1220004ee643ea4f3ecbdff5e294b5ecf0d56c9f
[fw/openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
283 {
284         struct armv8_common *armv8 = target_to_armv8(target);
285         uint32_t dscr;
286
287         /* Read DSCR */
288         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
289                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
290         if (ERROR_OK != retval)
291                 return retval;
292
293         /* clear bitfield */
294         dscr &= ~bit_mask;
295         /* put new value */
296         dscr |= value & bit_mask;
297
298         /* write new DSCR */
299         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
300                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
301         return retval;
302 }
303
304 static struct target *get_aarch64(struct target *target, int32_t coreid)
305 {
306         struct target_list *head;
307         struct target *curr;
308
309         head = target->head;
310         while (head != (struct target_list *)NULL) {
311                 curr = head->target;
312                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
313                         return curr;
314                 head = head->next;
315         }
316         return target;
317 }
318 static int aarch64_halt(struct target *target);
319
320 static int aarch64_halt_smp(struct target *target)
321 {
322         int retval = ERROR_OK;
323         struct target_list *head = target->head;
324
325         while (head != (struct target_list *)NULL) {
326                 struct target *curr = head->target;
327                 struct armv8_common *armv8 = target_to_armv8(curr);
328
329                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
330                 if (curr->smp) {
331                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
332                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
333                         if (retval == ERROR_OK)
334                                 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
335                 }
336                 if (retval != ERROR_OK)
337                         break;
338
339                 head = head->next;
340         }
341
342         /* halt the target PE */
343         if (retval == ERROR_OK)
344                 retval = aarch64_halt(target);
345
346         return retval;
347 }
348
349 static int update_halt_gdb(struct target *target)
350 {
351         int retval = 0;
352         if (target->gdb_service && target->gdb_service->core[0] == -1) {
353                 target->gdb_service->target = target;
354                 target->gdb_service->core[0] = target->coreid;
355                 retval += aarch64_halt_smp(target);
356         }
357         return retval;
358 }
359
360 /*
361  * Cortex-A8 Run control
362  */
363
364 static int aarch64_poll(struct target *target)
365 {
366         int retval = ERROR_OK;
367         uint32_t dscr;
368         struct aarch64_common *aarch64 = target_to_aarch64(target);
369         struct armv8_common *armv8 = &aarch64->armv8_common;
370         enum target_state prev_target_state = target->state;
371         /*  toggle to another core is done by gdb as follow */
372         /*  maint packet J core_id */
373         /*  continue */
374         /*  the next polling trigger an halt event sent to gdb */
375         if ((target->state == TARGET_HALTED) && (target->smp) &&
376                 (target->gdb_service) &&
377                 (target->gdb_service->target == NULL)) {
378                 target->gdb_service->target =
379                         get_aarch64(target, target->gdb_service->core[1]);
380                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
381                 return retval;
382         }
383         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
384                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
385         if (retval != ERROR_OK)
386                 return retval;
387         aarch64->cpudbg_dscr = dscr;
388
389         if (DSCR_RUN_MODE(dscr) == 0x3) {
390                 if (prev_target_state != TARGET_HALTED) {
391                         /* We have a halting debug event */
392                         LOG_DEBUG("Target halted");
393                         target->state = TARGET_HALTED;
394                         if ((prev_target_state == TARGET_RUNNING)
395                                 || (prev_target_state == TARGET_UNKNOWN)
396                                 || (prev_target_state == TARGET_RESET)) {
397                                 retval = aarch64_debug_entry(target);
398                                 if (retval != ERROR_OK)
399                                         return retval;
400                                 if (target->smp) {
401                                         retval = update_halt_gdb(target);
402                                         if (retval != ERROR_OK)
403                                                 return retval;
404                                 }
405                                 target_call_event_callbacks(target,
406                                         TARGET_EVENT_HALTED);
407                         }
408                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
409                                 LOG_DEBUG(" ");
410
411                                 retval = aarch64_debug_entry(target);
412                                 if (retval != ERROR_OK)
413                                         return retval;
414                                 if (target->smp) {
415                                         retval = update_halt_gdb(target);
416                                         if (retval != ERROR_OK)
417                                                 return retval;
418                                 }
419
420                                 target_call_event_callbacks(target,
421                                         TARGET_EVENT_DEBUG_HALTED);
422                         }
423                 }
424         } else
425                 target->state = TARGET_RUNNING;
426
427         return retval;
428 }
429
430 static int aarch64_halt(struct target *target)
431 {
432         int retval = ERROR_OK;
433         uint32_t dscr;
434         struct armv8_common *armv8 = target_to_armv8(target);
435
436         /*
437          * add HDE in halting debug mode
438          */
439         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
440         if (retval != ERROR_OK)
441                 return retval;
442
443         /* trigger an event on channel 0, this outputs a halt request to the PE */
444         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
445                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
446         if (retval != ERROR_OK)
447                 return retval;
448
449         long long then = timeval_ms();
450         for (;; ) {
451                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
452                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455                 if ((dscr & DSCRV8_HALT_MASK) != 0)
456                         break;
457                 if (timeval_ms() > then + 1000) {
458                         LOG_ERROR("Timeout waiting for halt");
459                         return ERROR_FAIL;
460                 }
461         }
462
463         target->debug_reason = DBG_REASON_DBGRQ;
464
465         return ERROR_OK;
466 }
467
468 static int aarch64_internal_restore(struct target *target, int current,
469         uint64_t *address, int handle_breakpoints, int debug_execution)
470 {
471         struct armv8_common *armv8 = target_to_armv8(target);
472         struct arm *arm = &armv8->arm;
473         int retval;
474         uint64_t resume_pc;
475
476         if (!debug_execution)
477                 target_free_all_working_areas(target);
478
479         /* current = 1: continue on current pc, otherwise continue at <address> */
480         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
481         if (!current)
482                 resume_pc = *address;
483         else
484                 *address = resume_pc;
485
486         /* Make sure that the Armv7 gdb thumb fixups does not
487          * kill the return address
488          */
489         switch (arm->core_state) {
490                 case ARM_STATE_ARM:
491                         resume_pc &= 0xFFFFFFFC;
492                         break;
493                 case ARM_STATE_AARCH64:
494                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
495                         break;
496                 case ARM_STATE_THUMB:
497                 case ARM_STATE_THUMB_EE:
498                         /* When the return address is loaded into PC
499                          * bit 0 must be 1 to stay in Thumb state
500                          */
501                         resume_pc |= 0x1;
502                         break;
503                 case ARM_STATE_JAZELLE:
504                         LOG_ERROR("How do I resume into Jazelle state??");
505                         return ERROR_FAIL;
506         }
507         LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
508         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
509         arm->pc->dirty = 1;
510         arm->pc->valid = 1;
511
512         /* called it now before restoring context because it uses cpu
513          * register r0 for restoring system control register */
514         retval = aarch64_restore_system_control_reg(target);
515         if (retval == ERROR_OK)
516                 retval = aarch64_restore_context(target, handle_breakpoints);
517
518         return retval;
519 }
520
521 static int aarch64_internal_restart(struct target *target, bool slave_pe)
522 {
523         struct armv8_common *armv8 = target_to_armv8(target);
524         struct arm *arm = &armv8->arm;
525         int retval;
526         uint32_t dscr;
527         /*
528          * * Restart core and wait for it to be started.  Clear ITRen and sticky
529          * * exception flags: see ARMv7 ARM, C5.9.
530          *
531          * REVISIT: for single stepping, we probably want to
532          * disable IRQs by default, with optional override...
533          */
534
535         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
536                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
537         if (retval != ERROR_OK)
538                 return retval;
539
540         if ((dscr & DSCR_ITE) == 0)
541                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
542
543         /* make sure to acknowledge the halt event before resuming */
544         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
545                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
546
547         /*
548          * open the CTI gate for channel 1 so that the restart events
549          * get passed along to all PEs
550          */
551         if (retval == ERROR_OK)
552                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
553                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
554         if (retval != ERROR_OK)
555                 return retval;
556
557         if (!slave_pe) {
558                 /* trigger an event on channel 1, generates a restart request to the PE */
559                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
560                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
561                 if (retval != ERROR_OK)
562                         return retval;
563
564                 long long then = timeval_ms();
565                 for (;; ) {
566                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
567                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
568                         if (retval != ERROR_OK)
569                                 return retval;
570                         if ((dscr & DSCR_HDE) != 0)
571                                 break;
572                         if (timeval_ms() > then + 1000) {
573                                 LOG_ERROR("Timeout waiting for resume");
574                                 return ERROR_FAIL;
575                         }
576                 }
577         }
578
579         target->debug_reason = DBG_REASON_NOTHALTED;
580         target->state = TARGET_RUNNING;
581
582         /* registers are now invalid */
583         register_cache_invalidate(arm->core_cache);
584         register_cache_invalidate(arm->core_cache->next);
585
586         return ERROR_OK;
587 }
588
589 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
590 {
591         int retval = 0;
592         struct target_list *head;
593         struct target *curr;
594         uint64_t address;
595         head = target->head;
596         while (head != (struct target_list *)NULL) {
597                 curr = head->target;
598                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
599                         /*  resume current address , not in step mode */
600                         retval += aarch64_internal_restore(curr, 1, &address,
601                                         handle_breakpoints, 0);
602                         retval += aarch64_internal_restart(curr, true);
603                 }
604                 head = head->next;
605
606         }
607         return retval;
608 }
609
610 static int aarch64_resume(struct target *target, int current,
611         target_addr_t address, int handle_breakpoints, int debug_execution)
612 {
613         int retval = 0;
614         uint64_t addr = address;
615
616         /* dummy resume for smp toggle in order to reduce gdb impact  */
617         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
618                 /*   simulate a start and halt of target */
619                 target->gdb_service->target = NULL;
620                 target->gdb_service->core[0] = target->gdb_service->core[1];
621                 /*  fake resume at next poll we play the  target core[1], see poll*/
622                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
623                 return 0;
624         }
625         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
626                                  debug_execution);
627         if (target->smp) {
628                 target->gdb_service->core[0] = -1;
629                 retval = aarch64_restore_smp(target, handle_breakpoints);
630                 if (retval != ERROR_OK)
631                         return retval;
632         }
633         aarch64_internal_restart(target, false);
634
635         if (!debug_execution) {
636                 target->state = TARGET_RUNNING;
637                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
638                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
639         } else {
640                 target->state = TARGET_DEBUG_RUNNING;
641                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
642                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
643         }
644
645         return ERROR_OK;
646 }
647
648 static int aarch64_debug_entry(struct target *target)
649 {
650         int retval = ERROR_OK;
651         struct aarch64_common *aarch64 = target_to_aarch64(target);
652         struct armv8_common *armv8 = target_to_armv8(target);
653         struct arm_dpm *dpm = &armv8->dpm;
654         enum arm_state core_state;
655
656         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
657
658         dpm->dscr = aarch64->cpudbg_dscr;
659         core_state = armv8_dpm_get_core_state(dpm);
660         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
661         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
662
663         /* make sure to clear all sticky errors */
664         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
665                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
666         if (retval != ERROR_OK)
667                 return retval;
668
669         /* Examine debug reason */
670         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
671
672         /* save address of instruction that triggered the watchpoint? */
673         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
674                 uint32_t tmp;
675                 uint64_t wfar = 0;
676
677                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
678                                 armv8->debug_base + CPUV8_DBG_WFAR1,
679                                 &tmp);
680                 if (retval != ERROR_OK)
681                         return retval;
682                 wfar = tmp;
683                 wfar = (wfar << 32);
684                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
685                                 armv8->debug_base + CPUV8_DBG_WFAR0,
686                                 &tmp);
687                 if (retval != ERROR_OK)
688                         return retval;
689                 wfar |= tmp;
690                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
691         }
692
693         retval = armv8_dpm_read_current_registers(&armv8->dpm);
694
695         if (retval == ERROR_OK && armv8->post_debug_entry)
696                 retval = armv8->post_debug_entry(target);
697
698         return retval;
699 }
700
701 static int aarch64_post_debug_entry(struct target *target)
702 {
703         struct aarch64_common *aarch64 = target_to_aarch64(target);
704         struct armv8_common *armv8 = &aarch64->armv8_common;
705         int retval;
706
707         /* clear sticky errors */
708         mem_ap_write_atomic_u32(armv8->debug_ap,
709                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
710
711         switch (armv8->arm.core_mode) {
712                 case ARMV8_64_EL0T:
713                         armv8_dpm_modeswitch(&armv8->dpm, ARMV8_64_EL1H);
714                         /* fall through */
715                 case ARMV8_64_EL1T:
716                 case ARMV8_64_EL1H:
717                         retval = armv8->arm.mrs(target, 3, /*op 0*/
718                                         0, 0,   /* op1, op2 */
719                                         1, 0,   /* CRn, CRm */
720                                         &aarch64->system_control_reg);
721                         if (retval != ERROR_OK)
722                                 return retval;
723                 break;
724                 case ARMV8_64_EL2T:
725                 case ARMV8_64_EL2H:
726                         retval = armv8->arm.mrs(target, 3, /*op 0*/
727                                         4, 0,   /* op1, op2 */
728                                         1, 0,   /* CRn, CRm */
729                                         &aarch64->system_control_reg);
730                         if (retval != ERROR_OK)
731                                 return retval;
732                 break;
733                 case ARMV8_64_EL3H:
734                 case ARMV8_64_EL3T:
735                         retval = armv8->arm.mrs(target, 3, /*op 0*/
736                                         6, 0,   /* op1, op2 */
737                                         1, 0,   /* CRn, CRm */
738                                         &aarch64->system_control_reg);
739                         if (retval != ERROR_OK)
740                                 return retval;
741                 break;
742
743                 case ARM_MODE_SVC:
744                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
745                         if (retval != ERROR_OK)
746                                 return retval;
747                         break;
748
749                 default:
750                         LOG_INFO("cannot read system control register in this mode");
751                         break;
752         }
753
754         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
755
756         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
757         aarch64->system_control_reg_curr = aarch64->system_control_reg;
758
759         if (armv8->armv8_mmu.armv8_cache.info == -1) {
760                 armv8_identify_cache(armv8);
761                 armv8_read_mpidr(armv8);
762         }
763
764         armv8->armv8_mmu.mmu_enabled =
765                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
766         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
767                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
768         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
769                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
770         aarch64->curr_mode = armv8->arm.core_mode;
771         return ERROR_OK;
772 }
773
774 static int aarch64_step(struct target *target, int current, target_addr_t address,
775         int handle_breakpoints)
776 {
777         struct armv8_common *armv8 = target_to_armv8(target);
778         int retval;
779         uint32_t edecr;
780
781         if (target->state != TARGET_HALTED) {
782                 LOG_WARNING("target not halted");
783                 return ERROR_TARGET_NOT_HALTED;
784         }
785
786         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
787                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
788         if (retval != ERROR_OK)
789                 return retval;
790
791         /* make sure EDECR.SS is not set when restoring the register */
792         edecr &= ~0x4;
793
794         /* set EDECR.SS to enter hardware step mode */
795         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
796                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
797         if (retval != ERROR_OK)
798                 return retval;
799
800         /* disable interrupts while stepping */
801         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
802         if (retval != ERROR_OK)
803                 return ERROR_OK;
804
805         /* resume the target */
806         retval = aarch64_resume(target, current, address, 0, 0);
807         if (retval != ERROR_OK)
808                 return retval;
809
810         long long then = timeval_ms();
811         while (target->state != TARGET_HALTED) {
812                 retval = aarch64_poll(target);
813                 if (retval != ERROR_OK)
814                         return retval;
815                 if (timeval_ms() > then + 1000) {
816                         LOG_ERROR("timeout waiting for target halt");
817                         return ERROR_FAIL;
818                 }
819         }
820
821         /* restore EDECR */
822         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
823                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
824         if (retval != ERROR_OK)
825                 return retval;
826
827         /* restore interrupts */
828         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
829         if (retval != ERROR_OK)
830                 return ERROR_OK;
831
832         return ERROR_OK;
833 }
834
835 static int aarch64_restore_context(struct target *target, bool bpwp)
836 {
837         struct armv8_common *armv8 = target_to_armv8(target);
838
839         LOG_DEBUG(" ");
840
841         if (armv8->pre_restore_context)
842                 armv8->pre_restore_context(target);
843
844         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
845
846 }
847
848 /*
849  * Cortex-A8 Breakpoint and watchpoint functions
850  */
851
852 /* Setup hardware Breakpoint Register Pair */
853 static int aarch64_set_breakpoint(struct target *target,
854         struct breakpoint *breakpoint, uint8_t matchmode)
855 {
856         int retval;
857         int brp_i = 0;
858         uint32_t control;
859         uint8_t byte_addr_select = 0x0F;
860         struct aarch64_common *aarch64 = target_to_aarch64(target);
861         struct armv8_common *armv8 = &aarch64->armv8_common;
862         struct aarch64_brp *brp_list = aarch64->brp_list;
863
864         if (breakpoint->set) {
865                 LOG_WARNING("breakpoint already set");
866                 return ERROR_OK;
867         }
868
869         if (breakpoint->type == BKPT_HARD) {
870                 int64_t bpt_value;
871                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
872                         brp_i++;
873                 if (brp_i >= aarch64->brp_num) {
874                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
875                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
876                 }
877                 breakpoint->set = brp_i + 1;
878                 if (breakpoint->length == 2)
879                         byte_addr_select = (3 << (breakpoint->address & 0x02));
880                 control = ((matchmode & 0x7) << 20)
881                         | (1 << 13)
882                         | (byte_addr_select << 5)
883                         | (3 << 1) | 1;
884                 brp_list[brp_i].used = 1;
885                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
886                 brp_list[brp_i].control = control;
887                 bpt_value = brp_list[brp_i].value;
888
889                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
890                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
891                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
892                 if (retval != ERROR_OK)
893                         return retval;
894                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
895                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
896                                 (uint32_t)(bpt_value >> 32));
897                 if (retval != ERROR_OK)
898                         return retval;
899
900                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
901                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
902                                 brp_list[brp_i].control);
903                 if (retval != ERROR_OK)
904                         return retval;
905                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
906                         brp_list[brp_i].control,
907                         brp_list[brp_i].value);
908
909         } else if (breakpoint->type == BKPT_SOFT) {
910                 uint8_t code[4];
911
912                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
913                 retval = target_read_memory(target,
914                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
915                                 breakpoint->length, 1,
916                                 breakpoint->orig_instr);
917                 if (retval != ERROR_OK)
918                         return retval;
919
920                 armv8_cache_d_inner_flush_virt(armv8,
921                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
922                                 breakpoint->length);
923
924                 retval = target_write_memory(target,
925                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
926                                 breakpoint->length, 1, code);
927                 if (retval != ERROR_OK)
928                         return retval;
929
930                 armv8_cache_d_inner_flush_virt(armv8,
931                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
932                                 breakpoint->length);
933
934                 armv8_cache_i_inner_inval_virt(armv8,
935                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
936                                 breakpoint->length);
937
938                 breakpoint->set = 0x11; /* Any nice value but 0 */
939         }
940
941         /* Ensure that halting debug mode is enable */
942         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
943         if (retval != ERROR_OK) {
944                 LOG_DEBUG("Failed to set DSCR.HDE");
945                 return retval;
946         }
947
948         return ERROR_OK;
949 }
950
951 static int aarch64_set_context_breakpoint(struct target *target,
952         struct breakpoint *breakpoint, uint8_t matchmode)
953 {
954         int retval = ERROR_FAIL;
955         int brp_i = 0;
956         uint32_t control;
957         uint8_t byte_addr_select = 0x0F;
958         struct aarch64_common *aarch64 = target_to_aarch64(target);
959         struct armv8_common *armv8 = &aarch64->armv8_common;
960         struct aarch64_brp *brp_list = aarch64->brp_list;
961
962         if (breakpoint->set) {
963                 LOG_WARNING("breakpoint already set");
964                 return retval;
965         }
966         /*check available context BRPs*/
967         while ((brp_list[brp_i].used ||
968                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
969                 brp_i++;
970
971         if (brp_i >= aarch64->brp_num) {
972                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
973                 return ERROR_FAIL;
974         }
975
976         breakpoint->set = brp_i + 1;
977         control = ((matchmode & 0x7) << 20)
978                 | (1 << 13)
979                 | (byte_addr_select << 5)
980                 | (3 << 1) | 1;
981         brp_list[brp_i].used = 1;
982         brp_list[brp_i].value = (breakpoint->asid);
983         brp_list[brp_i].control = control;
984         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
985                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
986                         brp_list[brp_i].value);
987         if (retval != ERROR_OK)
988                 return retval;
989         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
990                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
991                         brp_list[brp_i].control);
992         if (retval != ERROR_OK)
993                 return retval;
994         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
995                 brp_list[brp_i].control,
996                 brp_list[brp_i].value);
997         return ERROR_OK;
998
999 }
1000
1001 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1002 {
1003         int retval = ERROR_FAIL;
1004         int brp_1 = 0;  /* holds the contextID pair */
1005         int brp_2 = 0;  /* holds the IVA pair */
1006         uint32_t control_CTX, control_IVA;
1007         uint8_t CTX_byte_addr_select = 0x0F;
1008         uint8_t IVA_byte_addr_select = 0x0F;
1009         uint8_t CTX_machmode = 0x03;
1010         uint8_t IVA_machmode = 0x01;
1011         struct aarch64_common *aarch64 = target_to_aarch64(target);
1012         struct armv8_common *armv8 = &aarch64->armv8_common;
1013         struct aarch64_brp *brp_list = aarch64->brp_list;
1014
1015         if (breakpoint->set) {
1016                 LOG_WARNING("breakpoint already set");
1017                 return retval;
1018         }
1019         /*check available context BRPs*/
1020         while ((brp_list[brp_1].used ||
1021                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1022                 brp_1++;
1023
1024         printf("brp(CTX) found num: %d\n", brp_1);
1025         if (brp_1 >= aarch64->brp_num) {
1026                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1027                 return ERROR_FAIL;
1028         }
1029
1030         while ((brp_list[brp_2].used ||
1031                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1032                 brp_2++;
1033
1034         printf("brp(IVA) found num: %d\n", brp_2);
1035         if (brp_2 >= aarch64->brp_num) {
1036                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1037                 return ERROR_FAIL;
1038         }
1039
1040         breakpoint->set = brp_1 + 1;
1041         breakpoint->linked_BRP = brp_2;
1042         control_CTX = ((CTX_machmode & 0x7) << 20)
1043                 | (brp_2 << 16)
1044                 | (0 << 14)
1045                 | (CTX_byte_addr_select << 5)
1046                 | (3 << 1) | 1;
1047         brp_list[brp_1].used = 1;
1048         brp_list[brp_1].value = (breakpoint->asid);
1049         brp_list[brp_1].control = control_CTX;
1050         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1051                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1052                         brp_list[brp_1].value);
1053         if (retval != ERROR_OK)
1054                 return retval;
1055         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1056                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1057                         brp_list[brp_1].control);
1058         if (retval != ERROR_OK)
1059                 return retval;
1060
1061         control_IVA = ((IVA_machmode & 0x7) << 20)
1062                 | (brp_1 << 16)
1063                 | (1 << 13)
1064                 | (IVA_byte_addr_select << 5)
1065                 | (3 << 1) | 1;
1066         brp_list[brp_2].used = 1;
1067         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1068         brp_list[brp_2].control = control_IVA;
1069         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1070                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1071                         brp_list[brp_2].value & 0xFFFFFFFF);
1072         if (retval != ERROR_OK)
1073                 return retval;
1074         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1075                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1076                         brp_list[brp_2].value >> 32);
1077         if (retval != ERROR_OK)
1078                 return retval;
1079         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1080                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1081                         brp_list[brp_2].control);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084
1085         return ERROR_OK;
1086 }
1087
1088 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1089 {
1090         int retval;
1091         struct aarch64_common *aarch64 = target_to_aarch64(target);
1092         struct armv8_common *armv8 = &aarch64->armv8_common;
1093         struct aarch64_brp *brp_list = aarch64->brp_list;
1094
1095         if (!breakpoint->set) {
1096                 LOG_WARNING("breakpoint not set");
1097                 return ERROR_OK;
1098         }
1099
1100         if (breakpoint->type == BKPT_HARD) {
1101                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1102                         int brp_i = breakpoint->set - 1;
1103                         int brp_j = breakpoint->linked_BRP;
1104                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1105                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1106                                 return ERROR_OK;
1107                         }
1108                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1109                                 brp_list[brp_i].control, brp_list[brp_i].value);
1110                         brp_list[brp_i].used = 0;
1111                         brp_list[brp_i].value = 0;
1112                         brp_list[brp_i].control = 0;
1113                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1114                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1115                                         brp_list[brp_i].control);
1116                         if (retval != ERROR_OK)
1117                                 return retval;
1118                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1119                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1120                                         (uint32_t)brp_list[brp_i].value);
1121                         if (retval != ERROR_OK)
1122                                 return retval;
1123                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1124                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1125                                         (uint32_t)brp_list[brp_i].value);
1126                         if (retval != ERROR_OK)
1127                                 return retval;
1128                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1129                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1130                                 return ERROR_OK;
1131                         }
1132                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1133                                 brp_list[brp_j].control, brp_list[brp_j].value);
1134                         brp_list[brp_j].used = 0;
1135                         brp_list[brp_j].value = 0;
1136                         brp_list[brp_j].control = 0;
1137                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1138                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1139                                         brp_list[brp_j].control);
1140                         if (retval != ERROR_OK)
1141                                 return retval;
1142                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1143                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1144                                         (uint32_t)brp_list[brp_j].value);
1145                         if (retval != ERROR_OK)
1146                                 return retval;
1147                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1148                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1149                                         (uint32_t)brp_list[brp_j].value);
1150                         if (retval != ERROR_OK)
1151                                 return retval;
1152
1153                         breakpoint->linked_BRP = 0;
1154                         breakpoint->set = 0;
1155                         return ERROR_OK;
1156
1157                 } else {
1158                         int brp_i = breakpoint->set - 1;
1159                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1160                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1161                                 return ERROR_OK;
1162                         }
1163                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1164                                 brp_list[brp_i].control, brp_list[brp_i].value);
1165                         brp_list[brp_i].used = 0;
1166                         brp_list[brp_i].value = 0;
1167                         brp_list[brp_i].control = 0;
1168                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1169                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1170                                         brp_list[brp_i].control);
1171                         if (retval != ERROR_OK)
1172                                 return retval;
1173                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1174                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1175                                         brp_list[brp_i].value);
1176                         if (retval != ERROR_OK)
1177                                 return retval;
1178
1179                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1180                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1181                                         (uint32_t)brp_list[brp_i].value);
1182                         if (retval != ERROR_OK)
1183                                 return retval;
1184                         breakpoint->set = 0;
1185                         return ERROR_OK;
1186                 }
1187         } else {
1188                 /* restore original instruction (kept in target endianness) */
1189
1190                 armv8_cache_d_inner_flush_virt(armv8,
1191                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1192                                 breakpoint->length);
1193
1194                 if (breakpoint->length == 4) {
1195                         retval = target_write_memory(target,
1196                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1197                                         4, 1, breakpoint->orig_instr);
1198                         if (retval != ERROR_OK)
1199                                 return retval;
1200                 } else {
1201                         retval = target_write_memory(target,
1202                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1203                                         2, 1, breakpoint->orig_instr);
1204                         if (retval != ERROR_OK)
1205                                 return retval;
1206                 }
1207
1208                 armv8_cache_d_inner_flush_virt(armv8,
1209                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1210                                 breakpoint->length);
1211
1212                 armv8_cache_i_inner_inval_virt(armv8,
1213                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1214                                 breakpoint->length);
1215         }
1216         breakpoint->set = 0;
1217
1218         return ERROR_OK;
1219 }
1220
1221 static int aarch64_add_breakpoint(struct target *target,
1222         struct breakpoint *breakpoint)
1223 {
1224         struct aarch64_common *aarch64 = target_to_aarch64(target);
1225
1226         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1227                 LOG_INFO("no hardware breakpoint available");
1228                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1229         }
1230
1231         if (breakpoint->type == BKPT_HARD)
1232                 aarch64->brp_num_available--;
1233
1234         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1235 }
1236
1237 static int aarch64_add_context_breakpoint(struct target *target,
1238         struct breakpoint *breakpoint)
1239 {
1240         struct aarch64_common *aarch64 = target_to_aarch64(target);
1241
1242         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1243                 LOG_INFO("no hardware breakpoint available");
1244                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1245         }
1246
1247         if (breakpoint->type == BKPT_HARD)
1248                 aarch64->brp_num_available--;
1249
1250         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1251 }
1252
1253 static int aarch64_add_hybrid_breakpoint(struct target *target,
1254         struct breakpoint *breakpoint)
1255 {
1256         struct aarch64_common *aarch64 = target_to_aarch64(target);
1257
1258         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1259                 LOG_INFO("no hardware breakpoint available");
1260                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1261         }
1262
1263         if (breakpoint->type == BKPT_HARD)
1264                 aarch64->brp_num_available--;
1265
1266         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1267 }
1268
1269
1270 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1271 {
1272         struct aarch64_common *aarch64 = target_to_aarch64(target);
1273
1274 #if 0
1275 /* It is perfectly possible to remove breakpoints while the target is running */
1276         if (target->state != TARGET_HALTED) {
1277                 LOG_WARNING("target not halted");
1278                 return ERROR_TARGET_NOT_HALTED;
1279         }
1280 #endif
1281
1282         if (breakpoint->set) {
1283                 aarch64_unset_breakpoint(target, breakpoint);
1284                 if (breakpoint->type == BKPT_HARD)
1285                         aarch64->brp_num_available++;
1286         }
1287
1288         return ERROR_OK;
1289 }
1290
1291 /*
1292  * Cortex-A8 Reset functions
1293  */
1294
1295 static int aarch64_assert_reset(struct target *target)
1296 {
1297         struct armv8_common *armv8 = target_to_armv8(target);
1298
1299         LOG_DEBUG(" ");
1300
1301         /* FIXME when halt is requested, make it work somehow... */
1302
1303         /* Issue some kind of warm reset. */
1304         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1305                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1306         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1307                 /* REVISIT handle "pulls" cases, if there's
1308                  * hardware that needs them to work.
1309                  */
1310                 jtag_add_reset(0, 1);
1311         } else {
1312                 LOG_ERROR("%s: how to reset?", target_name(target));
1313                 return ERROR_FAIL;
1314         }
1315
1316         /* registers are now invalid */
1317         register_cache_invalidate(armv8->arm.core_cache);
1318
1319         target->state = TARGET_RESET;
1320
1321         return ERROR_OK;
1322 }
1323
1324 static int aarch64_deassert_reset(struct target *target)
1325 {
1326         int retval;
1327
1328         LOG_DEBUG(" ");
1329
1330         /* be certain SRST is off */
1331         jtag_add_reset(0, 0);
1332
1333         retval = aarch64_poll(target);
1334         if (retval != ERROR_OK)
1335                 return retval;
1336
1337         if (target->reset_halt) {
1338                 if (target->state != TARGET_HALTED) {
1339                         LOG_WARNING("%s: ran after reset and before halt ...",
1340                                 target_name(target));
1341                         retval = target_halt(target);
1342                         if (retval != ERROR_OK)
1343                                 return retval;
1344                 }
1345         }
1346
1347         return ERROR_OK;
1348 }
1349
1350 static int aarch64_write_apb_ap_memory(struct target *target,
1351         uint64_t address, uint32_t size,
1352         uint32_t count, const uint8_t *buffer)
1353 {
1354         /* write memory through APB-AP */
1355         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1356         struct armv8_common *armv8 = target_to_armv8(target);
1357         struct arm_dpm *dpm = &armv8->dpm;
1358         struct arm *arm = &armv8->arm;
1359         int total_bytes = count * size;
1360         int total_u32;
1361         int start_byte = address & 0x3;
1362         int end_byte   = (address + total_bytes) & 0x3;
1363         struct reg *reg;
1364         uint32_t dscr;
1365         uint8_t *tmp_buff = NULL;
1366
1367         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1368                           address, size, count);
1369         if (target->state != TARGET_HALTED) {
1370                 LOG_WARNING("target not halted");
1371                 return ERROR_TARGET_NOT_HALTED;
1372         }
1373
1374         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1375
1376         /* Mark register R0 as dirty, as it will be used
1377          * for transferring the data.
1378          * It will be restored automatically when exiting
1379          * debug mode
1380          */
1381         reg = armv8_reg_current(arm, 1);
1382         reg->dirty = true;
1383
1384         reg = armv8_reg_current(arm, 0);
1385         reg->dirty = true;
1386
1387         /*  clear any abort  */
1388         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1389                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1390         if (retval != ERROR_OK)
1391                 return retval;
1392
1393
1394         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1395
1396         /* The algorithm only copies 32 bit words, so the buffer
1397          * should be expanded to include the words at either end.
1398          * The first and last words will be read first to avoid
1399          * corruption if needed.
1400          */
1401         tmp_buff = malloc(total_u32 * 4);
1402
1403         if ((start_byte != 0) && (total_u32 > 1)) {
1404                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1405                  * the other bytes in the word.
1406                  */
1407                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1408                 if (retval != ERROR_OK)
1409                         goto error_free_buff_w;
1410         }
1411
1412         /* If end of write is not aligned, or the write is less than 4 bytes */
1413         if ((end_byte != 0) ||
1414                 ((total_u32 == 1) && (total_bytes != 4))) {
1415
1416                 /* Read the last word to avoid corruption during 32 bit write */
1417                 int mem_offset = (total_u32-1) * 4;
1418                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1419                 if (retval != ERROR_OK)
1420                         goto error_free_buff_w;
1421         }
1422
1423         /* Copy the write buffer over the top of the temporary buffer */
1424         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1425
1426         /* We now have a 32 bit aligned buffer that can be written */
1427
1428         /* Read DSCR */
1429         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1430                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1431         if (retval != ERROR_OK)
1432                 goto error_free_buff_w;
1433
1434         /* Set Normal access mode  */
1435         dscr = (dscr & ~DSCR_MA);
1436         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1437                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1438
1439         if (arm->core_state == ARM_STATE_AARCH64) {
1440                 /* Write X0 with value 'address' using write procedure */
1441                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1442                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1443                 retval = dpm->instr_write_data_dcc_64(dpm,
1444                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1445         } else {
1446                 /* Write R0 with value 'address' using write procedure */
1447                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1448                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1449                 dpm->instr_write_data_dcc(dpm,
1450                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1451
1452         }
1453         /* Step 1.d   - Change DCC to memory mode */
1454         dscr = dscr | DSCR_MA;
1455         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1456                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1457         if (retval != ERROR_OK)
1458                 goto error_unset_dtr_w;
1459
1460
1461         /* Step 2.a   - Do the write */
1462         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1463                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1464         if (retval != ERROR_OK)
1465                 goto error_unset_dtr_w;
1466
1467         /* Step 3.a   - Switch DTR mode back to Normal mode */
1468         dscr = (dscr & ~DSCR_MA);
1469         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1470                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1471         if (retval != ERROR_OK)
1472                 goto error_unset_dtr_w;
1473
1474         /* Check for sticky abort flags in the DSCR */
1475         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1476                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1477         if (retval != ERROR_OK)
1478                 goto error_free_buff_w;
1479
1480         dpm->dscr = dscr;
1481         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1482                 /* Abort occurred - clear it and exit */
1483                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1484                 mem_ap_write_atomic_u32(armv8->debug_ap,
1485                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1486                 armv8_dpm_handle_exception(dpm);
1487                 goto error_free_buff_w;
1488         }
1489
1490         /* Done */
1491         free(tmp_buff);
1492         return ERROR_OK;
1493
1494 error_unset_dtr_w:
1495         /* Unset DTR mode */
1496         mem_ap_read_atomic_u32(armv8->debug_ap,
1497                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1498         dscr = (dscr & ~DSCR_MA);
1499         mem_ap_write_atomic_u32(armv8->debug_ap,
1500                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1501 error_free_buff_w:
1502         LOG_ERROR("error");
1503         free(tmp_buff);
1504         return ERROR_FAIL;
1505 }
1506
1507 static int aarch64_read_apb_ap_memory(struct target *target,
1508         target_addr_t address, uint32_t size,
1509         uint32_t count, uint8_t *buffer)
1510 {
1511         /* read memory through APB-AP */
1512         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1513         struct armv8_common *armv8 = target_to_armv8(target);
1514         struct arm_dpm *dpm = &armv8->dpm;
1515         struct arm *arm = &armv8->arm;
1516         int total_bytes = count * size;
1517         int total_u32;
1518         int start_byte = address & 0x3;
1519         int end_byte   = (address + total_bytes) & 0x3;
1520         struct reg *reg;
1521         uint32_t dscr;
1522         uint8_t *tmp_buff = NULL;
1523         uint8_t *u8buf_ptr;
1524         uint32_t value;
1525
1526         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1527                           address, size, count);
1528         if (target->state != TARGET_HALTED) {
1529                 LOG_WARNING("target not halted");
1530                 return ERROR_TARGET_NOT_HALTED;
1531         }
1532
1533         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1534         /* Mark register X0, X1 as dirty, as it will be used
1535          * for transferring the data.
1536          * It will be restored automatically when exiting
1537          * debug mode
1538          */
1539         reg = armv8_reg_current(arm, 1);
1540         reg->dirty = true;
1541
1542         reg = armv8_reg_current(arm, 0);
1543         reg->dirty = true;
1544
1545         /*      clear any abort  */
1546         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1547                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1548         if (retval != ERROR_OK)
1549                 goto error_free_buff_r;
1550
1551         /* Read DSCR */
1552         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1553                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1554
1555         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1556
1557         /* Set Normal access mode  */
1558         dscr = (dscr & ~DSCR_MA);
1559         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1560                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1561
1562         if (arm->core_state == ARM_STATE_AARCH64) {
1563                 /* Write X0 with value 'address' using write procedure */
1564                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1565                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1566                 retval += dpm->instr_write_data_dcc_64(dpm,
1567                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1568                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1569                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1570                 /* Step 1.e - Change DCC to memory mode */
1571                 dscr = dscr | DSCR_MA;
1572                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1573                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1574                 /* Step 1.f - read DBGDTRTX and discard the value */
1575                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1576                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1577         } else {
1578                 /* Write R0 with value 'address' using write procedure */
1579                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1580                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1581                 retval += dpm->instr_write_data_dcc(dpm,
1582                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1583                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1584                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1585                 /* Step 1.e - Change DCC to memory mode */
1586                 dscr = dscr | DSCR_MA;
1587                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1588                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1589                 /* Step 1.f - read DBGDTRTX and discard the value */
1590                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1591                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1592
1593         }
1594         if (retval != ERROR_OK)
1595                 goto error_unset_dtr_r;
1596
1597         /* Optimize the read as much as we can, either way we read in a single pass  */
1598         if ((start_byte) || (end_byte)) {
1599                 /* The algorithm only copies 32 bit words, so the buffer
1600                  * should be expanded to include the words at either end.
1601                  * The first and last words will be read into a temp buffer
1602                  * to avoid corruption
1603                  */
1604                 tmp_buff = malloc(total_u32 * 4);
1605                 if (!tmp_buff)
1606                         goto error_unset_dtr_r;
1607
1608                 /* use the tmp buffer to read the entire data */
1609                 u8buf_ptr = tmp_buff;
1610         } else
1611                 /* address and read length are aligned so read directly into the passed buffer */
1612                 u8buf_ptr = buffer;
1613
1614         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1615          * Abort flags are sticky, so can be read at end of transactions
1616          *
1617          * This data is read in aligned to 32 bit boundary.
1618          */
1619
1620         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1621          * increments X0 by 4. */
1622         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1623                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1624         if (retval != ERROR_OK)
1625                         goto error_unset_dtr_r;
1626
1627         /* Step 3.a - set DTR access mode back to Normal mode   */
1628         dscr = (dscr & ~DSCR_MA);
1629         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1630                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1631         if (retval != ERROR_OK)
1632                 goto error_free_buff_r;
1633
1634         /* Step 3.b - read DBGDTRTX for the final value */
1635         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1636                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1637         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1638
1639         /* Check for sticky abort flags in the DSCR */
1640         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1641                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1642         if (retval != ERROR_OK)
1643                 goto error_free_buff_r;
1644
1645         dpm->dscr = dscr;
1646
1647         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1648                 /* Abort occurred - clear it and exit */
1649                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1650                 mem_ap_write_atomic_u32(armv8->debug_ap,
1651                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1652                 armv8_dpm_handle_exception(dpm);
1653                 goto error_free_buff_r;
1654         }
1655
1656         /* check if we need to copy aligned data by applying any shift necessary */
1657         if (tmp_buff) {
1658                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1659                 free(tmp_buff);
1660         }
1661
1662         /* Done */
1663         return ERROR_OK;
1664
1665 error_unset_dtr_r:
1666         /* Unset DTR mode */
1667         mem_ap_read_atomic_u32(armv8->debug_ap,
1668                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1669         dscr = (dscr & ~DSCR_MA);
1670         mem_ap_write_atomic_u32(armv8->debug_ap,
1671                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1672 error_free_buff_r:
1673         LOG_ERROR("error");
1674         free(tmp_buff);
1675         return ERROR_FAIL;
1676 }
1677
1678 static int aarch64_read_phys_memory(struct target *target,
1679         target_addr_t address, uint32_t size,
1680         uint32_t count, uint8_t *buffer)
1681 {
1682         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1683         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1684                 address, size, count);
1685
1686         if (count && buffer) {
1687                 /* read memory through APB-AP */
1688                 retval = aarch64_mmu_modify(target, 0);
1689                 if (retval != ERROR_OK)
1690                         return retval;
1691                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1692         }
1693         return retval;
1694 }
1695
1696 static int aarch64_read_memory(struct target *target, target_addr_t address,
1697         uint32_t size, uint32_t count, uint8_t *buffer)
1698 {
1699         int mmu_enabled = 0;
1700         int retval;
1701
1702         /* aarch64 handles unaligned memory access */
1703         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1704                 size, count);
1705
1706         /* determine if MMU was enabled on target stop */
1707         retval = aarch64_mmu(target, &mmu_enabled);
1708         if (retval != ERROR_OK)
1709                 return retval;
1710
1711         if (mmu_enabled) {
1712                 retval = aarch64_check_address(target, address);
1713                 if (retval != ERROR_OK)
1714                         return retval;
1715                 /* enable MMU as we could have disabled it for phys access */
1716                 retval = aarch64_mmu_modify(target, 1);
1717                 if (retval != ERROR_OK)
1718                         return retval;
1719         }
1720         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1721 }
1722
1723 static int aarch64_write_phys_memory(struct target *target,
1724         target_addr_t address, uint32_t size,
1725         uint32_t count, const uint8_t *buffer)
1726 {
1727         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1728
1729         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1730                 size, count);
1731
1732         if (count && buffer) {
1733                 /* write memory through APB-AP */
1734                 retval = aarch64_mmu_modify(target, 0);
1735                 if (retval != ERROR_OK)
1736                         return retval;
1737                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1738         }
1739
1740         return retval;
1741 }
1742
1743 static int aarch64_write_memory(struct target *target, target_addr_t address,
1744         uint32_t size, uint32_t count, const uint8_t *buffer)
1745 {
1746         int mmu_enabled = 0;
1747         int retval;
1748
1749         /* aarch64 handles unaligned memory access */
1750         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1751                   "; count %" PRId32, address, size, count);
1752
1753         /* determine if MMU was enabled on target stop */
1754         retval = aarch64_mmu(target, &mmu_enabled);
1755         if (retval != ERROR_OK)
1756                 return retval;
1757
1758         if (mmu_enabled) {
1759                 retval = aarch64_check_address(target, address);
1760                 if (retval != ERROR_OK)
1761                         return retval;
1762                 /* enable MMU as we could have disabled it for phys access */
1763                 retval = aarch64_mmu_modify(target, 1);
1764                 if (retval != ERROR_OK)
1765                         return retval;
1766         }
1767         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1768 }
1769
1770 static int aarch64_handle_target_request(void *priv)
1771 {
1772         struct target *target = priv;
1773         struct armv8_common *armv8 = target_to_armv8(target);
1774         int retval;
1775
1776         if (!target_was_examined(target))
1777                 return ERROR_OK;
1778         if (!target->dbg_msg_enabled)
1779                 return ERROR_OK;
1780
1781         if (target->state == TARGET_RUNNING) {
1782                 uint32_t request;
1783                 uint32_t dscr;
1784                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1785                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1786
1787                 /* check if we have data */
1788                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1789                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1790                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1791                         if (retval == ERROR_OK) {
1792                                 target_request(target, request);
1793                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1794                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1795                         }
1796                 }
1797         }
1798
1799         return ERROR_OK;
1800 }
1801
1802 static int aarch64_examine_first(struct target *target)
1803 {
1804         struct aarch64_common *aarch64 = target_to_aarch64(target);
1805         struct armv8_common *armv8 = &aarch64->armv8_common;
1806         struct adiv5_dap *swjdp = armv8->arm.dap;
1807         int i;
1808         int retval = ERROR_OK;
1809         uint64_t debug, ttypr;
1810         uint32_t cpuid;
1811         uint32_t tmp0, tmp1;
1812         debug = ttypr = cpuid = 0;
1813
1814         /* We do one extra read to ensure DAP is configured,
1815          * we call ahbap_debugport_init(swjdp) instead
1816          */
1817         retval = dap_dp_init(swjdp);
1818         if (retval != ERROR_OK)
1819                 return retval;
1820
1821         /* Search for the APB-AB - it is needed for access to debug registers */
1822         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1823         if (retval != ERROR_OK) {
1824                 LOG_ERROR("Could not find APB-AP for debug access");
1825                 return retval;
1826         }
1827
1828         retval = mem_ap_init(armv8->debug_ap);
1829         if (retval != ERROR_OK) {
1830                 LOG_ERROR("Could not initialize the APB-AP");
1831                 return retval;
1832         }
1833
1834         armv8->debug_ap->memaccess_tck = 80;
1835
1836         if (!target->dbgbase_set) {
1837                 uint32_t dbgbase;
1838                 /* Get ROM Table base */
1839                 uint32_t apid;
1840                 int32_t coreidx = target->coreid;
1841                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1842                 if (retval != ERROR_OK)
1843                         return retval;
1844                 /* Lookup 0x15 -- Processor DAP */
1845                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1846                                 &armv8->debug_base, &coreidx);
1847                 if (retval != ERROR_OK)
1848                         return retval;
1849                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1850                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1851         } else
1852                 armv8->debug_base = target->dbgbase;
1853
1854         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1855                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1856         if (retval != ERROR_OK) {
1857                 LOG_DEBUG("LOCK debug access fail");
1858                 return retval;
1859         }
1860
1861         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1862                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1863         if (retval != ERROR_OK) {
1864                 LOG_DEBUG("Examine %s failed", "oslock");
1865                 return retval;
1866         }
1867
1868         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1869                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1870         if (retval != ERROR_OK) {
1871                 LOG_DEBUG("Examine %s failed", "CPUID");
1872                 return retval;
1873         }
1874
1875         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1876                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1877         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1878                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1879         if (retval != ERROR_OK) {
1880                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1881                 return retval;
1882         }
1883         ttypr |= tmp1;
1884         ttypr = (ttypr << 32) | tmp0;
1885
1886         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1887                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1888         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1889                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1890         if (retval != ERROR_OK) {
1891                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1892                 return retval;
1893         }
1894         debug |= tmp1;
1895         debug = (debug << 32) | tmp0;
1896
1897         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1898         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1899         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1900
1901         if (target->ctibase == 0) {
1902                 /* assume a v8 rom table layout */
1903                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1904                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1905         } else
1906                 armv8->cti_base = target->ctibase;
1907
1908         armv8->arm.core_type = ARM_MODE_MON;
1909         retval = aarch64_dpm_setup(aarch64, debug);
1910         if (retval != ERROR_OK)
1911                 return retval;
1912
1913         /* Setup Breakpoint Register Pairs */
1914         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1915         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1916         aarch64->brp_num_available = aarch64->brp_num;
1917         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1918         for (i = 0; i < aarch64->brp_num; i++) {
1919                 aarch64->brp_list[i].used = 0;
1920                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1921                         aarch64->brp_list[i].type = BRP_NORMAL;
1922                 else
1923                         aarch64->brp_list[i].type = BRP_CONTEXT;
1924                 aarch64->brp_list[i].value = 0;
1925                 aarch64->brp_list[i].control = 0;
1926                 aarch64->brp_list[i].BRPn = i;
1927         }
1928
1929         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1930
1931         target_set_examined(target);
1932         return ERROR_OK;
1933 }
1934
1935 static int aarch64_examine(struct target *target)
1936 {
1937         int retval = ERROR_OK;
1938
1939         /* don't re-probe hardware after each reset */
1940         if (!target_was_examined(target))
1941                 retval = aarch64_examine_first(target);
1942
1943         /* Configure core debug access */
1944         if (retval == ERROR_OK)
1945                 retval = aarch64_init_debug_access(target);
1946
1947         return retval;
1948 }
1949
1950 /*
1951  *      Cortex-A8 target creation and initialization
1952  */
1953
1954 static int aarch64_init_target(struct command_context *cmd_ctx,
1955         struct target *target)
1956 {
1957         /* examine_first() does a bunch of this */
1958         return ERROR_OK;
1959 }
1960
1961 static int aarch64_init_arch_info(struct target *target,
1962         struct aarch64_common *aarch64, struct jtag_tap *tap)
1963 {
1964         struct armv8_common *armv8 = &aarch64->armv8_common;
1965         struct adiv5_dap *dap = armv8->arm.dap;
1966
1967         armv8->arm.dap = dap;
1968
1969         /* Setup struct aarch64_common */
1970         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1971         /*  tap has no dap initialized */
1972         if (!tap->dap) {
1973                 tap->dap = dap_init();
1974
1975                 /* Leave (only) generic DAP stuff for debugport_init() */
1976                 tap->dap->tap = tap;
1977         }
1978
1979         armv8->arm.dap = tap->dap;
1980
1981         aarch64->fast_reg_read = 0;
1982
1983         /* register arch-specific functions */
1984         armv8->examine_debug_reason = NULL;
1985
1986         armv8->post_debug_entry = aarch64_post_debug_entry;
1987
1988         armv8->pre_restore_context = NULL;
1989
1990         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1991
1992         /* REVISIT v7a setup should be in a v7a-specific routine */
1993         armv8_init_arch_info(target, armv8);
1994         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
1995
1996         return ERROR_OK;
1997 }
1998
1999 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2000 {
2001         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2002
2003         return aarch64_init_arch_info(target, aarch64, target->tap);
2004 }
2005
2006 static int aarch64_mmu(struct target *target, int *enabled)
2007 {
2008         if (target->state != TARGET_HALTED) {
2009                 LOG_ERROR("%s: target not halted", __func__);
2010                 return ERROR_TARGET_INVALID;
2011         }
2012
2013         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2014         return ERROR_OK;
2015 }
2016
2017 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2018                              target_addr_t *phys)
2019 {
2020         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2021 }
2022
2023 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2024 {
2025         struct target *target = get_current_target(CMD_CTX);
2026         struct armv8_common *armv8 = target_to_armv8(target);
2027
2028         return armv8_handle_cache_info_command(CMD_CTX,
2029                         &armv8->armv8_mmu.armv8_cache);
2030 }
2031
2032
2033 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2034 {
2035         struct target *target = get_current_target(CMD_CTX);
2036         if (!target_was_examined(target)) {
2037                 LOG_ERROR("target not examined yet");
2038                 return ERROR_FAIL;
2039         }
2040
2041         return aarch64_init_debug_access(target);
2042 }
2043 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2044 {
2045         struct target *target = get_current_target(CMD_CTX);
2046         /* check target is an smp target */
2047         struct target_list *head;
2048         struct target *curr;
2049         head = target->head;
2050         target->smp = 0;
2051         if (head != (struct target_list *)NULL) {
2052                 while (head != (struct target_list *)NULL) {
2053                         curr = head->target;
2054                         curr->smp = 0;
2055                         head = head->next;
2056                 }
2057                 /*  fixes the target display to the debugger */
2058                 target->gdb_service->target = target;
2059         }
2060         return ERROR_OK;
2061 }
2062
2063 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2064 {
2065         struct target *target = get_current_target(CMD_CTX);
2066         struct target_list *head;
2067         struct target *curr;
2068         head = target->head;
2069         if (head != (struct target_list *)NULL) {
2070                 target->smp = 1;
2071                 while (head != (struct target_list *)NULL) {
2072                         curr = head->target;
2073                         curr->smp = 1;
2074                         head = head->next;
2075                 }
2076         }
2077         return ERROR_OK;
2078 }
2079
2080 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2081 {
2082         struct target *target = get_current_target(CMD_CTX);
2083         int retval = ERROR_OK;
2084         struct target_list *head;
2085         head = target->head;
2086         if (head != (struct target_list *)NULL) {
2087                 if (CMD_ARGC == 1) {
2088                         int coreid = 0;
2089                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2090                         if (ERROR_OK != retval)
2091                                 return retval;
2092                         target->gdb_service->core[1] = coreid;
2093
2094                 }
2095                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2096                         , target->gdb_service->core[1]);
2097         }
2098         return ERROR_OK;
2099 }
2100
2101 static const struct command_registration aarch64_exec_command_handlers[] = {
2102         {
2103                 .name = "cache_info",
2104                 .handler = aarch64_handle_cache_info_command,
2105                 .mode = COMMAND_EXEC,
2106                 .help = "display information about target caches",
2107                 .usage = "",
2108         },
2109         {
2110                 .name = "dbginit",
2111                 .handler = aarch64_handle_dbginit_command,
2112                 .mode = COMMAND_EXEC,
2113                 .help = "Initialize core debug",
2114                 .usage = "",
2115         },
2116         {       .name = "smp_off",
2117                 .handler = aarch64_handle_smp_off_command,
2118                 .mode = COMMAND_EXEC,
2119                 .help = "Stop smp handling",
2120                 .usage = "",
2121         },
2122         {
2123                 .name = "smp_on",
2124                 .handler = aarch64_handle_smp_on_command,
2125                 .mode = COMMAND_EXEC,
2126                 .help = "Restart smp handling",
2127                 .usage = "",
2128         },
2129         {
2130                 .name = "smp_gdb",
2131                 .handler = aarch64_handle_smp_gdb_command,
2132                 .mode = COMMAND_EXEC,
2133                 .help = "display/fix current core played to gdb",
2134                 .usage = "",
2135         },
2136
2137
2138         COMMAND_REGISTRATION_DONE
2139 };
2140 static const struct command_registration aarch64_command_handlers[] = {
2141         {
2142                 .chain = arm_command_handlers,
2143         },
2144         {
2145                 .chain = armv8_command_handlers,
2146         },
2147         {
2148                 .name = "cortex_a",
2149                 .mode = COMMAND_ANY,
2150                 .help = "Cortex-A command group",
2151                 .usage = "",
2152                 .chain = aarch64_exec_command_handlers,
2153         },
2154         COMMAND_REGISTRATION_DONE
2155 };
2156
2157 struct target_type aarch64_target = {
2158         .name = "aarch64",
2159
2160         .poll = aarch64_poll,
2161         .arch_state = armv8_arch_state,
2162
2163         .halt = aarch64_halt,
2164         .resume = aarch64_resume,
2165         .step = aarch64_step,
2166
2167         .assert_reset = aarch64_assert_reset,
2168         .deassert_reset = aarch64_deassert_reset,
2169
2170         /* REVISIT allow exporting VFP3 registers ... */
2171         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2172
2173         .read_memory = aarch64_read_memory,
2174         .write_memory = aarch64_write_memory,
2175
2176         .checksum_memory = arm_checksum_memory,
2177         .blank_check_memory = arm_blank_check_memory,
2178
2179         .run_algorithm = armv4_5_run_algorithm,
2180
2181         .add_breakpoint = aarch64_add_breakpoint,
2182         .add_context_breakpoint = aarch64_add_context_breakpoint,
2183         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2184         .remove_breakpoint = aarch64_remove_breakpoint,
2185         .add_watchpoint = NULL,
2186         .remove_watchpoint = NULL,
2187
2188         .commands = aarch64_command_handlers,
2189         .target_create = aarch64_target_create,
2190         .init_target = aarch64_init_target,
2191         .examine = aarch64_examine,
2192
2193         .read_phys_memory = aarch64_read_phys_memory,
2194         .write_phys_memory = aarch64_write_phys_memory,
2195         .mmu = aarch64_mmu,
2196         .virt2phys = aarch64_virt2phys,
2197 };