aarch64: Enable resuming with address
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "arm_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ab_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
61                                                      0xd5181000,
62                                                      aarch64->system_control_reg);
63         }
64
65         return retval;
66 }
67
68 /*  check address before aarch64_apb read write access with mmu on
69  *  remove apb predictible data abort */
70 static int aarch64_check_address(struct target *target, uint32_t address)
71 {
72         /* TODO */
73         return ERROR_OK;
74 }
75 /*  modify system_control_reg in order to enable or disable mmu for :
76  *  - virt2phys address conversion
77  *  - read or write memory in phys or virt address */
78 static int aarch64_mmu_modify(struct target *target, int enable)
79 {
80         struct aarch64_common *aarch64 = target_to_aarch64(target);
81         struct armv8_common *armv8 = &aarch64->armv8_common;
82         int retval = ERROR_OK;
83
84         if (enable) {
85                 /*  if mmu enabled at target stop and mmu not enable */
86                 if (!(aarch64->system_control_reg & 0x1U)) {
87                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
88                         return ERROR_FAIL;
89                 }
90                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
91                         aarch64->system_control_reg_curr |= 0x1U;
92                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
93                                                              0xd5181000,
94                                                              aarch64->system_control_reg_curr);
95                 }
96         } else {
97                 if (aarch64->system_control_reg_curr & 0x4U) {
98                         /*  data cache is active */
99                         aarch64->system_control_reg_curr &= ~0x4U;
100                         /* flush data cache armv7 function to be called */
101                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
102                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
103                 }
104                 if ((aarch64->system_control_reg_curr & 0x1U)) {
105                         aarch64->system_control_reg_curr &= ~0x1U;
106                         retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
107                                                              0xd5181000,
108                                                              aarch64->system_control_reg_curr);
109                 }
110         }
111         return retval;
112 }
113
114 /*
115  * Basic debug access, very low level assumes state is saved
116  */
117 static int aarch64_init_debug_access(struct target *target)
118 {
119         struct armv8_common *armv8 = target_to_armv8(target);
120         int retval;
121         uint32_t dummy;
122
123         LOG_DEBUG(" ");
124
125         /* Unlocking the debug registers for modification
126          * The debugport might be uninitialised so try twice */
127         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
128                              armv8->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
129         if (retval != ERROR_OK) {
130                 /* try again */
131                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
132                              armv8->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
133                 if (retval == ERROR_OK)
134                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
135         }
136         if (retval != ERROR_OK)
137                 return retval;
138         /* Clear Sticky Power Down status Bit in PRSR to enable access to
139            the registers in the Core Power Domain */
140         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
141                         armv8->debug_base + CPUDBG_PRSR, &dummy);
142         if (retval != ERROR_OK)
143                 return retval;
144
145         /* Enabling of instruction execution in debug mode is done in debug_entry code */
146
147         /* Resync breakpoint registers */
148
149         /* Since this is likely called from init or reset, update target state information*/
150         return aarch64_poll(target);
151 }
152
153 /* To reduce needless round-trips, pass in a pointer to the current
154  * DSCR value.  Initialize it to zero if you just need to know the
155  * value on return from this function; or DSCR_INSTR_COMP if you
156  * happen to know that no instruction is pending.
157  */
158 static int aarch64_exec_opcode(struct target *target,
159         uint32_t opcode, uint32_t *dscr_p)
160 {
161         uint32_t dscr;
162         int retval;
163         struct armv8_common *armv8 = target_to_armv8(target);
164         dscr = dscr_p ? *dscr_p : 0;
165
166         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
167
168         /* Wait for InstrCompl bit to be set */
169         long long then = timeval_ms();
170         while ((dscr & DSCR_INSTR_COMP) == 0) {
171                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
172                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
173                 if (retval != ERROR_OK) {
174                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
175                         return retval;
176                 }
177                 if (timeval_ms() > then + 1000) {
178                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
179                         return ERROR_FAIL;
180                 }
181         }
182
183         retval = mem_ap_write_u32(armv8->debug_ap,
184                         armv8->debug_base + CPUDBG_ITR, opcode);
185         if (retval != ERROR_OK)
186                 return retval;
187
188         then = timeval_ms();
189         do {
190                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
191                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
192                 if (retval != ERROR_OK) {
193                         LOG_ERROR("Could not read DSCR register");
194                         return retval;
195                 }
196                 if (timeval_ms() > then + 1000) {
197                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
198                         return ERROR_FAIL;
199                 }
200         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
201
202         if (dscr_p)
203                 *dscr_p = dscr;
204
205         return retval;
206 }
207
208 /* Write to memory mapped registers directly with no cache or mmu handling */
209 static int aarch64_dap_write_memap_register_u32(struct target *target,
210         uint32_t address,
211         uint32_t value)
212 {
213         int retval;
214         struct armv8_common *armv8 = target_to_armv8(target);
215
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
217
218         return retval;
219 }
220
221 /*
222  * AARCH64 implementation of Debug Programmer's Model
223  *
224  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
225  * so there's no need to poll for it before executing an instruction.
226  *
227  * NOTE that in several of these cases the "stall" mode might be useful.
228  * It'd let us queue a few operations together... prepare/finish might
229  * be the places to enable/disable that mode.
230  */
231
232 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
233 {
234         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
235 }
236
237 static int aarch64_write_dcc(struct aarch64_common *a8, uint32_t data)
238 {
239         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
240         return mem_ap_write_u32(a8->armv8_common.debug_ap,
241                                 a8->armv8_common.debug_base + CPUDBG_DTRRX, data);
242 }
243
244 static int aarch64_write_dcc_64(struct aarch64_common *a8, uint64_t data)
245 {
246         int ret;
247         LOG_DEBUG("write DCC 0x%08" PRIx32, (unsigned)data);
248         LOG_DEBUG("write DCC 0x%08" PRIx32, (unsigned)(data >> 32));
249         ret = mem_ap_write_u32(a8->armv8_common.debug_ap,
250                                a8->armv8_common.debug_base + CPUDBG_DTRRX, data);
251         ret += mem_ap_write_u32(a8->armv8_common.debug_ap,
252                                 a8->armv8_common.debug_base + CPUDBG_DTRTX, data >> 32);
253         return ret;
254 }
255
256 static int aarch64_read_dcc(struct aarch64_common *a8, uint32_t *data,
257         uint32_t *dscr_p)
258 {
259         uint32_t dscr = DSCR_INSTR_COMP;
260         int retval;
261
262         if (dscr_p)
263                 dscr = *dscr_p;
264
265         /* Wait for DTRRXfull */
266         long long then = timeval_ms();
267         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
268                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
269                                 a8->armv8_common.debug_base + CPUDBG_DSCR,
270                                 &dscr);
271                 if (retval != ERROR_OK)
272                         return retval;
273                 if (timeval_ms() > then + 1000) {
274                         LOG_ERROR("Timeout waiting for read dcc");
275                         return ERROR_FAIL;
276                 }
277         }
278
279         retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
280                                             a8->armv8_common.debug_base + CPUDBG_DTRTX,
281                                             data);
282         if (retval != ERROR_OK)
283                 return retval;
284         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
285
286         if (dscr_p)
287                 *dscr_p = dscr;
288
289         return retval;
290 }
291 static int aarch64_read_dcc_64(struct aarch64_common *a8, uint64_t *data,
292         uint32_t *dscr_p)
293 {
294         uint32_t dscr = DSCR_INSTR_COMP;
295         uint32_t higher;
296         int retval;
297
298         if (dscr_p)
299                 dscr = *dscr_p;
300
301         /* Wait for DTRRXfull */
302         long long then = timeval_ms();
303         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
304                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
305                                 a8->armv8_common.debug_base + CPUDBG_DSCR,
306                                 &dscr);
307                 if (retval != ERROR_OK)
308                         return retval;
309                 if (timeval_ms() > then + 1000) {
310                         LOG_ERROR("Timeout waiting for read dcc");
311                         return ERROR_FAIL;
312                 }
313         }
314
315         retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
316                                             a8->armv8_common.debug_base + CPUDBG_DTRTX,
317                                             (uint32_t *)data);
318         if (retval != ERROR_OK)
319                 return retval;
320
321         retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
322                                             a8->armv8_common.debug_base + CPUDBG_DTRRX,
323                                             &higher);
324         if (retval != ERROR_OK)
325                 return retval;
326
327         *data = *(uint32_t *)data | (uint64_t)higher << 32;
328         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
329
330         if (dscr_p)
331                 *dscr_p = dscr;
332
333         return retval;
334 }
335
336 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
337 {
338         struct aarch64_common *a8 = dpm_to_a8(dpm);
339         uint32_t dscr;
340         int retval;
341
342         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
343         long long then = timeval_ms();
344         for (;; ) {
345                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
346                                 a8->armv8_common.debug_base + CPUDBG_DSCR,
347                                 &dscr);
348                 if (retval != ERROR_OK)
349                         return retval;
350                 if ((dscr & DSCR_INSTR_COMP) != 0)
351                         break;
352                 if (timeval_ms() > then + 1000) {
353                         LOG_ERROR("Timeout waiting for dpm prepare");
354                         return ERROR_FAIL;
355                 }
356         }
357
358         /* this "should never happen" ... */
359         if (dscr & DSCR_DTR_RX_FULL) {
360                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
361                 /* Clear DCCRX */
362                 retval = aarch64_exec_opcode(
363                                 a8->armv8_common.arm.target,
364                                 0xd5130400,
365                                 &dscr);
366                 if (retval != ERROR_OK)
367                         return retval;
368         }
369
370         return retval;
371 }
372
373 static int aarch64_dpm_finish(struct arm_dpm *dpm)
374 {
375         /* REVISIT what could be done here? */
376         return ERROR_OK;
377 }
378
379 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
380         uint32_t opcode, uint32_t data)
381 {
382         struct aarch64_common *a8 = dpm_to_a8(dpm);
383         int retval;
384         uint32_t dscr = DSCR_INSTR_COMP;
385
386         retval = aarch64_write_dcc(a8, data);
387         if (retval != ERROR_OK)
388                 return retval;
389
390         return aarch64_exec_opcode(
391                         a8->armv8_common.arm.target,
392                         opcode,
393                         &dscr);
394 }
395
396 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
397         uint32_t opcode, uint64_t data)
398 {
399         struct aarch64_common *a8 = dpm_to_a8(dpm);
400         int retval;
401         uint32_t dscr = DSCR_INSTR_COMP;
402
403         retval = aarch64_write_dcc_64(a8, data);
404         if (retval != ERROR_OK)
405                 return retval;
406
407         return aarch64_exec_opcode(
408                         a8->armv8_common.arm.target,
409                         opcode,
410                         &dscr);
411 }
412
413 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
414         uint32_t opcode, uint32_t data)
415 {
416         struct aarch64_common *a8 = dpm_to_a8(dpm);
417         uint32_t dscr = DSCR_INSTR_COMP;
418         int retval;
419
420         retval = aarch64_write_dcc(a8, data);
421         if (retval != ERROR_OK)
422                 return retval;
423
424         retval = aarch64_exec_opcode(
425                         a8->armv8_common.arm.target,
426                         0xd5330500,
427                         &dscr);
428         if (retval != ERROR_OK)
429                 return retval;
430
431         /* then the opcode, taking data from R0 */
432         retval = aarch64_exec_opcode(
433                         a8->armv8_common.arm.target,
434                         opcode,
435                         &dscr);
436
437         return retval;
438 }
439
440 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
441         uint32_t opcode, uint64_t data)
442 {
443         struct aarch64_common *a8 = dpm_to_a8(dpm);
444         uint32_t dscr = DSCR_INSTR_COMP;
445         int retval;
446
447         retval = aarch64_write_dcc_64(a8, data);
448         if (retval != ERROR_OK)
449                 return retval;
450
451         retval = aarch64_exec_opcode(
452                         a8->armv8_common.arm.target,
453                         0xd5330400,
454                         &dscr);
455         if (retval != ERROR_OK)
456                 return retval;
457
458         /* then the opcode, taking data from R0 */
459         retval = aarch64_exec_opcode(
460                         a8->armv8_common.arm.target,
461                         opcode,
462                         &dscr);
463
464         return retval;
465 }
466
467 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
468 {
469         struct target *target = dpm->arm->target;
470         uint32_t dscr = DSCR_INSTR_COMP;
471
472         /* "Prefetch flush" after modifying execution status in CPSR */
473         return aarch64_exec_opcode(target,
474                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
475                         &dscr);
476 }
477
478 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
479         uint32_t opcode, uint32_t *data)
480 {
481         struct aarch64_common *a8 = dpm_to_a8(dpm);
482         int retval;
483         uint32_t dscr = DSCR_INSTR_COMP;
484
485         /* the opcode, writing data to DCC */
486         retval = aarch64_exec_opcode(
487                         a8->armv8_common.arm.target,
488                         opcode,
489                         &dscr);
490         if (retval != ERROR_OK)
491                 return retval;
492
493         return aarch64_read_dcc(a8, data, &dscr);
494 }
495
496 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
497         uint32_t opcode, uint64_t *data)
498 {
499         struct aarch64_common *a8 = dpm_to_a8(dpm);
500         int retval;
501         uint32_t dscr = DSCR_INSTR_COMP;
502
503         /* the opcode, writing data to DCC */
504         retval = aarch64_exec_opcode(
505                         a8->armv8_common.arm.target,
506                         opcode,
507                         &dscr);
508         if (retval != ERROR_OK)
509                 return retval;
510
511         return aarch64_read_dcc_64(a8, data, &dscr);
512 }
513
514 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
515         uint32_t opcode, uint32_t *data)
516 {
517         struct aarch64_common *a8 = dpm_to_a8(dpm);
518         uint32_t dscr = DSCR_INSTR_COMP;
519         int retval;
520
521         /* the opcode, writing data to R0 */
522         retval = aarch64_exec_opcode(
523                         a8->armv8_common.arm.target,
524                         opcode,
525                         &dscr);
526         if (retval != ERROR_OK)
527                 return retval;
528
529         /* write R0 to DCC */
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         0xd5130400,  /* msr dbgdtr_el0, x0 */
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         return aarch64_read_dcc(a8, data, &dscr);
538 }
539
540 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
541         uint32_t opcode, uint64_t *data)
542 {
543         struct aarch64_common *a8 = dpm_to_a8(dpm);
544         uint32_t dscr = DSCR_INSTR_COMP;
545         int retval;
546
547         /* the opcode, writing data to R0 */
548         retval = aarch64_exec_opcode(
549                         a8->armv8_common.arm.target,
550                         opcode,
551                         &dscr);
552         if (retval != ERROR_OK)
553                 return retval;
554
555         /* write R0 to DCC */
556         retval = aarch64_exec_opcode(
557                         a8->armv8_common.arm.target,
558                         0xd5130400,  /* msr dbgdtr_el0, x0 */
559                         &dscr);
560         if (retval != ERROR_OK)
561                 return retval;
562
563         return aarch64_read_dcc_64(a8, data, &dscr);
564 }
565
566 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
567         uint32_t addr, uint32_t control)
568 {
569         struct aarch64_common *a8 = dpm_to_a8(dpm);
570         uint32_t vr = a8->armv8_common.debug_base;
571         uint32_t cr = a8->armv8_common.debug_base;
572         int retval;
573
574         switch (index_t) {
575                 case 0 ... 15:  /* breakpoints */
576                         vr += CPUDBG_BVR_BASE;
577                         cr += CPUDBG_BCR_BASE;
578                         break;
579                 case 16 ... 31: /* watchpoints */
580                         vr += CPUDBG_WVR_BASE;
581                         cr += CPUDBG_WCR_BASE;
582                         index_t -= 16;
583                         break;
584                 default:
585                         return ERROR_FAIL;
586         }
587         vr += 4 * index_t;
588         cr += 4 * index_t;
589
590         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
591                 (unsigned) vr, (unsigned) cr);
592
593         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
594                         vr, addr);
595         if (retval != ERROR_OK)
596                 return retval;
597         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
598                         cr, control);
599         return retval;
600 }
601
602 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
603 {
604         return ERROR_OK;
605
606 #if 0
607         struct aarch64_common *a8 = dpm_to_a8(dpm);
608         uint32_t cr;
609
610         switch (index_t) {
611                 case 0 ... 15:
612                         cr = a8->armv8_common.debug_base + CPUDBG_BCR_BASE;
613                         break;
614                 case 16 ... 31:
615                         cr = a8->armv8_common.debug_base + CPUDBG_WCR_BASE;
616                         index_t -= 16;
617                         break;
618                 default:
619                         return ERROR_FAIL;
620         }
621         cr += 4 * index_t;
622
623         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
624
625         /* clear control register */
626         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
627 #endif
628 }
629
630 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
631 {
632         struct arm_dpm *dpm = &a8->armv8_common.dpm;
633         int retval;
634
635         dpm->arm = &a8->armv8_common.arm;
636         dpm->didr = debug;
637
638         dpm->prepare = aarch64_dpm_prepare;
639         dpm->finish = aarch64_dpm_finish;
640
641         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
642         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
643         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
644         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
645         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
646
647         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
648         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
649         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
650         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
651
652         dpm->arm_reg_current = armv8_reg_current;
653
654         dpm->bpwp_enable = aarch64_bpwp_enable;
655         dpm->bpwp_disable = aarch64_bpwp_disable;
656
657         retval = arm_dpm_setup(dpm);
658         if (retval == ERROR_OK)
659                 retval = arm_dpm_initialize(dpm);
660
661         return retval;
662 }
663 static struct target *get_aarch64(struct target *target, int32_t coreid)
664 {
665         struct target_list *head;
666         struct target *curr;
667
668         head = target->head;
669         while (head != (struct target_list *)NULL) {
670                 curr = head->target;
671                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
672                         return curr;
673                 head = head->next;
674         }
675         return target;
676 }
677 static int aarch64_halt(struct target *target);
678
679 static int aarch64_halt_smp(struct target *target)
680 {
681         int retval = 0;
682         struct target_list *head;
683         struct target *curr;
684         head = target->head;
685         while (head != (struct target_list *)NULL) {
686                 curr = head->target;
687                 if ((curr != target) && (curr->state != TARGET_HALTED))
688                         retval += aarch64_halt(curr);
689                 head = head->next;
690         }
691         return retval;
692 }
693
694 static int update_halt_gdb(struct target *target)
695 {
696         int retval = 0;
697         if (target->gdb_service && target->gdb_service->core[0] == -1) {
698                 target->gdb_service->target = target;
699                 target->gdb_service->core[0] = target->coreid;
700                 retval += aarch64_halt_smp(target);
701         }
702         return retval;
703 }
704
705 /*
706  * Cortex-A8 Run control
707  */
708
709 static int aarch64_poll(struct target *target)
710 {
711         int retval = ERROR_OK;
712         uint32_t dscr;
713         struct aarch64_common *aarch64 = target_to_aarch64(target);
714         struct armv8_common *armv8 = &aarch64->armv8_common;
715         enum target_state prev_target_state = target->state;
716         /*  toggle to another core is done by gdb as follow */
717         /*  maint packet J core_id */
718         /*  continue */
719         /*  the next polling trigger an halt event sent to gdb */
720         if ((target->state == TARGET_HALTED) && (target->smp) &&
721                 (target->gdb_service) &&
722                 (target->gdb_service->target == NULL)) {
723                 target->gdb_service->target =
724                         get_aarch64(target, target->gdb_service->core[1]);
725                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
726                 return retval;
727         }
728         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
729                         armv8->debug_base + CPUDBG_DSCR, &dscr);
730         if (retval != ERROR_OK)
731                 return retval;
732         aarch64->cpudbg_dscr = dscr;
733
734         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
735                 if (prev_target_state != TARGET_HALTED) {
736                         /* We have a halting debug event */
737                         LOG_DEBUG("Target halted");
738                         target->state = TARGET_HALTED;
739                         if ((prev_target_state == TARGET_RUNNING)
740                                 || (prev_target_state == TARGET_UNKNOWN)
741                                 || (prev_target_state == TARGET_RESET)) {
742                                 retval = aarch64_debug_entry(target);
743                                 if (retval != ERROR_OK)
744                                         return retval;
745                                 if (target->smp) {
746                                         retval = update_halt_gdb(target);
747                                         if (retval != ERROR_OK)
748                                                 return retval;
749                                 }
750                                 target_call_event_callbacks(target,
751                                         TARGET_EVENT_HALTED);
752                         }
753                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
754                                 LOG_DEBUG(" ");
755
756                                 retval = aarch64_debug_entry(target);
757                                 if (retval != ERROR_OK)
758                                         return retval;
759                                 if (target->smp) {
760                                         retval = update_halt_gdb(target);
761                                         if (retval != ERROR_OK)
762                                                 return retval;
763                                 }
764
765                                 target_call_event_callbacks(target,
766                                         TARGET_EVENT_DEBUG_HALTED);
767                         }
768                 }
769         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
770                 target->state = TARGET_RUNNING;
771         else {
772                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
773                 target->state = TARGET_UNKNOWN;
774         }
775
776         return retval;
777 }
778
779 static int aarch64_halt(struct target *target)
780 {
781         int retval = ERROR_OK;
782         uint32_t dscr;
783         struct armv8_common *armv8 = target_to_armv8(target);
784
785         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
786                         armv8->debug_base + 0x10000 + 0, &dscr);
787         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
788                         armv8->debug_base + 0x10000 + 0, 1);
789         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
790                         armv8->debug_base + 0x10000 + 0, &dscr);
791
792         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
793                         armv8->debug_base + 0x10000 + 0x140, &dscr);
794         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
795                         armv8->debug_base + 0x10000 + 0x140, 6);
796         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
797                         armv8->debug_base + 0x10000 + 0x140, &dscr);
798
799         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
800                         armv8->debug_base + 0x10000 + 0xa0, &dscr);
801         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
802                         armv8->debug_base + 0x10000 + 0xa0, 5);
803         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
804                         armv8->debug_base + 0x10000 + 0xa0, &dscr);
805
806         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
807                         armv8->debug_base + 0x10000 + 0xa4, &dscr);
808         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
809                         armv8->debug_base + 0x10000 + 0xa4, 2);
810         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
811                         armv8->debug_base + 0x10000 + 0xa4, &dscr);
812
813         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
814                         armv8->debug_base + 0x10000 + 0x20, &dscr);
815         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
816                         armv8->debug_base + 0x10000 + 0x20, 4);
817         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
818                         armv8->debug_base + 0x10000 + 0x20, &dscr);
819
820         /*
821          * enter halting debug mode
822          */
823         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
824                         armv8->debug_base + CPUDBG_DSCR, &dscr);
825         if (retval != ERROR_OK)
826                 return retval;
827
828 #       /* STATUS */
829         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
830                         armv8->debug_base + 0x10000 + 0x134, &dscr);
831
832         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
833                         armv8->debug_base + 0x10000 + 0x1c, &dscr);
834         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
835                         armv8->debug_base + 0x10000 + 0x1c, 1);
836         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
837                         armv8->debug_base + 0x10000 + 0x1c, &dscr);
838
839
840         long long then = timeval_ms();
841         for (;; ) {
842                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
843                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
844                 if (retval != ERROR_OK)
845                         return retval;
846                 if ((dscr & DSCR_CORE_HALTED) != 0)
847                         break;
848                 if (timeval_ms() > then + 1000) {
849                         LOG_ERROR("Timeout waiting for halt");
850                         return ERROR_FAIL;
851                 }
852         }
853
854         target->debug_reason = DBG_REASON_DBGRQ;
855
856         return ERROR_OK;
857 }
858
859 static int aarch64_internal_restore(struct target *target, int current,
860         uint64_t *address, int handle_breakpoints, int debug_execution)
861 {
862         struct armv8_common *armv8 = target_to_armv8(target);
863         struct arm *arm = &armv8->arm;
864         int retval;
865         uint64_t resume_pc;
866
867         if (!debug_execution)
868                 target_free_all_working_areas(target);
869
870         /* current = 1: continue on current pc, otherwise continue at <address> */
871         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
872         if (!current)
873                 resume_pc = *address;
874         else
875                 *address = resume_pc;
876
877         /* Make sure that the Armv7 gdb thumb fixups does not
878          * kill the return address
879          */
880         switch (arm->core_state) {
881                 case ARM_STATE_ARM:
882                 case ARM_STATE_AARCH64:
883                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
884                         break;
885                 case ARM_STATE_THUMB:
886                 case ARM_STATE_THUMB_EE:
887                         /* When the return address is loaded into PC
888                          * bit 0 must be 1 to stay in Thumb state
889                          */
890                         resume_pc |= 0x1;
891                         break;
892                 case ARM_STATE_JAZELLE:
893                         LOG_ERROR("How do I resume into Jazelle state??");
894                         return ERROR_FAIL;
895         }
896         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
897         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
898         arm->pc->dirty = 1;
899         arm->pc->valid = 1;
900 #if 0
901         /* restore dpm_mode at system halt */
902         dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
903 #endif
904         /* called it now before restoring context because it uses cpu
905          * register r0 for restoring system control register */
906         retval = aarch64_restore_system_control_reg(target);
907         if (retval != ERROR_OK)
908                 return retval;
909         retval = aarch64_restore_context(target, handle_breakpoints);
910         if (retval != ERROR_OK)
911                 return retval;
912         target->debug_reason = DBG_REASON_NOTHALTED;
913         target->state = TARGET_RUNNING;
914
915         /* registers are now invalid */
916         register_cache_invalidate(arm->core_cache);
917
918 #if 0
919         /* the front-end may request us not to handle breakpoints */
920         if (handle_breakpoints) {
921                 /* Single step past breakpoint at current address */
922                 breakpoint = breakpoint_find(target, resume_pc);
923                 if (breakpoint) {
924                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
925                         cortex_m3_unset_breakpoint(target, breakpoint);
926                         cortex_m3_single_step_core(target);
927                         cortex_m3_set_breakpoint(target, breakpoint);
928                 }
929         }
930 #endif
931
932         return retval;
933 }
934
935 static int aarch64_internal_restart(struct target *target)
936 {
937         struct armv8_common *armv8 = target_to_armv8(target);
938         struct arm *arm = &armv8->arm;
939         int retval;
940         uint32_t dscr;
941         /*
942          * * Restart core and wait for it to be started.  Clear ITRen and sticky
943          * * exception flags: see ARMv7 ARM, C5.9.
944          *
945          * REVISIT: for single stepping, we probably want to
946          * disable IRQs by default, with optional override...
947          */
948
949         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
950                         armv8->debug_base + CPUDBG_DSCR, &dscr);
951         if (retval != ERROR_OK)
952                 return retval;
953
954         if ((dscr & DSCR_INSTR_COMP) == 0)
955                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
956
957         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
958                         armv8->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
959         if (retval != ERROR_OK)
960                 return retval;
961
962         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
963                         armv8->debug_base + CPUDBG_DRCR, DRCR_RESTART |
964                         DRCR_CLEAR_EXCEPTIONS);
965         if (retval != ERROR_OK)
966                 return retval;
967
968         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
969                         armv8->debug_base + 0x10000 + 0x10, 1);
970         if (retval != ERROR_OK)
971                 return retval;
972
973         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
974                         armv8->debug_base + 0x10000 + 0x1c, 2);
975         if (retval != ERROR_OK)
976                 return retval;
977
978         long long then = timeval_ms();
979         for (;; ) {
980                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
981                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
982                 if (retval != ERROR_OK)
983                         return retval;
984                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
985                         break;
986                 if (timeval_ms() > then + 1000) {
987                         LOG_ERROR("Timeout waiting for resume");
988                         return ERROR_FAIL;
989                 }
990         }
991
992         target->debug_reason = DBG_REASON_NOTHALTED;
993         target->state = TARGET_RUNNING;
994
995         /* registers are now invalid */
996         register_cache_invalidate(arm->core_cache);
997
998         return ERROR_OK;
999 }
1000
1001 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1002 {
1003         int retval = 0;
1004         struct target_list *head;
1005         struct target *curr;
1006         uint64_t address;
1007         head = target->head;
1008         while (head != (struct target_list *)NULL) {
1009                 curr = head->target;
1010                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1011                         /*  resume current address , not in step mode */
1012                         retval += aarch64_internal_restore(curr, 1, &address,
1013                                         handle_breakpoints, 0);
1014                         retval += aarch64_internal_restart(curr);
1015                 }
1016                 head = head->next;
1017
1018         }
1019         return retval;
1020 }
1021
1022 static int aarch64_resume(struct target *target, int current,
1023         target_addr_t address, int handle_breakpoints, int debug_execution)
1024 {
1025         int retval = 0;
1026         uint64_t addr = address;
1027
1028         /* dummy resume for smp toggle in order to reduce gdb impact  */
1029         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1030                 /*   simulate a start and halt of target */
1031                 target->gdb_service->target = NULL;
1032                 target->gdb_service->core[0] = target->gdb_service->core[1];
1033                 /*  fake resume at next poll we play the  target core[1], see poll*/
1034                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1035                 return 0;
1036         }
1037         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1038                                  debug_execution);
1039         if (target->smp) {
1040                 target->gdb_service->core[0] = -1;
1041                 retval = aarch64_restore_smp(target, handle_breakpoints);
1042                 if (retval != ERROR_OK)
1043                         return retval;
1044         }
1045         aarch64_internal_restart(target);
1046
1047         if (!debug_execution) {
1048                 target->state = TARGET_RUNNING;
1049                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1050                 LOG_DEBUG("target resumed at 0x%" PRIu64, addr);
1051         } else {
1052                 target->state = TARGET_DEBUG_RUNNING;
1053                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1054                 LOG_DEBUG("target debug resumed at 0x%" PRIu64, addr);
1055         }
1056
1057         return ERROR_OK;
1058 }
1059
1060 static int aarch64_debug_entry(struct target *target)
1061 {
1062         uint32_t dscr;
1063         int retval = ERROR_OK;
1064         struct aarch64_common *aarch64 = target_to_aarch64(target);
1065         struct armv8_common *armv8 = target_to_armv8(target);
1066
1067         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1068
1069         /* REVISIT surely we should not re-read DSCR !! */
1070         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1071                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1072         if (retval != ERROR_OK)
1073                 return retval;
1074
1075         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1076          * imprecise data aborts get discarded by issuing a Data
1077          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1078          */
1079
1080         /* Enable the ITR execution once we are in debug mode */
1081         dscr |= DSCR_ITR_EN;
1082         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1083                         armv8->debug_base + CPUDBG_DSCR, dscr);
1084         if (retval != ERROR_OK)
1085                 return retval;
1086
1087         /* Examine debug reason */
1088         arm_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1089
1090         /* save address of instruction that triggered the watchpoint? */
1091         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1092                 uint32_t wfar;
1093
1094                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1095                                 armv8->debug_base + CPUDBG_WFAR,
1096                                 &wfar);
1097                 if (retval != ERROR_OK)
1098                         return retval;
1099                 arm_dpm_report_wfar(&armv8->dpm, wfar);
1100         }
1101
1102         retval = arm_dpm_read_current_registers_64(&armv8->dpm);
1103
1104         if (armv8->post_debug_entry) {
1105                 retval = armv8->post_debug_entry(target);
1106                 if (retval != ERROR_OK)
1107                         return retval;
1108         }
1109
1110         return retval;
1111 }
1112
1113 static int aarch64_post_debug_entry(struct target *target)
1114 {
1115         struct aarch64_common *aarch64 = target_to_aarch64(target);
1116         struct armv8_common *armv8 = &aarch64->armv8_common;
1117         struct armv8_mmu_common *armv8_mmu = &armv8->armv8_mmu;
1118         uint32_t sctlr_el1 = 0;
1119         int retval;
1120
1121         mem_ap_write_atomic_u32(armv8->debug_ap,
1122                                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1123         retval = aarch64_instr_read_data_r0(armv8->arm.dpm,
1124                                             0xd5381000, &sctlr_el1);
1125         if (retval != ERROR_OK)
1126                 return retval;
1127
1128         LOG_DEBUG("sctlr_el1 = %#8.8x", sctlr_el1);
1129         aarch64->system_control_reg = sctlr_el1;
1130         aarch64->system_control_reg_curr = sctlr_el1;
1131         aarch64->curr_mode = armv8->arm.core_mode;
1132
1133         armv8_mmu->mmu_enabled = sctlr_el1 & 0x1U ? 1 : 0;
1134         armv8_mmu->armv8_cache.d_u_cache_enabled = sctlr_el1 & 0x4U ? 1 : 0;
1135         armv8_mmu->armv8_cache.i_cache_enabled = sctlr_el1 & 0x1000U ? 1 : 0;
1136
1137 #if 0
1138         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1139                 armv8_identify_cache(target);
1140 #endif
1141
1142         return ERROR_OK;
1143 }
1144
1145 static int aarch64_step(struct target *target, int current, target_addr_t address,
1146         int handle_breakpoints)
1147 {
1148         struct armv8_common *armv8 = target_to_armv8(target);
1149         int retval;
1150         uint32_t tmp;
1151
1152         if (target->state != TARGET_HALTED) {
1153                 LOG_WARNING("target not halted");
1154                 return ERROR_TARGET_NOT_HALTED;
1155         }
1156
1157         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1158                         armv8->debug_base + CPUDBG_DECR, &tmp);
1159         if (retval != ERROR_OK)
1160                 return retval;
1161
1162         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1163                         armv8->debug_base + CPUDBG_DECR, (tmp|0x4));
1164         if (retval != ERROR_OK)
1165                 return retval;
1166
1167         retval = aarch64_resume(target, 1, address, 0, 0);
1168         if (retval != ERROR_OK)
1169                 return retval;
1170
1171         long long then = timeval_ms();
1172         while (target->state != TARGET_HALTED) {
1173                 retval = aarch64_poll(target);
1174                 if (retval != ERROR_OK)
1175                         return retval;
1176                 if (timeval_ms() > then + 1000) {
1177                         LOG_ERROR("timeout waiting for target halt");
1178                         return ERROR_FAIL;
1179                 }
1180         }
1181
1182         target->debug_reason = DBG_REASON_BREAKPOINT;
1183         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1184                         armv8->debug_base + CPUDBG_DECR, (tmp&(~0x4)));
1185         if (retval != ERROR_OK)
1186                 return retval;
1187
1188         if (target->state != TARGET_HALTED)
1189                 LOG_DEBUG("target stepped");
1190
1191         return ERROR_OK;
1192 }
1193
1194 static int aarch64_restore_context(struct target *target, bool bpwp)
1195 {
1196         struct armv8_common *armv8 = target_to_armv8(target);
1197
1198         LOG_DEBUG(" ");
1199
1200         if (armv8->pre_restore_context)
1201                 armv8->pre_restore_context(target);
1202
1203         return arm_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1204
1205         return ERROR_OK;
1206 }
1207
1208 /*
1209  * Cortex-A8 Breakpoint and watchpoint functions
1210  */
1211
1212 /* Setup hardware Breakpoint Register Pair */
1213 static int aarch64_set_breakpoint(struct target *target,
1214         struct breakpoint *breakpoint, uint8_t matchmode)
1215 {
1216         int retval;
1217         int brp_i = 0;
1218         uint32_t control;
1219         uint8_t byte_addr_select = 0x0F;
1220         struct aarch64_common *aarch64 = target_to_aarch64(target);
1221         struct armv8_common *armv8 = &aarch64->armv8_common;
1222         struct aarch64_brp *brp_list = aarch64->brp_list;
1223         uint32_t dscr;
1224
1225         if (breakpoint->set) {
1226                 LOG_WARNING("breakpoint already set");
1227                 return ERROR_OK;
1228         }
1229
1230         if (breakpoint->type == BKPT_HARD) {
1231                 int64_t bpt_value;
1232                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1233                         brp_i++;
1234                 if (brp_i >= aarch64->brp_num) {
1235                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1236                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1237                 }
1238                 breakpoint->set = brp_i + 1;
1239                 if (breakpoint->length == 2)
1240                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1241                 control = ((matchmode & 0x7) << 20)
1242                         | (1 << 13)
1243                         | (byte_addr_select << 5)
1244                         | (3 << 1) | 1;
1245                 brp_list[brp_i].used = 1;
1246                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1247                 brp_list[brp_i].control = control;
1248                 bpt_value = brp_list[brp_i].value;
1249
1250                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1251                                 + CPUDBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1252                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1253                 if (retval != ERROR_OK)
1254                         return retval;
1255                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1256                                 + CPUDBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1257                                 (uint32_t)(bpt_value >> 32));
1258                 if (retval != ERROR_OK)
1259                         return retval;
1260
1261                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1262                                 + CPUDBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1263                                 brp_list[brp_i].control);
1264                 if (retval != ERROR_OK)
1265                         return retval;
1266                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1267                         brp_list[brp_i].control,
1268                         brp_list[brp_i].value);
1269
1270         } else if (breakpoint->type == BKPT_SOFT) {
1271                 uint8_t code[4];
1272                 buf_set_u32(code, 0, 32, 0xD4400000);
1273
1274                 retval = target_read_memory(target,
1275                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1276                                 breakpoint->length, 1,
1277                                 breakpoint->orig_instr);
1278                 if (retval != ERROR_OK)
1279                         return retval;
1280                 retval = target_write_memory(target,
1281                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1282                                 breakpoint->length, 1, code);
1283                 if (retval != ERROR_OK)
1284                         return retval;
1285                 breakpoint->set = 0x11; /* Any nice value but 0 */
1286         }
1287
1288         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1289                                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1290         /* Ensure that halting debug mode is enable */
1291         dscr = dscr | DSCR_HALT_DBG_MODE;
1292         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1293                                          armv8->debug_base + CPUDBG_DSCR, dscr);
1294         if (retval != ERROR_OK) {
1295                 LOG_DEBUG("Failed to set DSCR.HDE");
1296                 return retval;
1297         }
1298
1299         return ERROR_OK;
1300 }
1301
1302 static int aarch64_set_context_breakpoint(struct target *target,
1303         struct breakpoint *breakpoint, uint8_t matchmode)
1304 {
1305         int retval = ERROR_FAIL;
1306         int brp_i = 0;
1307         uint32_t control;
1308         uint8_t byte_addr_select = 0x0F;
1309         struct aarch64_common *aarch64 = target_to_aarch64(target);
1310         struct armv8_common *armv8 = &aarch64->armv8_common;
1311         struct aarch64_brp *brp_list = aarch64->brp_list;
1312
1313         if (breakpoint->set) {
1314                 LOG_WARNING("breakpoint already set");
1315                 return retval;
1316         }
1317         /*check available context BRPs*/
1318         while ((brp_list[brp_i].used ||
1319                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1320                 brp_i++;
1321
1322         if (brp_i >= aarch64->brp_num) {
1323                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1324                 return ERROR_FAIL;
1325         }
1326
1327         breakpoint->set = brp_i + 1;
1328         control = ((matchmode & 0x7) << 20)
1329                 | (byte_addr_select << 5)
1330                 | (3 << 1) | 1;
1331         brp_list[brp_i].used = 1;
1332         brp_list[brp_i].value = (breakpoint->asid);
1333         brp_list[brp_i].control = control;
1334         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1335                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1336                         brp_list[brp_i].value);
1337         if (retval != ERROR_OK)
1338                 return retval;
1339         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1340                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1341                         brp_list[brp_i].control);
1342         if (retval != ERROR_OK)
1343                 return retval;
1344         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1345                 brp_list[brp_i].control,
1346                 brp_list[brp_i].value);
1347         return ERROR_OK;
1348
1349 }
1350
1351 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1352 {
1353         int retval = ERROR_FAIL;
1354         int brp_1 = 0;  /* holds the contextID pair */
1355         int brp_2 = 0;  /* holds the IVA pair */
1356         uint32_t control_CTX, control_IVA;
1357         uint8_t CTX_byte_addr_select = 0x0F;
1358         uint8_t IVA_byte_addr_select = 0x0F;
1359         uint8_t CTX_machmode = 0x03;
1360         uint8_t IVA_machmode = 0x01;
1361         struct aarch64_common *aarch64 = target_to_aarch64(target);
1362         struct armv8_common *armv8 = &aarch64->armv8_common;
1363         struct aarch64_brp *brp_list = aarch64->brp_list;
1364
1365         if (breakpoint->set) {
1366                 LOG_WARNING("breakpoint already set");
1367                 return retval;
1368         }
1369         /*check available context BRPs*/
1370         while ((brp_list[brp_1].used ||
1371                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1372                 brp_1++;
1373
1374         printf("brp(CTX) found num: %d\n", brp_1);
1375         if (brp_1 >= aarch64->brp_num) {
1376                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1377                 return ERROR_FAIL;
1378         }
1379
1380         while ((brp_list[brp_2].used ||
1381                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1382                 brp_2++;
1383
1384         printf("brp(IVA) found num: %d\n", brp_2);
1385         if (brp_2 >= aarch64->brp_num) {
1386                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1387                 return ERROR_FAIL;
1388         }
1389
1390         breakpoint->set = brp_1 + 1;
1391         breakpoint->linked_BRP = brp_2;
1392         control_CTX = ((CTX_machmode & 0x7) << 20)
1393                 | (brp_2 << 16)
1394                 | (0 << 14)
1395                 | (CTX_byte_addr_select << 5)
1396                 | (3 << 1) | 1;
1397         brp_list[brp_1].used = 1;
1398         brp_list[brp_1].value = (breakpoint->asid);
1399         brp_list[brp_1].control = control_CTX;
1400         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1401                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1402                         brp_list[brp_1].value);
1403         if (retval != ERROR_OK)
1404                 return retval;
1405         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1406                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1407                         brp_list[brp_1].control);
1408         if (retval != ERROR_OK)
1409                 return retval;
1410
1411         control_IVA = ((IVA_machmode & 0x7) << 20)
1412                 | (brp_1 << 16)
1413                 | (IVA_byte_addr_select << 5)
1414                 | (3 << 1) | 1;
1415         brp_list[brp_2].used = 1;
1416         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1417         brp_list[brp_2].control = control_IVA;
1418         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1419                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1420                         brp_list[brp_2].value);
1421         if (retval != ERROR_OK)
1422                 return retval;
1423         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1424                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1425                         brp_list[brp_2].control);
1426         if (retval != ERROR_OK)
1427                 return retval;
1428
1429         return ERROR_OK;
1430 }
1431
1432 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1433 {
1434         int retval;
1435         struct aarch64_common *aarch64 = target_to_aarch64(target);
1436         struct armv8_common *armv8 = &aarch64->armv8_common;
1437         struct aarch64_brp *brp_list = aarch64->brp_list;
1438
1439         if (!breakpoint->set) {
1440                 LOG_WARNING("breakpoint not set");
1441                 return ERROR_OK;
1442         }
1443
1444         if (breakpoint->type == BKPT_HARD) {
1445                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1446                         int brp_i = breakpoint->set - 1;
1447                         int brp_j = breakpoint->linked_BRP;
1448                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1449                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1450                                 return ERROR_OK;
1451                         }
1452                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1453                                 brp_list[brp_i].control, brp_list[brp_i].value);
1454                         brp_list[brp_i].used = 0;
1455                         brp_list[brp_i].value = 0;
1456                         brp_list[brp_i].control = 0;
1457                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1458                                         + CPUDBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1459                                         brp_list[brp_i].control);
1460                         if (retval != ERROR_OK)
1461                                 return retval;
1462                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1463                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1464                                 return ERROR_OK;
1465                         }
1466                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1467                                 brp_list[brp_j].control, brp_list[brp_j].value);
1468                         brp_list[brp_j].used = 0;
1469                         brp_list[brp_j].value = 0;
1470                         brp_list[brp_j].control = 0;
1471                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1472                                         + CPUDBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1473                                         brp_list[brp_j].control);
1474                         if (retval != ERROR_OK)
1475                                 return retval;
1476                         breakpoint->linked_BRP = 0;
1477                         breakpoint->set = 0;
1478                         return ERROR_OK;
1479
1480                 } else {
1481                         int brp_i = breakpoint->set - 1;
1482                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1483                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1484                                 return ERROR_OK;
1485                         }
1486                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1487                                 brp_list[brp_i].control, brp_list[brp_i].value);
1488                         brp_list[brp_i].used = 0;
1489                         brp_list[brp_i].value = 0;
1490                         brp_list[brp_i].control = 0;
1491                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1492                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1493                                         brp_list[brp_i].control);
1494                         if (retval != ERROR_OK)
1495                                 return retval;
1496                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1497                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1498                                         brp_list[brp_i].value);
1499                         if (retval != ERROR_OK)
1500                                 return retval;
1501                         breakpoint->set = 0;
1502                         return ERROR_OK;
1503                 }
1504         } else {
1505                 /* restore original instruction (kept in target endianness) */
1506                 if (breakpoint->length == 4) {
1507                         retval = target_write_memory(target,
1508                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1509                                         4, 1, breakpoint->orig_instr);
1510                         if (retval != ERROR_OK)
1511                                 return retval;
1512                 } else {
1513                         retval = target_write_memory(target,
1514                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1515                                         2, 1, breakpoint->orig_instr);
1516                         if (retval != ERROR_OK)
1517                                 return retval;
1518                 }
1519         }
1520         breakpoint->set = 0;
1521
1522         return ERROR_OK;
1523 }
1524
1525 static int aarch64_add_breakpoint(struct target *target,
1526         struct breakpoint *breakpoint)
1527 {
1528         struct aarch64_common *aarch64 = target_to_aarch64(target);
1529
1530         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1531                 LOG_INFO("no hardware breakpoint available");
1532                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1533         }
1534
1535         if (breakpoint->type == BKPT_HARD)
1536                 aarch64->brp_num_available--;
1537
1538         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1539 }
1540
1541 static int aarch64_add_context_breakpoint(struct target *target,
1542         struct breakpoint *breakpoint)
1543 {
1544         struct aarch64_common *aarch64 = target_to_aarch64(target);
1545
1546         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1547                 LOG_INFO("no hardware breakpoint available");
1548                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1549         }
1550
1551         if (breakpoint->type == BKPT_HARD)
1552                 aarch64->brp_num_available--;
1553
1554         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1555 }
1556
1557 static int aarch64_add_hybrid_breakpoint(struct target *target,
1558         struct breakpoint *breakpoint)
1559 {
1560         struct aarch64_common *aarch64 = target_to_aarch64(target);
1561
1562         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1563                 LOG_INFO("no hardware breakpoint available");
1564                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1565         }
1566
1567         if (breakpoint->type == BKPT_HARD)
1568                 aarch64->brp_num_available--;
1569
1570         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1571 }
1572
1573
1574 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1575 {
1576         struct aarch64_common *aarch64 = target_to_aarch64(target);
1577
1578 #if 0
1579 /* It is perfectly possible to remove breakpoints while the target is running */
1580         if (target->state != TARGET_HALTED) {
1581                 LOG_WARNING("target not halted");
1582                 return ERROR_TARGET_NOT_HALTED;
1583         }
1584 #endif
1585
1586         if (breakpoint->set) {
1587                 aarch64_unset_breakpoint(target, breakpoint);
1588                 if (breakpoint->type == BKPT_HARD)
1589                         aarch64->brp_num_available++;
1590         }
1591
1592         return ERROR_OK;
1593 }
1594
1595 /*
1596  * Cortex-A8 Reset functions
1597  */
1598
1599 static int aarch64_assert_reset(struct target *target)
1600 {
1601         struct armv8_common *armv8 = target_to_armv8(target);
1602
1603         LOG_DEBUG(" ");
1604
1605         /* FIXME when halt is requested, make it work somehow... */
1606
1607         /* Issue some kind of warm reset. */
1608         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1609                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1610         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1611                 /* REVISIT handle "pulls" cases, if there's
1612                  * hardware that needs them to work.
1613                  */
1614                 jtag_add_reset(0, 1);
1615         } else {
1616                 LOG_ERROR("%s: how to reset?", target_name(target));
1617                 return ERROR_FAIL;
1618         }
1619
1620         /* registers are now invalid */
1621         register_cache_invalidate(armv8->arm.core_cache);
1622
1623         target->state = TARGET_RESET;
1624
1625         return ERROR_OK;
1626 }
1627
1628 static int aarch64_deassert_reset(struct target *target)
1629 {
1630         int retval;
1631
1632         LOG_DEBUG(" ");
1633
1634         /* be certain SRST is off */
1635         jtag_add_reset(0, 0);
1636
1637         retval = aarch64_poll(target);
1638         if (retval != ERROR_OK)
1639                 return retval;
1640
1641         if (target->reset_halt) {
1642                 if (target->state != TARGET_HALTED) {
1643                         LOG_WARNING("%s: ran after reset and before halt ...",
1644                                 target_name(target));
1645                         retval = target_halt(target);
1646                         if (retval != ERROR_OK)
1647                                 return retval;
1648                 }
1649         }
1650
1651         return ERROR_OK;
1652 }
1653
1654 static int aarch64_write_apb_ab_memory(struct target *target,
1655         uint64_t address, uint32_t size,
1656         uint32_t count, const uint8_t *buffer)
1657 {
1658         /* write memory through APB-AP */
1659         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1660         struct armv8_common *armv8 = target_to_armv8(target);
1661         struct arm *arm = &armv8->arm;
1662         int total_bytes = count * size;
1663         int total_u32;
1664         int start_byte = address & 0x3;
1665         int end_byte   = (address + total_bytes) & 0x3;
1666         struct reg *reg;
1667         uint32_t dscr;
1668         uint8_t *tmp_buff = NULL;
1669         uint32_t i = 0;
1670
1671         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1672                           address, size, count);
1673         if (target->state != TARGET_HALTED) {
1674                 LOG_WARNING("target not halted");
1675                 return ERROR_TARGET_NOT_HALTED;
1676         }
1677
1678         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1679
1680         /* Mark register R0 as dirty, as it will be used
1681          * for transferring the data.
1682          * It will be restored automatically when exiting
1683          * debug mode
1684          */
1685         reg = armv8_reg_current(arm, 1);
1686         reg->dirty = true;
1687
1688         reg = armv8_reg_current(arm, 0);
1689         reg->dirty = true;
1690
1691         /*  clear any abort  */
1692         retval = mem_ap_write_atomic_u32(armv8->debug_ap, armv8->debug_base + CPUDBG_DRCR, 1<<2);
1693         if (retval != ERROR_OK)
1694                 return retval;
1695
1696         /* This algorithm comes from either :
1697          * Cortex-A8 TRM Example 12-25
1698          * Cortex-R4 TRM Example 11-26
1699          * (slight differences)
1700          */
1701
1702         /* The algorithm only copies 32 bit words, so the buffer
1703          * should be expanded to include the words at either end.
1704          * The first and last words will be read first to avoid
1705          * corruption if needed.
1706          */
1707         tmp_buff = malloc(total_u32 * 4);
1708
1709         if ((start_byte != 0) && (total_u32 > 1)) {
1710                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1711                  * the other bytes in the word.
1712                  */
1713                 retval = aarch64_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1714                 if (retval != ERROR_OK)
1715                         goto error_free_buff_w;
1716         }
1717
1718         /* If end of write is not aligned, or the write is less than 4 bytes */
1719         if ((end_byte != 0) ||
1720                 ((total_u32 == 1) && (total_bytes != 4))) {
1721
1722                 /* Read the last word to avoid corruption during 32 bit write */
1723                 int mem_offset = (total_u32-1) * 4;
1724                 retval = aarch64_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1725                 if (retval != ERROR_OK)
1726                         goto error_free_buff_w;
1727         }
1728
1729         /* Copy the write buffer over the top of the temporary buffer */
1730         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1731
1732         /* We now have a 32 bit aligned buffer that can be written */
1733
1734         /* Read DSCR */
1735         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1736                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1737         if (retval != ERROR_OK)
1738                 goto error_free_buff_w;
1739
1740         /* Set DTR mode to Normal*/
1741         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1742         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1743                         armv8->debug_base + CPUDBG_DSCR, dscr);
1744         if (retval != ERROR_OK)
1745                 goto error_free_buff_w;
1746
1747         if (size > 4) {
1748                 LOG_WARNING("reading size >4 bytes not yet supported");
1749                 goto error_unset_dtr_w;
1750         }
1751
1752         retval = aarch64_instr_write_data_dcc_64(arm->dpm, 0xd5330401, address+4);
1753         if (retval != ERROR_OK)
1754                 goto error_unset_dtr_w;
1755
1756         dscr = DSCR_INSTR_COMP;
1757         while (i < count * size) {
1758                 uint32_t val;
1759
1760                 memcpy(&val, &buffer[i], size);
1761                 retval = aarch64_instr_write_data_dcc(arm->dpm, 0xd5330500, val);
1762                 if (retval != ERROR_OK)
1763                         goto error_unset_dtr_w;
1764
1765                 retval = aarch64_exec_opcode(target, 0xb81fc020, &dscr);
1766                 if (retval != ERROR_OK)
1767                         goto error_unset_dtr_w;
1768
1769                 retval = aarch64_exec_opcode(target, 0x91001021, &dscr);
1770                 if (retval != ERROR_OK)
1771                         goto error_unset_dtr_w;
1772
1773                 i += 4;
1774         }
1775
1776         /* Check for sticky abort flags in the DSCR */
1777         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1778                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
1779         if (retval != ERROR_OK)
1780                 goto error_free_buff_w;
1781         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
1782                 /* Abort occurred - clear it and exit */
1783                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1784                 mem_ap_write_atomic_u32(armv8->debug_ap,
1785                                         armv8->debug_base + CPUDBG_DRCR, 1<<2);
1786                 goto error_free_buff_w;
1787         }
1788
1789         /* Done */
1790         free(tmp_buff);
1791         return ERROR_OK;
1792
1793 error_unset_dtr_w:
1794         /* Unset DTR mode */
1795         mem_ap_read_atomic_u32(armv8->debug_ap,
1796                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
1797         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1798         mem_ap_write_atomic_u32(armv8->debug_ap,
1799                                 armv8->debug_base + CPUDBG_DSCR, dscr);
1800 error_free_buff_w:
1801         LOG_ERROR("error");
1802         free(tmp_buff);
1803         return ERROR_FAIL;
1804 }
1805
1806 static int aarch64_read_apb_ab_memory(struct target *target,
1807         target_addr_t address, uint32_t size,
1808         uint32_t count, uint8_t *buffer)
1809 {
1810         /* read memory through APB-AP */
1811
1812         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1813         struct armv8_common *armv8 = target_to_armv8(target);
1814         struct arm *arm = &armv8->arm;
1815         struct reg *reg;
1816         uint32_t dscr, val;
1817         uint8_t *tmp_buff = NULL;
1818         uint32_t i = 0;
1819
1820         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1821                           address, size, count);
1822         if (target->state != TARGET_HALTED) {
1823                 LOG_WARNING("target not halted");
1824                 return ERROR_TARGET_NOT_HALTED;
1825         }
1826
1827         /* Mark register R0 as dirty, as it will be used
1828          * for transferring the data.
1829          * It will be restored automatically when exiting
1830          * debug mode
1831          */
1832         reg = armv8_reg_current(arm, 0);
1833         reg->dirty = true;
1834
1835         /*  clear any abort  */
1836         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1837                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1838         if (retval != ERROR_OK)
1839                 goto error_free_buff_r;
1840
1841         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1842                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1843         if (retval != ERROR_OK)
1844                 goto error_unset_dtr_r;
1845
1846         if (size > 4) {
1847                 LOG_WARNING("reading size >4 bytes not yet supported");
1848                 goto error_unset_dtr_r;
1849         }
1850
1851         while (i < count * size) {
1852
1853                 retval = aarch64_instr_write_data_dcc_64(arm->dpm, 0xd5330400, address+4);
1854                 if (retval != ERROR_OK)
1855                         goto error_unset_dtr_r;
1856                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1857                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1858
1859                 dscr = DSCR_INSTR_COMP;
1860                 retval = aarch64_exec_opcode(target, 0xb85fc000, &dscr);
1861                 if (retval != ERROR_OK)
1862                         goto error_unset_dtr_r;
1863                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1864                         armv8->debug_base + CPUDBG_DSCR, &dscr);
1865
1866                 retval = aarch64_instr_read_data_dcc(arm->dpm, 0xd5130400, &val);
1867                 if (retval != ERROR_OK)
1868                         goto error_unset_dtr_r;
1869                 memcpy(&buffer[i], &val, size);
1870                 i += 4;
1871                 address += 4;
1872         }
1873
1874         /* Clear any sticky error */
1875         mem_ap_write_atomic_u32(armv8->debug_ap,
1876                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1877
1878         /* Done */
1879         return ERROR_OK;
1880
1881 error_unset_dtr_r:
1882         LOG_WARNING("DSCR = 0x%" PRIx32, dscr);
1883         /* Todo: Unset DTR mode */
1884
1885 error_free_buff_r:
1886         LOG_ERROR("error");
1887         free(tmp_buff);
1888
1889         /* Clear any sticky error */
1890         mem_ap_write_atomic_u32(armv8->debug_ap,
1891                 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1892
1893         return ERROR_FAIL;
1894 }
1895
1896 static int aarch64_read_phys_memory(struct target *target,
1897         target_addr_t address, uint32_t size,
1898         uint32_t count, uint8_t *buffer)
1899 {
1900         struct armv8_common *armv8 = target_to_armv8(target);
1901         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1902         struct adiv5_dap *swjdp = armv8->arm.dap;
1903         uint8_t apsel = swjdp->apsel;
1904         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1905                 address, size, count);
1906
1907         if (count && buffer) {
1908
1909                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
1910
1911                         /* read memory through AHB-AP */
1912                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
1913                 } else {
1914                         /* read memory through APB-AP */
1915                         retval = aarch64_mmu_modify(target, 0);
1916                         if (retval != ERROR_OK)
1917                                 return retval;
1918                         retval = aarch64_read_apb_ab_memory(target, address, size, count, buffer);
1919                 }
1920         }
1921         return retval;
1922 }
1923
1924 static int aarch64_read_memory(struct target *target, target_addr_t address,
1925         uint32_t size, uint32_t count, uint8_t *buffer)
1926 {
1927         int mmu_enabled = 0;
1928         target_addr_t virt, phys;
1929         int retval;
1930         struct armv8_common *armv8 = target_to_armv8(target);
1931         struct adiv5_dap *swjdp = armv8->arm.dap;
1932         uint8_t apsel = swjdp->apsel;
1933
1934         /* aarch64 handles unaligned memory access */
1935         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1936                 size, count);
1937
1938         /* determine if MMU was enabled on target stop */
1939         if (!armv8->is_armv7r) {
1940                 retval = aarch64_mmu(target, &mmu_enabled);
1941                 if (retval != ERROR_OK)
1942                         return retval;
1943         }
1944
1945         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
1946                 if (mmu_enabled) {
1947                         virt = address;
1948                         retval = aarch64_virt2phys(target, virt, &phys);
1949                         if (retval != ERROR_OK)
1950                                 return retval;
1951
1952                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
1953                                   virt, phys);
1954                         address = phys;
1955                 }
1956                 retval = aarch64_read_phys_memory(target, address, size, count,
1957                                                   buffer);
1958         } else {
1959                 if (mmu_enabled) {
1960                         retval = aarch64_check_address(target, address);
1961                         if (retval != ERROR_OK)
1962                                 return retval;
1963                         /* enable MMU as we could have disabled it for phys
1964                            access */
1965                         retval = aarch64_mmu_modify(target, 1);
1966                         if (retval != ERROR_OK)
1967                                 return retval;
1968                 }
1969                 retval = aarch64_read_apb_ab_memory(target, address, size,
1970                                                     count, buffer);
1971         }
1972         return retval;
1973 }
1974
1975 static int aarch64_write_phys_memory(struct target *target,
1976         target_addr_t address, uint32_t size,
1977         uint32_t count, const uint8_t *buffer)
1978 {
1979         struct armv8_common *armv8 = target_to_armv8(target);
1980         struct adiv5_dap *swjdp = armv8->arm.dap;
1981         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1982         uint8_t apsel = swjdp->apsel;
1983
1984         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1985                 size, count);
1986
1987         if (count && buffer) {
1988
1989                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
1990
1991                         /* write memory through AHB-AP */
1992                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
1993                 } else {
1994
1995                         /* write memory through APB-AP */
1996                         if (!armv8->is_armv7r) {
1997                                 retval = aarch64_mmu_modify(target, 0);
1998                                 if (retval != ERROR_OK)
1999                                         return retval;
2000                         }
2001                         return aarch64_write_apb_ab_memory(target, address, size, count, buffer);
2002                 }
2003         }
2004
2005
2006         /* REVISIT this op is generic ARMv7-A/R stuff */
2007         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2008                 struct arm_dpm *dpm = armv8->arm.dpm;
2009
2010                 retval = dpm->prepare(dpm);
2011                 if (retval != ERROR_OK)
2012                         return retval;
2013
2014                 /* The Cache handling will NOT work with MMU active, the
2015                  * wrong addresses will be invalidated!
2016                  *
2017                  * For both ICache and DCache, walk all cache lines in the
2018                  * address range. Cortex-A8 has fixed 64 byte line length.
2019                  *
2020                  * REVISIT per ARMv7, these may trigger watchpoints ...
2021                  */
2022
2023                 /* invalidate I-Cache */
2024                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2025                         /* ICIMVAU - Invalidate Cache single entry
2026                          * with MVA to PoU
2027                          *      MCR p15, 0, r0, c7, c5, 1
2028                          */
2029                         for (uint32_t cacheline = address;
2030                                 cacheline < address + size * count;
2031                                 cacheline += 64) {
2032                                 retval = dpm->instr_write_data_r0(dpm,
2033                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2034                                                 cacheline);
2035                                 if (retval != ERROR_OK)
2036                                         return retval;
2037                         }
2038                 }
2039
2040                 /* invalidate D-Cache */
2041                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2042                         /* DCIMVAC - Invalidate data Cache line
2043                          * with MVA to PoC
2044                          *      MCR p15, 0, r0, c7, c6, 1
2045                          */
2046                         for (uint32_t cacheline = address;
2047                                 cacheline < address + size * count;
2048                                 cacheline += 64) {
2049                                 retval = dpm->instr_write_data_r0(dpm,
2050                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2051                                                 cacheline);
2052                                 if (retval != ERROR_OK)
2053                                         return retval;
2054                         }
2055                 }
2056
2057                 /* (void) */ dpm->finish(dpm);
2058         }
2059
2060         return retval;
2061 }
2062
2063 static int aarch64_write_memory(struct target *target, target_addr_t address,
2064         uint32_t size, uint32_t count, const uint8_t *buffer)
2065 {
2066         int mmu_enabled = 0;
2067         target_addr_t virt, phys;
2068         int retval;
2069         struct armv8_common *armv8 = target_to_armv8(target);
2070         struct adiv5_dap *swjdp = armv8->arm.dap;
2071         uint8_t apsel = swjdp->apsel;
2072
2073         /* aarch64 handles unaligned memory access */
2074         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2075                   "; count %" PRId32, address, size, count);
2076
2077         /* determine if MMU was enabled on target stop */
2078         if (!armv8->is_armv7r) {
2079                 retval = aarch64_mmu(target, &mmu_enabled);
2080                 if (retval != ERROR_OK)
2081                         return retval;
2082         }
2083
2084         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2085                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2086                           PRId32 "; count %" PRId32, address, size, count);
2087                 if (mmu_enabled) {
2088                         virt = address;
2089                         retval = aarch64_virt2phys(target, virt, &phys);
2090                         if (retval != ERROR_OK)
2091                                 return retval;
2092
2093                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2094                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2095                         address = phys;
2096                 }
2097                 retval = aarch64_write_phys_memory(target, address, size,
2098                                 count, buffer);
2099         } else {
2100                 if (mmu_enabled) {
2101                         retval = aarch64_check_address(target, address);
2102                         if (retval != ERROR_OK)
2103                                 return retval;
2104                         /* enable MMU as we could have disabled it for phys access */
2105                         retval = aarch64_mmu_modify(target, 1);
2106                         if (retval != ERROR_OK)
2107                                 return retval;
2108                 }
2109                 retval = aarch64_write_apb_ab_memory(target, address, size, count, buffer);
2110         }
2111         return retval;
2112 }
2113
2114 static int aarch64_handle_target_request(void *priv)
2115 {
2116         struct target *target = priv;
2117         struct armv8_common *armv8 = target_to_armv8(target);
2118         int retval;
2119
2120         if (!target_was_examined(target))
2121                 return ERROR_OK;
2122         if (!target->dbg_msg_enabled)
2123                 return ERROR_OK;
2124
2125         if (target->state == TARGET_RUNNING) {
2126                 uint32_t request;
2127                 uint32_t dscr;
2128                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2129                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
2130
2131                 /* check if we have data */
2132                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2133                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2134                                         armv8->debug_base + CPUDBG_DTRTX, &request);
2135                         if (retval == ERROR_OK) {
2136                                 target_request(target, request);
2137                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2138                                                 armv8->debug_base + CPUDBG_DSCR, &dscr);
2139                         }
2140                 }
2141         }
2142
2143         return ERROR_OK;
2144 }
2145
2146 static int aarch64_examine_first(struct target *target)
2147 {
2148         struct aarch64_common *aarch64 = target_to_aarch64(target);
2149         struct armv8_common *armv8 = &aarch64->armv8_common;
2150         struct adiv5_dap *swjdp = armv8->arm.dap;
2151         int retval = ERROR_OK;
2152         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2153         int i;
2154
2155         /* We do one extra read to ensure DAP is configured,
2156          * we call ahbap_debugport_init(swjdp) instead
2157          */
2158         retval = dap_dp_init(swjdp);
2159         if (retval != ERROR_OK)
2160                 return retval;
2161
2162         /* Search for the APB-AB - it is needed for access to debug registers */
2163         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2164         if (retval != ERROR_OK) {
2165                 LOG_ERROR("Could not find APB-AP for debug access");
2166                 return retval;
2167         }
2168
2169         retval = mem_ap_init(armv8->debug_ap);
2170         if (retval != ERROR_OK) {
2171                 LOG_ERROR("Could not initialize the APB-AP");
2172                 return retval;
2173         }
2174
2175         armv8->debug_ap->memaccess_tck = 80;
2176
2177         /* Search for the AHB-AB */
2178         armv8->memory_ap_available = false;
2179         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2180         if (retval == ERROR_OK) {
2181                 retval = mem_ap_init(armv8->memory_ap);
2182                 if (retval == ERROR_OK)
2183                         armv8->memory_ap_available = true;
2184         }
2185         if (retval != ERROR_OK) {
2186                 /* AHB-AP not found or unavailable - use the CPU */
2187                 LOG_DEBUG("No AHB-AP available for memory access");
2188         }
2189
2190
2191         if (!target->dbgbase_set) {
2192                 uint32_t dbgbase;
2193                 /* Get ROM Table base */
2194                 uint32_t apid;
2195                 int32_t coreidx = target->coreid;
2196                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2197                 if (retval != ERROR_OK)
2198                         return retval;
2199                 /* Lookup 0x15 -- Processor DAP */
2200                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2201                                 &armv8->debug_base, &coreidx);
2202                 if (retval != ERROR_OK)
2203                         return retval;
2204                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2205                           coreidx, armv8->debug_base);
2206         } else
2207                 armv8->debug_base = target->dbgbase;
2208
2209         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2210                         armv8->debug_base + 0x300, 0);
2211         if (retval != ERROR_OK) {
2212                 LOG_DEBUG("Examine %s failed", "oslock");
2213                 return retval;
2214         }
2215
2216         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2217                         armv8->debug_base + 0x88, &cpuid);
2218         LOG_DEBUG("0x88 = %x", cpuid);
2219
2220         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2221                         armv8->debug_base + 0x314, &cpuid);
2222         LOG_DEBUG("0x314 = %x", cpuid);
2223
2224         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2225                         armv8->debug_base + 0x310, &cpuid);
2226         LOG_DEBUG("0x310 = %x", cpuid);
2227         if (retval != ERROR_OK)
2228                 return retval;
2229
2230         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2231                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2232         if (retval != ERROR_OK) {
2233                 LOG_DEBUG("Examine %s failed", "CPUID");
2234                 return retval;
2235         }
2236
2237         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2238                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2239         if (retval != ERROR_OK) {
2240                 LOG_DEBUG("Examine %s failed", "CTYPR");
2241                 return retval;
2242         }
2243
2244         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2245                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2246         if (retval != ERROR_OK) {
2247                 LOG_DEBUG("Examine %s failed", "TTYPR");
2248                 return retval;
2249         }
2250
2251         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2252                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2253         if (retval != ERROR_OK) {
2254                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2255                 return retval;
2256         }
2257         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2258                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2259         if (retval != ERROR_OK) {
2260                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2261                 return retval;
2262         }
2263
2264         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2265         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2266         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2267         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2268         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2269
2270         armv8->arm.core_type = ARM_MODE_MON;
2271         armv8->arm.core_state = ARM_STATE_AARCH64;
2272         retval = aarch64_dpm_setup(aarch64, debug);
2273         if (retval != ERROR_OK)
2274                 return retval;
2275
2276         /* Setup Breakpoint Register Pairs */
2277         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2278         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2279
2280         /* hack - no context bpt support yet */
2281         aarch64->brp_num_context = 0;
2282
2283         aarch64->brp_num_available = aarch64->brp_num;
2284         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2285         for (i = 0; i < aarch64->brp_num; i++) {
2286                 aarch64->brp_list[i].used = 0;
2287                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2288                         aarch64->brp_list[i].type = BRP_NORMAL;
2289                 else
2290                         aarch64->brp_list[i].type = BRP_CONTEXT;
2291                 aarch64->brp_list[i].value = 0;
2292                 aarch64->brp_list[i].control = 0;
2293                 aarch64->brp_list[i].BRPn = i;
2294         }
2295
2296         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2297
2298         target_set_examined(target);
2299         return ERROR_OK;
2300 }
2301
2302 static int aarch64_examine(struct target *target)
2303 {
2304         int retval = ERROR_OK;
2305
2306         /* don't re-probe hardware after each reset */
2307         if (!target_was_examined(target))
2308                 retval = aarch64_examine_first(target);
2309
2310         /* Configure core debug access */
2311         if (retval == ERROR_OK)
2312                 retval = aarch64_init_debug_access(target);
2313
2314         return retval;
2315 }
2316
2317 /*
2318  *      Cortex-A8 target creation and initialization
2319  */
2320
2321 static int aarch64_init_target(struct command_context *cmd_ctx,
2322         struct target *target)
2323 {
2324         /* examine_first() does a bunch of this */
2325         return ERROR_OK;
2326 }
2327
2328 static int aarch64_init_arch_info(struct target *target,
2329         struct aarch64_common *aarch64, struct jtag_tap *tap)
2330 {
2331         struct armv8_common *armv8 = &aarch64->armv8_common;
2332         struct adiv5_dap *dap = armv8->arm.dap;
2333
2334         armv8->arm.dap = dap;
2335
2336         /* Setup struct aarch64_common */
2337         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2338         /*  tap has no dap initialized */
2339         if (!tap->dap) {
2340                 tap->dap = dap_init();
2341
2342                 /* Leave (only) generic DAP stuff for debugport_init() */
2343                 tap->dap->tap = tap;
2344         }
2345
2346         armv8->arm.dap = tap->dap;
2347
2348         aarch64->fast_reg_read = 0;
2349
2350         /* register arch-specific functions */
2351         armv8->examine_debug_reason = NULL;
2352
2353         armv8->post_debug_entry = aarch64_post_debug_entry;
2354
2355         armv8->pre_restore_context = NULL;
2356
2357         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2358
2359         /* REVISIT v7a setup should be in a v7a-specific routine */
2360         armv8_init_arch_info(target, armv8);
2361         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2362
2363         return ERROR_OK;
2364 }
2365
2366 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2367 {
2368         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2369
2370         aarch64->armv8_common.is_armv7r = false;
2371
2372         return aarch64_init_arch_info(target, aarch64, target->tap);
2373 }
2374
2375 static int aarch64_mmu(struct target *target, int *enabled)
2376 {
2377         if (target->state != TARGET_HALTED) {
2378                 LOG_ERROR("%s: target not halted", __func__);
2379                 return ERROR_TARGET_INVALID;
2380         }
2381
2382         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2383         return ERROR_OK;
2384 }
2385
2386 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2387                              target_addr_t *phys)
2388 {
2389         int retval = ERROR_FAIL;
2390         struct armv8_common *armv8 = target_to_armv8(target);
2391         struct adiv5_dap *swjdp = armv8->arm.dap;
2392         uint8_t apsel = swjdp->apsel;
2393         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2394                 uint32_t ret;
2395                 retval = armv8_mmu_translate_va(target,
2396                                 virt, &ret);
2397                 if (retval != ERROR_OK)
2398                         goto done;
2399                 *phys = ret;
2400         } else {/*  use this method if armv8->memory_ap not selected
2401                  *  mmu must be enable in order to get a correct translation */
2402                 retval = aarch64_mmu_modify(target, 1);
2403                 if (retval != ERROR_OK)
2404                         goto done;
2405                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2406         }
2407 done:
2408         return retval;
2409 }
2410
2411 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2412 {
2413         struct target *target = get_current_target(CMD_CTX);
2414         struct armv8_common *armv8 = target_to_armv8(target);
2415
2416         return armv8_handle_cache_info_command(CMD_CTX,
2417                         &armv8->armv8_mmu.armv8_cache);
2418 }
2419
2420
2421 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2422 {
2423         struct target *target = get_current_target(CMD_CTX);
2424         if (!target_was_examined(target)) {
2425                 LOG_ERROR("target not examined yet");
2426                 return ERROR_FAIL;
2427         }
2428
2429         return aarch64_init_debug_access(target);
2430 }
2431 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2432 {
2433         struct target *target = get_current_target(CMD_CTX);
2434         /* check target is an smp target */
2435         struct target_list *head;
2436         struct target *curr;
2437         head = target->head;
2438         target->smp = 0;
2439         if (head != (struct target_list *)NULL) {
2440                 while (head != (struct target_list *)NULL) {
2441                         curr = head->target;
2442                         curr->smp = 0;
2443                         head = head->next;
2444                 }
2445                 /*  fixes the target display to the debugger */
2446                 target->gdb_service->target = target;
2447         }
2448         return ERROR_OK;
2449 }
2450
2451 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2452 {
2453         struct target *target = get_current_target(CMD_CTX);
2454         struct target_list *head;
2455         struct target *curr;
2456         head = target->head;
2457         if (head != (struct target_list *)NULL) {
2458                 target->smp = 1;
2459                 while (head != (struct target_list *)NULL) {
2460                         curr = head->target;
2461                         curr->smp = 1;
2462                         head = head->next;
2463                 }
2464         }
2465         return ERROR_OK;
2466 }
2467
2468 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2469 {
2470         struct target *target = get_current_target(CMD_CTX);
2471         int retval = ERROR_OK;
2472         struct target_list *head;
2473         head = target->head;
2474         if (head != (struct target_list *)NULL) {
2475                 if (CMD_ARGC == 1) {
2476                         int coreid = 0;
2477                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2478                         if (ERROR_OK != retval)
2479                                 return retval;
2480                         target->gdb_service->core[1] = coreid;
2481
2482                 }
2483                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2484                         , target->gdb_service->core[1]);
2485         }
2486         return ERROR_OK;
2487 }
2488
2489 static const struct command_registration aarch64_exec_command_handlers[] = {
2490         {
2491                 .name = "cache_info",
2492                 .handler = aarch64_handle_cache_info_command,
2493                 .mode = COMMAND_EXEC,
2494                 .help = "display information about target caches",
2495                 .usage = "",
2496         },
2497         {
2498                 .name = "dbginit",
2499                 .handler = aarch64_handle_dbginit_command,
2500                 .mode = COMMAND_EXEC,
2501                 .help = "Initialize core debug",
2502                 .usage = "",
2503         },
2504         {       .name = "smp_off",
2505                 .handler = aarch64_handle_smp_off_command,
2506                 .mode = COMMAND_EXEC,
2507                 .help = "Stop smp handling",
2508                 .usage = "",
2509         },
2510         {
2511                 .name = "smp_on",
2512                 .handler = aarch64_handle_smp_on_command,
2513                 .mode = COMMAND_EXEC,
2514                 .help = "Restart smp handling",
2515                 .usage = "",
2516         },
2517         {
2518                 .name = "smp_gdb",
2519                 .handler = aarch64_handle_smp_gdb_command,
2520                 .mode = COMMAND_EXEC,
2521                 .help = "display/fix current core played to gdb",
2522                 .usage = "",
2523         },
2524
2525
2526         COMMAND_REGISTRATION_DONE
2527 };
2528 static const struct command_registration aarch64_command_handlers[] = {
2529         {
2530                 .chain = arm_command_handlers,
2531         },
2532         {
2533                 .chain = armv8_command_handlers,
2534         },
2535         {
2536                 .name = "cortex_a",
2537                 .mode = COMMAND_ANY,
2538                 .help = "Cortex-A command group",
2539                 .usage = "",
2540                 .chain = aarch64_exec_command_handlers,
2541         },
2542         COMMAND_REGISTRATION_DONE
2543 };
2544
2545 struct target_type aarch64_target = {
2546         .name = "aarch64",
2547
2548         .poll = aarch64_poll,
2549         .arch_state = armv8_arch_state,
2550
2551         .halt = aarch64_halt,
2552         .resume = aarch64_resume,
2553         .step = aarch64_step,
2554
2555         .assert_reset = aarch64_assert_reset,
2556         .deassert_reset = aarch64_deassert_reset,
2557
2558         /* REVISIT allow exporting VFP3 registers ... */
2559         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2560
2561         .read_memory = aarch64_read_memory,
2562         .write_memory = aarch64_write_memory,
2563
2564         .checksum_memory = arm_checksum_memory,
2565         .blank_check_memory = arm_blank_check_memory,
2566
2567         .run_algorithm = armv4_5_run_algorithm,
2568
2569         .add_breakpoint = aarch64_add_breakpoint,
2570         .add_context_breakpoint = aarch64_add_context_breakpoint,
2571         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2572         .remove_breakpoint = aarch64_remove_breakpoint,
2573         .add_watchpoint = NULL,
2574         .remove_watchpoint = NULL,
2575
2576         .commands = aarch64_command_handlers,
2577         .target_create = aarch64_target_create,
2578         .init_target = aarch64_init_target,
2579         .examine = aarch64_examine,
2580
2581         .read_phys_memory = aarch64_read_phys_memory,
2582         .write_phys_memory = aarch64_write_phys_memory,
2583         .mmu = aarch64_mmu,
2584         .virt2phys = aarch64_virt2phys,
2585 };