_list[brp_i].control,
1361                 brp_list[brp_i].value);
1362         return ERROR_OK;
1363
1364 }
1365
1366 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1367 {
1368         int retval = ERROR_FAIL;
1369         int brp_1 = 0;  /* holds the contextID pair */
1370         int brp_2 = 0;  /* holds the IVA pair */
1371         uint32_t control_CTX, control_IVA;
1372         uint8_t CTX_byte_addr_select = 0x0F;
1373         uint8_t IVA_byte_addr_select = 0x0F;
1374         uint8_t CTX_machmode = 0x03;
1375         uint8_t IVA_machmode = 0x01;
1376         struct aarch64_common *aarch64 = target_to_aarch64(target);
1377         struct armv8_common *armv8 = &aarch64->armv8_common;
1378         struct aarch64_brp *brp_list = aarch64->brp_list;
1379
1380         if (breakpoint->set) {
1381                 LOG_WARNING("breakpoint already set");
1382                 return retval;
1383         }
1384         /*check available context BRPs*/
1385         while ((brp_list[brp_1].used ||
1386                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1387                 brp_1++;
1388
1389         printf("brp(CTX) found num: %d\n", brp_1);
1390         if (brp_1 >= aarch64->brp_num) {
1391                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1392                 return ERROR_FAIL;
1393         }
1394
1395         while ((brp_list[brp_2].used ||
1396                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1397                 brp_2++;
1398
1399         printf("brp(IVA) found num: %d\n", brp_2);
1400         if (brp_2 >= aarch64->brp_num) {
1401                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1402                 return ERROR_FAIL;
1403         }
1404
1405         breakpoint->set = brp_1 + 1;
1406         breakpoint->linked_BRP = brp_2;
1407         control_CTX = ((CTX_machmode & 0x7) << 20)
1408                 | (brp_2 << 16)
1409                 | (0 << 14)
1410                 | (CTX_byte_addr_select << 5)
1411                 | (3 << 1) | 1;
1412         brp_list[brp_1].used = 1;
1413         brp_list[brp_1].value = (breakpoint->asid);
1414         brp_list[brp_1].control = control_CTX;
1415         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1416                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1417                         brp_list[brp_1].value);
1418         if (retval != ERROR_OK)
1419                 return retval;
1420         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1421                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1422                         brp_list[brp_1].control);
1423         if (retval != ERROR_OK)
1424                 return retval;
1425
1426         control_IVA = ((IVA_machmode & 0x7) << 20)
1427                 | (brp_1 << 16)
1428                 | (IVA_byte_addr_select << 5)
1429                 | (3 << 1) | 1;
1430         brp_list[brp_2].used = 1;
1431         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1432         brp_list[brp_2].control = control_IVA;
1433         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1434                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1435                         brp_list[brp_2].value);
1436         if (retval != ERROR_OK)
1437                 return retval;
1438         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1439                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1440                         brp_list[brp_2].control);
1441         if (retval != ERROR_OK)
1442                 return retval;
1443
1444         return ERROR_OK;
1445 }
1446
1447 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1448 {
1449         int retval;
1450         struct aarch64_common *aarch64 = target_to_aarch64(target);
1451         struct armv8_common *armv8 = &aarch64->armv8_common;
1452         struct aarch64_brp *brp_list = aarch64->brp_list;
1453
1454         if (!breakpoint->set) {
1455                 LOG_WARNING("breakpoint not set");
1456                 return ERROR_OK;
1457         }
1458
1459         if (breakpoint->type == BKPT_HARD) {
1460                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1461                         int brp_i = breakpoint->set - 1;
1462                         int brp_j = breakpoint->linked_BRP;
1463                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1464                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1465                                 return ERROR_OK;
1466                         }
1467                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1468                                 brp_list[brp_i].control, brp_list[brp_i].value);
1469                         brp_list[brp_i].used = 0;
1470                         brp_list[brp_i].value = 0;
1471                         brp_list[brp_i].control = 0;
1472                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1473                                         + CPUDBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1474                                         brp_list[brp_i].control);
1475                         if (retval != ERROR_OK)
1476                                 return retval;
1477                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1478                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1479                                 return ERROR_OK;
1480                         }
1481                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1482                                 brp_list[brp_j].control, brp_list[brp_j].value);
1483                         brp_list[brp_j].used = 0;
1484                         brp_list[brp_j].value = 0;
1485                         brp_list[brp_j].control = 0;
1486                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1487                                         + CPUDBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1488                                         brp_list[brp_j].control);
1489                         if (retval != ERROR_OK)
1490                                 return retval;
1491                         breakpoint->linked_BRP = 0;
1492                         breakpoint->set = 0;
1493                         return ERROR_OK;
1494
1495                 } else {
1496                         int brp_i = breakpoint->set - 1;
1497                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1498                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1499                                 return ERROR_OK;
1500                         }
1501                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1502                                 brp_list[brp_i].control, brp_list[brp_i].value);
1503                         brp_list[brp_i].used = 0;
1504                         brp_list[brp_i].value = 0;
1505                         brp_list[brp_i].control = 0;
1506                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1507                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1508                                         brp_list[brp_i].control);
1509                         if (retval != ERROR_OK)
1510                                 return retval;
1511                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1512                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1513                                         brp_list[brp_i].value);
1514                         if (retval != ERROR_OK)
1515                                 return retval;
1516                         breakpoint->set = 0;
1517                         return ERROR_OK;
1518                 }
1519         } else {
1520                 /* restore original instruction (kept in target endianness) */
1521                 if (breakpoint->length == 4) {
1522                         retval = target_write_memory(target,
1523                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1524                                         4, 1, breakpoint->orig_instr);
1525                         if (retval != ERROR_OK)
1526                                 return retval;
1527                 } else {
1528                         retval = target_write_memory(target,
1529                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1530                                         2, 1, breakpoint->orig_instr);
1531                         if (retval != ERROR_OK)
1532                                 return retval;
1533                 }
1534         }
1535         breakpoint->set = 0;
1536
1537         return ERROR_OK;
1538 }
1539
1540 static int aarch64_add_breakpoint(struct target *target,
1541         struct breakpoint *breakpoint)
1542 {
1543         struct aarch64_common *aarch64 = target_to_aarch64(target);
1544
1545         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1546                 LOG_INFO("no hardware breakpoint available");
1547                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1548         }
1549
1550         if (breakpoint->type == BKPT_HARD)
1551                 aarch64->brp_num_available--;
1552
1553         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1554 }
1555
1556 static int aarch64_add_context_breakpoint(struct target *target,
1557         struct breakpoint *breakpoint)
1558 {
1559         struct aarch64_common *aarch64 = target_to_aarch64(target);
1560
1561         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1562                 LOG_INFO("no hardware breakpoint available");
1563                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1564         }
1565
1566         if (breakpoint->type == BKPT_HARD)
1567                 aarch64->brp_num_available--;
1568
1569         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1570 }
1571
1572 static int aarch64_add_hybrid_breakpoint(struct target *target,
1573         struct breakpoint *breakpoint)
1574 {
1575         struct aarch64_common *aarch64 = target_to_aarch64(target);
1576
1577         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1578                 LOG_INFO("no hardware breakpoint available");
1579                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1580         }
1581
1582         if (breakpoint->type == BKPT_HARD)
1583                 aarch64->brp_num_available--;
1584
1585         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1586 }
1587
1588
1589 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1590 {
1591         struct aarch64_common *aarch64 = target_to_aarch64(target);
1592
1593 #if 0
1594 /* It is perfectly possible to remove breakpoints while the target is running */
1595         if (target->state != TARGET_HALTED) {
1596                 LOG_WARNING("target not halted");
1597                 return ERROR_TARGET_NOT_HALTED;
1598         }
1599 #endif
1600
1601         if (breakpoint->set) {
1602                 aarch64_unset_breakpoint(target, breakpoint);
1603                 if (breakpoint->type == BKPT_HARD)
1604                         aarch64->brp_num_available++;
1605         }
1606
1607         return ERROR_OK;
1608 }
1609
1610 /*
1611  * Cortex-A8 Reset functions
1612  */
1613
1614 static int aarch64_assert_reset(struct target *target)
1615 {
1616         struct armv8_common *armv8 = target_to_armv8(target);
1617
1618         LOG_DEBUG(" ");
1619
1620         /* FIXME when halt is requested, make it work somehow... */
1621
1622         /* Issue some kind of warm reset. */
1623         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1624                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1625         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1626                 /* REVISIT handle "pulls" cases, if there's
1627                  * hardware that needs them to work.
1628                  */
1629                 jtag_add_reset(0, 1);
1630         } else {
1631                 LOG_ERROR("%s: how to reset?", target_name(target));
1632                 return ERROR_FAIL;
1633         }
1634
1635         /* registers are now invalid */
1636         register_cache_invalidate(armv8->arm.core_cache);
1637
1638         target->state = TARGET_RESET;
1639
1640         return ERROR_OK;
1641 }
1642
1643 static int aarch64_deassert_reset(struct target *target)
1644 {
1645         int retval;
1646
1647         LOG_DEBUG(" ");
1648
1649         /* be certain SRST is off */
1650         jtag_add_reset(0, 0);
1651
1652         retval = aarch64_poll(target);
1653         if (retval != ERROR_OK)
1654                 return retval;
1655
1656         if (target->reset_halt) {
1657                 if (target->state != TARGET_HALTED) {
1658                         LOG_WARNING("%s: ran after reset and before halt ...",
1659                                 target_name(target));
1660                         retval = target_halt(target);
1661                         if (retval != ERROR_OK)
1662                                 return retval;
1663                 }
1664         }
1665
1666         return ERROR_OK;
1667 }
1668
1669 static int aarch64_write_apb_ab_memory(struct target *target,
1670         uint64_t address, uint32_t size,
1671         uint32_t count, const uint8_t *buffer)
1672 {
1673         /* write memory through APB-AP */
1674         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1675         struct armv8_common *armv8 = target_to_armv8(target);
1676         struct arm *arm = &armv8->arm;
1677         int total_bytes = count * size;
1678         int total_u32;
1679         int start_byte = address & 0x3;
1680         int end_byte   = (address + total_bytes) & 0x3;
1681         struct reg *reg;
1682         uint32_t dscr;
1683         uint8_t *tmp_buff = NULL;
1684         uint32_t i = 0;
1685
1686         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1687                           address, size, count);
1688         if (target->state != TARGET_HALTED) {
1689                 LOG_WARNING("target not halted");
1690                 return ERROR_TARGET_NOT_HALTED;
1691         }
1692
1693         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1694
1695         /* Mark register R0 as dirty, as it will be used
1696          * for transferring the data.
1697          * It will be restored automatically when exiting
1698          * debug mode
1699          */
1700         reg = armv8_reg_current(arm, 1);
1701         reg->dirty = true;
1702
1703         reg = armv8_reg_current(arm, 0);
1704         reg->dirty = true;
1705
1706         /*  clear any abort  */
1707         retval = mem_ap_write_atomic_u32(armv8->debug_ap, armv8->debug_base + CPUDBG_DRCR, 1<<2);
1708         if (retval != ERROR_OK)
1709                 return retval;
1710
1711         /* This algorithm comes from either :
1712          * Cortex-A8 TRM Example 12-25
1713          * Cortex-R4 TRM Example 11-26
1714          * (slight differences)
1715          */
1716
1717         /* The algorithm only copies 32 bit words, so the buffer
1718          * should be expanded to include the words at either end.
1719          * The first and last words will be read first to avoid
1720          * corruption if needed.
1721          */
1722         tmp_buff = malloc(total_u32 * 4);
1723
1724         if ((start_byte != 0) && (total_u32 > 1)) {
1725                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1726                  * the other bytes in the word.
1727                  */
1728                 retval = aarch64_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1729                 if (retval != ERROR_OK)
1730                         goto error_free_buff_w;
1731         }
1732
1733         /* If end of write is not aligned, or the write is less than 4 bytes */
1734         if ((end_byte != 0) ||
1735                 ((total_u32 == 1) && (total_bytes != 4))) {
1736
1737                 /* Read the last word to avoid corruption during 32 bit write */
1738                 int mem_offset = (total_u32-1) * 4;
1739                 retval = aarch64_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1740                 if (retval != ERROR_OK)
1741                         goto error_free_buff_w;
1742         }
1743
1744         /* Copy the write buffer over the top of the temporary buffer */
1745         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1746
1747         /* We now have a 32 bit aligned buffer that can be written */
1748
1749         /* Read DSCR */
1750         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1751                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1752         if (retval != ERROR_OK)
1753                 goto error_free_buff_w;
1754
1755         /* Set DTR mode to Normal*/
1756         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1757         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1758                         armv8->debug_base + CPUDBG_DSCR, dscr);
1759         if (retval != ERROR_OK)
1760                 goto error_free_buff_w;
1761
1762         if (size > 4) {
1763                 LOG_WARNING("reading size >4 bytes not yet supported");
1764                 goto error_unset_dtr_w;
1765         }
1766
1767         retval = aarch64_instr_write_data_dcc_64(arm->dpm, 0xd5330401, address+4);
1768         if (retval != ERROR_OK)
1769                 goto error_unset_dtr_w;
1770
1771         dscr = DSCR_INSTR_COMP;
1772         while (i < count * size) {
1773                 uint32_t val;
1774
1775                 memcpy(&val, &buffer[i], size);
1776                 retval = aarch64_instr_write_data_dcc(arm->dpm, 0xd5330500, val);
1777                 if (retval != ERROR_OK)
1778                         goto error_unset_dtr_w;
1779
1780                 retval = aarch64_exec_opcode(target, 0xb81fc020, &dscr);
1781                 if (retval != ERROR_OK)
1782                         goto error_unset_dtr_w;
1783
1784                 retval = aarch64_exec_opcode(target, 0x91001021, &dscr);
1785                 if (retval != ERROR_OK)
1786                         goto error_unset_dtr_w;
1787
1788                 i += 4;
1789         }
1790
1791         /* Check for sticky abort flags in the DSCR */
1792         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1793                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
1794         if (retval != ERROR_OK)
1795                 goto error_free_buff_w;
1796         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
1797                 /* Abort occurred - clear it and exit */
1798                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1799                 mem_ap_write_atomic_u32(armv8->debug_ap,
1800                                         armv8->debug_base + CPUDBG_DRCR, 1<<2);
1801                 goto error_free_buff_w;
1802         }
1803
1804         /* Done */
1805         free(tmp_buff);
1806         return ERROR_OK;
1807
1808 error_unset_dtr_w:
1809         /* Unset DTR mode */
1810         mem_ap_read_atomic_u32(armv8->debug_ap,
1811                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
1812         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1813         mem_ap_write_atomic_u32(armv8->debug_ap,
1814                                 armv8->debug_base + CPUDBG_DSCR, dscr);
1815 error_free_buff_w:
1816         LOG_ERROR("error");
1817         free(tmp_buff);
1818         return ERROR_FAIL;
1819 }
1820
1821 static int aarch64_read_apb_ab_memory(struct target *target,
1822         target_addr_t address, uint32_t size,
1823         uint32_t count, uint8_t *buffer)
1824 {
1825         /* read memory through APB-AP */
1826
1827         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1828         struct armv8_common *armv8 = target_to_armv8(target);
1829         struct arm *arm = &armv8->arm;
1830         struct reg *reg;
1831         uint32_t dscr, val;
1832         uint8_t *tmp_buff = NULL;
1833         uint32_t i = 0;
1834
1835         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1836                           address, size, count);
1837         if (target->state != TARGET_HALTED) {
1838                 LOG_WARNING("target not halted");
1839                 return ERROR_TARGET_NOT_HALTED;
1840         }
1841
1842         /* Mark register R0 as dirty, as it will be used
1843          * for transferring the data.
1844          * It will be restored automatically when exiting
1845          * debug mode
1846          */
1847         reg = armv8_reg_current(arm, 0);
1848         reg->dirty = true;
1849
1850         /*  clear any abort  */
1851         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1852                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1853         if (retval != ERROR_OK)
1854                 goto error_free_buff_r;
1855
1856         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1857                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1858         if (retval != ERROR_OK)
1859                 goto error_unset_dtr_r;
1860
1861         if (size > 4) {
1862                 LOG_WARNING("reading size >4 bytes not yet supported");
1863                 goto error_unset_dtr_r;
1864         }
1865
1866         while (i < count * size) {
1867
1868                 retval = aarch64_instr_write_data_dcc_64(arm->dpm, 0xd5330400, address+4);
1869                 if (retval != ERROR_OK)
1870                         goto error_unset_dtr_r;
1871                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1872                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1873
1874                 dscr = DSCR_INSTR_COMP;
1875                 retval = aarch64_exec_opcode(target, 0xb85fc000, &dscr);
1876                 if (retval != ERROR_OK)
1877                         goto error_unset_dtr_r;
1878                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1879                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1880
1881                 retval = aarch64_instr_read_data_dcc(arm->dpm, 0xd5130400, &val);
1882                 if (retval != ERROR_OK)
1883                         goto error_unset_dtr_r;
1884                 memcpy(&buffer[i], &val, size);
1885                 i += 4;
1886                 address += 4;
1887         }
1888
1889         /* Clear any sticky error */
1890         mem_ap_write_atomic_u32(armv8->debug_ap,
1891                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1892
1893         /* Done */
1894         return ERROR_OK;
1895
1896 error_unset_dtr_r:
1897         LOG_WARNING("DSCR = 0x%" PRIx32, dscr);
1898         /* Todo: Unset DTR mode */
1899
1900 error_free_buff_r:
1901         LOG_ERROR("error");
1902         free(tmp_buff);
1903
1904         /* Clear any sticky error */
1905         mem_ap_write_atomic_u32(armv8->debug_ap,
1906                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1907
1908         return ERROR_FAIL;
1909 }
1910
1911 static int aarch64_read_phys_memory(struct target *target,
1912         target_addr_t address, uint32_t size,
1913         uint32_t count, uint8_t *buffer)
1914 {
1915         struct armv8_common *armv8 = target_to_armv8(target);
1916         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1917         struct adiv5_dap *swjdp = armv8->arm.dap;
1918         uint8_t apsel = swjdp->apsel;
1919         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1920                 address, size, count);
1921
1922         if (count && buffer) {
1923
1924                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
1925
1926                         /* read memory through AHB-AP */
1927                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
1928                 } else {
1929                         /* read memory through APB-AP */
1930                         retval = aarch64_mmu_modify(target, 0);
1931                         if (retval != ERROR_OK)
1932                                 return retval;
1933                         retval = aarch64_read_apb_ab_memory(target, address, size, count, buffer);
1934                 }
1935         }
1936         return retval;
1937 }
1938
1939 static int aarch64_read_memory(struct target *target, target_addr_t address,
1940         uint32_t size, uint32_t count, uint8_t *buffer)
1941 {
1942         int mmu_enabled = 0;
1943         target_addr_t virt, phys;
1944         int retval;
1945         struct armv8_common *armv8 = target_to_armv8(target);
1946         struct adiv5_dap *swjdp = armv8->arm.dap;
1947         uint8_t apsel = swjdp->apsel;
1948
1949         /* aarch64 handles unaligned memory access */
1950         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1951                 size, count);
1952
1953         /* determine if MMU was enabled on target stop */
1954         if (!armv8->is_armv7r) {
1955                 retval = aarch64_mmu(target, &mmu_enabled);
1956                 if (retval != ERROR_OK)
1957                         return retval;
1958         }
1959
1960         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
1961                 if (mmu_enabled) {
1962                         virt = address;
1963                         retval = aarch64_virt2phys(target, virt, &phys);
1964                         if (retval != ERROR_OK)
1965                                 return retval;
1966
1967                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
1968                                   virt, phys);
1969                         address = phys;
1970                 }
1971                 retval = aarch64_read_phys_memory(target, address, size, count,
1972                                                   buffer);
1973         } else {
1974                 if (mmu_enabled) {
1975                         retval = aarch64_check_address(target, address);
1976                         if (retval != ERROR_OK)
1977                                 return retval;
1978                         /* enable MMU as we could have disabled it for phys
1979                            access */
1980                         retval = aarch64_mmu_modify(target, 1);
1981                         if (retval != ERROR_OK)
1982                                 return retval;
1983                 }
1984                 retval = aarch64_read_apb_ab_memory(target, address, size,
1985                                                     count, buffer);
1986         }
1987         return retval;
1988 }
1989
1990 static int aarch64_write_phys_memory(struct target *target,
1991         target_addr_t address, uint32_t size,
1992         uint32_t count, const uint8_t *buffer)
1993 {
1994         struct armv8_common *armv8 = target_to_armv8(target);
1995         struct adiv5_dap *swjdp = armv8->arm.dap;
1996         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1997         uint8_t apsel = swjdp->apsel;
1998
1999         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2000                 size, count);
2001
2002         if (count && buffer) {
2003
2004                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2005
2006                         /* write memory through AHB-AP */
2007                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2008                 } else {
2009
2010                         /* write memory through APB-AP */
2011                         if (!armv8->is_armv7r) {
2012                                 retval = aarch64_mmu_modify(target, 0);
2013                                 if (retval != ERROR_OK)
2014                                         return retval;
2015                         }
2016                         return aarch64_write_apb_ab_memory(target, address, size, count, buffer);
2017                 }
2018         }
2019
2020
2021         /* REVISIT this op is generic ARMv7-A/R stuff */
2022         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2023                 struct arm_dpm *dpm = armv8->arm.dpm;
2024
2025                 retval = dpm->prepare(dpm);
2026                 if (retval != ERROR_OK)
2027                         return retval;
2028
2029                 /* The Cache handling will NOT work with MMU active, the
2030                  * wrong addresses will be invalidated!
2031                  *
2032                  * For both ICache and DCache, walk all cache lines in the
2033                  * address range. Cortex-A8 has fixed 64 byte line length.
2034                  *
2035                  * REVISIT per ARMv7, these may trigger watchpoints ...
2036                  */
2037
2038                 /* invalidate I-Cache */
2039                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2040                         /* ICIMVAU - Invalidate Cache single entry
2041                          * with MVA to PoU
2042                          *      MCR p15, 0, r0, c7, c5, 1
2043                          */
2044                         for (uint32_t cacheline = address;
2045                                 cacheline < address + size * count;
2046                                 cacheline += 64) {
2047                                 retval = dpm->instr_write_data_r0(dpm,
2048                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2049                                                 cacheline);
2050                                 if (retval != ERROR_OK)
2051                                         return retval;
2052                         }
2053                 }
2054
2055                 /* invalidate D-Cache */
2056                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2057                         /* DCIMVAC - Invalidate data Cache line
2058                          * with MVA to PoC
2059                          *      MCR p15, 0, r0, c7, c6, 1
2060                          */
2061                         for (uint32_t cacheline = address;
2062                                 cacheline < address + size * count;
2063                                 cacheline += 64) {
2064                                 retval = dpm->instr_write_data_r0(dpm,
2065                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2066                                                 cacheline);
2067                                 if (retval != ERROR_OK)
2068                                         return retval;
2069                         }
2070                 }
2071
2072                 /* (void) */ dpm->finish(dpm);
2073         }
2074
2075         return retval;
2076 }
2077
2078 static int aarch64_write_memory(struct target *target, target_addr_t address,
2079         uint32_t size, uint32_t count, const uint8_t *buffer)
2080 {
2081         int mmu_enabled = 0;
2082         target_addr_t virt, phys;
2083         int retval;
2084         struct armv8_common *armv8 = target_to_armv8(target);
2085         struct adiv5_dap *swjdp = armv8->arm.dap;
2086         uint8_t apsel = swjdp->apsel;
2087
2088         /* aarch64 handles unaligned memory access */
2089         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2090                   "; count %" PRId32, address, size, count);
2091
2092         /* determine if MMU was enabled on target stop */
2093         if (!armv8->is_armv7r) {
2094                 retval = aarch64_mmu(target, &mmu_enabled);
2095                 if (retval != ERROR_OK)
2096                         return retval;
2097         }
2098
2099         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2100                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2101                           PRId32 "; count %" PRId32, address, size, count);
2102                 if (mmu_enabled) {
2103                         virt = address;
2104                         retval = aarch64_virt2phys(target, virt, &phys);
2105                         if (retval != ERROR_OK)
2106                                 return retval;
2107
2108                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2109                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2110                         address = phys;
2111                 }
2112                 retval = aarch64_write_phys_memory(target, address, size,
2113                                 count, buffer);
2114         } else {
2115                 if (mmu_enabled) {
2116                         retval = aarch64_check_address(target, address);
2117                         if (retval != ERROR_OK)
2118                                 return retval;
2119                         /* enable MMU as we could have disabled it for phys access */
2120                         retval = aarch64_mmu_modify(target, 1);
2121                         if (retval != ERROR_OK)
2122                                 return retval;
2123                 }
2124                 retval = aarch64_write_apb_ab_memory(target, address, size, count, buffer);
2125         }
2126         return retval;
2127 }
2128
2129 static int aarch64_handle_target_request(void *priv)
2130 {
2131         struct target *target = priv;
2132         struct armv8_common *armv8 = target_to_armv8(target);
2133         int retval;
2134
2135         if (!target_was_examined(target))
2136                 return ERROR_OK;
2137         if (!target->dbg_msg_enabled)
2138                 return ERROR_OK;
2139
2140         if (target->state == TARGET_RUNNING) {
2141                 uint32_t request;
2142                 uint32_t dscr;
2143                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2144                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
2145
2146                 /* check if we have data */
2147                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2148                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2149                                         armv8->debug_base + CPUDBG_DTRTX, &request);
2150                         if (retval == ERROR_OK) {
2151                                 target_request(target, request);
2152                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2153                                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
2154                         }
2155                 }
2156         }
2157
2158         return ERROR_OK;
2159 }
2160
2161 static int aarch64_examine_first(struct target *target)
2162 {
2163         struct aarch64_common *aarch64 = target_to_aarch64(target);
2164         struct armv8_common *armv8 = &aarch64->armv8_common;
2165         struct adiv5_dap *swjdp = armv8->arm.dap;
2166         int retval = ERROR_OK;
2167         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2168         int i;
2169
2170         /* We do one extra read to ensure DAP is configured,
2171          * we call ahbap_debugport_init(swjdp) instead
2172          */
2173         retval = dap_dp_init(swjdp);
2174         if (retval != ERROR_OK)
2175                 return retval;
2176
2177         /* Search for the APB-AB - it is needed for access to debug registers */
2178         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2179         if (retval != ERROR_OK) {
2180                 LOG_ERROR("Could not find APB-AP for debug access");
2181                 return retval;
2182         }
2183
2184         retval = mem_ap_init(armv8->debug_ap);
2185         if (retval != ERROR_OK) {
2186                 LOG_ERROR("Could not initialize the APB-AP");
2187                 return retval;
2188         }
2189
2190         armv8->debug_ap->memaccess_tck = 80;
2191
2192         /* Search for the AHB-AB */
2193         armv8->memory_ap_available = false;
2194         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2195         if (retval == ERROR_OK) {
2196                 retval = mem_ap_init(armv8->memory_ap);
2197                 if (retval == ERROR_OK)
2198                         armv8->memory_ap_available = true;
2199         }
2200         if (retval != ERROR_OK) {
2201                 /* AHB-AP not found or unavailable - use the CPU */
2202                 LOG_DEBUG("No AHB-AP available for memory access");
2203         }
2204
2205
2206         if (!target->dbgbase_set) {
2207                 uint32_t dbgbase;
2208                 /* Get ROM Table base */
2209                 uint32_t apid;
2210                 int32_t coreidx = target->coreid;
2211                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2212                 if (retval != ERROR_OK)
2213                         return retval;
2214                 /* Lookup 0x15 -- Processor DAP */
2215                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2216                                 &armv8->debug_base, &coreidx);
2217                 if (retval != ERROR_OK)
2218                         return retval;
2219                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2220                           coreidx, armv8->debug_base);
2221         } else
2222                 armv8->debug_base = target->dbgbase;
2223
2224         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2225                         armv8->debug_base + 0x300, 0);
2226         if (retval != ERROR_OK) {
2227                 LOG_DEBUG("Examine %s failed", "oslock");
2228                 return retval;
2229         }
2230
2231         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2232                         armv8->debug_base + 0x88, &cpuid);
2233         LOG_DEBUG("0x88 = %x", cpuid);
2234
2235         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2236                         armv8->debug_base + 0x314, &cpuid);
2237         LOG_DEBUG("0x314 = %x", cpuid);
2238
2239         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2240                         armv8->debug_base + 0x310, &cpuid);
2241         LOG_DEBUG("0x310 = %x", cpuid);
2242         if (retval != ERROR_OK)
2243                 return retval;
2244
2245         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2246                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2247         if (retval != ERROR_OK) {
2248                 LOG_DEBUG("Examine %s failed", "CPUID");
2249                 return retval;
2250         }
2251
2252         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2253                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2254         if (retval != ERROR_OK) {
2255                 LOG_DEBUG("Examine %s failed", "CTYPR");
2256                 return retval;
2257         }
2258
2259         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2260                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2261         if (retval != ERROR_OK) {
2262                 LOG_DEBUG("Examine %s failed", "TTYPR");
2263                 return retval;
2264         }
2265
2266         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2267                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2268         if (retval != ERROR_OK) {
2269                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2270                 return retval;
2271         }
2272         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2273                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2274         if (retval != ERROR_OK) {
2275                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2276                 return retval;
2277         }
2278
2279         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2280         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2281         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2282         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2283         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2284
2285         armv8->arm.core_type = ARM_MODE_MON;
2286         armv8->arm.core_state = ARM_STATE_AARCH64;
2287         retval = aarch64_dpm_setup(aarch64, debug);
2288         if (retval != ERROR_OK)
2289                 return retval;
2290
2291         /* Setup Breakpoint Register Pairs */
2292         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2293         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2294
2295         /* hack - no context bpt support yet */
2296         aarch64->brp_num_context = 0;
2297
2298         aarch64->brp_num_available = aarch64->brp_num;
2299         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2300         for (i = 0; i < aarch64->brp_num; i++) {
2301                 aarch64->brp_list[i].used = 0;
2302                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2303                         aarch64->brp_list[i].type = BRP_NORMAL;
2304                 else
2305                         aarch64->brp_list[i].type = BRP_CONTEXT;
2306                 aarch64->brp_list[i].value = 0;
2307                 aarch64->brp_list[i].control = 0;
2308                 aarch64->brp_list[i].BRPn = i;
2309         }
2310
2311         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2312
2313         target_set_examined(target);
2314         return ERROR_OK;
2315 }
2316
2317 static int aarch64_examine(struct target *target)
2318 {
2319         int retval = ERROR_OK;
2320
2321         /* don't re-probe hardware after each reset */
2322         if (!target_was_examined(target))
2323                 retval = aarch64_examine_first(target);
2324
2325         /* Configure core debug access */
2326         if (retval == ERROR_OK)
2327                 retval = aarch64_init_debug_access(target);
2328
2329         return retval;
2330 }
2331
2332 /*
2333  *      Cortex-A8 target creation and initialization
2334  */
2335
2336 static int aarch64_init_target(struct command_context *cmd_ctx,
2337         struct target *target)
2338 {
2339         /* examine_first() does a bunch of this */
2340         return ERROR_OK;
2341 }
2342
2343 static int aarch64_init_arch_info(struct target *target,
2344         struct aarch64_common *aarch64, struct jtag_tap *tap)
2345 {
2346         struct armv8_common *armv8 = &aarch64->armv8_common;
2347         struct adiv5_dap *dap = armv8->arm.dap;
2348
2349         armv8->arm.dap = dap;
2350
2351         /* Setup struct aarch64_common */
2352         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2353         /*  tap has no dap initialized */
2354         if (!tap->dap) {
2355                 tap->dap = dap_init();
2356
2357                 /* Leave (only) generic DAP stuff for debugport_init() */
2358                 tap->dap->tap = tap;
2359         }
2360
2361         armv8->arm.dap = tap->dap;
2362
2363         aarch64->fast_reg_read = 0;
2364
2365         /* register arch-specific functions */
2366         armv8->examine_debug_reason = NULL;
2367
2368         armv8->post_debug_entry = aarch64_post_debug_entry;
2369
2370         armv8->pre_restore_context = NULL;
2371
2372         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2373
2374         /* REVISIT v7a setup should be in a v7a-specific routine */
2375         armv8_init_arch_info(target, armv8);
2376         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2377
2378         return ERROR_OK;
2379 }
2380
2381 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2382 {
2383         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2384
2385         aarch64->armv8_common.is_armv7r = false;
2386
2387         return aarch64_init_arch_info(target, aarch64, target->tap);
2388 }
2389
2390 static int aarch64_mmu(struct target *target, int *enabled)
2391 {
2392         if (target->state != TARGET_HALTED) {
2393                 LOG_ERROR("%s: target not halted", __func__);
2394                 return ERROR_TARGET_INVALID;
2395         }
2396
2397         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2398         return ERROR_OK;
2399 }
2400
2401 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2402                              target_addr_t *phys)
2403 {
2404         int retval = ERROR_FAIL;
2405         struct armv8_common *armv8 = target_to_armv8(target);
2406         struct adiv5_dap *swjdp = armv8->arm.dap;
2407         uint8_t apsel = swjdp->apsel;
2408         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2409                 uint32_t ret;
2410                 retval = armv8_mmu_translate_va(target,
2411                                 virt, &ret);
2412                 if (retval != ERROR_OK)
2413                         goto done;
2414                 *phys = ret;
2415         } else {/*  use this method if armv8->memory_ap not selected
2416                  *  mmu must be enable in order to get a correct translation */
2417                 retval = aarch64_mmu_modify(target, 1);
2418                 if (retval != ERROR_OK)
2419                         goto done;
2420                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2421         }
2422 done:
2423         return retval;
2424 }
2425
2426 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2427 {
2428         struct target *target = get_current_target(CMD_CTX);
2429         struct armv8_common *armv8 = target_to_armv8(target);
2430
2431         return armv8_handle_cache_info_command(CMD_CTX,
2432                         &armv8->armv8_mmu.armv8_cache);
2433 }
2434
2435
2436 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2437 {
2438         struct target *target = get_current_target(CMD_CTX);
2439         if (!target_was_examined(target)) {
2440                 LOG_ERROR("target not examined yet");
2441                 return ERROR_FAIL;
2442         }
2443
2444         return aarch64_init_debug_access(target);
2445 }
2446 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2447 {
2448         struct target *target = get_current_target(CMD_CTX);
2449         /* check target is an smp target */
2450         struct target_list *head;
2451         struct target *curr;
2452         head = target->head;
2453         target->smp = 0;
2454         if (head != (struct target_list *)NULL) {
2455                 while (head != (struct target_list *)NULL) {
2456                         curr = head->target;
2457                         curr->smp = 0;
2458                         head = head->next;
2459                 }
2460                 /*  fixes the target display to the debugger */
2461                 target->gdb_service->target = target;
2462         }
2463         return ERROR_OK;
2464 }
2465
2466 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2467 {
2468         struct target *target = get_current_target(CMD_CTX);
2469         struct target_list *head;
2470         struct target *curr;
2471         head = target->head;
2472         if (head != (struct target_list *)NULL) {
2473                 target->smp = 1;
2474                 while (head != (struct target_list *)NULL) {
2475                         curr = head->target;
2476                         curr->smp = 1;
2477                         head = head->next;
2478                 }
2479         }
2480         return ERROR_OK;
2481 }
2482
2483 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2484 {
2485         struct target *target = get_current_target(CMD_CTX);
2486         int retval = ERROR_OK;
2487         struct target_list *head;
2488         head = target->head;
2489         if (head != (struct target_list *)NULL) {
2490                 if (CMD_ARGC == 1) {
2491                         int coreid = 0;
2492                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2493                         if (ERROR_OK != retval)
2494                                 return retval;
2495                         target->gdb_service->core[1] = coreid;
2496
2497                 }
2498                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2499                         , target->gdb_service->core[1]);
2500         }
2501         return ERROR_OK;
2502 }
2503
2504 static const struct command_registration aarch64_exec_command_handlers[] = {
2505         {
2506                 .name = "cache_info",
2507                 .handler = aarch64_handle_cache_info_command,
2508                 .mode = COMMAND_EXEC,
2509                 .help = "display information about target caches",
2510                 .usage = "",
2511         },
2512         {
2513                 .name = "dbginit",
2514                 .handler = aarch64_handle_dbginit_command,
2515                 .mode = COMMAND_EXEC,
2516                 .help = "Initialize core debug",
2517                 .usage = "",
2518         },
2519         {       .name = "smp_off",
2520                 .handler = aarch64_handle_smp_off_command,
2521                 .mode = COMMAND_EXEC,
2522                 .help = "Stop smp handling",
2523                 .usage = "",
2524         },
2525         {
2526                 .name = "smp_on",
2527                 .handler = aarch64_handle_smp_on_command,
2528                 .mode = COMMAND_EXEC,
2529                 .help = "Restart smp handling",
2530                 .usage = "",
2531         },
2532         {
2533                 .name = "smp_gdb",
2534                 .handler = aarch64_handle_smp_gdb_command,
2535                 .mode = COMMAND_EXEC,
2536                 .help = "display/fix current core played to gdb",
2537                 .usage = "",
2538         },
2539
2540
2541         COMMAND_REGISTRATION_DONE
2542 };
2543 static const struct command_registration aarch64_command_handlers[] = {
2544         {
2545                 .chain = arm_command_handlers,
2546         },
2547         {
2548                 .chain = armv8_command_handlers,
2549         },
2550         {
2551                 .name = "cortex_a",
2552                 .mode = COMMAND_ANY,
2553                 .help = "Cortex-A command group",
2554                 .usage = "",
2555                 .chain = aarch64_exec_command_handlers,
2556         },
2557         COMMAND_REGISTRATION_DONE
2558 };
2559
2560 struct target_type aarch64_target = {
2561         .name = "aarch64",
2562
2563         .poll = aarch64_poll,
2564         .arch_state = armv8_arch_state,
2565
2566         .halt = aarch64_halt,
2567         .resume = aarch64_resume,
2568         .step = aarch64_step,
2569
2570         .assert_reset = aarch64_assert_reset,
2571         .deassert_reset = aarch64_deassert_reset,
2572
2573         /* REVISIT allow exporting VFP3 registers ... */
2574         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2575
2576         .read_memory = aarch64_read_memory,
2577         .write_memory = aarch64_write_memory,
2578
2579         .checksum_memory = arm_checksum_memory,
2580         .blank_check_memory = arm_blank_check_memory,
2581
2582         .run_algorithm = armv4_5_run_algorithm,
2583
2584         .add_breakpoint = aarch64_add_breakpoint,
2585         .add_context_breakpoint = aarch64_add_context_breakpoint,
2586         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2587         .remove_breakpoint = aarch64_remove_breakpoint,
2588         .add_watchpoint = NULL,
2589         .remove_watchpoint = NULL,
2590
2591         .commands = aarch64_command_handlers,
2592         .target_create = aarch64_target_create,
2593         .init_target = aarch64_init_target,
2594         .examine = aarch64_examine,
2595
2596         .read_phys_memory = aarch64_read_phys_memory,
2597         .write_phys_memory = aarch64_write_phys_memory,
2598         .mmu = aarch64_mmu,
2599         .virt2phys = aarch64_virt2phys,
2600 };