]> git.gag.com Git - fw/openocd/blob - src/target/aarch64.c
target_request: replace command_print() with command_output_text()
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include "arm_semihosting.h"
32 #include "smp.h"
33 #include <helper/time_support.h>
34
35 enum restart_mode {
36         RESTART_LAZY,
37         RESTART_SYNC,
38 };
39
40 enum halt_mode {
41         HALT_LAZY,
42         HALT_SYNC,
43 };
44
45 struct aarch64_private_config {
46         struct adiv5_private_config adiv5_config;
47         struct arm_cti *cti;
48 };
49
50 static int aarch64_poll(struct target *target);
51 static int aarch64_debug_entry(struct target *target);
52 static int aarch64_restore_context(struct target *target, bool bpwp);
53 static int aarch64_set_breakpoint(struct target *target,
54         struct breakpoint *breakpoint, uint8_t matchmode);
55 static int aarch64_set_context_breakpoint(struct target *target,
56         struct breakpoint *breakpoint, uint8_t matchmode);
57 static int aarch64_set_hybrid_breakpoint(struct target *target,
58         struct breakpoint *breakpoint);
59 static int aarch64_unset_breakpoint(struct target *target,
60         struct breakpoint *breakpoint);
61 static int aarch64_mmu(struct target *target, int *enabled);
62 static int aarch64_virt2phys(struct target *target,
63         target_addr_t virt, target_addr_t *phys);
64 static int aarch64_read_cpu_memory(struct target *target,
65         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
66
67 static int aarch64_restore_system_control_reg(struct target *target)
68 {
69         enum arm_mode target_mode = ARM_MODE_ANY;
70         int retval = ERROR_OK;
71         uint32_t instr;
72
73         struct aarch64_common *aarch64 = target_to_aarch64(target);
74         struct armv8_common *armv8 = target_to_armv8(target);
75
76         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
77                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
78                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
79
80                 switch (armv8->arm.core_mode) {
81                 case ARMV8_64_EL0T:
82                         target_mode = ARMV8_64_EL1H;
83                         /* fall through */
84                 case ARMV8_64_EL1T:
85                 case ARMV8_64_EL1H:
86                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
87                         break;
88                 case ARMV8_64_EL2T:
89                 case ARMV8_64_EL2H:
90                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
91                         break;
92                 case ARMV8_64_EL3H:
93                 case ARMV8_64_EL3T:
94                         instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
95                         break;
96
97                 case ARM_MODE_SVC:
98                 case ARM_MODE_ABT:
99                 case ARM_MODE_FIQ:
100                 case ARM_MODE_IRQ:
101                 case ARM_MODE_SYS:
102                         instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
103                         break;
104
105                 default:
106                         LOG_INFO("cannot read system control register in this mode");
107                         return ERROR_FAIL;
108                 }
109
110                 if (target_mode != ARM_MODE_ANY)
111                         armv8_dpm_modeswitch(&armv8->dpm, target_mode);
112
113                 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
114                 if (retval != ERROR_OK)
115                         return retval;
116
117                 if (target_mode != ARM_MODE_ANY)
118                         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
119         }
120
121         return retval;
122 }
123
124 /*  modify system_control_reg in order to enable or disable mmu for :
125  *  - virt2phys address conversion
126  *  - read or write memory in phys or virt address */
127 static int aarch64_mmu_modify(struct target *target, int enable)
128 {
129         struct aarch64_common *aarch64 = target_to_aarch64(target);
130         struct armv8_common *armv8 = &aarch64->armv8_common;
131         int retval = ERROR_OK;
132         uint32_t instr = 0;
133
134         if (enable) {
135                 /*      if mmu enabled at target stop and mmu not enable */
136                 if (!(aarch64->system_control_reg & 0x1U)) {
137                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
138                         return ERROR_FAIL;
139                 }
140                 if (!(aarch64->system_control_reg_curr & 0x1U))
141                         aarch64->system_control_reg_curr |= 0x1U;
142         } else {
143                 if (aarch64->system_control_reg_curr & 0x4U) {
144                         /*  data cache is active */
145                         aarch64->system_control_reg_curr &= ~0x4U;
146                         /* flush data cache armv8 function to be called */
147                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
148                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
149                 }
150                 if ((aarch64->system_control_reg_curr & 0x1U)) {
151                         aarch64->system_control_reg_curr &= ~0x1U;
152                 }
153         }
154
155         switch (armv8->arm.core_mode) {
156         case ARMV8_64_EL0T:
157         case ARMV8_64_EL1T:
158         case ARMV8_64_EL1H:
159                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
160                 break;
161         case ARMV8_64_EL2T:
162         case ARMV8_64_EL2H:
163                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
164                 break;
165         case ARMV8_64_EL3H:
166         case ARMV8_64_EL3T:
167                 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
168                 break;
169
170         case ARM_MODE_SVC:
171         case ARM_MODE_ABT:
172         case ARM_MODE_FIQ:
173         case ARM_MODE_IRQ:
174         case ARM_MODE_SYS:
175                 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
176                 break;
177
178         default:
179                 LOG_DEBUG("unknown cpu state 0x%" PRIx32, armv8->arm.core_mode);
180                 break;
181         }
182
183         retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
184                                 aarch64->system_control_reg_curr);
185         return retval;
186 }
187
188 /*
189  * Basic debug access, very low level assumes state is saved
190  */
191 static int aarch64_init_debug_access(struct target *target)
192 {
193         struct armv8_common *armv8 = target_to_armv8(target);
194         int retval;
195         uint32_t dummy;
196
197         LOG_DEBUG("%s", target_name(target));
198
199         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
200                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
201         if (retval != ERROR_OK) {
202                 LOG_DEBUG("Examine %s failed", "oslock");
203                 return retval;
204         }
205
206         /* Clear Sticky Power Down status Bit in PRSR to enable access to
207            the registers in the Core Power Domain */
208         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
209                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         /*
214          * Static CTI configuration:
215          * Channel 0 -> trigger outputs HALT request to PE
216          * Channel 1 -> trigger outputs Resume request to PE
217          * Gate all channel trigger events from entering the CTM
218          */
219
220         /* Enable CTI */
221         retval = arm_cti_enable(armv8->cti, true);
222         /* By default, gate all channel events to and from the CTM */
223         if (retval == ERROR_OK)
224                 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
225         /* output halt requests to PE on channel 0 event */
226         if (retval == ERROR_OK)
227                 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
228         /* output restart requests to PE on channel 1 event */
229         if (retval == ERROR_OK)
230                 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
231         if (retval != ERROR_OK)
232                 return retval;
233
234         /* Resync breakpoint registers */
235
236         return ERROR_OK;
237 }
238
239 /* Write to memory mapped registers directly with no cache or mmu handling */
240 static int aarch64_dap_write_memap_register_u32(struct target *target,
241         uint32_t address,
242         uint32_t value)
243 {
244         int retval;
245         struct armv8_common *armv8 = target_to_armv8(target);
246
247         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
248
249         return retval;
250 }
251
252 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
253 {
254         struct arm_dpm *dpm = &a8->armv8_common.dpm;
255         int retval;
256
257         dpm->arm = &a8->armv8_common.arm;
258         dpm->didr = debug;
259
260         retval = armv8_dpm_setup(dpm);
261         if (retval == ERROR_OK)
262                 retval = armv8_dpm_initialize(dpm);
263
264         return retval;
265 }
266
267 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
268 {
269         struct armv8_common *armv8 = target_to_armv8(target);
270         return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
271 }
272
273 static int aarch64_check_state_one(struct target *target,
274                 uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
275 {
276         struct armv8_common *armv8 = target_to_armv8(target);
277         uint32_t prsr;
278         int retval;
279
280         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
281                         armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
282         if (retval != ERROR_OK)
283                 return retval;
284
285         if (p_prsr)
286                 *p_prsr = prsr;
287
288         if (p_result)
289                 *p_result = (prsr & mask) == (val & mask);
290
291         return ERROR_OK;
292 }
293
294 static int aarch64_wait_halt_one(struct target *target)
295 {
296         int retval = ERROR_OK;
297         uint32_t prsr;
298
299         int64_t then = timeval_ms();
300         for (;;) {
301                 int halted;
302
303                 retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
304                 if (retval != ERROR_OK || halted)
305                         break;
306
307                 if (timeval_ms() > then + 1000) {
308                         retval = ERROR_TARGET_TIMEOUT;
309                         LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
310                         break;
311                 }
312         }
313         return retval;
314 }
315
316 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
317 {
318         int retval = ERROR_OK;
319         struct target_list *head = target->head;
320         struct target *first = NULL;
321
322         LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
323
324         while (head != NULL) {
325                 struct target *curr = head->target;
326                 struct armv8_common *armv8 = target_to_armv8(curr);
327                 head = head->next;
328
329                 if (exc_target && curr == target)
330                         continue;
331                 if (!target_was_examined(curr))
332                         continue;
333                 if (curr->state != TARGET_RUNNING)
334                         continue;
335
336                 /* HACK: mark this target as prepared for halting */
337                 curr->debug_reason = DBG_REASON_DBGRQ;
338
339                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
340                 retval = arm_cti_ungate_channel(armv8->cti, 0);
341                 if (retval == ERROR_OK)
342                         retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
343                 if (retval != ERROR_OK)
344                         break;
345
346                 LOG_DEBUG("target %s prepared", target_name(curr));
347
348                 if (first == NULL)
349                         first = curr;
350         }
351
352         if (p_first) {
353                 if (exc_target && first)
354                         *p_first = first;
355                 else
356                         *p_first = target;
357         }
358
359         return retval;
360 }
361
362 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
363 {
364         int retval = ERROR_OK;
365         struct armv8_common *armv8 = target_to_armv8(target);
366
367         LOG_DEBUG("%s", target_name(target));
368
369         /* allow Halting Debug Mode */
370         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
371         if (retval != ERROR_OK)
372                 return retval;
373
374         /* trigger an event on channel 0, this outputs a halt request to the PE */
375         retval = arm_cti_pulse_channel(armv8->cti, 0);
376         if (retval != ERROR_OK)
377                 return retval;
378
379         if (mode == HALT_SYNC) {
380                 retval = aarch64_wait_halt_one(target);
381                 if (retval != ERROR_OK) {
382                         if (retval == ERROR_TARGET_TIMEOUT)
383                                 LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
384                         return retval;
385                 }
386         }
387
388         return ERROR_OK;
389 }
390
391 static int aarch64_halt_smp(struct target *target, bool exc_target)
392 {
393         struct target *next = target;
394         int retval;
395
396         /* prepare halt on all PEs of the group */
397         retval = aarch64_prepare_halt_smp(target, exc_target, &next);
398
399         if (exc_target && next == target)
400                 return retval;
401
402         /* halt the target PE */
403         if (retval == ERROR_OK)
404                 retval = aarch64_halt_one(next, HALT_LAZY);
405
406         if (retval != ERROR_OK)
407                 return retval;
408
409         /* wait for all PEs to halt */
410         int64_t then = timeval_ms();
411         for (;;) {
412                 bool all_halted = true;
413                 struct target_list *head;
414                 struct target *curr;
415
416                 foreach_smp_target(head, target->head) {
417                         int halted;
418
419                         curr = head->target;
420
421                         if (!target_was_examined(curr))
422                                 continue;
423
424                         retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
425                         if (retval != ERROR_OK || !halted) {
426                                 all_halted = false;
427                                 break;
428                         }
429                 }
430
431                 if (all_halted)
432                         break;
433
434                 if (timeval_ms() > then + 1000) {
435                         retval = ERROR_TARGET_TIMEOUT;
436                         break;
437                 }
438
439                 /*
440                  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
441                  * and it looks like the CTI's are not connected by a common
442                  * trigger matrix. It seems that we need to halt one core in each
443                  * cluster explicitly. So if we find that a core has not halted
444                  * yet, we trigger an explicit halt for the second cluster.
445                  */
446                 retval = aarch64_halt_one(curr, HALT_LAZY);
447                 if (retval != ERROR_OK)
448                         break;
449         }
450
451         return retval;
452 }
453
454 static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
455 {
456         struct target *gdb_target = NULL;
457         struct target_list *head;
458         struct target *curr;
459
460         if (debug_reason == DBG_REASON_NOTHALTED) {
461                 LOG_DEBUG("Halting remaining targets in SMP group");
462                 aarch64_halt_smp(target, true);
463         }
464
465         /* poll all targets in the group, but skip the target that serves GDB */
466         foreach_smp_target(head, target->head) {
467                 curr = head->target;
468                 /* skip calling context */
469                 if (curr == target)
470                         continue;
471                 if (!target_was_examined(curr))
472                         continue;
473                 /* skip targets that were already halted */
474                 if (curr->state == TARGET_HALTED)
475                         continue;
476                 /* remember the gdb_service->target */
477                 if (curr->gdb_service != NULL)
478                         gdb_target = curr->gdb_service->target;
479                 /* skip it */
480                 if (curr == gdb_target)
481                         continue;
482
483                 /* avoid recursion in aarch64_poll() */
484                 curr->smp = 0;
485                 aarch64_poll(curr);
486                 curr->smp = 1;
487         }
488
489         /* after all targets were updated, poll the gdb serving target */
490         if (gdb_target != NULL && gdb_target != target)
491                 aarch64_poll(gdb_target);
492
493         return ERROR_OK;
494 }
495
496 /*
497  * Aarch64 Run control
498  */
499
500 static int aarch64_poll(struct target *target)
501 {
502         enum target_state prev_target_state;
503         int retval = ERROR_OK;
504         int halted;
505
506         retval = aarch64_check_state_one(target,
507                                 PRSR_HALT, PRSR_HALT, &halted, NULL);
508         if (retval != ERROR_OK)
509                 return retval;
510
511         if (halted) {
512                 prev_target_state = target->state;
513                 if (prev_target_state != TARGET_HALTED) {
514                         enum target_debug_reason debug_reason = target->debug_reason;
515
516                         /* We have a halting debug event */
517                         target->state = TARGET_HALTED;
518                         LOG_DEBUG("Target %s halted", target_name(target));
519                         retval = aarch64_debug_entry(target);
520                         if (retval != ERROR_OK)
521                                 return retval;
522
523                         if (target->smp)
524                                 update_halt_gdb(target, debug_reason);
525
526                         if (arm_semihosting(target, &retval) != 0)
527                                 return retval;
528
529                         switch (prev_target_state) {
530                         case TARGET_RUNNING:
531                         case TARGET_UNKNOWN:
532                         case TARGET_RESET:
533                                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
534                                 break;
535                         case TARGET_DEBUG_RUNNING:
536                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
537                                 break;
538                         default:
539                                 break;
540                         }
541                 }
542         } else
543                 target->state = TARGET_RUNNING;
544
545         return retval;
546 }
547
548 static int aarch64_halt(struct target *target)
549 {
550         struct armv8_common *armv8 = target_to_armv8(target);
551         armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
552
553         if (target->smp)
554                 return aarch64_halt_smp(target, false);
555
556         return aarch64_halt_one(target, HALT_SYNC);
557 }
558
559 static int aarch64_restore_one(struct target *target, int current,
560         uint64_t *address, int handle_breakpoints, int debug_execution)
561 {
562         struct armv8_common *armv8 = target_to_armv8(target);
563         struct arm *arm = &armv8->arm;
564         int retval;
565         uint64_t resume_pc;
566
567         LOG_DEBUG("%s", target_name(target));
568
569         if (!debug_execution)
570                 target_free_all_working_areas(target);
571
572         /* current = 1: continue on current pc, otherwise continue at <address> */
573         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
574         if (!current)
575                 resume_pc = *address;
576         else
577                 *address = resume_pc;
578
579         /* Make sure that the Armv7 gdb thumb fixups does not
580          * kill the return address
581          */
582         switch (arm->core_state) {
583                 case ARM_STATE_ARM:
584                         resume_pc &= 0xFFFFFFFC;
585                         break;
586                 case ARM_STATE_AARCH64:
587                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
588                         break;
589                 case ARM_STATE_THUMB:
590                 case ARM_STATE_THUMB_EE:
591                         /* When the return address is loaded into PC
592                          * bit 0 must be 1 to stay in Thumb state
593                          */
594                         resume_pc |= 0x1;
595                         break;
596                 case ARM_STATE_JAZELLE:
597                         LOG_ERROR("How do I resume into Jazelle state??");
598                         return ERROR_FAIL;
599         }
600         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
601         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
602         arm->pc->dirty = true;
603         arm->pc->valid = true;
604
605         /* called it now before restoring context because it uses cpu
606          * register r0 for restoring system control register */
607         retval = aarch64_restore_system_control_reg(target);
608         if (retval == ERROR_OK)
609                 retval = aarch64_restore_context(target, handle_breakpoints);
610
611         return retval;
612 }
613
614 /**
615  * prepare single target for restart
616  *
617  *
618  */
619 static int aarch64_prepare_restart_one(struct target *target)
620 {
621         struct armv8_common *armv8 = target_to_armv8(target);
622         int retval;
623         uint32_t dscr;
624         uint32_t tmp;
625
626         LOG_DEBUG("%s", target_name(target));
627
628         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
629                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
630         if (retval != ERROR_OK)
631                 return retval;
632
633         if ((dscr & DSCR_ITE) == 0)
634                 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
635         if ((dscr & DSCR_ERR) != 0)
636                 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
637
638         /* acknowledge a pending CTI halt event */
639         retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
640         /*
641          * open the CTI gate for channel 1 so that the restart events
642          * get passed along to all PEs. Also close gate for channel 0
643          * to isolate the PE from halt events.
644          */
645         if (retval == ERROR_OK)
646                 retval = arm_cti_ungate_channel(armv8->cti, 1);
647         if (retval == ERROR_OK)
648                 retval = arm_cti_gate_channel(armv8->cti, 0);
649
650         /* make sure that DSCR.HDE is set */
651         if (retval == ERROR_OK) {
652                 dscr |= DSCR_HDE;
653                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
654                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
655         }
656
657         if (retval == ERROR_OK) {
658                 /* clear sticky bits in PRSR, SDR is now 0 */
659                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
660                                 armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
661         }
662
663         return retval;
664 }
665
666 static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
667 {
668         struct armv8_common *armv8 = target_to_armv8(target);
669         int retval;
670
671         LOG_DEBUG("%s", target_name(target));
672
673         /* trigger an event on channel 1, generates a restart request to the PE */
674         retval = arm_cti_pulse_channel(armv8->cti, 1);
675         if (retval != ERROR_OK)
676                 return retval;
677
678         if (mode == RESTART_SYNC) {
679                 int64_t then = timeval_ms();
680                 for (;;) {
681                         int resumed;
682                         /*
683                          * if PRSR.SDR is set now, the target did restart, even
684                          * if it's now already halted again (e.g. due to breakpoint)
685                          */
686                         retval = aarch64_check_state_one(target,
687                                                 PRSR_SDR, PRSR_SDR, &resumed, NULL);
688                         if (retval != ERROR_OK || resumed)
689                                 break;
690
691                         if (timeval_ms() > then + 1000) {
692                                 LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
693                                 retval = ERROR_TARGET_TIMEOUT;
694                                 break;
695                         }
696                 }
697         }
698
699         if (retval != ERROR_OK)
700                 return retval;
701
702         target->debug_reason = DBG_REASON_NOTHALTED;
703         target->state = TARGET_RUNNING;
704
705         return ERROR_OK;
706 }
707
708 static int aarch64_restart_one(struct target *target, enum restart_mode mode)
709 {
710         int retval;
711
712         LOG_DEBUG("%s", target_name(target));
713
714         retval = aarch64_prepare_restart_one(target);
715         if (retval == ERROR_OK)
716                 retval = aarch64_do_restart_one(target, mode);
717
718         return retval;
719 }
720
721 /*
722  * prepare all but the current target for restart
723  */
724 static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
725 {
726         int retval = ERROR_OK;
727         struct target_list *head;
728         struct target *first = NULL;
729         uint64_t address;
730
731         foreach_smp_target(head, target->head) {
732                 struct target *curr = head->target;
733
734                 /* skip calling target */
735                 if (curr == target)
736                         continue;
737                 if (!target_was_examined(curr))
738                         continue;
739                 if (curr->state != TARGET_HALTED)
740                         continue;
741
742                 /*  resume at current address, not in step mode */
743                 retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
744                 if (retval == ERROR_OK)
745                         retval = aarch64_prepare_restart_one(curr);
746                 if (retval != ERROR_OK) {
747                         LOG_ERROR("failed to restore target %s", target_name(curr));
748                         break;
749                 }
750                 /* remember the first valid target in the group */
751                 if (first == NULL)
752                         first = curr;
753         }
754
755         if (p_first)
756                 *p_first = first;
757
758         return retval;
759 }
760
761
762 static int aarch64_step_restart_smp(struct target *target)
763 {
764         int retval = ERROR_OK;
765         struct target_list *head;
766         struct target *first = NULL;
767
768         LOG_DEBUG("%s", target_name(target));
769
770         retval = aarch64_prep_restart_smp(target, 0, &first);
771         if (retval != ERROR_OK)
772                 return retval;
773
774         if (first != NULL)
775                 retval = aarch64_do_restart_one(first, RESTART_LAZY);
776         if (retval != ERROR_OK) {
777                 LOG_DEBUG("error restarting target %s", target_name(first));
778                 return retval;
779         }
780
781         int64_t then = timeval_ms();
782         for (;;) {
783                 struct target *curr = target;
784                 bool all_resumed = true;
785
786                 foreach_smp_target(head, target->head) {
787                         uint32_t prsr;
788                         int resumed;
789
790                         curr = head->target;
791
792                         if (curr == target)
793                                 continue;
794
795                         if (!target_was_examined(curr))
796                                 continue;
797
798                         retval = aarch64_check_state_one(curr,
799                                         PRSR_SDR, PRSR_SDR, &resumed, &prsr);
800                         if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
801                                 all_resumed = false;
802                                 break;
803                         }
804
805                         if (curr->state != TARGET_RUNNING) {
806                                 curr->state = TARGET_RUNNING;
807                                 curr->debug_reason = DBG_REASON_NOTHALTED;
808                                 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
809                         }
810                 }
811
812                 if (all_resumed)
813                         break;
814
815                 if (timeval_ms() > then + 1000) {
816                         LOG_ERROR("%s: timeout waiting for target resume", __func__);
817                         retval = ERROR_TARGET_TIMEOUT;
818                         break;
819                 }
820                 /*
821                  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
822                  * and it looks like the CTI's are not connected by a common
823                  * trigger matrix. It seems that we need to halt one core in each
824                  * cluster explicitly. So if we find that a core has not halted
825                  * yet, we trigger an explicit resume for the second cluster.
826                  */
827                 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
828                 if (retval != ERROR_OK)
829                         break;
830 }
831
832         return retval;
833 }
834
835 static int aarch64_resume(struct target *target, int current,
836         target_addr_t address, int handle_breakpoints, int debug_execution)
837 {
838         int retval = 0;
839         uint64_t addr = address;
840
841         struct armv8_common *armv8 = target_to_armv8(target);
842         armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
843
844         if (target->state != TARGET_HALTED)
845                 return ERROR_TARGET_NOT_HALTED;
846
847         /*
848          * If this target is part of a SMP group, prepare the others
849          * targets for resuming. This involves restoring the complete
850          * target register context and setting up CTI gates to accept
851          * resume events from the trigger matrix.
852          */
853         if (target->smp) {
854                 retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
855                 if (retval != ERROR_OK)
856                         return retval;
857         }
858
859         /* all targets prepared, restore and restart the current target */
860         retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
861                                  debug_execution);
862         if (retval == ERROR_OK)
863                 retval = aarch64_restart_one(target, RESTART_SYNC);
864         if (retval != ERROR_OK)
865                 return retval;
866
867         if (target->smp) {
868                 int64_t then = timeval_ms();
869                 for (;;) {
870                         struct target *curr = target;
871                         struct target_list *head;
872                         bool all_resumed = true;
873
874                         foreach_smp_target(head, target->head) {
875                                 uint32_t prsr;
876                                 int resumed;
877
878                                 curr = head->target;
879                                 if (curr == target)
880                                         continue;
881                                 if (!target_was_examined(curr))
882                                         continue;
883
884                                 retval = aarch64_check_state_one(curr,
885                                                 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
886                                 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
887                                         all_resumed = false;
888                                         break;
889                                 }
890
891                                 if (curr->state != TARGET_RUNNING) {
892                                         curr->state = TARGET_RUNNING;
893                                         curr->debug_reason = DBG_REASON_NOTHALTED;
894                                         target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
895                                 }
896                         }
897
898                         if (all_resumed)
899                                 break;
900
901                         if (timeval_ms() > then + 1000) {
902                                 LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
903                                 retval = ERROR_TARGET_TIMEOUT;
904                                 break;
905                         }
906
907                         /*
908                          * HACK: on Hi6220 there are 8 cores organized in 2 clusters
909                          * and it looks like the CTI's are not connected by a common
910                          * trigger matrix. It seems that we need to halt one core in each
911                          * cluster explicitly. So if we find that a core has not halted
912                          * yet, we trigger an explicit resume for the second cluster.
913                          */
914                         retval = aarch64_do_restart_one(curr, RESTART_LAZY);
915                         if (retval != ERROR_OK)
916                                 break;
917                 }
918         }
919
920         if (retval != ERROR_OK)
921                 return retval;
922
923         target->debug_reason = DBG_REASON_NOTHALTED;
924
925         if (!debug_execution) {
926                 target->state = TARGET_RUNNING;
927                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
928                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
929         } else {
930                 target->state = TARGET_DEBUG_RUNNING;
931                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
932                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
933         }
934
935         return ERROR_OK;
936 }
937
938 static int aarch64_debug_entry(struct target *target)
939 {
940         int retval = ERROR_OK;
941         struct armv8_common *armv8 = target_to_armv8(target);
942         struct arm_dpm *dpm = &armv8->dpm;
943         enum arm_state core_state;
944         uint32_t dscr;
945
946         /* make sure to clear all sticky errors */
947         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
948                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
949         if (retval == ERROR_OK)
950                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
951                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
952         if (retval == ERROR_OK)
953                 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
954
955         if (retval != ERROR_OK)
956                 return retval;
957
958         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
959
960         dpm->dscr = dscr;
961         core_state = armv8_dpm_get_core_state(dpm);
962         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
963         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
964
965         /* close the CTI gate for all events */
966         if (retval == ERROR_OK)
967                 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
968         /* discard async exceptions */
969         if (retval == ERROR_OK)
970                 retval = dpm->instr_cpsr_sync(dpm);
971         if (retval != ERROR_OK)
972                 return retval;
973
974         /* Examine debug reason */
975         armv8_dpm_report_dscr(dpm, dscr);
976
977         /* save address of instruction that triggered the watchpoint? */
978         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
979                 uint32_t tmp;
980                 uint64_t wfar = 0;
981
982                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
983                                 armv8->debug_base + CPUV8_DBG_WFAR1,
984                                 &tmp);
985                 if (retval != ERROR_OK)
986                         return retval;
987                 wfar = tmp;
988                 wfar = (wfar << 32);
989                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
990                                 armv8->debug_base + CPUV8_DBG_WFAR0,
991                                 &tmp);
992                 if (retval != ERROR_OK)
993                         return retval;
994                 wfar |= tmp;
995                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
996         }
997
998         retval = armv8_dpm_read_current_registers(&armv8->dpm);
999
1000         if (retval == ERROR_OK && armv8->post_debug_entry)
1001                 retval = armv8->post_debug_entry(target);
1002
1003         return retval;
1004 }
1005
1006 static int aarch64_post_debug_entry(struct target *target)
1007 {
1008         struct aarch64_common *aarch64 = target_to_aarch64(target);
1009         struct armv8_common *armv8 = &aarch64->armv8_common;
1010         int retval;
1011         enum arm_mode target_mode = ARM_MODE_ANY;
1012         uint32_t instr;
1013
1014         switch (armv8->arm.core_mode) {
1015         case ARMV8_64_EL0T:
1016                 target_mode = ARMV8_64_EL1H;
1017                 /* fall through */
1018         case ARMV8_64_EL1T:
1019         case ARMV8_64_EL1H:
1020                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1021                 break;
1022         case ARMV8_64_EL2T:
1023         case ARMV8_64_EL2H:
1024                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1025                 break;
1026         case ARMV8_64_EL3H:
1027         case ARMV8_64_EL3T:
1028                 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1029                 break;
1030
1031         case ARM_MODE_SVC:
1032         case ARM_MODE_ABT:
1033         case ARM_MODE_FIQ:
1034         case ARM_MODE_IRQ:
1035         case ARM_MODE_SYS:
1036                 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1037                 break;
1038
1039         default:
1040                 LOG_INFO("cannot read system control register in this mode");
1041                 return ERROR_FAIL;
1042         }
1043
1044         if (target_mode != ARM_MODE_ANY)
1045                 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1046
1047         retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
1048         if (retval != ERROR_OK)
1049                 return retval;
1050
1051         if (target_mode != ARM_MODE_ANY)
1052                 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1053
1054         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1055         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1056
1057         if (armv8->armv8_mmu.armv8_cache.info == -1) {
1058                 armv8_identify_cache(armv8);
1059                 armv8_read_mpidr(armv8);
1060         }
1061
1062         armv8->armv8_mmu.mmu_enabled =
1063                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1064         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1065                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1066         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1067                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1068         return ERROR_OK;
1069 }
1070
1071 /*
1072  * single-step a target
1073  */
1074 static int aarch64_step(struct target *target, int current, target_addr_t address,
1075         int handle_breakpoints)
1076 {
1077         struct armv8_common *armv8 = target_to_armv8(target);
1078         struct aarch64_common *aarch64 = target_to_aarch64(target);
1079         int saved_retval = ERROR_OK;
1080         int retval;
1081         uint32_t edecr;
1082
1083         armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
1084
1085         if (target->state != TARGET_HALTED) {
1086                 LOG_WARNING("target not halted");
1087                 return ERROR_TARGET_NOT_HALTED;
1088         }
1089
1090         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1091                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1092         /* make sure EDECR.SS is not set when restoring the register */
1093
1094         if (retval == ERROR_OK) {
1095                 edecr &= ~0x4;
1096                 /* set EDECR.SS to enter hardware step mode */
1097                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1098                                 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1099         }
1100         /* disable interrupts while stepping */
1101         if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1102                 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1103         /* bail out if stepping setup has failed */
1104         if (retval != ERROR_OK)
1105                 return retval;
1106
1107         if (target->smp && (current == 1)) {
1108                 /*
1109                  * isolate current target so that it doesn't get resumed
1110                  * together with the others
1111                  */
1112                 retval = arm_cti_gate_channel(armv8->cti, 1);
1113                 /* resume all other targets in the group */
1114                 if (retval == ERROR_OK)
1115                         retval = aarch64_step_restart_smp(target);
1116                 if (retval != ERROR_OK) {
1117                         LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1118                         return retval;
1119                 }
1120                 LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1121         }
1122
1123         /* all other targets running, restore and restart the current target */
1124         retval = aarch64_restore_one(target, current, &address, 0, 0);
1125         if (retval == ERROR_OK)
1126                 retval = aarch64_restart_one(target, RESTART_LAZY);
1127
1128         if (retval != ERROR_OK)
1129                 return retval;
1130
1131         LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1132         if (!handle_breakpoints)
1133                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1134
1135         int64_t then = timeval_ms();
1136         for (;;) {
1137                 int stepped;
1138                 uint32_t prsr;
1139
1140                 retval = aarch64_check_state_one(target,
1141                                         PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1142                 if (retval != ERROR_OK || stepped)
1143                         break;
1144
1145                 if (timeval_ms() > then + 100) {
1146                         LOG_ERROR("timeout waiting for target %s halt after step",
1147                                         target_name(target));
1148                         retval = ERROR_TARGET_TIMEOUT;
1149                         break;
1150                 }
1151         }
1152
1153         /*
1154          * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1155          * causes a timeout. The core takes the step but doesn't complete it and so
1156          * debug state is never entered. However, you can manually halt the core
1157          * as an external debug even is also a WFI wakeup event.
1158          */
1159         if (retval == ERROR_TARGET_TIMEOUT)
1160                 saved_retval = aarch64_halt_one(target, HALT_SYNC);
1161
1162         /* restore EDECR */
1163         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1164                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1165         if (retval != ERROR_OK)
1166                 return retval;
1167
1168         /* restore interrupts */
1169         if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1170                 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1171                 if (retval != ERROR_OK)
1172                         return ERROR_OK;
1173         }
1174
1175         if (saved_retval != ERROR_OK)
1176                 return saved_retval;
1177
1178         return aarch64_poll(target);
1179 }
1180
1181 static int aarch64_restore_context(struct target *target, bool bpwp)
1182 {
1183         struct armv8_common *armv8 = target_to_armv8(target);
1184         struct arm *arm = &armv8->arm;
1185
1186         int retval;
1187
1188         LOG_DEBUG("%s", target_name(target));
1189
1190         if (armv8->pre_restore_context)
1191                 armv8->pre_restore_context(target);
1192
1193         retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1194         if (retval == ERROR_OK) {
1195                 /* registers are now invalid */
1196                 register_cache_invalidate(arm->core_cache);
1197                 register_cache_invalidate(arm->core_cache->next);
1198         }
1199
1200         return retval;
1201 }
1202
1203 /*
1204  * Cortex-A8 Breakpoint and watchpoint functions
1205  */
1206
1207 /* Setup hardware Breakpoint Register Pair */
1208 static int aarch64_set_breakpoint(struct target *target,
1209         struct breakpoint *breakpoint, uint8_t matchmode)
1210 {
1211         int retval;
1212         int brp_i = 0;
1213         uint32_t control;
1214         uint8_t byte_addr_select = 0x0F;
1215         struct aarch64_common *aarch64 = target_to_aarch64(target);
1216         struct armv8_common *armv8 = &aarch64->armv8_common;
1217         struct aarch64_brp *brp_list = aarch64->brp_list;
1218
1219         if (breakpoint->set) {
1220                 LOG_WARNING("breakpoint already set");
1221                 return ERROR_OK;
1222         }
1223
1224         if (breakpoint->type == BKPT_HARD) {
1225                 int64_t bpt_value;
1226                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1227                         brp_i++;
1228                 if (brp_i >= aarch64->brp_num) {
1229                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1230                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1231                 }
1232                 breakpoint->set = brp_i + 1;
1233                 if (breakpoint->length == 2)
1234                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1235                 control = ((matchmode & 0x7) << 20)
1236                         | (1 << 13)
1237                         | (byte_addr_select << 5)
1238                         | (3 << 1) | 1;
1239                 brp_list[brp_i].used = 1;
1240                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1241                 brp_list[brp_i].control = control;
1242                 bpt_value = brp_list[brp_i].value;
1243
1244                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1245                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1246                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1247                 if (retval != ERROR_OK)
1248                         return retval;
1249                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1250                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1251                                 (uint32_t)(bpt_value >> 32));
1252                 if (retval != ERROR_OK)
1253                         return retval;
1254
1255                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1256                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1257                                 brp_list[brp_i].control);
1258                 if (retval != ERROR_OK)
1259                         return retval;
1260                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1261                         brp_list[brp_i].control,
1262                         brp_list[brp_i].value);
1263
1264         } else if (breakpoint->type == BKPT_SOFT) {
1265                 uint8_t code[4];
1266
1267                 buf_set_u32(code, 0, 32, armv8_opcode(armv8, ARMV8_OPC_HLT));
1268                 retval = target_read_memory(target,
1269                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1270                                 breakpoint->length, 1,
1271                                 breakpoint->orig_instr);
1272                 if (retval != ERROR_OK)
1273                         return retval;
1274
1275                 armv8_cache_d_inner_flush_virt(armv8,
1276                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1277                                 breakpoint->length);
1278
1279                 retval = target_write_memory(target,
1280                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1281                                 breakpoint->length, 1, code);
1282                 if (retval != ERROR_OK)
1283                         return retval;
1284
1285                 armv8_cache_d_inner_flush_virt(armv8,
1286                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1287                                 breakpoint->length);
1288
1289                 armv8_cache_i_inner_inval_virt(armv8,
1290                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1291                                 breakpoint->length);
1292
1293                 breakpoint->set = 0x11; /* Any nice value but 0 */
1294         }
1295
1296         /* Ensure that halting debug mode is enable */
1297         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1298         if (retval != ERROR_OK) {
1299                 LOG_DEBUG("Failed to set DSCR.HDE");
1300                 return retval;
1301         }
1302
1303         return ERROR_OK;
1304 }
1305
1306 static int aarch64_set_context_breakpoint(struct target *target,
1307         struct breakpoint *breakpoint, uint8_t matchmode)
1308 {
1309         int retval = ERROR_FAIL;
1310         int brp_i = 0;
1311         uint32_t control;
1312         uint8_t byte_addr_select = 0x0F;
1313         struct aarch64_common *aarch64 = target_to_aarch64(target);
1314         struct armv8_common *armv8 = &aarch64->armv8_common;
1315         struct aarch64_brp *brp_list = aarch64->brp_list;
1316
1317         if (breakpoint->set) {
1318                 LOG_WARNING("breakpoint already set");
1319                 return retval;
1320         }
1321         /*check available context BRPs*/
1322         while ((brp_list[brp_i].used ||
1323                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1324                 brp_i++;
1325
1326         if (brp_i >= aarch64->brp_num) {
1327                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1328                 return ERROR_FAIL;
1329         }
1330
1331         breakpoint->set = brp_i + 1;
1332         control = ((matchmode & 0x7) << 20)
1333                 | (1 << 13)
1334                 | (byte_addr_select << 5)
1335                 | (3 << 1) | 1;
1336         brp_list[brp_i].used = 1;
1337         brp_list[brp_i].value = (breakpoint->asid);
1338         brp_list[brp_i].control = control;
1339         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1340                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1341                         brp_list[brp_i].value);
1342         if (retval != ERROR_OK)
1343                 return retval;
1344         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1345                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1346                         brp_list[brp_i].control);
1347         if (retval != ERROR_OK)
1348                 return retval;
1349         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1350                 brp_list[brp_i].control,
1351                 brp_list[brp_i].value);
1352         return ERROR_OK;
1353
1354 }
1355
1356 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1357 {
1358         int retval = ERROR_FAIL;
1359         int brp_1 = 0;  /* holds the contextID pair */
1360         int brp_2 = 0;  /* holds the IVA pair */
1361         uint32_t control_CTX, control_IVA;
1362         uint8_t CTX_byte_addr_select = 0x0F;
1363         uint8_t IVA_byte_addr_select = 0x0F;
1364         uint8_t CTX_machmode = 0x03;
1365         uint8_t IVA_machmode = 0x01;
1366         struct aarch64_common *aarch64 = target_to_aarch64(target);
1367         struct armv8_common *armv8 = &aarch64->armv8_common;
1368         struct aarch64_brp *brp_list = aarch64->brp_list;
1369
1370         if (breakpoint->set) {
1371                 LOG_WARNING("breakpoint already set");
1372                 return retval;
1373         }
1374         /*check available context BRPs*/
1375         while ((brp_list[brp_1].used ||
1376                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1377                 brp_1++;
1378
1379         printf("brp(CTX) found num: %d\n", brp_1);
1380         if (brp_1 >= aarch64->brp_num) {
1381                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1382                 return ERROR_FAIL;
1383         }
1384
1385         while ((brp_list[brp_2].used ||
1386                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1387                 brp_2++;
1388
1389         printf("brp(IVA) found num: %d\n", brp_2);
1390         if (brp_2 >= aarch64->brp_num) {
1391                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1392                 return ERROR_FAIL;
1393         }
1394
1395         breakpoint->set = brp_1 + 1;
1396         breakpoint->linked_BRP = brp_2;
1397         control_CTX = ((CTX_machmode & 0x7) << 20)
1398                 | (brp_2 << 16)
1399                 | (0 << 14)
1400                 | (CTX_byte_addr_select << 5)
1401                 | (3 << 1) | 1;
1402         brp_list[brp_1].used = 1;
1403         brp_list[brp_1].value = (breakpoint->asid);
1404         brp_list[brp_1].control = control_CTX;
1405         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1406                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1407                         brp_list[brp_1].value);
1408         if (retval != ERROR_OK)
1409                 return retval;
1410         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1411                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1412                         brp_list[brp_1].control);
1413         if (retval != ERROR_OK)
1414                 return retval;
1415
1416         control_IVA = ((IVA_machmode & 0x7) << 20)
1417                 | (brp_1 << 16)
1418                 | (1 << 13)
1419                 | (IVA_byte_addr_select << 5)
1420                 | (3 << 1) | 1;
1421         brp_list[brp_2].used = 1;
1422         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1423         brp_list[brp_2].control = control_IVA;
1424         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1425                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1426                         brp_list[brp_2].value & 0xFFFFFFFF);
1427         if (retval != ERROR_OK)
1428                 return retval;
1429         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1430                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1431                         brp_list[brp_2].value >> 32);
1432         if (retval != ERROR_OK)
1433                 return retval;
1434         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1435                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1436                         brp_list[brp_2].control);
1437         if (retval != ERROR_OK)
1438                 return retval;
1439
1440         return ERROR_OK;
1441 }
1442
1443 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1444 {
1445         int retval;
1446         struct aarch64_common *aarch64 = target_to_aarch64(target);
1447         struct armv8_common *armv8 = &aarch64->armv8_common;
1448         struct aarch64_brp *brp_list = aarch64->brp_list;
1449
1450         if (!breakpoint->set) {
1451                 LOG_WARNING("breakpoint not set");
1452                 return ERROR_OK;
1453         }
1454
1455         if (breakpoint->type == BKPT_HARD) {
1456                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1457                         int brp_i = breakpoint->set - 1;
1458                         int brp_j = breakpoint->linked_BRP;
1459                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1460                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1461                                 return ERROR_OK;
1462                         }
1463                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1464                                 brp_list[brp_i].control, brp_list[brp_i].value);
1465                         brp_list[brp_i].used = 0;
1466                         brp_list[brp_i].value = 0;
1467                         brp_list[brp_i].control = 0;
1468                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1469                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1470                                         brp_list[brp_i].control);
1471                         if (retval != ERROR_OK)
1472                                 return retval;
1473                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1474                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1475                                         (uint32_t)brp_list[brp_i].value);
1476                         if (retval != ERROR_OK)
1477                                 return retval;
1478                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1479                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1480                                         (uint32_t)brp_list[brp_i].value);
1481                         if (retval != ERROR_OK)
1482                                 return retval;
1483                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1484                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1485                                 return ERROR_OK;
1486                         }
1487                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1488                                 brp_list[brp_j].control, brp_list[brp_j].value);
1489                         brp_list[brp_j].used = 0;
1490                         brp_list[brp_j].value = 0;
1491                         brp_list[brp_j].control = 0;
1492                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1493                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1494                                         brp_list[brp_j].control);
1495                         if (retval != ERROR_OK)
1496                                 return retval;
1497                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1498                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1499                                         (uint32_t)brp_list[brp_j].value);
1500                         if (retval != ERROR_OK)
1501                                 return retval;
1502                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1503                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1504                                         (uint32_t)brp_list[brp_j].value);
1505                         if (retval != ERROR_OK)
1506                                 return retval;
1507
1508                         breakpoint->linked_BRP = 0;
1509                         breakpoint->set = 0;
1510                         return ERROR_OK;
1511
1512                 } else {
1513                         int brp_i = breakpoint->set - 1;
1514                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1515                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1516                                 return ERROR_OK;
1517                         }
1518                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1519                                 brp_list[brp_i].control, brp_list[brp_i].value);
1520                         brp_list[brp_i].used = 0;
1521                         brp_list[brp_i].value = 0;
1522                         brp_list[brp_i].control = 0;
1523                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1524                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1525                                         brp_list[brp_i].control);
1526                         if (retval != ERROR_OK)
1527                                 return retval;
1528                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1529                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1530                                         brp_list[brp_i].value);
1531                         if (retval != ERROR_OK)
1532                                 return retval;
1533
1534                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1535                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1536                                         (uint32_t)brp_list[brp_i].value);
1537                         if (retval != ERROR_OK)
1538                                 return retval;
1539                         breakpoint->set = 0;
1540                         return ERROR_OK;
1541                 }
1542         } else {
1543                 /* restore original instruction (kept in target endianness) */
1544
1545                 armv8_cache_d_inner_flush_virt(armv8,
1546                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1547                                 breakpoint->length);
1548
1549                 if (breakpoint->length == 4) {
1550                         retval = target_write_memory(target,
1551                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1552                                         4, 1, breakpoint->orig_instr);
1553                         if (retval != ERROR_OK)
1554                                 return retval;
1555                 } else {
1556                         retval = target_write_memory(target,
1557                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1558                                         2, 1, breakpoint->orig_instr);
1559                         if (retval != ERROR_OK)
1560                                 return retval;
1561                 }
1562
1563                 armv8_cache_d_inner_flush_virt(armv8,
1564                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1565                                 breakpoint->length);
1566
1567                 armv8_cache_i_inner_inval_virt(armv8,
1568                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1569                                 breakpoint->length);
1570         }
1571         breakpoint->set = 0;
1572
1573         return ERROR_OK;
1574 }
1575
1576 static int aarch64_add_breakpoint(struct target *target,
1577         struct breakpoint *breakpoint)
1578 {
1579         struct aarch64_common *aarch64 = target_to_aarch64(target);
1580
1581         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1582                 LOG_INFO("no hardware breakpoint available");
1583                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1584         }
1585
1586         if (breakpoint->type == BKPT_HARD)
1587                 aarch64->brp_num_available--;
1588
1589         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1590 }
1591
1592 static int aarch64_add_context_breakpoint(struct target *target,
1593         struct breakpoint *breakpoint)
1594 {
1595         struct aarch64_common *aarch64 = target_to_aarch64(target);
1596
1597         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1598                 LOG_INFO("no hardware breakpoint available");
1599                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1600         }
1601
1602         if (breakpoint->type == BKPT_HARD)
1603                 aarch64->brp_num_available--;
1604
1605         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1606 }
1607
1608 static int aarch64_add_hybrid_breakpoint(struct target *target,
1609         struct breakpoint *breakpoint)
1610 {
1611         struct aarch64_common *aarch64 = target_to_aarch64(target);
1612
1613         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1614                 LOG_INFO("no hardware breakpoint available");
1615                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1616         }
1617
1618         if (breakpoint->type == BKPT_HARD)
1619                 aarch64->brp_num_available--;
1620
1621         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1622 }
1623
1624
1625 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1626 {
1627         struct aarch64_common *aarch64 = target_to_aarch64(target);
1628
1629 #if 0
1630 /* It is perfectly possible to remove breakpoints while the target is running */
1631         if (target->state != TARGET_HALTED) {
1632                 LOG_WARNING("target not halted");
1633                 return ERROR_TARGET_NOT_HALTED;
1634         }
1635 #endif
1636
1637         if (breakpoint->set) {
1638                 aarch64_unset_breakpoint(target, breakpoint);
1639                 if (breakpoint->type == BKPT_HARD)
1640                         aarch64->brp_num_available++;
1641         }
1642
1643         return ERROR_OK;
1644 }
1645
1646 /*
1647  * Cortex-A8 Reset functions
1648  */
1649
1650 static int aarch64_assert_reset(struct target *target)
1651 {
1652         struct armv8_common *armv8 = target_to_armv8(target);
1653
1654         LOG_DEBUG(" ");
1655
1656         /* FIXME when halt is requested, make it work somehow... */
1657
1658         /* Issue some kind of warm reset. */
1659         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1660                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1661         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1662                 /* REVISIT handle "pulls" cases, if there's
1663                  * hardware that needs them to work.
1664                  */
1665                 jtag_add_reset(0, 1);
1666         } else {
1667                 LOG_ERROR("%s: how to reset?", target_name(target));
1668                 return ERROR_FAIL;
1669         }
1670
1671         /* registers are now invalid */
1672         if (target_was_examined(target)) {
1673                 register_cache_invalidate(armv8->arm.core_cache);
1674                 register_cache_invalidate(armv8->arm.core_cache->next);
1675         }
1676
1677         target->state = TARGET_RESET;
1678
1679         return ERROR_OK;
1680 }
1681
1682 static int aarch64_deassert_reset(struct target *target)
1683 {
1684         int retval;
1685
1686         LOG_DEBUG(" ");
1687
1688         /* be certain SRST is off */
1689         jtag_add_reset(0, 0);
1690
1691         if (!target_was_examined(target))
1692                 return ERROR_OK;
1693
1694         retval = aarch64_poll(target);
1695         if (retval != ERROR_OK)
1696                 return retval;
1697
1698         retval = aarch64_init_debug_access(target);
1699         if (retval != ERROR_OK)
1700                 return retval;
1701
1702         if (target->reset_halt) {
1703                 if (target->state != TARGET_HALTED) {
1704                         LOG_WARNING("%s: ran after reset and before halt ...",
1705                                 target_name(target));
1706                         retval = target_halt(target);
1707                 }
1708         }
1709
1710         return retval;
1711 }
1712
1713 static int aarch64_write_cpu_memory_slow(struct target *target,
1714         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1715 {
1716         struct armv8_common *armv8 = target_to_armv8(target);
1717         struct arm_dpm *dpm = &armv8->dpm;
1718         struct arm *arm = &armv8->arm;
1719         int retval;
1720
1721         armv8_reg_current(arm, 1)->dirty = true;
1722
1723         /* change DCC to normal mode if necessary */
1724         if (*dscr & DSCR_MA) {
1725                 *dscr &= ~DSCR_MA;
1726                 retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1727                                 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
1728                 if (retval != ERROR_OK)
1729                         return retval;
1730         }
1731
1732         while (count) {
1733                 uint32_t data, opcode;
1734
1735                 /* write the data to store into DTRRX */
1736                 if (size == 1)
1737                         data = *buffer;
1738                 else if (size == 2)
1739                         data = target_buffer_get_u16(target, buffer);
1740                 else
1741                         data = target_buffer_get_u32(target, buffer);
1742                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1743                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
1744                 if (retval != ERROR_OK)
1745                         return retval;
1746
1747                 if (arm->core_state == ARM_STATE_AARCH64)
1748                         retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
1749                 else
1750                         retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
1751                 if (retval != ERROR_OK)
1752                         return retval;
1753
1754                 if (size == 1)
1755                         opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
1756                 else if (size == 2)
1757                         opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
1758                 else
1759                         opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
1760                 retval = dpm->instr_execute(dpm, opcode);
1761                 if (retval != ERROR_OK)
1762                         return retval;
1763
1764                 /* Advance */
1765                 buffer += size;
1766                 --count;
1767         }
1768
1769         return ERROR_OK;
1770 }
1771
1772 static int aarch64_write_cpu_memory_fast(struct target *target,
1773         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1774 {
1775         struct armv8_common *armv8 = target_to_armv8(target);
1776         struct arm *arm = &armv8->arm;
1777         int retval;
1778
1779         armv8_reg_current(arm, 1)->dirty = true;
1780
1781         /* Step 1.d   - Change DCC to memory mode */
1782         *dscr |= DSCR_MA;
1783         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1784                         armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
1785         if (retval != ERROR_OK)
1786                 return retval;
1787
1788
1789         /* Step 2.a   - Do the write */
1790         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1791                                         buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
1792         if (retval != ERROR_OK)
1793                 return retval;
1794
1795         /* Step 3.a   - Switch DTR mode back to Normal mode */
1796         *dscr &= ~DSCR_MA;
1797         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1798                                 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
1799         if (retval != ERROR_OK)
1800                 return retval;
1801
1802         return ERROR_OK;
1803 }
1804
1805 static int aarch64_write_cpu_memory(struct target *target,
1806         uint64_t address, uint32_t size,
1807         uint32_t count, const uint8_t *buffer)
1808 {
1809         /* write memory through APB-AP */
1810         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1811         struct armv8_common *armv8 = target_to_armv8(target);
1812         struct arm_dpm *dpm = &armv8->dpm;
1813         struct arm *arm = &armv8->arm;
1814         uint32_t dscr;
1815
1816         if (target->state != TARGET_HALTED) {
1817                 LOG_WARNING("target not halted");
1818                 return ERROR_TARGET_NOT_HALTED;
1819         }
1820
1821         /* Mark register X0 as dirty, as it will be used
1822          * for transferring the data.
1823          * It will be restored automatically when exiting
1824          * debug mode
1825          */
1826         armv8_reg_current(arm, 0)->dirty = true;
1827
1828         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1829
1830         /* Read DSCR */
1831         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1832                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1833         if (retval != ERROR_OK)
1834                 return retval;
1835
1836         /* Set Normal access mode  */
1837         dscr = (dscr & ~DSCR_MA);
1838         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1839                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1840         if (retval != ERROR_OK)
1841                 return retval;
1842
1843         if (arm->core_state == ARM_STATE_AARCH64) {
1844                 /* Write X0 with value 'address' using write procedure */
1845                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1846                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1847                 retval = dpm->instr_write_data_dcc_64(dpm,
1848                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
1849         } else {
1850                 /* Write R0 with value 'address' using write procedure */
1851                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1852                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1853                 retval = dpm->instr_write_data_dcc(dpm,
1854                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
1855         }
1856
1857         if (retval != ERROR_OK)
1858                 return retval;
1859
1860         if (size == 4 && (address % 4) == 0)
1861                 retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
1862         else
1863                 retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
1864
1865         if (retval != ERROR_OK) {
1866                 /* Unset DTR mode */
1867                 mem_ap_read_atomic_u32(armv8->debug_ap,
1868                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1869                 dscr &= ~DSCR_MA;
1870                 mem_ap_write_atomic_u32(armv8->debug_ap,
1871                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1872         }
1873
1874         /* Check for sticky abort flags in the DSCR */
1875         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1876                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1877         if (retval != ERROR_OK)
1878                 return retval;
1879
1880         dpm->dscr = dscr;
1881         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1882                 /* Abort occurred - clear it and exit */
1883                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1884                 armv8_dpm_handle_exception(dpm, true);
1885                 return ERROR_FAIL;
1886         }
1887
1888         /* Done */
1889         return ERROR_OK;
1890 }
1891
1892 static int aarch64_read_cpu_memory_slow(struct target *target,
1893         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
1894 {
1895         struct armv8_common *armv8 = target_to_armv8(target);
1896         struct arm_dpm *dpm = &armv8->dpm;
1897         struct arm *arm = &armv8->arm;
1898         int retval;
1899
1900         armv8_reg_current(arm, 1)->dirty = true;
1901
1902         /* change DCC to normal mode (if necessary) */
1903         if (*dscr & DSCR_MA) {
1904                 *dscr &= DSCR_MA;
1905                 retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1906                                 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
1907                 if (retval != ERROR_OK)
1908                         return retval;
1909         }
1910
1911         while (count) {
1912                 uint32_t opcode, data;
1913
1914                 if (size == 1)
1915                         opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
1916                 else if (size == 2)
1917                         opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
1918                 else
1919                         opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
1920                 retval = dpm->instr_execute(dpm, opcode);
1921                 if (retval != ERROR_OK)
1922                         return retval;
1923
1924                 if (arm->core_state == ARM_STATE_AARCH64)
1925                         retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
1926                 else
1927                         retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
1928                 if (retval != ERROR_OK)
1929                         return retval;
1930
1931                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1932                                 armv8->debug_base + CPUV8_DBG_DTRTX, &data);
1933                 if (retval != ERROR_OK)
1934                         return retval;
1935
1936                 if (size == 1)
1937                         *buffer = (uint8_t)data;
1938                 else if (size == 2)
1939                         target_buffer_set_u16(target, buffer, (uint16_t)data);
1940                 else
1941                         target_buffer_set_u32(target, buffer, data);
1942
1943                 /* Advance */
1944                 buffer += size;
1945                 --count;
1946         }
1947
1948         return ERROR_OK;
1949 }
1950
1951 static int aarch64_read_cpu_memory_fast(struct target *target,
1952         uint32_t count, uint8_t *buffer, uint32_t *dscr)
1953 {
1954         struct armv8_common *armv8 = target_to_armv8(target);
1955         struct arm_dpm *dpm = &armv8->dpm;
1956         struct arm *arm = &armv8->arm;
1957         int retval;
1958         uint32_t value;
1959
1960         /* Mark X1 as dirty */
1961         armv8_reg_current(arm, 1)->dirty = true;
1962
1963         if (arm->core_state == ARM_STATE_AARCH64) {
1964                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1965                 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1966         } else {
1967                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1968                 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1969         }
1970
1971         if (retval != ERROR_OK)
1972                 return retval;
1973
1974         /* Step 1.e - Change DCC to memory mode */
1975         *dscr |= DSCR_MA;
1976         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1977                         armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
1978         if (retval != ERROR_OK)
1979                 return retval;
1980
1981         /* Step 1.f - read DBGDTRTX and discard the value */
1982         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1983                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1984         if (retval != ERROR_OK)
1985                 return retval;
1986
1987         count--;
1988         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1989          * Abort flags are sticky, so can be read at end of transactions
1990          *
1991          * This data is read in aligned to 32 bit boundary.
1992          */
1993
1994         if (count) {
1995                 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1996                  * increments X0 by 4. */
1997                 retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
1998                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1999                 if (retval != ERROR_OK)
2000                         return retval;
2001         }
2002
2003         /* Step 3.a - set DTR access mode back to Normal mode   */
2004         *dscr &= ~DSCR_MA;
2005         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2006                                         armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2007         if (retval != ERROR_OK)
2008                 return retval;
2009
2010         /* Step 3.b - read DBGDTRTX for the final value */
2011         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2012                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2013         if (retval != ERROR_OK)
2014                 return retval;
2015
2016         target_buffer_set_u32(target, buffer + count * 4, value);
2017         return retval;
2018 }
2019
2020 static int aarch64_read_cpu_memory(struct target *target,
2021         target_addr_t address, uint32_t size,
2022         uint32_t count, uint8_t *buffer)
2023 {
2024         /* read memory through APB-AP */
2025         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2026         struct armv8_common *armv8 = target_to_armv8(target);
2027         struct arm_dpm *dpm = &armv8->dpm;
2028         struct arm *arm = &armv8->arm;
2029         uint32_t dscr;
2030
2031         LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2032                         address, size, count);
2033
2034         if (target->state != TARGET_HALTED) {
2035                 LOG_WARNING("target not halted");
2036                 return ERROR_TARGET_NOT_HALTED;
2037         }
2038
2039         /* Mark register X0 as dirty, as it will be used
2040          * for transferring the data.
2041          * It will be restored automatically when exiting
2042          * debug mode
2043          */
2044         armv8_reg_current(arm, 0)->dirty = true;
2045
2046         /* Read DSCR */
2047         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2048                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2049         if (retval != ERROR_OK)
2050                 return retval;
2051
2052         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2053
2054         /* Set Normal access mode  */
2055         dscr &= ~DSCR_MA;
2056         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2057                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2058         if (retval != ERROR_OK)
2059                 return retval;
2060
2061         if (arm->core_state == ARM_STATE_AARCH64) {
2062                 /* Write X0 with value 'address' using write procedure */
2063                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2064                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2065                 retval = dpm->instr_write_data_dcc_64(dpm,
2066                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2067         } else {
2068                 /* Write R0 with value 'address' using write procedure */
2069                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2070                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2071                 retval = dpm->instr_write_data_dcc(dpm,
2072                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2073         }
2074
2075         if (retval != ERROR_OK)
2076                 return retval;
2077
2078         if (size == 4 && (address % 4) == 0)
2079                 retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2080         else
2081                 retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2082
2083         if (dscr & DSCR_MA) {
2084                 dscr &= ~DSCR_MA;
2085                 mem_ap_write_atomic_u32(armv8->debug_ap,
2086                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2087         }
2088
2089         if (retval != ERROR_OK)
2090                 return retval;
2091
2092         /* Check for sticky abort flags in the DSCR */
2093         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2094                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2095         if (retval != ERROR_OK)
2096                 return retval;
2097
2098         dpm->dscr = dscr;
2099
2100         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2101                 /* Abort occurred - clear it and exit */
2102                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2103                 armv8_dpm_handle_exception(dpm, true);
2104                 return ERROR_FAIL;
2105         }
2106
2107         /* Done */
2108         return ERROR_OK;
2109 }
2110
2111 static int aarch64_read_phys_memory(struct target *target,
2112         target_addr_t address, uint32_t size,
2113         uint32_t count, uint8_t *buffer)
2114 {
2115         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2116
2117         if (count && buffer) {
2118                 /* read memory through APB-AP */
2119                 retval = aarch64_mmu_modify(target, 0);
2120                 if (retval != ERROR_OK)
2121                         return retval;
2122                 retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
2123         }
2124         return retval;
2125 }
2126
2127 static int aarch64_read_memory(struct target *target, target_addr_t address,
2128         uint32_t size, uint32_t count, uint8_t *buffer)
2129 {
2130         int mmu_enabled = 0;
2131         int retval;
2132
2133         /* determine if MMU was enabled on target stop */
2134         retval = aarch64_mmu(target, &mmu_enabled);
2135         if (retval != ERROR_OK)
2136                 return retval;
2137
2138         if (mmu_enabled) {
2139                 /* enable MMU as we could have disabled it for phys access */
2140                 retval = aarch64_mmu_modify(target, 1);
2141                 if (retval != ERROR_OK)
2142                         return retval;
2143         }
2144         return aarch64_read_cpu_memory(target, address, size, count, buffer);
2145 }
2146
2147 static int aarch64_write_phys_memory(struct target *target,
2148         target_addr_t address, uint32_t size,
2149         uint32_t count, const uint8_t *buffer)
2150 {
2151         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2152
2153         if (count && buffer) {
2154                 /* write memory through APB-AP */
2155                 retval = aarch64_mmu_modify(target, 0);
2156                 if (retval != ERROR_OK)
2157                         return retval;
2158                 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2159         }
2160
2161         return retval;
2162 }
2163
2164 static int aarch64_write_memory(struct target *target, target_addr_t address,
2165         uint32_t size, uint32_t count, const uint8_t *buffer)
2166 {
2167         int mmu_enabled = 0;
2168         int retval;
2169
2170         /* determine if MMU was enabled on target stop */
2171         retval = aarch64_mmu(target, &mmu_enabled);
2172         if (retval != ERROR_OK)
2173                 return retval;
2174
2175         if (mmu_enabled) {
2176                 /* enable MMU as we could have disabled it for phys access */
2177                 retval = aarch64_mmu_modify(target, 1);
2178                 if (retval != ERROR_OK)
2179                         return retval;
2180         }
2181         return aarch64_write_cpu_memory(target, address, size, count, buffer);
2182 }
2183
2184 static int aarch64_handle_target_request(void *priv)
2185 {
2186         struct target *target = priv;
2187         struct armv8_common *armv8 = target_to_armv8(target);
2188         int retval;
2189
2190         if (!target_was_examined(target))
2191                 return ERROR_OK;
2192         if (!target->dbg_msg_enabled)
2193                 return ERROR_OK;
2194
2195         if (target->state == TARGET_RUNNING) {
2196                 uint32_t request;
2197                 uint32_t dscr;
2198                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2199                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2200
2201                 /* check if we have data */
2202                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2203                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2204                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2205                         if (retval == ERROR_OK) {
2206                                 target_request(target, request);
2207                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2208                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2209                         }
2210                 }
2211         }
2212
2213         return ERROR_OK;
2214 }
2215
2216 static int aarch64_examine_first(struct target *target)
2217 {
2218         struct aarch64_common *aarch64 = target_to_aarch64(target);
2219         struct armv8_common *armv8 = &aarch64->armv8_common;
2220         struct adiv5_dap *swjdp = armv8->arm.dap;
2221         struct aarch64_private_config *pc;
2222         int i;
2223         int retval = ERROR_OK;
2224         uint64_t debug, ttypr;
2225         uint32_t cpuid;
2226         uint32_t tmp0, tmp1, tmp2, tmp3;
2227         debug = ttypr = cpuid = 0;
2228
2229         /* Search for the APB-AB - it is needed for access to debug registers */
2230         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2231         if (retval != ERROR_OK) {
2232                 LOG_ERROR("Could not find APB-AP for debug access");
2233                 return retval;
2234         }
2235
2236         retval = mem_ap_init(armv8->debug_ap);
2237         if (retval != ERROR_OK) {
2238                 LOG_ERROR("Could not initialize the APB-AP");
2239                 return retval;
2240         }
2241
2242         armv8->debug_ap->memaccess_tck = 10;
2243
2244         if (!target->dbgbase_set) {
2245                 uint32_t dbgbase;
2246                 /* Get ROM Table base */
2247                 uint32_t apid;
2248                 int32_t coreidx = target->coreid;
2249                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2250                 if (retval != ERROR_OK)
2251                         return retval;
2252                 /* Lookup 0x15 -- Processor DAP */
2253                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2254                                 &armv8->debug_base, &coreidx);
2255                 if (retval != ERROR_OK)
2256                         return retval;
2257                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
2258                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2259         } else
2260                 armv8->debug_base = target->dbgbase;
2261
2262         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2263                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2264         if (retval != ERROR_OK) {
2265                 LOG_DEBUG("Examine %s failed", "oslock");
2266                 return retval;
2267         }
2268
2269         retval = mem_ap_read_u32(armv8->debug_ap,
2270                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2271         if (retval != ERROR_OK) {
2272                 LOG_DEBUG("Examine %s failed", "CPUID");
2273                 return retval;
2274         }
2275
2276         retval = mem_ap_read_u32(armv8->debug_ap,
2277                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2278         retval += mem_ap_read_u32(armv8->debug_ap,
2279                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2280         if (retval != ERROR_OK) {
2281                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2282                 return retval;
2283         }
2284         retval = mem_ap_read_u32(armv8->debug_ap,
2285                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2286         retval += mem_ap_read_u32(armv8->debug_ap,
2287                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2288         if (retval != ERROR_OK) {
2289                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2290                 return retval;
2291         }
2292
2293         retval = dap_run(armv8->debug_ap->dap);
2294         if (retval != ERROR_OK) {
2295                 LOG_ERROR("%s: examination failed\n", target_name(target));
2296                 return retval;
2297         }
2298
2299         ttypr |= tmp1;
2300         ttypr = (ttypr << 32) | tmp0;
2301         debug |= tmp3;
2302         debug = (debug << 32) | tmp2;
2303
2304         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2305         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2306         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2307
2308         if (target->private_config == NULL)
2309                 return ERROR_FAIL;
2310
2311         pc = (struct aarch64_private_config *)target->private_config;
2312         if (pc->cti == NULL)
2313                 return ERROR_FAIL;
2314
2315         armv8->cti = pc->cti;
2316
2317         retval = aarch64_dpm_setup(aarch64, debug);
2318         if (retval != ERROR_OK)
2319                 return retval;
2320
2321         /* Setup Breakpoint Register Pairs */
2322         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2323         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2324         aarch64->brp_num_available = aarch64->brp_num;
2325         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2326         for (i = 0; i < aarch64->brp_num; i++) {
2327                 aarch64->brp_list[i].used = 0;
2328                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2329                         aarch64->brp_list[i].type = BRP_NORMAL;
2330                 else
2331                         aarch64->brp_list[i].type = BRP_CONTEXT;
2332                 aarch64->brp_list[i].value = 0;
2333                 aarch64->brp_list[i].control = 0;
2334                 aarch64->brp_list[i].BRPn = i;
2335         }
2336
2337         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2338
2339         target->state = TARGET_UNKNOWN;
2340         target->debug_reason = DBG_REASON_NOTHALTED;
2341         aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
2342         target_set_examined(target);
2343         return ERROR_OK;
2344 }
2345
2346 static int aarch64_examine(struct target *target)
2347 {
2348         int retval = ERROR_OK;
2349
2350         /* don't re-probe hardware after each reset */
2351         if (!target_was_examined(target))
2352                 retval = aarch64_examine_first(target);
2353
2354         /* Configure core debug access */
2355         if (retval == ERROR_OK)
2356                 retval = aarch64_init_debug_access(target);
2357
2358         return retval;
2359 }
2360
2361 /*
2362  *      Cortex-A8 target creation and initialization
2363  */
2364
2365 static int aarch64_init_target(struct command_context *cmd_ctx,
2366         struct target *target)
2367 {
2368         /* examine_first() does a bunch of this */
2369         arm_semihosting_init(target);
2370         return ERROR_OK;
2371 }
2372
2373 static int aarch64_init_arch_info(struct target *target,
2374         struct aarch64_common *aarch64, struct adiv5_dap *dap)
2375 {
2376         struct armv8_common *armv8 = &aarch64->armv8_common;
2377
2378         /* Setup struct aarch64_common */
2379         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2380         armv8->arm.dap = dap;
2381
2382         /* register arch-specific functions */
2383         armv8->examine_debug_reason = NULL;
2384         armv8->post_debug_entry = aarch64_post_debug_entry;
2385         armv8->pre_restore_context = NULL;
2386         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2387
2388         armv8_init_arch_info(target, armv8);
2389         target_register_timer_callback(aarch64_handle_target_request, 1,
2390                 TARGET_TIMER_TYPE_PERIODIC, target);
2391
2392         return ERROR_OK;
2393 }
2394
2395 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2396 {
2397         struct aarch64_private_config *pc = target->private_config;
2398         struct aarch64_common *aarch64;
2399
2400         if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2401                 return ERROR_FAIL;
2402
2403         aarch64 = calloc(1, sizeof(struct aarch64_common));
2404         if (aarch64 == NULL) {
2405                 LOG_ERROR("Out of memory");
2406                 return ERROR_FAIL;
2407         }
2408
2409         return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2410 }
2411
2412 static void aarch64_deinit_target(struct target *target)
2413 {
2414         struct aarch64_common *aarch64 = target_to_aarch64(target);
2415         struct armv8_common *armv8 = &aarch64->armv8_common;
2416         struct arm_dpm *dpm = &armv8->dpm;
2417
2418         armv8_free_reg_cache(target);
2419         free(aarch64->brp_list);
2420         free(dpm->dbp);
2421         free(dpm->dwp);
2422         free(target->private_config);
2423         free(aarch64);
2424 }
2425
2426 static int aarch64_mmu(struct target *target, int *enabled)
2427 {
2428         if (target->state != TARGET_HALTED) {
2429                 LOG_ERROR("%s: target %s not halted", __func__, target_name(target));
2430                 return ERROR_TARGET_INVALID;
2431         }
2432
2433         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2434         return ERROR_OK;
2435 }
2436
2437 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2438                              target_addr_t *phys)
2439 {
2440         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2441 }
2442
2443 /*
2444  * private target configuration items
2445  */
2446 enum aarch64_cfg_param {
2447         CFG_CTI,
2448 };
2449
2450 static const Jim_Nvp nvp_config_opts[] = {
2451         { .name = "-cti", .value = CFG_CTI },
2452         { .name = NULL, .value = -1 }
2453 };
2454
2455 static int aarch64_jim_configure(struct target *target, Jim_GetOptInfo *goi)
2456 {
2457         struct aarch64_private_config *pc;
2458         Jim_Nvp *n;
2459         int e;
2460
2461         pc = (struct aarch64_private_config *)target->private_config;
2462         if (pc == NULL) {
2463                         pc = calloc(1, sizeof(struct aarch64_private_config));
2464                         target->private_config = pc;
2465         }
2466
2467         /*
2468          * Call adiv5_jim_configure() to parse the common DAP options
2469          * It will return JIM_CONTINUE if it didn't find any known
2470          * options, JIM_OK if it correctly parsed the topmost option
2471          * and JIM_ERR if an error occured during parameter evaluation.
2472          * For JIM_CONTINUE, we check our own params.
2473          */
2474         e = adiv5_jim_configure(target, goi);
2475         if (e != JIM_CONTINUE)
2476                 return e;
2477
2478         /* parse config or cget options ... */
2479         if (goi->argc > 0) {
2480                 Jim_SetEmptyResult(goi->interp);
2481
2482                 /* check first if topmost item is for us */
2483                 e = Jim_Nvp_name2value_obj(goi->interp, nvp_config_opts,
2484                                 goi->argv[0], &n);
2485                 if (e != JIM_OK)
2486                         return JIM_CONTINUE;
2487
2488                 e = Jim_GetOpt_Obj(goi, NULL);
2489                 if (e != JIM_OK)
2490                         return e;
2491
2492                 switch (n->value) {
2493                 case CFG_CTI: {
2494                         if (goi->isconfigure) {
2495                                 Jim_Obj *o_cti;
2496                                 struct arm_cti *cti;
2497                                 e = Jim_GetOpt_Obj(goi, &o_cti);
2498                                 if (e != JIM_OK)
2499                                         return e;
2500                                 cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2501                                 if (cti == NULL) {
2502                                         Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2503                                         return JIM_ERR;
2504                                 }
2505                                 pc->cti = cti;
2506                         } else {
2507                                 if (goi->argc != 0) {
2508                                         Jim_WrongNumArgs(goi->interp,
2509                                                         goi->argc, goi->argv,
2510                                                         "NO PARAMS");
2511                                         return JIM_ERR;
2512                                 }
2513
2514                                 if (pc == NULL || pc->cti == NULL) {
2515                                         Jim_SetResultString(goi->interp, "CTI not configured", -1);
2516                                         return JIM_ERR;
2517                                 }
2518                                 Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2519                         }
2520                         break;
2521                 }
2522
2523                 default:
2524                         return JIM_CONTINUE;
2525                 }
2526         }
2527
2528         return JIM_OK;
2529 }
2530
2531 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2532 {
2533         struct target *target = get_current_target(CMD_CTX);
2534         struct armv8_common *armv8 = target_to_armv8(target);
2535
2536         return armv8_handle_cache_info_command(CMD_CTX,
2537                         &armv8->armv8_mmu.armv8_cache);
2538 }
2539
2540
2541 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2542 {
2543         struct target *target = get_current_target(CMD_CTX);
2544         if (!target_was_examined(target)) {
2545                 LOG_ERROR("target not examined yet");
2546                 return ERROR_FAIL;
2547         }
2548
2549         return aarch64_init_debug_access(target);
2550 }
2551
2552 COMMAND_HANDLER(aarch64_mask_interrupts_command)
2553 {
2554         struct target *target = get_current_target(CMD_CTX);
2555         struct aarch64_common *aarch64 = target_to_aarch64(target);
2556
2557         static const Jim_Nvp nvp_maskisr_modes[] = {
2558                 { .name = "off", .value = AARCH64_ISRMASK_OFF },
2559                 { .name = "on", .value = AARCH64_ISRMASK_ON },
2560                 { .name = NULL, .value = -1 },
2561         };
2562         const Jim_Nvp *n;
2563
2564         if (CMD_ARGC > 0) {
2565                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2566                 if (n->name == NULL) {
2567                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
2568                         return ERROR_COMMAND_SYNTAX_ERROR;
2569                 }
2570
2571                 aarch64->isrmasking_mode = n->value;
2572         }
2573
2574         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, aarch64->isrmasking_mode);
2575         command_print(CMD_CTX, "aarch64 interrupt mask %s", n->name);
2576
2577         return ERROR_OK;
2578 }
2579
2580 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
2581 {
2582         struct command_context *context;
2583         struct target *target;
2584         struct arm *arm;
2585         int retval;
2586         bool is_mcr = false;
2587         int arg_cnt = 0;
2588
2589         if (Jim_CompareStringImmediate(interp, argv[0], "mcr")) {
2590                 is_mcr = true;
2591                 arg_cnt = 7;
2592         } else {
2593                 arg_cnt = 6;
2594         }
2595
2596         context = current_command_context(interp);
2597         assert(context != NULL);
2598
2599         target = get_current_target(context);
2600         if (target == NULL) {
2601                 LOG_ERROR("%s: no current target", __func__);
2602                 return JIM_ERR;
2603         }
2604         if (!target_was_examined(target)) {
2605                 LOG_ERROR("%s: not yet examined", target_name(target));
2606                 return JIM_ERR;
2607         }
2608
2609         arm = target_to_arm(target);
2610         if (!is_arm(arm)) {
2611                 LOG_ERROR("%s: not an ARM", target_name(target));
2612                 return JIM_ERR;
2613         }
2614
2615         if (target->state != TARGET_HALTED)
2616                 return ERROR_TARGET_NOT_HALTED;
2617
2618         if (arm->core_state == ARM_STATE_AARCH64) {
2619                 LOG_ERROR("%s: not 32-bit arm target", target_name(target));
2620                 return JIM_ERR;
2621         }
2622
2623         if (argc != arg_cnt) {
2624                 LOG_ERROR("%s: wrong number of arguments", __func__);
2625                 return JIM_ERR;
2626         }
2627
2628         int cpnum;
2629         uint32_t op1;
2630         uint32_t op2;
2631         uint32_t CRn;
2632         uint32_t CRm;
2633         uint32_t value;
2634         long l;
2635
2636         /* NOTE:  parameter sequence matches ARM instruction set usage:
2637          *      MCR     pNUM, op1, rX, CRn, CRm, op2    ; write CP from rX
2638          *      MRC     pNUM, op1, rX, CRn, CRm, op2    ; read CP into rX
2639          * The "rX" is necessarily omitted; it uses Tcl mechanisms.
2640          */
2641         retval = Jim_GetLong(interp, argv[1], &l);
2642         if (retval != JIM_OK)
2643                 return retval;
2644         if (l & ~0xf) {
2645                 LOG_ERROR("%s: %s %d out of range", __func__,
2646                         "coprocessor", (int) l);
2647                 return JIM_ERR;
2648         }
2649         cpnum = l;
2650
2651         retval = Jim_GetLong(interp, argv[2], &l);
2652         if (retval != JIM_OK)
2653                 return retval;
2654         if (l & ~0x7) {
2655                 LOG_ERROR("%s: %s %d out of range", __func__,
2656                         "op1", (int) l);
2657                 return JIM_ERR;
2658         }
2659         op1 = l;
2660
2661         retval = Jim_GetLong(interp, argv[3], &l);
2662         if (retval != JIM_OK)
2663                 return retval;
2664         if (l & ~0xf) {
2665                 LOG_ERROR("%s: %s %d out of range", __func__,
2666                         "CRn", (int) l);
2667                 return JIM_ERR;
2668         }
2669         CRn = l;
2670
2671         retval = Jim_GetLong(interp, argv[4], &l);
2672         if (retval != JIM_OK)
2673                 return retval;
2674         if (l & ~0xf) {
2675                 LOG_ERROR("%s: %s %d out of range", __func__,
2676                         "CRm", (int) l);
2677                 return JIM_ERR;
2678         }
2679         CRm = l;
2680
2681         retval = Jim_GetLong(interp, argv[5], &l);
2682         if (retval != JIM_OK)
2683                 return retval;
2684         if (l & ~0x7) {
2685                 LOG_ERROR("%s: %s %d out of range", __func__,
2686                         "op2", (int) l);
2687                 return JIM_ERR;
2688         }
2689         op2 = l;
2690
2691         value = 0;
2692
2693         if (is_mcr == true) {
2694                 retval = Jim_GetLong(interp, argv[6], &l);
2695                 if (retval != JIM_OK)
2696                         return retval;
2697                 value = l;
2698
2699                 /* NOTE: parameters reordered! */
2700                 /* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
2701                 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
2702                 if (retval != ERROR_OK)
2703                         return JIM_ERR;
2704         } else {
2705                 /* NOTE: parameters reordered! */
2706                 /* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
2707                 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
2708                 if (retval != ERROR_OK)
2709                         return JIM_ERR;
2710
2711                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
2712         }
2713
2714         return JIM_OK;
2715 }
2716
2717 static const struct command_registration aarch64_exec_command_handlers[] = {
2718         {
2719                 .name = "cache_info",
2720                 .handler = aarch64_handle_cache_info_command,
2721                 .mode = COMMAND_EXEC,
2722                 .help = "display information about target caches",
2723                 .usage = "",
2724         },
2725         {
2726                 .name = "dbginit",
2727                 .handler = aarch64_handle_dbginit_command,
2728                 .mode = COMMAND_EXEC,
2729                 .help = "Initialize core debug",
2730                 .usage = "",
2731         },
2732         {
2733                 .name = "maskisr",
2734                 .handler = aarch64_mask_interrupts_command,
2735                 .mode = COMMAND_ANY,
2736                 .help = "mask aarch64 interrupts during single-step",
2737                 .usage = "['on'|'off']",
2738         },
2739         {
2740                 .name = "mcr",
2741                 .mode = COMMAND_EXEC,
2742                 .jim_handler = jim_mcrmrc,
2743                 .help = "write coprocessor register",
2744                 .usage = "cpnum op1 CRn CRm op2 value",
2745         },
2746         {
2747                 .name = "mrc",
2748                 .mode = COMMAND_EXEC,
2749                 .jim_handler = jim_mcrmrc,
2750                 .help = "read coprocessor register",
2751                 .usage = "cpnum op1 CRn CRm op2",
2752         },
2753         {
2754                 .chain = smp_command_handlers,
2755         },
2756
2757
2758         COMMAND_REGISTRATION_DONE
2759 };
2760
2761 static const struct command_registration aarch64_command_handlers[] = {
2762         {
2763                 .chain = armv8_command_handlers,
2764         },
2765         {
2766                 .name = "aarch64",
2767                 .mode = COMMAND_ANY,
2768                 .help = "Aarch64 command group",
2769                 .usage = "",
2770                 .chain = aarch64_exec_command_handlers,
2771         },
2772         COMMAND_REGISTRATION_DONE
2773 };
2774
2775 struct target_type aarch64_target = {
2776         .name = "aarch64",
2777
2778         .poll = aarch64_poll,
2779         .arch_state = armv8_arch_state,
2780
2781         .halt = aarch64_halt,
2782         .resume = aarch64_resume,
2783         .step = aarch64_step,
2784
2785         .assert_reset = aarch64_assert_reset,
2786         .deassert_reset = aarch64_deassert_reset,
2787
2788         /* REVISIT allow exporting VFP3 registers ... */
2789         .get_gdb_arch = armv8_get_gdb_arch,
2790         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2791
2792         .read_memory = aarch64_read_memory,
2793         .write_memory = aarch64_write_memory,
2794
2795         .add_breakpoint = aarch64_add_breakpoint,
2796         .add_context_breakpoint = aarch64_add_context_breakpoint,
2797         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2798         .remove_breakpoint = aarch64_remove_breakpoint,
2799         .add_watchpoint = NULL,
2800         .remove_watchpoint = NULL,
2801
2802         .commands = aarch64_command_handlers,
2803         .target_create = aarch64_target_create,
2804         .target_jim_configure = aarch64_jim_configure,
2805         .init_target = aarch64_init_target,
2806         .deinit_target = aarch64_deinit_target,
2807         .examine = aarch64_examine,
2808
2809         .read_phys_memory = aarch64_read_phys_memory,
2810         .write_phys_memory = aarch64_write_phys_memory,
2811         .mmu = aarch64_mmu,
2812         .virt2phys = aarch64_virt2phys,
2813 };