aarch64: formalize use of CTI in halt and resume
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
61                                                      0xd5181000,
62                                                      aarch64->system_control_reg);
63         }
64
65         return retval;
66 }
67
68 /*  check address before aarch64_apb read write access with mmu on
69  *  remove apb predictible data abort */
70 static int aarch64_check_address(struct target *target, uint32_t address)
71 {
72         /* TODO */
73         return ERROR_OK;
74 }
75 /*  modify system_control_reg in order to enable or disable mmu for :
76  *  - virt2phys address conversion
77  *  - read or write memory in phys or virt address */
78 static int aarch64_mmu_modify(struct target *target, int enable)
79 {
80         struct aarch64_common *aarch64 = target_to_aarch64(target);
81         struct armv8_common *armv8 = &aarch64->armv8_common;
82         int retval = ERROR_OK;
83
84         if (enable) {
85                 /*  if mmu enabled at target stop and mmu not enable */
86                 if (!(aarch64->system_control_reg & 0x1U)) {
87                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
88                         return ERROR_FAIL;
89                 }
90                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
91                         aarch64->system_control_reg_curr |= 0x1U;
92                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
93                                                              0xd5181000,
94                                                              aarch64->system_control_reg_curr);
95                 }
96         } else {
97                 if (aarch64->system_control_reg_curr & 0x4U) {
98                         /*  data cache is active */
99                         aarch64->system_control_reg_curr &= ~0x4U;
100                         /* flush data cache armv7 function to be called */
101                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
102                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
103                 }
104                 if ((aarch64->system_control_reg_curr & 0x1U)) {
105                         aarch64->system_control_reg_curr &= ~0x1U;
106                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
107                                                              0xd5181000,
108                                                              aarch64->system_control_reg_curr);
109                 }
110         }
111         return retval;
112 }
113
114 /*
115  * Basic debug access, very low level assumes state is saved
116  */
117 static int aarch64_init_debug_access(struct target *target)
118 {
119         struct armv8_common *armv8 = target_to_armv8(target);
120         int retval;
121         uint32_t dummy;
122
123         LOG_DEBUG(" ");
124
125         /* Unlocking the debug registers for modification
126          * The debugport might be uninitialised so try twice */
127         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
128                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
129         if (retval != ERROR_OK) {
130                 /* try again */
131                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
132                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
133                 if (retval == ERROR_OK)
134                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
135         }
136         if (retval != ERROR_OK)
137                 return retval;
138         /* Clear Sticky Power Down status Bit in PRSR to enable access to
139            the registers in the Core Power Domain */
140         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
141                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
142         if (retval != ERROR_OK)
143                 return retval;
144
145         /* Enabling of instruction execution in debug mode is done in debug_entry code */
146
147         /* Resync breakpoint registers */
148
149         /* Since this is likely called from init or reset, update target state information*/
150         return aarch64_poll(target);
151 }
152
153 /* To reduce needless round-trips, pass in a pointer to the current
154  * DSCR value.  Initialize it to zero if you just need to know the
155  * value on return from this function; or DSCR_ITE if you
156  * happen to know that no instruction is pending.
157  */
158 static int aarch64_exec_opcode(struct target *target,
159         uint32_t opcode, uint32_t *dscr_p)
160 {
161         uint32_t dscr;
162         int retval;
163         struct armv8_common *armv8 = target_to_armv8(target);
164         dscr = dscr_p ? *dscr_p : 0;
165
166         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
167
168         /* Wait for InstrCompl bit to be set */
169         long long then = timeval_ms();
170         while ((dscr & DSCR_ITE) == 0) {
171                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
172                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
173                 if (retval != ERROR_OK) {
174                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
175                         return retval;
176                 }
177                 if (timeval_ms() > then + 1000) {
178                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
179                         return ERROR_FAIL;
180                 }
181         }
182
183         retval = mem_ap_write_u32(armv8->debug_ap,
184                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
185         if (retval != ERROR_OK)
186                 return retval;
187
188         then = timeval_ms();
189         do {
190                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
191                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
192                 if (retval != ERROR_OK) {
193                         LOG_ERROR("Could not read DSCR register");
194                         return retval;
195                 }
196                 if (timeval_ms() > then + 1000) {
197                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
198                         return ERROR_FAIL;
199                 }
200         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
201
202         if (dscr_p)
203                 *dscr_p = dscr;
204
205         return retval;
206 }
207
208 /* Write to memory mapped registers directly with no cache or mmu handling */
209 static int aarch64_dap_write_memap_register_u32(struct target *target,
210         uint32_t address,
211         uint32_t value)
212 {
213         int retval;
214         struct armv8_common *armv8 = target_to_armv8(target);
215
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
217
218         return retval;
219 }
220
221 /*
222  * AARCH64 implementation of Debug Programmer's Model
223  *
224  * NOTE the invariant:  these routines return with DSCR_ITE set,
225  * so there's no need to poll for it before executing an instruction.
226  *
227  * NOTE that in several of these cases the "stall" mode might be useful.
228  * It'd let us queue a few operations together... prepare/finish might
229  * be the places to enable/disable that mode.
230  */
231
232 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
233 {
234         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
235 }
236
237 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
238 {
239         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
240         return mem_ap_write_u32(armv8->debug_ap,
241                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
242 }
243
244 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
245 {
246         int ret;
247         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
248         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
249         ret = mem_ap_write_u32(armv8->debug_ap,
250                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
251         ret += mem_ap_write_u32(armv8->debug_ap,
252                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
253         return ret;
254 }
255
256 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
257         uint32_t *dscr_p)
258 {
259         uint32_t dscr = DSCR_ITE;
260         int retval;
261
262         if (dscr_p)
263                 dscr = *dscr_p;
264
265         /* Wait for DTRRXfull */
266         long long then = timeval_ms();
267         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
268                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
269                                 armv8->debug_base + CPUV8_DBG_DSCR,
270                                 &dscr);
271                 if (retval != ERROR_OK)
272                         return retval;
273                 if (timeval_ms() > then + 1000) {
274                         LOG_ERROR("Timeout waiting for read dcc");
275                         return ERROR_FAIL;
276                 }
277         }
278
279         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                             armv8->debug_base + CPUV8_DBG_DTRTX,
281                                             data);
282         if (retval != ERROR_OK)
283                 return retval;
284         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
285
286         if (dscr_p)
287                 *dscr_p = dscr;
288
289         return retval;
290 }
291
292 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
293         uint32_t *dscr_p)
294 {
295         uint32_t dscr = DSCR_ITE;
296         uint32_t higher;
297         int retval;
298
299         if (dscr_p)
300                 dscr = *dscr_p;
301
302         /* Wait for DTRRXfull */
303         long long then = timeval_ms();
304         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
305                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
306                                 armv8->debug_base + CPUV8_DBG_DSCR,
307                                 &dscr);
308                 if (retval != ERROR_OK)
309                         return retval;
310                 if (timeval_ms() > then + 1000) {
311                         LOG_ERROR("Timeout waiting for read dcc");
312                         return ERROR_FAIL;
313                 }
314         }
315
316         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
317                                             armv8->debug_base + CPUV8_DBG_DTRTX,
318                                             (uint32_t *)data);
319         if (retval != ERROR_OK)
320                 return retval;
321
322         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
323                                             armv8->debug_base + CPUV8_DBG_DTRRX,
324                                             &higher);
325         if (retval != ERROR_OK)
326                 return retval;
327
328         *data = *(uint32_t *)data | (uint64_t)higher << 32;
329         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
330
331         if (dscr_p)
332                 *dscr_p = dscr;
333
334         return retval;
335 }
336
337 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
338 {
339         struct aarch64_common *a8 = dpm_to_a8(dpm);
340         uint32_t dscr;
341         int retval;
342
343         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
344         long long then = timeval_ms();
345         for (;; ) {
346                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
347                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
348                                 &dscr);
349                 if (retval != ERROR_OK)
350                         return retval;
351                 if ((dscr & DSCR_ITE) != 0)
352                         break;
353                 if (timeval_ms() > then + 1000) {
354                         LOG_ERROR("Timeout waiting for dpm prepare");
355                         return ERROR_FAIL;
356                 }
357         }
358
359         /* this "should never happen" ... */
360         if (dscr & DSCR_DTR_RX_FULL) {
361                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
362                 /* Clear DCCRX */
363                 retval = aarch64_exec_opcode(
364                                 a8->armv8_common.arm.target,
365                                 0xd5130400,
366                                 &dscr);
367                 if (retval != ERROR_OK)
368                         return retval;
369         }
370
371         return retval;
372 }
373
374 static int aarch64_dpm_finish(struct arm_dpm *dpm)
375 {
376         /* REVISIT what could be done here? */
377         return ERROR_OK;
378 }
379
380 static int aarch64_instr_execute(struct arm_dpm *dpm,
381         uint32_t opcode)
382 {
383         struct aarch64_common *a8 = dpm_to_a8(dpm);
384         uint32_t dscr = DSCR_ITE;
385
386         return aarch64_exec_opcode(
387                         a8->armv8_common.arm.target,
388                         opcode,
389                         &dscr);
390 }
391
392 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
393         uint32_t opcode, uint32_t data)
394 {
395         struct aarch64_common *a8 = dpm_to_a8(dpm);
396         int retval;
397         uint32_t dscr = DSCR_ITE;
398
399         retval = aarch64_write_dcc(&a8->armv8_common, data);
400         if (retval != ERROR_OK)
401                 return retval;
402
403         return aarch64_exec_opcode(
404                         a8->armv8_common.arm.target,
405                         opcode,
406                         &dscr);
407 }
408
409 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
410         uint32_t opcode, uint64_t data)
411 {
412         struct aarch64_common *a8 = dpm_to_a8(dpm);
413         int retval;
414         uint32_t dscr = DSCR_ITE;
415
416         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
417         if (retval != ERROR_OK)
418                 return retval;
419
420         return aarch64_exec_opcode(
421                         a8->armv8_common.arm.target,
422                         opcode,
423                         &dscr);
424 }
425
426 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
427         uint32_t opcode, uint32_t data)
428 {
429         struct aarch64_common *a8 = dpm_to_a8(dpm);
430         uint32_t dscr = DSCR_ITE;
431         int retval;
432
433         retval = aarch64_write_dcc(&a8->armv8_common, data);
434         if (retval != ERROR_OK)
435                 return retval;
436
437         retval = aarch64_exec_opcode(
438                         a8->armv8_common.arm.target,
439                         0xd5330500,
440                         &dscr);
441         if (retval != ERROR_OK)
442                 return retval;
443
444         /* then the opcode, taking data from R0 */
445         retval = aarch64_exec_opcode(
446                         a8->armv8_common.arm.target,
447                         opcode,
448                         &dscr);
449
450         return retval;
451 }
452
453 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
454         uint32_t opcode, uint64_t data)
455 {
456         struct aarch64_common *a8 = dpm_to_a8(dpm);
457         uint32_t dscr = DSCR_ITE;
458         int retval;
459
460         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         retval = aarch64_exec_opcode(
465                         a8->armv8_common.arm.target,
466                         0xd5330400,
467                         &dscr);
468         if (retval != ERROR_OK)
469                 return retval;
470
471         /* then the opcode, taking data from R0 */
472         retval = aarch64_exec_opcode(
473                         a8->armv8_common.arm.target,
474                         opcode,
475                         &dscr);
476
477         return retval;
478 }
479
480 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
481 {
482         struct target *target = dpm->arm->target;
483         uint32_t dscr = DSCR_ITE;
484
485         /* "Prefetch flush" after modifying execution status in CPSR */
486         return aarch64_exec_opcode(target,
487                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
488                         &dscr);
489 }
490
491 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
492         uint32_t opcode, uint32_t *data)
493 {
494         struct aarch64_common *a8 = dpm_to_a8(dpm);
495         int retval;
496         uint32_t dscr = DSCR_ITE;
497
498         /* the opcode, writing data to DCC */
499         retval = aarch64_exec_opcode(
500                         a8->armv8_common.arm.target,
501                         opcode,
502                         &dscr);
503         if (retval != ERROR_OK)
504                 return retval;
505
506         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
507 }
508
509 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
510         uint32_t opcode, uint64_t *data)
511 {
512         struct aarch64_common *a8 = dpm_to_a8(dpm);
513         int retval;
514         uint32_t dscr = DSCR_ITE;
515
516         /* the opcode, writing data to DCC */
517         retval = aarch64_exec_opcode(
518                         a8->armv8_common.arm.target,
519                         opcode,
520                         &dscr);
521         if (retval != ERROR_OK)
522                 return retval;
523
524         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
525 }
526
527 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
528         uint32_t opcode, uint32_t *data)
529 {
530         struct aarch64_common *a8 = dpm_to_a8(dpm);
531         uint32_t dscr = DSCR_ITE;
532         int retval;
533
534         /* the opcode, writing data to R0 */
535         retval = aarch64_exec_opcode(
536                         a8->armv8_common.arm.target,
537                         opcode,
538                         &dscr);
539         if (retval != ERROR_OK)
540                 return retval;
541
542         /* write R0 to DCC */
543         retval = aarch64_exec_opcode(
544                         a8->armv8_common.arm.target,
545                         0xd5130400,  /* msr dbgdtr_el0, x0 */
546                         &dscr);
547         if (retval != ERROR_OK)
548                 return retval;
549
550         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
551 }
552
553 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
554         uint32_t opcode, uint64_t *data)
555 {
556         struct aarch64_common *a8 = dpm_to_a8(dpm);
557         uint32_t dscr = DSCR_ITE;
558         int retval;
559
560         /* the opcode, writing data to R0 */
561         retval = aarch64_exec_opcode(
562                         a8->armv8_common.arm.target,
563                         opcode,
564                         &dscr);
565         if (retval != ERROR_OK)
566                 return retval;
567
568         /* write R0 to DCC */
569         retval = aarch64_exec_opcode(
570                         a8->armv8_common.arm.target,
571                         0xd5130400,  /* msr dbgdtr_el0, x0 */
572                         &dscr);
573         if (retval != ERROR_OK)
574                 return retval;
575
576         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
577 }
578
579 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
580         uint32_t addr, uint32_t control)
581 {
582         struct aarch64_common *a8 = dpm_to_a8(dpm);
583         uint32_t vr = a8->armv8_common.debug_base;
584         uint32_t cr = a8->armv8_common.debug_base;
585         int retval;
586
587         switch (index_t) {
588                 case 0 ... 15:  /* breakpoints */
589                         vr += CPUV8_DBG_BVR_BASE;
590                         cr += CPUV8_DBG_BCR_BASE;
591                         break;
592                 case 16 ... 31: /* watchpoints */
593                         vr += CPUV8_DBG_WVR_BASE;
594                         cr += CPUV8_DBG_WCR_BASE;
595                         index_t -= 16;
596                         break;
597                 default:
598                         return ERROR_FAIL;
599         }
600         vr += 4 * index_t;
601         cr += 4 * index_t;
602
603         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
604                 (unsigned) vr, (unsigned) cr);
605
606         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
607                         vr, addr);
608         if (retval != ERROR_OK)
609                 return retval;
610         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
611                         cr, control);
612         return retval;
613 }
614
615 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
616 {
617         return ERROR_OK;
618
619 #if 0
620         struct aarch64_common *a = dpm_to_a8(dpm);
621         uint32_t cr;
622
623         switch (index_t) {
624                 case 0 ... 15:
625                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
626                         break;
627                 case 16 ... 31:
628                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
629                         index_t -= 16;
630                         break;
631                 default:
632                         return ERROR_FAIL;
633         }
634         cr += 4 * index_t;
635
636         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
637
638         /* clear control register */
639         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
640 #endif
641 }
642
643 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
644 {
645         struct arm_dpm *dpm = &a8->armv8_common.dpm;
646         int retval;
647
648         dpm->arm = &a8->armv8_common.arm;
649         dpm->didr = debug;
650
651         dpm->prepare = aarch64_dpm_prepare;
652         dpm->finish = aarch64_dpm_finish;
653
654         dpm->instr_execute = aarch64_instr_execute;
655         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
656         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
657         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
658         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
659         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
660
661         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
662         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
663         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
664         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
665
666         dpm->arm_reg_current = armv8_reg_current;
667
668         dpm->bpwp_enable = aarch64_bpwp_enable;
669         dpm->bpwp_disable = aarch64_bpwp_disable;
670
671         retval = armv8_dpm_setup(dpm);
672         if (retval == ERROR_OK)
673                 retval = armv8_dpm_initialize(dpm);
674
675         return retval;
676 }
677 static struct target *get_aarch64(struct target *target, int32_t coreid)
678 {
679         struct target_list *head;
680         struct target *curr;
681
682         head = target->head;
683         while (head != (struct target_list *)NULL) {
684                 curr = head->target;
685                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
686                         return curr;
687                 head = head->next;
688         }
689         return target;
690 }
691 static int aarch64_halt(struct target *target);
692
693 static int aarch64_halt_smp(struct target *target)
694 {
695         int retval = 0;
696         struct target_list *head;
697         struct target *curr;
698         head = target->head;
699         while (head != (struct target_list *)NULL) {
700                 curr = head->target;
701                 if ((curr != target) && (curr->state != TARGET_HALTED))
702                         retval += aarch64_halt(curr);
703                 head = head->next;
704         }
705         return retval;
706 }
707
708 static int update_halt_gdb(struct target *target)
709 {
710         int retval = 0;
711         if (target->gdb_service && target->gdb_service->core[0] == -1) {
712                 target->gdb_service->target = target;
713                 target->gdb_service->core[0] = target->coreid;
714                 retval += aarch64_halt_smp(target);
715         }
716         return retval;
717 }
718
719 /*
720  * Cortex-A8 Run control
721  */
722
723 static int aarch64_poll(struct target *target)
724 {
725         int retval = ERROR_OK;
726         uint32_t dscr;
727         struct aarch64_common *aarch64 = target_to_aarch64(target);
728         struct armv8_common *armv8 = &aarch64->armv8_common;
729         enum target_state prev_target_state = target->state;
730         /*  toggle to another core is done by gdb as follow */
731         /*  maint packet J core_id */
732         /*  continue */
733         /*  the next polling trigger an halt event sent to gdb */
734         if ((target->state == TARGET_HALTED) && (target->smp) &&
735                 (target->gdb_service) &&
736                 (target->gdb_service->target == NULL)) {
737                 target->gdb_service->target =
738                         get_aarch64(target, target->gdb_service->core[1]);
739                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
740                 return retval;
741         }
742         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
743                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
744         if (retval != ERROR_OK)
745                 return retval;
746         aarch64->cpudbg_dscr = dscr;
747
748         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
749                 if (prev_target_state != TARGET_HALTED) {
750                         /* We have a halting debug event */
751                         LOG_DEBUG("Target halted");
752                         target->state = TARGET_HALTED;
753                         if ((prev_target_state == TARGET_RUNNING)
754                                 || (prev_target_state == TARGET_UNKNOWN)
755                                 || (prev_target_state == TARGET_RESET)) {
756                                 retval = aarch64_debug_entry(target);
757                                 if (retval != ERROR_OK)
758                                         return retval;
759                                 if (target->smp) {
760                                         retval = update_halt_gdb(target);
761                                         if (retval != ERROR_OK)
762                                                 return retval;
763                                 }
764                                 target_call_event_callbacks(target,
765                                         TARGET_EVENT_HALTED);
766                         }
767                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
768                                 LOG_DEBUG(" ");
769
770                                 retval = aarch64_debug_entry(target);
771                                 if (retval != ERROR_OK)
772                                         return retval;
773                                 if (target->smp) {
774                                         retval = update_halt_gdb(target);
775                                         if (retval != ERROR_OK)
776                                                 return retval;
777                                 }
778
779                                 target_call_event_callbacks(target,
780                                         TARGET_EVENT_DEBUG_HALTED);
781                         }
782                 }
783         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
784                 target->state = TARGET_RUNNING;
785         else {
786                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
787                 target->state = TARGET_UNKNOWN;
788         }
789
790         return retval;
791 }
792
793 static int aarch64_halt(struct target *target)
794 {
795         int retval = ERROR_OK;
796         uint32_t dscr;
797         struct armv8_common *armv8 = target_to_armv8(target);
798
799         /* enable CTI*/
800         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
801                         armv8->cti_base + CTI_CTR, 1);
802         if (retval != ERROR_OK)
803                 return retval;
804
805         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
806                         armv8->cti_base + CTI_GATE, 3);
807         if (retval != ERROR_OK)
808                 return retval;
809
810         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
811                         armv8->cti_base + CTI_OUTEN0, 1);
812         if (retval != ERROR_OK)
813                 return retval;
814
815         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
816                         armv8->cti_base + CTI_OUTEN1, 2);
817         if (retval != ERROR_OK)
818                 return retval;
819
820         /*
821          * add HDE in halting debug mode
822          */
823         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
824                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
825         if (retval != ERROR_OK)
826                 return retval;
827
828         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
829                         armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
830         if (retval != ERROR_OK)
831                 return retval;
832
833         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
834                         armv8->cti_base + CTI_APPPULSE, 1);
835         if (retval != ERROR_OK)
836                 return retval;
837
838         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
839                         armv8->cti_base + CTI_INACK, 1);
840         if (retval != ERROR_OK)
841                 return retval;
842
843
844         long long then = timeval_ms();
845         for (;; ) {
846                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
847                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
848                 if (retval != ERROR_OK)
849                         return retval;
850                 if ((dscr & DSCRV8_HALT_MASK) != 0)
851                         break;
852                 if (timeval_ms() > then + 1000) {
853                         LOG_ERROR("Timeout waiting for halt");
854                         return ERROR_FAIL;
855                 }
856         }
857
858         target->debug_reason = DBG_REASON_DBGRQ;
859
860         return ERROR_OK;
861 }
862
863 static int aarch64_internal_restore(struct target *target, int current,
864         uint64_t *address, int handle_breakpoints, int debug_execution)
865 {
866         struct armv8_common *armv8 = target_to_armv8(target);
867         struct arm *arm = &armv8->arm;
868         int retval;
869         uint64_t resume_pc;
870
871         if (!debug_execution)
872                 target_free_all_working_areas(target);
873
874         /* current = 1: continue on current pc, otherwise continue at <address> */
875         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
876         if (!current)
877                 resume_pc = *address;
878         else
879                 *address = resume_pc;
880
881         /* Make sure that the Armv7 gdb thumb fixups does not
882          * kill the return address
883          */
884         switch (arm->core_state) {
885                 case ARM_STATE_ARM:
886                         resume_pc &= 0xFFFFFFFC;
887                         break;
888                 case ARM_STATE_AARCH64:
889                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
890                         break;
891                 case ARM_STATE_THUMB:
892                 case ARM_STATE_THUMB_EE:
893                         /* When the return address is loaded into PC
894                          * bit 0 must be 1 to stay in Thumb state
895                          */
896                         resume_pc |= 0x1;
897                         break;
898                 case ARM_STATE_JAZELLE:
899                         LOG_ERROR("How do I resume into Jazelle state??");
900                         return ERROR_FAIL;
901         }
902         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
903         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
904         arm->pc->dirty = 1;
905         arm->pc->valid = 1;
906         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
907
908         /* called it now before restoring context because it uses cpu
909          * register r0 for restoring system control register */
910         retval = aarch64_restore_system_control_reg(target);
911         if (retval != ERROR_OK)
912                 return retval;
913         retval = aarch64_restore_context(target, handle_breakpoints);
914         if (retval != ERROR_OK)
915                 return retval;
916         target->debug_reason = DBG_REASON_NOTHALTED;
917         target->state = TARGET_RUNNING;
918
919         /* registers are now invalid */
920         register_cache_invalidate(arm->core_cache);
921
922 #if 0
923         /* the front-end may request us not to handle breakpoints */
924         if (handle_breakpoints) {
925                 /* Single step past breakpoint at current address */
926                 breakpoint = breakpoint_find(target, resume_pc);
927                 if (breakpoint) {
928                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
929                         cortex_m3_unset_breakpoint(target, breakpoint);
930                         cortex_m3_single_step_core(target);
931                         cortex_m3_set_breakpoint(target, breakpoint);
932                 }
933         }
934 #endif
935
936         return retval;
937 }
938
939 static int aarch64_internal_restart(struct target *target)
940 {
941         struct armv8_common *armv8 = target_to_armv8(target);
942         struct arm *arm = &armv8->arm;
943         int retval;
944         uint32_t dscr;
945         /*
946          * * Restart core and wait for it to be started.  Clear ITRen and sticky
947          * * exception flags: see ARMv7 ARM, C5.9.
948          *
949          * REVISIT: for single stepping, we probably want to
950          * disable IRQs by default, with optional override...
951          */
952
953         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
954                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
955         if (retval != ERROR_OK)
956                 return retval;
957
958         if ((dscr & DSCR_ITE) == 0)
959                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
960
961         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
962                         armv8->cti_base + CTI_APPPULSE, 2);
963         if (retval != ERROR_OK)
964                 return retval;
965
966         long long then = timeval_ms();
967         for (;; ) {
968                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
969                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
970                 if (retval != ERROR_OK)
971                         return retval;
972                 if ((dscr & DSCR_HDE) != 0)
973                         break;
974                 if (timeval_ms() > then + 1000) {
975                         LOG_ERROR("Timeout waiting for resume");
976                         return ERROR_FAIL;
977                 }
978         }
979
980         target->debug_reason = DBG_REASON_NOTHALTED;
981         target->state = TARGET_RUNNING;
982
983         /* registers are now invalid */
984         register_cache_invalidate(arm->core_cache);
985
986         return ERROR_OK;
987 }
988
989 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
990 {
991         int retval = 0;
992         struct target_list *head;
993         struct target *curr;
994         uint64_t address;
995         head = target->head;
996         while (head != (struct target_list *)NULL) {
997                 curr = head->target;
998                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
999                         /*  resume current address , not in step mode */
1000                         retval += aarch64_internal_restore(curr, 1, &address,
1001                                         handle_breakpoints, 0);
1002                         retval += aarch64_internal_restart(curr);
1003                 }
1004                 head = head->next;
1005
1006         }
1007         return retval;
1008 }
1009
1010 static int aarch64_resume(struct target *target, int current,
1011         target_addr_t address, int handle_breakpoints, int debug_execution)
1012 {
1013         int retval = 0;
1014         uint64_t addr = address;
1015
1016         /* dummy resume for smp toggle in order to reduce gdb impact  */
1017         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1018                 /*   simulate a start and halt of target */
1019                 target->gdb_service->target = NULL;
1020                 target->gdb_service->core[0] = target->gdb_service->core[1];
1021                 /*  fake resume at next poll we play the  target core[1], see poll*/
1022                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1023                 return 0;
1024         }
1025         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1026                                  debug_execution);
1027         if (target->smp) {
1028                 target->gdb_service->core[0] = -1;
1029                 retval = aarch64_restore_smp(target, handle_breakpoints);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032         }
1033         aarch64_internal_restart(target);
1034
1035         if (!debug_execution) {
1036                 target->state = TARGET_RUNNING;
1037                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1038                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1039         } else {
1040                 target->state = TARGET_DEBUG_RUNNING;
1041                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1042                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1043         }
1044
1045         return ERROR_OK;
1046 }
1047
1048 static int aarch64_debug_entry(struct target *target)
1049 {
1050         uint32_t dscr;
1051         int retval = ERROR_OK;
1052         struct aarch64_common *aarch64 = target_to_aarch64(target);
1053         struct armv8_common *armv8 = target_to_armv8(target);
1054         uint32_t tmp;
1055
1056         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1057
1058         /* REVISIT surely we should not re-read DSCR !! */
1059         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1060                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1061         if (retval != ERROR_OK)
1062                 return retval;
1063
1064         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1065          * imprecise data aborts get discarded by issuing a Data
1066          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1067          */
1068
1069         /* Enable the ITR execution once we are in debug mode */
1070         dscr |= DSCR_ITR_EN;
1071         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1072                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1073         if (retval != ERROR_OK)
1074                 return retval;
1075
1076         /* Examine debug reason */
1077         arm_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1078         mem_ap_read_atomic_u32(armv8->debug_ap,
1079                                    armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1080         if ((tmp & 0x7) == 0x4)
1081                 target->debug_reason = DBG_REASON_SINGLESTEP;
1082
1083         /* save address of instruction that triggered the watchpoint? */
1084         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1085                 uint32_t wfar;
1086
1087                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1088                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1089                                 &wfar);
1090                 if (retval != ERROR_OK)
1091                         return retval;
1092                 arm_dpm_report_wfar(&armv8->dpm, wfar);
1093         }
1094
1095         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1096
1097         if (armv8->post_debug_entry) {
1098                 retval = armv8->post_debug_entry(target);
1099                 if (retval != ERROR_OK)
1100                         return retval;
1101         }
1102
1103         return retval;
1104 }
1105
1106 static int aarch64_post_debug_entry(struct target *target)
1107 {
1108         struct aarch64_common *aarch64 = target_to_aarch64(target);
1109         struct armv8_common *armv8 = &aarch64->armv8_common;
1110         struct armv8_mmu_common *armv8_mmu = &armv8->armv8_mmu;
1111         uint32_t sctlr_el1 = 0;
1112         int retval;
1113
1114         mem_ap_write_atomic_u32(armv8->debug_ap,
1115                                 armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1116         retval = aarch64_instr_read_data_r0(armv8->arm.dpm,
1117                                             0xd5381000, &sctlr_el1);
1118         if (retval != ERROR_OK)
1119                 return retval;
1120
1121         LOG_DEBUG("sctlr_el1 = %#8.8x", sctlr_el1);
1122         aarch64->system_control_reg = sctlr_el1;
1123         aarch64->system_control_reg_curr = sctlr_el1;
1124         aarch64->curr_mode = armv8->arm.core_mode;
1125
1126         armv8_mmu->mmu_enabled = sctlr_el1 & 0x1U ? 1 : 0;
1127         armv8_mmu->armv8_cache.d_u_cache_enabled = sctlr_el1 & 0x4U ? 1 : 0;
1128         armv8_mmu->armv8_cache.i_cache_enabled = sctlr_el1 & 0x1000U ? 1 : 0;
1129
1130 #if 0
1131         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1132                 armv8_identify_cache(target);
1133 #endif
1134
1135         return ERROR_OK;
1136 }
1137
1138 static int aarch64_step(struct target *target, int current, target_addr_t address,
1139         int handle_breakpoints)
1140 {
1141         struct armv8_common *armv8 = target_to_armv8(target);
1142         int retval;
1143         uint32_t tmp;
1144
1145         if (target->state != TARGET_HALTED) {
1146                 LOG_WARNING("target not halted");
1147                 return ERROR_TARGET_NOT_HALTED;
1148         }
1149
1150         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1151                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1152         if (retval != ERROR_OK)
1153                 return retval;
1154
1155         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1156                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1157         if (retval != ERROR_OK)
1158                 return retval;
1159
1160         target->debug_reason = DBG_REASON_SINGLESTEP;
1161         retval = aarch64_resume(target, 1, address, 0, 0);
1162         if (retval != ERROR_OK)
1163                 return retval;
1164
1165         long long then = timeval_ms();
1166         while (target->state != TARGET_HALTED) {
1167                 mem_ap_read_atomic_u32(armv8->debug_ap,
1168                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1169                 LOG_DEBUG("DESR = %#x", tmp);
1170                 retval = aarch64_poll(target);
1171                 if (retval != ERROR_OK)
1172                         return retval;
1173                 if (timeval_ms() > then + 1000) {
1174                         LOG_ERROR("timeout waiting for target halt");
1175                         return ERROR_FAIL;
1176                 }
1177         }
1178
1179         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1180                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1181         if (retval != ERROR_OK)
1182                 return retval;
1183
1184         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1185         if (target->state == TARGET_HALTED)
1186                 LOG_DEBUG("target stepped");
1187
1188         return ERROR_OK;
1189 }
1190
1191 static int aarch64_restore_context(struct target *target, bool bpwp)
1192 {
1193         struct armv8_common *armv8 = target_to_armv8(target);
1194
1195         LOG_DEBUG(" ");
1196
1197         if (armv8->pre_restore_context)
1198                 armv8->pre_restore_context(target);
1199
1200         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1201
1202 }
1203
1204 /*
1205  * Cortex-A8 Breakpoint and watchpoint functions
1206  */
1207
1208 /* Setup hardware Breakpoint Register Pair */
1209 static int aarch64_set_breakpoint(struct target *target,
1210         struct breakpoint *breakpoint, uint8_t matchmode)
1211 {
1212         int retval;
1213         int brp_i = 0;
1214         uint32_t control;
1215         uint8_t byte_addr_select = 0x0F;
1216         struct aarch64_common *aarch64 = target_to_aarch64(target);
1217         struct armv8_common *armv8 = &aarch64->armv8_common;
1218         struct aarch64_brp *brp_list = aarch64->brp_list;
1219         uint32_t dscr;
1220
1221         if (breakpoint->set) {
1222                 LOG_WARNING("breakpoint already set");
1223                 return ERROR_OK;
1224         }
1225
1226         if (breakpoint->type == BKPT_HARD) {
1227                 int64_t bpt_value;
1228                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1229                         brp_i++;
1230                 if (brp_i >= aarch64->brp_num) {
1231                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1232                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1233                 }
1234                 breakpoint->set = brp_i + 1;
1235                 if (breakpoint->length == 2)
1236                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1237                 control = ((matchmode & 0x7) << 20)
1238                         | (1 << 13)
1239                         | (byte_addr_select << 5)
1240                         | (3 << 1) | 1;
1241                 brp_list[brp_i].used = 1;
1242                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1243                 brp_list[brp_i].control = control;
1244                 bpt_value = brp_list[brp_i].value;
1245
1246                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1247                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1248                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1249                 if (retval != ERROR_OK)
1250                         return retval;
1251                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1252                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1253                                 (uint32_t)(bpt_value >> 32));
1254                 if (retval != ERROR_OK)
1255                         return retval;
1256
1257                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1258                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1259                                 brp_list[brp_i].control);
1260                 if (retval != ERROR_OK)
1261                         return retval;
1262                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1263                         brp_list[brp_i].control,
1264                         brp_list[brp_i].value);
1265
1266         } else if (breakpoint->type == BKPT_SOFT) {
1267                 uint8_t code[4];
1268                 buf_set_u32(code, 0, 32, 0xD4400000);
1269
1270                 retval = target_read_memory(target,
1271                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1272                                 breakpoint->length, 1,
1273                                 breakpoint->orig_instr);
1274                 if (retval != ERROR_OK)
1275                         return retval;
1276                 retval = target_write_memory(target,
1277                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1278                                 breakpoint->length, 1, code);
1279                 if (retval != ERROR_OK)
1280                         return retval;
1281                 breakpoint->set = 0x11; /* Any nice value but 0 */
1282         }
1283
1284         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1285                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1286         /* Ensure that halting debug mode is enable */
1287         dscr = dscr | DSCR_HDE;
1288         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1289                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1290         if (retval != ERROR_OK) {
1291                 LOG_DEBUG("Failed to set DSCR.HDE");
1292                 return retval;
1293         }
1294
1295         return ERROR_OK;
1296 }
1297
1298 static int aarch64_set_context_breakpoint(struct target *target,
1299         struct breakpoint *breakpoint, uint8_t matchmode)
1300 {
1301         int retval = ERROR_FAIL;
1302         int brp_i = 0;
1303         uint32_t control;
1304         uint8_t byte_addr_select = 0x0F;
1305         struct aarch64_common *aarch64 = target_to_aarch64(target);
1306         struct armv8_common *armv8 = &aarch64->armv8_common;
1307         struct aarch64_brp *brp_list = aarch64->brp_list;
1308
1309         if (breakpoint->set) {
1310                 LOG_WARNING("breakpoint already set");
1311                 return retval;
1312         }
1313         /*check available context BRPs*/
1314         while ((brp_list[brp_i].used ||
1315                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1316                 brp_i++;
1317
1318         if (brp_i >= aarch64->brp_num) {
1319                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1320                 return ERROR_FAIL;
1321         }
1322
1323         breakpoint->set = brp_i + 1;
1324         control = ((matchmode & 0x7) << 20)
1325                 | (1 << 13)
1326                 | (byte_addr_select << 5)
1327                 | (3 << 1) | 1;
1328         brp_list[brp_i].used = 1;
1329         brp_list[brp_i].value = (breakpoint->asid);
1330         brp_list[brp_i].control = control;
1331         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1332                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1333                         brp_list[brp_i].value);
1334         if (retval != ERROR_OK)
1335                 return retval;
1336         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1337                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1338                         brp_list[brp_i].control);
1339         if (retval != ERROR_OK)
1340                 return retval;
1341         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1342                 brp_list[brp_i].control,
1343                 brp_list[brp_i].value);
1344         return ERROR_OK;
1345
1346 }
1347
1348 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1349 {
1350         int retval = ERROR_FAIL;
1351         int brp_1 = 0;  /* holds the contextID pair */
1352         int brp_2 = 0;  /* holds the IVA pair */
1353         uint32_t control_CTX, control_IVA;
1354         uint8_t CTX_byte_addr_select = 0x0F;
1355         uint8_t IVA_byte_addr_select = 0x0F;
1356         uint8_t CTX_machmode = 0x03;
1357         uint8_t IVA_machmode = 0x01;
1358         struct aarch64_common *aarch64 = target_to_aarch64(target);
1359         struct armv8_common *armv8 = &aarch64->armv8_common;
1360         struct aarch64_brp *brp_list = aarch64->brp_list;
1361
1362         if (breakpoint->set) {
1363                 LOG_WARNING("breakpoint already set");
1364                 return retval;
1365         }
1366         /*check available context BRPs*/
1367         while ((brp_list[brp_1].used ||
1368                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1369                 brp_1++;
1370
1371         printf("brp(CTX) found num: %d\n", brp_1);
1372         if (brp_1 >= aarch64->brp_num) {
1373                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1374                 return ERROR_FAIL;
1375         }
1376
1377         while ((brp_list[brp_2].used ||
1378                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1379                 brp_2++;
1380
1381         printf("brp(IVA) found num: %d\n", brp_2);
1382         if (brp_2 >= aarch64->brp_num) {
1383                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1384                 return ERROR_FAIL;
1385         }
1386
1387         breakpoint->set = brp_1 + 1;
1388         breakpoint->linked_BRP = brp_2;
1389         control_CTX = ((CTX_machmode & 0x7) << 20)
1390                 | (brp_2 << 16)
1391                 | (0 << 14)
1392                 | (CTX_byte_addr_select << 5)
1393                 | (3 << 1) | 1;
1394         brp_list[brp_1].used = 1;
1395         brp_list[brp_1].value = (breakpoint->asid);
1396         brp_list[brp_1].control = control_CTX;
1397         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1398                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1399                         brp_list[brp_1].value);
1400         if (retval != ERROR_OK)
1401                 return retval;
1402         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1403                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1404                         brp_list[brp_1].control);
1405         if (retval != ERROR_OK)
1406                 return retval;
1407
1408         control_IVA = ((IVA_machmode & 0x7) << 20)
1409                 | (brp_1 << 16)
1410                 | (1 << 13)
1411                 | (IVA_byte_addr_select << 5)
1412                 | (3 << 1) | 1;
1413         brp_list[brp_2].used = 1;
1414         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1415         brp_list[brp_2].control = control_IVA;
1416         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1417                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1418                         brp_list[brp_2].value & 0xFFFFFFFF);
1419         if (retval != ERROR_OK)
1420                 return retval;
1421         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1422                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1423                         brp_list[brp_2].value >> 32);
1424         if (retval != ERROR_OK)
1425                 return retval;
1426         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1427                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1428                         brp_list[brp_2].control);
1429         if (retval != ERROR_OK)
1430                 return retval;
1431
1432         return ERROR_OK;
1433 }
1434
1435 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1436 {
1437         int retval;
1438         struct aarch64_common *aarch64 = target_to_aarch64(target);
1439         struct armv8_common *armv8 = &aarch64->armv8_common;
1440         struct aarch64_brp *brp_list = aarch64->brp_list;
1441
1442         if (!breakpoint->set) {
1443                 LOG_WARNING("breakpoint not set");
1444                 return ERROR_OK;
1445         }
1446
1447         if (breakpoint->type == BKPT_HARD) {
1448                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1449                         int brp_i = breakpoint->set - 1;
1450                         int brp_j = breakpoint->linked_BRP;
1451                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1452                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1453                                 return ERROR_OK;
1454                         }
1455                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1456                                 brp_list[brp_i].control, brp_list[brp_i].value);
1457                         brp_list[brp_i].used = 0;
1458                         brp_list[brp_i].value = 0;
1459                         brp_list[brp_i].control = 0;
1460                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1461                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1462                                         brp_list[brp_i].control);
1463                         if (retval != ERROR_OK)
1464                                 return retval;
1465                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1466                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1467                                 return ERROR_OK;
1468                         }
1469                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1470                                 brp_list[brp_j].control, brp_list[brp_j].value);
1471                         brp_list[brp_j].used = 0;
1472                         brp_list[brp_j].value = 0;
1473                         brp_list[brp_j].control = 0;
1474                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1475                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1476                                         brp_list[brp_j].control);
1477                         if (retval != ERROR_OK)
1478                                 return retval;
1479                         breakpoint->linked_BRP = 0;
1480                         breakpoint->set = 0;
1481                         return ERROR_OK;
1482
1483                 } else {
1484                         int brp_i = breakpoint->set - 1;
1485                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1486                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1487                                 return ERROR_OK;
1488                         }
1489                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1490                                 brp_list[brp_i].control, brp_list[brp_i].value);
1491                         brp_list[brp_i].used = 0;
1492                         brp_list[brp_i].value = 0;
1493                         brp_list[brp_i].control = 0;
1494                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1495                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1496                                         brp_list[brp_i].control);
1497                         if (retval != ERROR_OK)
1498                                 return retval;
1499                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1500                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1501                                         brp_list[brp_i].value);
1502                         if (retval != ERROR_OK)
1503                                 return retval;
1504                         breakpoint->set = 0;
1505                         return ERROR_OK;
1506                 }
1507         } else {
1508                 /* restore original instruction (kept in target endianness) */
1509                 if (breakpoint->length == 4) {
1510                         retval = target_write_memory(target,
1511                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1512                                         4, 1, breakpoint->orig_instr);
1513                         if (retval != ERROR_OK)
1514                                 return retval;
1515                 } else {
1516                         retval = target_write_memory(target,
1517                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1518                                         2, 1, breakpoint->orig_instr);
1519                         if (retval != ERROR_OK)
1520                                 return retval;
1521                 }
1522         }
1523         breakpoint->set = 0;
1524
1525         return ERROR_OK;
1526 }
1527
1528 static int aarch64_add_breakpoint(struct target *target,
1529         struct breakpoint *breakpoint)
1530 {
1531         struct aarch64_common *aarch64 = target_to_aarch64(target);
1532
1533         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1534                 LOG_INFO("no hardware breakpoint available");
1535                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1536         }
1537
1538         if (breakpoint->type == BKPT_HARD)
1539                 aarch64->brp_num_available--;
1540
1541         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1542 }
1543
1544 static int aarch64_add_context_breakpoint(struct target *target,
1545         struct breakpoint *breakpoint)
1546 {
1547         struct aarch64_common *aarch64 = target_to_aarch64(target);
1548
1549         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1550                 LOG_INFO("no hardware breakpoint available");
1551                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1552         }
1553
1554         if (breakpoint->type == BKPT_HARD)
1555                 aarch64->brp_num_available--;
1556
1557         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1558 }
1559
1560 static int aarch64_add_hybrid_breakpoint(struct target *target,
1561         struct breakpoint *breakpoint)
1562 {
1563         struct aarch64_common *aarch64 = target_to_aarch64(target);
1564
1565         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1566                 LOG_INFO("no hardware breakpoint available");
1567                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1568         }
1569
1570         if (breakpoint->type == BKPT_HARD)
1571                 aarch64->brp_num_available--;
1572
1573         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1574 }
1575
1576
1577 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1578 {
1579         struct aarch64_common *aarch64 = target_to_aarch64(target);
1580
1581 #if 0
1582 /* It is perfectly possible to remove breakpoints while the target is running */
1583         if (target->state != TARGET_HALTED) {
1584                 LOG_WARNING("target not halted");
1585                 return ERROR_TARGET_NOT_HALTED;
1586         }
1587 #endif
1588
1589         if (breakpoint->set) {
1590                 aarch64_unset_breakpoint(target, breakpoint);
1591                 if (breakpoint->type == BKPT_HARD)
1592                         aarch64->brp_num_available++;
1593         }
1594
1595         return ERROR_OK;
1596 }
1597
1598 /*
1599  * Cortex-A8 Reset functions
1600  */
1601
1602 static int aarch64_assert_reset(struct target *target)
1603 {
1604         struct armv8_common *armv8 = target_to_armv8(target);
1605
1606         LOG_DEBUG(" ");
1607
1608         /* FIXME when halt is requested, make it work somehow... */
1609
1610         /* Issue some kind of warm reset. */
1611         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1612                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1613         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1614                 /* REVISIT handle "pulls" cases, if there's
1615                  * hardware that needs them to work.
1616                  */
1617                 jtag_add_reset(0, 1);
1618         } else {
1619                 LOG_ERROR("%s: how to reset?", target_name(target));
1620                 return ERROR_FAIL;
1621         }
1622
1623         /* registers are now invalid */
1624         register_cache_invalidate(armv8->arm.core_cache);
1625
1626         target->state = TARGET_RESET;
1627
1628         return ERROR_OK;
1629 }
1630
1631 static int aarch64_deassert_reset(struct target *target)
1632 {
1633         int retval;
1634
1635         LOG_DEBUG(" ");
1636
1637         /* be certain SRST is off */
1638         jtag_add_reset(0, 0);
1639
1640         retval = aarch64_poll(target);
1641         if (retval != ERROR_OK)
1642                 return retval;
1643
1644         if (target->reset_halt) {
1645                 if (target->state != TARGET_HALTED) {
1646                         LOG_WARNING("%s: ran after reset and before halt ...",
1647                                 target_name(target));
1648                         retval = target_halt(target);
1649                         if (retval != ERROR_OK)
1650                                 return retval;
1651                 }
1652         }
1653
1654         return ERROR_OK;
1655 }
1656
1657 static int aarch64_write_apb_ap_memory(struct target *target,
1658         uint64_t address, uint32_t size,
1659         uint32_t count, const uint8_t *buffer)
1660 {
1661         /* write memory through APB-AP */
1662         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1663         struct armv8_common *armv8 = target_to_armv8(target);
1664         struct arm *arm = &armv8->arm;
1665         int total_bytes = count * size;
1666         int total_u32;
1667         int start_byte = address & 0x3;
1668         int end_byte   = (address + total_bytes) & 0x3;
1669         struct reg *reg;
1670         uint32_t dscr;
1671         uint8_t *tmp_buff = NULL;
1672
1673         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1674                           address, size, count);
1675         if (target->state != TARGET_HALTED) {
1676                 LOG_WARNING("target not halted");
1677                 return ERROR_TARGET_NOT_HALTED;
1678         }
1679
1680         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1681
1682         /* Mark register R0 as dirty, as it will be used
1683          * for transferring the data.
1684          * It will be restored automatically when exiting
1685          * debug mode
1686          */
1687         reg = armv8_reg_current(arm, 1);
1688         reg->dirty = true;
1689
1690         reg = armv8_reg_current(arm, 0);
1691         reg->dirty = true;
1692
1693         /*  clear any abort  */
1694         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1695                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1696         if (retval != ERROR_OK)
1697                 return retval;
1698
1699
1700         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1701
1702         /* The algorithm only copies 32 bit words, so the buffer
1703          * should be expanded to include the words at either end.
1704          * The first and last words will be read first to avoid
1705          * corruption if needed.
1706          */
1707         tmp_buff = malloc(total_u32 * 4);
1708
1709         if ((start_byte != 0) && (total_u32 > 1)) {
1710                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1711                  * the other bytes in the word.
1712                  */
1713                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1714                 if (retval != ERROR_OK)
1715                         goto error_free_buff_w;
1716         }
1717
1718         /* If end of write is not aligned, or the write is less than 4 bytes */
1719         if ((end_byte != 0) ||
1720                 ((total_u32 == 1) && (total_bytes != 4))) {
1721
1722                 /* Read the last word to avoid corruption during 32 bit write */
1723                 int mem_offset = (total_u32-1) * 4;
1724                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1725                 if (retval != ERROR_OK)
1726                         goto error_free_buff_w;
1727         }
1728
1729         /* Copy the write buffer over the top of the temporary buffer */
1730         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1731
1732         /* We now have a 32 bit aligned buffer that can be written */
1733
1734         /* Read DSCR */
1735         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1736                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1737         if (retval != ERROR_OK)
1738                 goto error_free_buff_w;
1739
1740         /* Set Normal access mode  */
1741         dscr = (dscr & ~DSCR_MA);
1742         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1743                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1744
1745         if (arm->core_state == ARM_STATE_AARCH64) {
1746                 /* Write X0 with value 'address' using write procedure */
1747                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1748                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1749                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1750                 retval += aarch64_exec_opcode(target,
1751                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1752         } else {
1753                 /* Write R0 with value 'address' using write procedure */
1754                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1755                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1756                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1757                 retval += aarch64_exec_opcode(target,
1758                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1759
1760         }
1761         /* Step 1.d   - Change DCC to memory mode */
1762         dscr = dscr | DSCR_MA;
1763         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1764                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1765         if (retval != ERROR_OK)
1766                 goto error_unset_dtr_w;
1767
1768
1769         /* Step 2.a   - Do the write */
1770         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1771                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1772         if (retval != ERROR_OK)
1773                 goto error_unset_dtr_w;
1774
1775         /* Step 3.a   - Switch DTR mode back to Normal mode */
1776         dscr = (dscr & ~DSCR_MA);
1777         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1778                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1779         if (retval != ERROR_OK)
1780                 goto error_unset_dtr_w;
1781
1782         /* Check for sticky abort flags in the DSCR */
1783         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1784                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1785         if (retval != ERROR_OK)
1786                 goto error_free_buff_w;
1787         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1788                 /* Abort occurred - clear it and exit */
1789                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1790                 mem_ap_write_atomic_u32(armv8->debug_ap,
1791                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1792                 goto error_free_buff_w;
1793         }
1794
1795         /* Done */
1796         free(tmp_buff);
1797         return ERROR_OK;
1798
1799 error_unset_dtr_w:
1800         /* Unset DTR mode */
1801         mem_ap_read_atomic_u32(armv8->debug_ap,
1802                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1803         dscr = (dscr & ~DSCR_MA);
1804         mem_ap_write_atomic_u32(armv8->debug_ap,
1805                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1806 error_free_buff_w:
1807         LOG_ERROR("error");
1808         free(tmp_buff);
1809         return ERROR_FAIL;
1810 }
1811
1812 static int aarch64_read_apb_ap_memory(struct target *target,
1813         target_addr_t address, uint32_t size,
1814         uint32_t count, uint8_t *buffer)
1815 {
1816         /* read memory through APB-AP */
1817         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1818         struct armv8_common *armv8 = target_to_armv8(target);
1819         struct arm *arm = &armv8->arm;
1820         int total_bytes = count * size;
1821         int total_u32;
1822         int start_byte = address & 0x3;
1823         int end_byte   = (address + total_bytes) & 0x3;
1824         struct reg *reg;
1825         uint32_t dscr;
1826         uint8_t *tmp_buff = NULL;
1827         uint8_t *u8buf_ptr;
1828         uint32_t value;
1829
1830         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1831                           address, size, count);
1832         if (target->state != TARGET_HALTED) {
1833                 LOG_WARNING("target not halted");
1834                 return ERROR_TARGET_NOT_HALTED;
1835         }
1836
1837         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1838         /* Mark register X0, X1 as dirty, as it will be used
1839          * for transferring the data.
1840          * It will be restored automatically when exiting
1841          * debug mode
1842          */
1843         reg = armv8_reg_current(arm, 1);
1844         reg->dirty = true;
1845
1846         reg = armv8_reg_current(arm, 0);
1847         reg->dirty = true;
1848
1849         /*      clear any abort  */
1850         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1851                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1852         if (retval != ERROR_OK)
1853                 goto error_free_buff_r;
1854
1855         /* Read DSCR */
1856         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1857                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1858
1859         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1860
1861         /* Set Normal access mode  */
1862         dscr = (dscr & ~DSCR_MA);
1863         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1864                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1865
1866         if (arm->core_state == ARM_STATE_AARCH64) {
1867                 /* Write X0 with value 'address' using write procedure */
1868                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1869                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1870                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1871                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1872                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1873                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1874                 /* Step 1.e - Change DCC to memory mode */
1875                 dscr = dscr | DSCR_MA;
1876                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1877                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1878                 /* Step 1.f - read DBGDTRTX and discard the value */
1879                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1880                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1881         } else {
1882                 /* Write R0 with value 'address' using write procedure */
1883                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1884                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1885                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1886                 retval += aarch64_exec_opcode(target,
1887                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1888                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1889                 retval += aarch64_exec_opcode(target,
1890                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
1891                 /* Step 1.e - Change DCC to memory mode */
1892                 dscr = dscr | DSCR_MA;
1893                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1894                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1895                 /* Step 1.f - read DBGDTRTX and discard the value */
1896                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1897                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1898
1899         }
1900         if (retval != ERROR_OK)
1901                 goto error_unset_dtr_r;
1902
1903         /* Optimize the read as much as we can, either way we read in a single pass  */
1904         if ((start_byte) || (end_byte)) {
1905                 /* The algorithm only copies 32 bit words, so the buffer
1906                  * should be expanded to include the words at either end.
1907                  * The first and last words will be read into a temp buffer
1908                  * to avoid corruption
1909                  */
1910                 tmp_buff = malloc(total_u32 * 4);
1911                 if (!tmp_buff)
1912                         goto error_unset_dtr_r;
1913
1914                 /* use the tmp buffer to read the entire data */
1915                 u8buf_ptr = tmp_buff;
1916         } else
1917                 /* address and read length are aligned so read directly into the passed buffer */
1918                 u8buf_ptr = buffer;
1919
1920         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1921          * Abort flags are sticky, so can be read at end of transactions
1922          *
1923          * This data is read in aligned to 32 bit boundary.
1924          */
1925
1926         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1927          * increments X0 by 4. */
1928         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1929                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1930         if (retval != ERROR_OK)
1931                         goto error_unset_dtr_r;
1932
1933         /* Step 3.a - set DTR access mode back to Normal mode   */
1934         dscr = (dscr & ~DSCR_MA);
1935         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1936                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1937         if (retval != ERROR_OK)
1938                 goto error_free_buff_r;
1939
1940         /* Step 3.b - read DBGDTRTX for the final value */
1941         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1942                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1943         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1944
1945         /* Check for sticky abort flags in the DSCR */
1946         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1947                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1948         if (retval != ERROR_OK)
1949                 goto error_free_buff_r;
1950         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1951                 /* Abort occurred - clear it and exit */
1952                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1953                 mem_ap_write_atomic_u32(armv8->debug_ap,
1954                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1955                 goto error_free_buff_r;
1956         }
1957
1958         /* check if we need to copy aligned data by applying any shift necessary */
1959         if (tmp_buff) {
1960                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1961                 free(tmp_buff);
1962         }
1963
1964         /* Done */
1965         return ERROR_OK;
1966
1967 error_unset_dtr_r:
1968         /* Unset DTR mode */
1969         mem_ap_read_atomic_u32(armv8->debug_ap,
1970                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1971         dscr = (dscr & ~DSCR_MA);
1972         mem_ap_write_atomic_u32(armv8->debug_ap,
1973                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1974 error_free_buff_r:
1975         LOG_ERROR("error");
1976         free(tmp_buff);
1977         return ERROR_FAIL;
1978 }
1979
1980 static int aarch64_read_phys_memory(struct target *target,
1981         target_addr_t address, uint32_t size,
1982         uint32_t count, uint8_t *buffer)
1983 {
1984         struct armv8_common *armv8 = target_to_armv8(target);
1985         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1986         struct adiv5_dap *swjdp = armv8->arm.dap;
1987         uint8_t apsel = swjdp->apsel;
1988         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1989                 address, size, count);
1990
1991         if (count && buffer) {
1992
1993                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
1994
1995                         /* read memory through AHB-AP */
1996                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
1997                 } else {
1998                         /* read memory through APB-AP */
1999                         retval = aarch64_mmu_modify(target, 0);
2000                         if (retval != ERROR_OK)
2001                                 return retval;
2002                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2003                 }
2004         }
2005         return retval;
2006 }
2007
2008 static int aarch64_read_memory(struct target *target, target_addr_t address,
2009         uint32_t size, uint32_t count, uint8_t *buffer)
2010 {
2011         int mmu_enabled = 0;
2012         target_addr_t virt, phys;
2013         int retval;
2014         struct armv8_common *armv8 = target_to_armv8(target);
2015         struct adiv5_dap *swjdp = armv8->arm.dap;
2016         uint8_t apsel = swjdp->apsel;
2017
2018         /* aarch64 handles unaligned memory access */
2019         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2020                 size, count);
2021
2022         /* determine if MMU was enabled on target stop */
2023         if (!armv8->is_armv7r) {
2024                 retval = aarch64_mmu(target, &mmu_enabled);
2025                 if (retval != ERROR_OK)
2026                         return retval;
2027         }
2028
2029         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2030                 if (mmu_enabled) {
2031                         virt = address;
2032                         retval = aarch64_virt2phys(target, virt, &phys);
2033                         if (retval != ERROR_OK)
2034                                 return retval;
2035
2036                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2037                                   virt, phys);
2038                         address = phys;
2039                 }
2040                 retval = aarch64_read_phys_memory(target, address, size, count,
2041                                                   buffer);
2042         } else {
2043                 if (mmu_enabled) {
2044                         retval = aarch64_check_address(target, address);
2045                         if (retval != ERROR_OK)
2046                                 return retval;
2047                         /* enable MMU as we could have disabled it for phys
2048                            access */
2049                         retval = aarch64_mmu_modify(target, 1);
2050                         if (retval != ERROR_OK)
2051                                 return retval;
2052                 }
2053                 retval = aarch64_read_apb_ap_memory(target, address, size,
2054                                                     count, buffer);
2055         }
2056         return retval;
2057 }
2058
2059 static int aarch64_write_phys_memory(struct target *target,
2060         target_addr_t address, uint32_t size,
2061         uint32_t count, const uint8_t *buffer)
2062 {
2063         struct armv8_common *armv8 = target_to_armv8(target);
2064         struct adiv5_dap *swjdp = armv8->arm.dap;
2065         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2066         uint8_t apsel = swjdp->apsel;
2067
2068         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2069                 size, count);
2070
2071         if (count && buffer) {
2072
2073                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2074
2075                         /* write memory through AHB-AP */
2076                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2077                 } else {
2078
2079                         /* write memory through APB-AP */
2080                         if (!armv8->is_armv7r) {
2081                                 retval = aarch64_mmu_modify(target, 0);
2082                                 if (retval != ERROR_OK)
2083                                         return retval;
2084                         }
2085                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2086                 }
2087         }
2088
2089
2090         /* REVISIT this op is generic ARMv7-A/R stuff */
2091         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2092                 struct arm_dpm *dpm = armv8->arm.dpm;
2093
2094                 retval = dpm->prepare(dpm);
2095                 if (retval != ERROR_OK)
2096                         return retval;
2097
2098                 /* The Cache handling will NOT work with MMU active, the
2099                  * wrong addresses will be invalidated!
2100                  *
2101                  * For both ICache and DCache, walk all cache lines in the
2102                  * address range. Cortex-A8 has fixed 64 byte line length.
2103                  *
2104                  * REVISIT per ARMv7, these may trigger watchpoints ...
2105                  */
2106
2107                 /* invalidate I-Cache */
2108                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2109                         /* ICIMVAU - Invalidate Cache single entry
2110                          * with MVA to PoU
2111                          *      MCR p15, 0, r0, c7, c5, 1
2112                          */
2113                         for (uint32_t cacheline = address;
2114                                 cacheline < address + size * count;
2115                                 cacheline += 64) {
2116                                 retval = dpm->instr_write_data_r0(dpm,
2117                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2118                                                 cacheline);
2119                                 if (retval != ERROR_OK)
2120                                         return retval;
2121                         }
2122                 }
2123
2124                 /* invalidate D-Cache */
2125                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2126                         /* DCIMVAC - Invalidate data Cache line
2127                          * with MVA to PoC
2128                          *      MCR p15, 0, r0, c7, c6, 1
2129                          */
2130                         for (uint32_t cacheline = address;
2131                                 cacheline < address + size * count;
2132                                 cacheline += 64) {
2133                                 retval = dpm->instr_write_data_r0(dpm,
2134                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2135                                                 cacheline);
2136                                 if (retval != ERROR_OK)
2137                                         return retval;
2138                         }
2139                 }
2140
2141                 /* (void) */ dpm->finish(dpm);
2142         }
2143
2144         return retval;
2145 }
2146
2147 static int aarch64_write_memory(struct target *target, target_addr_t address,
2148         uint32_t size, uint32_t count, const uint8_t *buffer)
2149 {
2150         int mmu_enabled = 0;
2151         target_addr_t virt, phys;
2152         int retval;
2153         struct armv8_common *armv8 = target_to_armv8(target);
2154         struct adiv5_dap *swjdp = armv8->arm.dap;
2155         uint8_t apsel = swjdp->apsel;
2156
2157         /* aarch64 handles unaligned memory access */
2158         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2159                   "; count %" PRId32, address, size, count);
2160
2161         /* determine if MMU was enabled on target stop */
2162         if (!armv8->is_armv7r) {
2163                 retval = aarch64_mmu(target, &mmu_enabled);
2164                 if (retval != ERROR_OK)
2165                         return retval;
2166         }
2167
2168         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2169                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2170                           PRId32 "; count %" PRId32, address, size, count);
2171                 if (mmu_enabled) {
2172                         virt = address;
2173                         retval = aarch64_virt2phys(target, virt, &phys);
2174                         if (retval != ERROR_OK)
2175                                 return retval;
2176
2177                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2178                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2179                         address = phys;
2180                 }
2181                 retval = aarch64_write_phys_memory(target, address, size,
2182                                 count, buffer);
2183         } else {
2184                 if (mmu_enabled) {
2185                         retval = aarch64_check_address(target, address);
2186                         if (retval != ERROR_OK)
2187                                 return retval;
2188                         /* enable MMU as we could have disabled it for phys access */
2189                         retval = aarch64_mmu_modify(target, 1);
2190                         if (retval != ERROR_OK)
2191                                 return retval;
2192                 }
2193                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2194         }
2195         return retval;
2196 }
2197
2198 static int aarch64_handle_target_request(void *priv)
2199 {
2200         struct target *target = priv;
2201         struct armv8_common *armv8 = target_to_armv8(target);
2202         int retval;
2203
2204         if (!target_was_examined(target))
2205                 return ERROR_OK;
2206         if (!target->dbg_msg_enabled)
2207                 return ERROR_OK;
2208
2209         if (target->state == TARGET_RUNNING) {
2210                 uint32_t request;
2211                 uint32_t dscr;
2212                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2213                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2214
2215                 /* check if we have data */
2216                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2217                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2218                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2219                         if (retval == ERROR_OK) {
2220                                 target_request(target, request);
2221                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2222                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2223                         }
2224                 }
2225         }
2226
2227         return ERROR_OK;
2228 }
2229
2230 static int aarch64_examine_first(struct target *target)
2231 {
2232         struct aarch64_common *aarch64 = target_to_aarch64(target);
2233         struct armv8_common *armv8 = &aarch64->armv8_common;
2234         struct adiv5_dap *swjdp = armv8->arm.dap;
2235         int retval = ERROR_OK;
2236         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2237         int i;
2238
2239         /* We do one extra read to ensure DAP is configured,
2240          * we call ahbap_debugport_init(swjdp) instead
2241          */
2242         retval = dap_dp_init(swjdp);
2243         if (retval != ERROR_OK)
2244                 return retval;
2245
2246         /* Search for the APB-AB - it is needed for access to debug registers */
2247         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2248         if (retval != ERROR_OK) {
2249                 LOG_ERROR("Could not find APB-AP for debug access");
2250                 return retval;
2251         }
2252
2253         retval = mem_ap_init(armv8->debug_ap);
2254         if (retval != ERROR_OK) {
2255                 LOG_ERROR("Could not initialize the APB-AP");
2256                 return retval;
2257         }
2258
2259         armv8->debug_ap->memaccess_tck = 80;
2260
2261         /* Search for the AHB-AB */
2262         armv8->memory_ap_available = false;
2263         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2264         if (retval == ERROR_OK) {
2265                 retval = mem_ap_init(armv8->memory_ap);
2266                 if (retval == ERROR_OK)
2267                         armv8->memory_ap_available = true;
2268         }
2269         if (retval != ERROR_OK) {
2270                 /* AHB-AP not found or unavailable - use the CPU */
2271                 LOG_DEBUG("No AHB-AP available for memory access");
2272         }
2273
2274
2275         if (!target->dbgbase_set) {
2276                 uint32_t dbgbase;
2277                 /* Get ROM Table base */
2278                 uint32_t apid;
2279                 int32_t coreidx = target->coreid;
2280                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2281                 if (retval != ERROR_OK)
2282                         return retval;
2283                 /* Lookup 0x15 -- Processor DAP */
2284                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2285                                 &armv8->debug_base, &coreidx);
2286                 if (retval != ERROR_OK)
2287                         return retval;
2288                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2289                           coreidx, armv8->debug_base);
2290         } else
2291                 armv8->debug_base = target->dbgbase;
2292
2293         LOG_DEBUG("Target ctibase is 0x%x", target->ctibase);
2294         if (target->ctibase == 0)
2295                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x1000;
2296         else
2297                 armv8->cti_base = target->ctibase;
2298
2299         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2300                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2301         if (retval != ERROR_OK) {
2302                 LOG_DEBUG("Examine %s failed", "oslock");
2303                 return retval;
2304         }
2305
2306         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2307                         armv8->debug_base + 0x88, &cpuid);
2308         LOG_DEBUG("0x88 = %x", cpuid);
2309
2310         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2311                         armv8->debug_base + 0x314, &cpuid);
2312         LOG_DEBUG("0x314 = %x", cpuid);
2313
2314         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2315                         armv8->debug_base + 0x310, &cpuid);
2316         LOG_DEBUG("0x310 = %x", cpuid);
2317         if (retval != ERROR_OK)
2318                 return retval;
2319
2320         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2321                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2322         if (retval != ERROR_OK) {
2323                 LOG_DEBUG("Examine %s failed", "CPUID");
2324                 return retval;
2325         }
2326
2327         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2328                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2329         if (retval != ERROR_OK) {
2330                 LOG_DEBUG("Examine %s failed", "CTYPR");
2331                 return retval;
2332         }
2333
2334         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2335                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2336         if (retval != ERROR_OK) {
2337                 LOG_DEBUG("Examine %s failed", "TTYPR");
2338                 return retval;
2339         }
2340
2341         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2342                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2343         if (retval != ERROR_OK) {
2344                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2345                 return retval;
2346         }
2347         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2348                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2349         if (retval != ERROR_OK) {
2350                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2351                 return retval;
2352         }
2353
2354         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2355         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2356         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2357         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2358         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2359
2360         armv8->arm.core_type = ARM_MODE_MON;
2361         armv8->arm.core_state = ARM_STATE_AARCH64;
2362         retval = aarch64_dpm_setup(aarch64, debug);
2363         if (retval != ERROR_OK)
2364                 return retval;
2365
2366         /* Setup Breakpoint Register Pairs */
2367         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2368         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2369
2370         /* hack - no context bpt support yet */
2371         aarch64->brp_num_context = 0;
2372
2373         aarch64->brp_num_available = aarch64->brp_num;
2374         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2375         for (i = 0; i < aarch64->brp_num; i++) {
2376                 aarch64->brp_list[i].used = 0;
2377                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2378                         aarch64->brp_list[i].type = BRP_NORMAL;
2379                 else
2380                         aarch64->brp_list[i].type = BRP_CONTEXT;
2381                 aarch64->brp_list[i].value = 0;
2382                 aarch64->brp_list[i].control = 0;
2383                 aarch64->brp_list[i].BRPn = i;
2384         }
2385
2386         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2387
2388         target_set_examined(target);
2389         return ERROR_OK;
2390 }
2391
2392 static int aarch64_examine(struct target *target)
2393 {
2394         int retval = ERROR_OK;
2395
2396         /* don't re-probe hardware after each reset */
2397         if (!target_was_examined(target))
2398                 retval = aarch64_examine_first(target);
2399
2400         /* Configure core debug access */
2401         if (retval == ERROR_OK)
2402                 retval = aarch64_init_debug_access(target);
2403
2404         return retval;
2405 }
2406
2407 /*
2408  *      Cortex-A8 target creation and initialization
2409  */
2410
2411 static int aarch64_init_target(struct command_context *cmd_ctx,
2412         struct target *target)
2413 {
2414         /* examine_first() does a bunch of this */
2415         return ERROR_OK;
2416 }
2417
2418 static int aarch64_init_arch_info(struct target *target,
2419         struct aarch64_common *aarch64, struct jtag_tap *tap)
2420 {
2421         struct armv8_common *armv8 = &aarch64->armv8_common;
2422         struct adiv5_dap *dap = armv8->arm.dap;
2423
2424         armv8->arm.dap = dap;
2425
2426         /* Setup struct aarch64_common */
2427         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2428         /*  tap has no dap initialized */
2429         if (!tap->dap) {
2430                 tap->dap = dap_init();
2431
2432                 /* Leave (only) generic DAP stuff for debugport_init() */
2433                 tap->dap->tap = tap;
2434         }
2435
2436         armv8->arm.dap = tap->dap;
2437
2438         aarch64->fast_reg_read = 0;
2439
2440         /* register arch-specific functions */
2441         armv8->examine_debug_reason = NULL;
2442
2443         armv8->post_debug_entry = aarch64_post_debug_entry;
2444
2445         armv8->pre_restore_context = NULL;
2446
2447         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2448
2449         /* REVISIT v7a setup should be in a v7a-specific routine */
2450         armv8_init_arch_info(target, armv8);
2451         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2452
2453         return ERROR_OK;
2454 }
2455
2456 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2457 {
2458         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2459
2460         aarch64->armv8_common.is_armv7r = false;
2461
2462         return aarch64_init_arch_info(target, aarch64, target->tap);
2463 }
2464
2465 static int aarch64_mmu(struct target *target, int *enabled)
2466 {
2467         if (target->state != TARGET_HALTED) {
2468                 LOG_ERROR("%s: target not halted", __func__);
2469                 return ERROR_TARGET_INVALID;
2470         }
2471
2472         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2473         return ERROR_OK;
2474 }
2475
2476 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2477                              target_addr_t *phys)
2478 {
2479         int retval = ERROR_FAIL;
2480         struct armv8_common *armv8 = target_to_armv8(target);
2481         struct adiv5_dap *swjdp = armv8->arm.dap;
2482         uint8_t apsel = swjdp->apsel;
2483         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2484                 uint32_t ret;
2485                 retval = armv8_mmu_translate_va(target,
2486                                 virt, &ret);
2487                 if (retval != ERROR_OK)
2488                         goto done;
2489                 *phys = ret;
2490         } else {/*  use this method if armv8->memory_ap not selected
2491                  *  mmu must be enable in order to get a correct translation */
2492                 retval = aarch64_mmu_modify(target, 1);
2493                 if (retval != ERROR_OK)
2494                         goto done;
2495                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2496         }
2497 done:
2498         return retval;
2499 }
2500
2501 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2502 {
2503         struct target *target = get_current_target(CMD_CTX);
2504         struct armv8_common *armv8 = target_to_armv8(target);
2505
2506         return armv8_handle_cache_info_command(CMD_CTX,
2507                         &armv8->armv8_mmu.armv8_cache);
2508 }
2509
2510
2511 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2512 {
2513         struct target *target = get_current_target(CMD_CTX);
2514         if (!target_was_examined(target)) {
2515                 LOG_ERROR("target not examined yet");
2516                 return ERROR_FAIL;
2517         }
2518
2519         return aarch64_init_debug_access(target);
2520 }
2521 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2522 {
2523         struct target *target = get_current_target(CMD_CTX);
2524         /* check target is an smp target */
2525         struct target_list *head;
2526         struct target *curr;
2527         head = target->head;
2528         target->smp = 0;
2529         if (head != (struct target_list *)NULL) {
2530                 while (head != (struct target_list *)NULL) {
2531                         curr = head->target;
2532                         curr->smp = 0;
2533                         head = head->next;
2534                 }
2535                 /*  fixes the target display to the debugger */
2536                 target->gdb_service->target = target;
2537         }
2538         return ERROR_OK;
2539 }
2540
2541 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2542 {
2543         struct target *target = get_current_target(CMD_CTX);
2544         struct target_list *head;
2545         struct target *curr;
2546         head = target->head;
2547         if (head != (struct target_list *)NULL) {
2548                 target->smp = 1;
2549                 while (head != (struct target_list *)NULL) {
2550                         curr = head->target;
2551                         curr->smp = 1;
2552                         head = head->next;
2553                 }
2554         }
2555         return ERROR_OK;
2556 }
2557
2558 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2559 {
2560         struct target *target = get_current_target(CMD_CTX);
2561         int retval = ERROR_OK;
2562         struct target_list *head;
2563         head = target->head;
2564         if (head != (struct target_list *)NULL) {
2565                 if (CMD_ARGC == 1) {
2566                         int coreid = 0;
2567                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2568                         if (ERROR_OK != retval)
2569                                 return retval;
2570                         target->gdb_service->core[1] = coreid;
2571
2572                 }
2573                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2574                         , target->gdb_service->core[1]);
2575         }
2576         return ERROR_OK;
2577 }
2578
2579 static const struct command_registration aarch64_exec_command_handlers[] = {
2580         {
2581                 .name = "cache_info",
2582                 .handler = aarch64_handle_cache_info_command,
2583                 .mode = COMMAND_EXEC,
2584                 .help = "display information about target caches",
2585                 .usage = "",
2586         },
2587         {
2588                 .name = "dbginit",
2589                 .handler = aarch64_handle_dbginit_command,
2590                 .mode = COMMAND_EXEC,
2591                 .help = "Initialize core debug",
2592                 .usage = "",
2593         },
2594         {       .name = "smp_off",
2595                 .handler = aarch64_handle_smp_off_command,
2596                 .mode = COMMAND_EXEC,
2597                 .help = "Stop smp handling",
2598                 .usage = "",
2599         },
2600         {
2601                 .name = "smp_on",
2602                 .handler = aarch64_handle_smp_on_command,
2603                 .mode = COMMAND_EXEC,
2604                 .help = "Restart smp handling",
2605                 .usage = "",
2606         },
2607         {
2608                 .name = "smp_gdb",
2609                 .handler = aarch64_handle_smp_gdb_command,
2610                 .mode = COMMAND_EXEC,
2611                 .help = "display/fix current core played to gdb",
2612                 .usage = "",
2613         },
2614
2615
2616         COMMAND_REGISTRATION_DONE
2617 };
2618 static const struct command_registration aarch64_command_handlers[] = {
2619         {
2620                 .chain = arm_command_handlers,
2621         },
2622         {
2623                 .chain = armv8_command_handlers,
2624         },
2625         {
2626                 .name = "cortex_a",
2627                 .mode = COMMAND_ANY,
2628                 .help = "Cortex-A command group",
2629                 .usage = "",
2630                 .chain = aarch64_exec_command_handlers,
2631         },
2632         COMMAND_REGISTRATION_DONE
2633 };
2634
2635 struct target_type aarch64_target = {
2636         .name = "aarch64",
2637
2638         .poll = aarch64_poll,
2639         .arch_state = armv8_arch_state,
2640
2641         .halt = aarch64_halt,
2642         .resume = aarch64_resume,
2643         .step = aarch64_step,
2644
2645         .assert_reset = aarch64_assert_reset,
2646         .deassert_reset = aarch64_deassert_reset,
2647
2648         /* REVISIT allow exporting VFP3 registers ... */
2649         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2650
2651         .read_memory = aarch64_read_memory,
2652         .write_memory = aarch64_write_memory,
2653
2654         .checksum_memory = arm_checksum_memory,
2655         .blank_check_memory = arm_blank_check_memory,
2656
2657         .run_algorithm = armv4_5_run_algorithm,
2658
2659         .add_breakpoint = aarch64_add_breakpoint,
2660         .add_context_breakpoint = aarch64_add_context_breakpoint,
2661         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2662         .remove_breakpoint = aarch64_remove_breakpoint,
2663         .add_watchpoint = NULL,
2664         .remove_watchpoint = NULL,
2665
2666         .commands = aarch64_command_handlers,
2667         .target_create = aarch64_target_create,
2668         .init_target = aarch64_init_target,
2669         .examine = aarch64_examine,
2670
2671         .read_phys_memory = aarch64_read_phys_memory,
2672         .write_phys_memory = aarch64_write_phys_memory,
2673         .mmu = aarch64_mmu,
2674         .virt2phys = aarch64_virt2phys,
2675 };