zy1000: dev tool
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52
53 #include <netinet/tcp.h>
54
55 #if BUILD_ECOSBOARD
56 #include "zy1000_version.h"
57
58 #include <cyg/hal/hal_io.h>             // low level i/o
59 #include <cyg/hal/hal_diag.h>
60
61 #ifdef CYGPKG_HAL_NIOS2
62 #include <cyg/hal/io.h>
63 #include <cyg/firmwareutil/firmwareutil.h>
64 #endif
65
66 #define ZYLIN_VERSION GIT_ZY1000_VERSION
67 #define ZYLIN_DATE __DATE__
68 #define ZYLIN_TIME __TIME__
69 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
70 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
71
72 #endif
73
74 static int zy1000_khz(int khz, int *jtag_speed)
75 {
76         if (khz == 0)
77         {
78                 *jtag_speed = 0;
79         }
80         else
81         {
82                 *jtag_speed = 64000/khz;
83         }
84         return ERROR_OK;
85 }
86
87 static int zy1000_speed_div(int speed, int *khz)
88 {
89         if (speed == 0)
90         {
91                 *khz = 0;
92         }
93         else
94         {
95                 *khz = 64000/speed;
96         }
97
98         return ERROR_OK;
99 }
100
101 static bool readPowerDropout(void)
102 {
103         uint32_t state;
104         // sample and clear power dropout
105         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
106         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
107         bool powerDropout;
108         powerDropout = (state & 0x80) != 0;
109         return powerDropout;
110 }
111
112
113 static bool readSRST(void)
114 {
115         uint32_t state;
116         // sample and clear SRST sensing
117         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
118         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
119         bool srstAsserted;
120         srstAsserted = (state & 0x40) != 0;
121         return srstAsserted;
122 }
123
124 static int zy1000_srst_asserted(int *srst_asserted)
125 {
126         *srst_asserted = readSRST();
127         return ERROR_OK;
128 }
129
130 static int zy1000_power_dropout(int *dropout)
131 {
132         *dropout = readPowerDropout();
133         return ERROR_OK;
134 }
135
136 void zy1000_reset(int trst, int srst)
137 {
138         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
139
140         /* flush the JTAG FIFO. Not flushing the queue before messing with
141          * reset has such interesting bugs as causing hard to reproduce
142          * RCLK bugs as RCLK will stop responding when TRST is asserted
143          */
144         waitIdle();
145
146         if (!srst)
147         {
148                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
149         }
150         else
151         {
152                 /* Danger!!! if clk != 0 when in
153                  * idle in TAP_IDLE, reset halt on str912 will fail.
154                  */
155                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
156         }
157
158         if (!trst)
159         {
160                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
161         }
162         else
163         {
164                 /* assert reset */
165                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
166         }
167
168         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
169         {
170                 /* we're now in the RESET state until trst is deasserted */
171                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
172         } else
173         {
174                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
175                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
176         }
177
178         /* wait for srst to float back up */
179         if (!srst)
180         {
181                 int i;
182                 for (i = 0; i < 1000; i++)
183                 {
184                         // We don't want to sense our own reset, so we clear here.
185                         // There is of course a timing hole where we could loose
186                         // a "real" reset.
187                         if (!readSRST())
188                                 break;
189
190                         /* wait 1ms */
191                         alive_sleep(1);
192                 }
193
194                 if (i == 1000)
195                 {
196                         LOG_USER("SRST didn't deassert after %dms", i);
197                 } else if (i > 1)
198                 {
199                         LOG_USER("SRST took %dms to deassert", i);
200                 }
201         }
202 }
203
204 int zy1000_speed(int speed)
205 {
206         /* flush JTAG master FIFO before setting speed */
207         waitIdle();
208
209         if (speed == 0)
210         {
211                 /*0 means RCLK*/
212                 speed = 0;
213                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
214                 LOG_DEBUG("jtag_speed using RCLK");
215         }
216         else
217         {
218                 if (speed > 8190 || speed < 2)
219                 {
220                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
221                         return ERROR_INVALID_ARGUMENTS;
222                 }
223
224                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
225                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
226                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
227         }
228         return ERROR_OK;
229 }
230
231 static bool savePower;
232
233
234 static void setPower(bool power)
235 {
236         savePower = power;
237         if (power)
238         {
239                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
240         } else
241         {
242                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
243         }
244 }
245
246 COMMAND_HANDLER(handle_power_command)
247 {
248         switch (CMD_ARGC)
249         {
250         case 1: {
251                 bool enable;
252                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
253                 setPower(enable);
254                 // fall through
255         }
256         case 0:
257                 LOG_INFO("Target power %s", savePower ? "on" : "off");
258                 break;
259         default:
260                 return ERROR_INVALID_ARGUMENTS;
261         }
262
263         return ERROR_OK;
264 }
265
266 #if !BUILD_ECOSBOARD
267 static char *tcp_server = "notspecified";
268 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
269 {
270         if (argc != 2)
271                 return JIM_ERR;
272
273         tcp_server = strdup(Jim_GetString(argv[1], NULL));
274
275         return JIM_OK;
276 }
277 #endif
278
279 #if BUILD_ECOSBOARD
280 /* Give TELNET a way to find out what version this is */
281 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
282 {
283         if ((argc < 1) || (argc > 3))
284                 return JIM_ERR;
285         const char *version_str = NULL;
286
287         if (argc == 1)
288         {
289                 version_str = ZYLIN_OPENOCD_VERSION;
290         } else
291         {
292                 const char *str = Jim_GetString(argv[1], NULL);
293                 const char *str2 = NULL;
294                 if (argc > 2)
295                         str2 = Jim_GetString(argv[2], NULL);
296                 if (strcmp("openocd", str) == 0)
297                 {
298                         version_str = ZYLIN_OPENOCD;
299                 }
300                 else if (strcmp("zy1000", str) == 0)
301                 {
302                         version_str = ZYLIN_VERSION;
303                 }
304                 else if (strcmp("date", str) == 0)
305                 {
306                         version_str = ZYLIN_DATE;
307                 }
308                 else if (strcmp("time", str) == 0)
309                 {
310                         version_str = ZYLIN_TIME;
311                 }
312                 else if (strcmp("pcb", str) == 0)
313                 {
314 #ifdef CYGPKG_HAL_NIOS2
315                         version_str="c";
316 #else
317                         version_str="b";
318 #endif
319                 }
320 #ifdef CYGPKG_HAL_NIOS2
321                 else if (strcmp("fpga", str) == 0)
322                 {
323
324                         /* return a list of 32 bit integers to describe the expected
325                          * and actual FPGA
326                          */
327                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
328                         uint32_t id, timestamp;
329                         HAL_READ_UINT32(SYSID_BASE, id);
330                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
331                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
332                         version_str = fpga_id;
333                         if ((argc>2) && (strcmp("time", str2) == 0))
334                         {
335                             time_t last_mod = timestamp;
336                             char * t = ctime (&last_mod) ;
337                             t[strlen(t)-1] = 0;
338                             version_str = t;
339                         }
340                 }
341 #endif
342
343                 else
344                 {
345                         return JIM_ERR;
346                 }
347         }
348
349         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
350
351         return JIM_OK;
352 }
353 #endif
354
355 #ifdef CYGPKG_HAL_NIOS2
356
357
358 struct info_forward
359 {
360         void *data;
361         struct cyg_upgrade_info *upgraded_file;
362 };
363
364 static void report_info(void *data, const char * format, va_list args)
365 {
366         char *s = alloc_vprintf(format, args);
367         LOG_USER_N("%s", s);
368         free(s);
369 }
370
371 struct cyg_upgrade_info firmware_info =
372 {
373                 (uint8_t *)0x84000000,
374                 "/ram/firmware.phi",
375                 "Firmware",
376                 0x0300000,
377                 0x1f00000 -
378                 0x0300000,
379                 "ZylinNiosFirmware\n",
380                 report_info,
381 };
382
383 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
384 {
385         if (argc != 2)
386                 return JIM_ERR;
387
388         int length;
389         const char *str = Jim_GetString(argv[1], &length);
390
391         /* */
392         int tmpFile;
393         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
394         {
395                 return JIM_ERR;
396         }
397         bool success;
398         success = write(tmpFile, str, length) == length;
399         close(tmpFile);
400         if (!success)
401                 return JIM_ERR;
402
403         if (!cyg_firmware_upgrade(NULL, firmware_info))
404                 return JIM_ERR;
405
406         return JIM_OK;
407 }
408 #endif
409
410 static int
411 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
412                                                                    int argc,
413                 Jim_Obj * const *argv)
414 {
415         if (argc != 1)
416         {
417                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
418                 return JIM_ERR;
419         }
420
421         uint32_t status;
422         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
423
424         Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
425
426         return JIM_OK;
427 }
428
429
430
431 int zy1000_quit(void)
432 {
433
434         return ERROR_OK;
435 }
436
437
438
439 int interface_jtag_execute_queue(void)
440 {
441         uint32_t empty;
442
443         waitIdle();
444         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
445         /* clear JTAG error register */
446         ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
447
448         if ((empty&0x400) != 0)
449         {
450                 LOG_WARNING("RCLK timeout");
451                 /* the error is informative only as we don't want to break the firmware if there
452                  * is a false positive.
453                  */
454 //              return ERROR_FAIL;
455         }
456         return ERROR_OK;
457 }
458
459
460
461
462
463 static uint32_t getShiftValue(void)
464 {
465         uint32_t value;
466         waitIdle();
467         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
468         VERBOSE(LOG_INFO("getShiftValue %08x", value));
469         return value;
470 }
471 #if 0
472 static uint32_t getShiftValueFlip(void)
473 {
474         uint32_t value;
475         waitIdle();
476         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
477         VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
478         return value;
479 }
480 #endif
481
482 #if 0
483 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, uint32_t value)
484 {
485         VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
486         uint32_t a,b;
487         a = state;
488         b = endState;
489         ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
490         ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
491         VERBOSE(getShiftValueFlip());
492 }
493 #endif
494
495 // here we shuffle N bits out/in
496 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause, tap_state_t shiftState, tap_state_t end_state)
497 {
498         tap_state_t pause_state = shiftState;
499         for (int j = 0; j < num_bits; j += 32)
500         {
501                 int k = num_bits - j;
502                 if (k > 32)
503                 {
504                         k = 32;
505                         /* we have more to shift out */
506                 } else if (pause)
507                 {
508                         /* this was the last to shift out this time */
509                         pause_state = end_state;
510                 }
511
512                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
513                 // bits are pushed out LSB to MSB
514                 uint32_t value;
515                 value = 0;
516                 if (out_value != NULL)
517                 {
518                         for (int l = 0; l < k; l += 8)
519                         {
520                                 value|=out_value[(j + l)/8]<<l;
521                         }
522                 }
523                 /* mask away unused bits for easier debugging */
524                 if (k < 32)
525                 {
526                         value&=~(((uint32_t)0xffffffff) << k);
527                 } else
528                 {
529                         /* Shifting by >= 32 is not defined by the C standard
530                          * and will in fact shift by &0x1f bits on nios */
531                 }
532
533                 shiftValueInner(shiftState, pause_state, k, value);
534
535                 if (in_value != NULL)
536                 {
537                         // data in, LSB to MSB
538                         value = getShiftValue();
539                         // we're shifting in data to MSB, shift data to be aligned for returning the value
540                         value >>= 32-k;
541
542                         for (int l = 0; l < k; l += 8)
543                         {
544                                 in_value[(j + l)/8]=(value >> l)&0xff;
545                         }
546                 }
547         }
548 }
549
550 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
551 {
552         for (int i = 0; i < num_fields; i++)
553         {
554                 scanBits(fields[i].out_value,
555                                 fields[i].in_value,
556                                 fields[i].num_bits,
557                                 (i == num_fields-1),
558                                 shiftState,
559                                 end_state);
560         }
561 }
562
563 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
564 {
565         int scan_size = 0;
566         struct jtag_tap *tap, *nextTap;
567         tap_state_t pause_state = TAP_IRSHIFT;
568
569         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
570         {
571                 nextTap = jtag_tap_next_enabled(tap);
572                 if (nextTap==NULL)
573                 {
574                         pause_state = state;
575                 }
576                 scan_size = tap->ir_length;
577
578                 /* search the list */
579                 if (tap == active)
580                 {
581                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
582                         /* update device information */
583                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
584
585                         tap->bypass = 0;
586                 } else
587                 {
588                         /* if a device isn't listed, set it to BYPASS */
589                         assert(scan_size <= 32);
590                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
591
592                         tap->bypass = 1;
593                 }
594         }
595
596         return ERROR_OK;
597 }
598
599
600
601
602
603 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
604 {
605         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
606         return ERROR_OK;
607 }
608
609 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
610 {
611         struct jtag_tap *tap, *nextTap;
612         tap_state_t pause_state = TAP_DRSHIFT;
613         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
614         {
615                 nextTap = jtag_tap_next_enabled(tap);
616                 if (nextTap==NULL)
617                 {
618                         pause_state = state;
619                 }
620
621                 /* Find a range of fields to write to this tap */
622                 if (tap == active)
623                 {
624                         assert(!tap->bypass);
625
626                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
627                 } else
628                 {
629                         /* Shift out a 0 for disabled tap's */
630                         assert(tap->bypass);
631                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
632                 }
633         }
634         return ERROR_OK;
635 }
636
637 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
638 {
639         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
640         return ERROR_OK;
641 }
642
643 int interface_jtag_add_tlr()
644 {
645         setCurrentState(TAP_RESET);
646         return ERROR_OK;
647 }
648
649
650 int interface_jtag_add_reset(int req_trst, int req_srst)
651 {
652         zy1000_reset(req_trst, req_srst);
653         return ERROR_OK;
654 }
655
656 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
657 {
658         /* num_cycles can be 0 */
659         setCurrentState(clockstate);
660
661         /* execute num_cycles, 32 at the time. */
662         int i;
663         for (i = 0; i < num_cycles; i += 32)
664         {
665                 int num;
666                 num = 32;
667                 if (num_cycles-i < num)
668                 {
669                         num = num_cycles-i;
670                 }
671                 shiftValueInner(clockstate, clockstate, num, 0);
672         }
673
674 #if !TEST_MANUAL()
675         /* finish in end_state */
676         setCurrentState(state);
677 #else
678         tap_state_t t = TAP_IDLE;
679         /* test manual drive code on any target */
680         int tms;
681         uint8_t tms_scan = tap_get_tms_path(t, state);
682         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
683
684         for (i = 0; i < tms_count; i++)
685         {
686                 tms = (tms_scan >> i) & 1;
687                 waitIdle();
688                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
689         }
690         waitIdle();
691         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
692 #endif
693
694         return ERROR_OK;
695 }
696
697 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
698 {
699         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
700 }
701
702 int interface_jtag_add_clocks(int num_cycles)
703 {
704         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
705 }
706
707 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
708 {
709         /*wait for the fifo to be empty*/
710         waitIdle();
711
712         for (unsigned i = 0; i < num_bits; i++)
713         {
714                 int tms;
715
716                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
717                 {
718                         tms = 0;
719                 }
720                 else
721                 {
722                         tms = 1;
723                 }
724
725                 waitIdle();
726                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
727         }
728
729         waitIdle();
730         if (state != TAP_INVALID)
731         {
732                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
733         } else
734         {
735                 /* this would be normal if we are switching to SWD mode */
736         }
737         return ERROR_OK;
738 }
739
740 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
741 {
742         int state_count;
743         int tms = 0;
744
745         state_count = 0;
746
747         tap_state_t cur_state = cmd_queue_cur_state;
748
749         uint8_t seq[16];
750         memset(seq, 0, sizeof(seq));
751         assert(num_states < (int)((sizeof(seq) * 8)));
752
753         while (num_states)
754         {
755                 if (tap_state_transition(cur_state, false) == path[state_count])
756                 {
757                         tms = 0;
758                 }
759                 else if (tap_state_transition(cur_state, true) == path[state_count])
760                 {
761                         tms = 1;
762                 }
763                 else
764                 {
765                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
766                         exit(-1);
767                 }
768
769                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
770
771                 cur_state = path[state_count];
772                 state_count++;
773                 num_states--;
774         }
775
776         return interface_add_tms_seq(state_count, seq, cur_state);
777 }
778
779 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
780 {
781         /* bypass bits before and after */
782         int pre_bits = 0;
783         int post_bits = 0;
784
785         bool found = false;
786         struct jtag_tap *cur_tap, *nextTap;
787         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
788         {
789                 nextTap = jtag_tap_next_enabled(cur_tap);
790                 if (cur_tap == tap)
791                 {
792                         found = true;
793                 } else
794                 {
795                         if (found)
796                         {
797                                 post_bits++;
798                         } else
799                         {
800                                 pre_bits++;
801                         }
802                 }
803         }
804         *pre = pre_bits;
805         *post = post_bits;
806 }
807
808 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
809 {
810
811         int pre_bits;
812         int post_bits;
813         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
814
815         if (pre_bits + post_bits + 6 > 32)
816         {
817                 int i;
818                 for (i = 0; i < count; i++)
819                 {
820                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
821                         buffer += 4;
822                 }
823         } else
824         {
825                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
826                 int i;
827                 for (i = 0; i < count - 1; i++)
828                 {
829                         /* Fewer pokes means we get to use the FIFO more efficiently */
830                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
831                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
832                         buffer += 4;
833                 }
834                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
835                 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
836         }
837 }
838
839
840
841 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
842 {
843 #if 0
844         int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
845         return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
846 #else
847         static const int bits[] = {32, 2};
848         uint32_t values[] = {0, 0};
849
850         /* FIX!!!!!! the target_write_memory() API started this nasty problem
851          * with unaligned uint32_t * pointers... */
852         const uint8_t *t = (const uint8_t *)data;
853
854
855         /* bypass bits before and after */
856         int pre_bits;
857         int post_bits;
858         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
859
860         bool found = false;
861         struct jtag_tap *cur_tap, *nextTap;
862         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
863         {
864                 nextTap = jtag_tap_next_enabled(cur_tap);
865                 if (cur_tap == tap)
866                 {
867                         found = true;
868                 } else
869                 {
870                         if (found)
871                         {
872                                 post_bits++;
873                         } else
874                         {
875                                 pre_bits++;
876                         }
877                 }
878         }
879
880         post_bits+=2;
881
882
883         while (--count > 0)
884         {
885                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
886
887                 uint32_t value;
888                 value = *t++;
889                 value |= (*t++<<8);
890                 value |= (*t++<<16);
891                 value |= (*t++<<24);
892
893                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
894                 /* minimum 2 bits */
895                 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
896
897 #if 1
898                 /* copy & paste from arm11_dbgtap.c */
899                 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
900
901                 waitIdle();
902                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
903                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
904                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
905                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
906                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
907                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
908                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
909                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
910                 /* we don't have to wait for the queue to empty here. waitIdle();        */
911                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
912 #else
913                 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
914                 {
915                         TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
916                 };
917
918                 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
919                         arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
920 #endif
921         }
922
923         values[0] = *t++;
924         values[0] |= (*t++<<8);
925         values[0] |= (*t++<<16);
926         values[0] |= (*t++<<24);
927
928         /* This will happen on the last iteration updating the current tap state
929          * so we don't have to track it during the common code path */
930         jtag_add_dr_out(tap,
931                 2,
932                 bits,
933                 values,
934                 TAP_IDLE);
935
936         return jtag_execute_queue();
937 #endif
938 }
939
940
941 static const struct command_registration zy1000_commands[] = {
942         {
943                 .name = "power",
944                 .handler = handle_power_command,
945                 .mode = COMMAND_ANY,
946                 .help = "Turn power switch to target on/off. "
947                         "With no arguments, prints status.",
948                 .usage = "('on'|'off)",
949         },
950 #if BUILD_ECOSBOARD
951         {
952                 .name = "zy1000_version",
953                 .mode = COMMAND_ANY,
954                 .jim_handler = jim_zy1000_version,
955                 .help = "Print version info for zy1000.",
956                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
957         },
958 #else
959         {
960                 .name = "zy1000_server",
961                 .mode = COMMAND_ANY,
962                 .jim_handler = jim_zy1000_server,
963                 .help = "Tcpip address for ZY1000 server.",
964                 .usage = "address",
965         },
966 #endif
967         {
968                 .name = "powerstatus",
969                 .mode = COMMAND_ANY,
970                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
971                 .help = "Returns power status of target",
972         },
973 #ifdef CYGPKG_HAL_NIOS2
974         {
975                 .name = "updatezy1000firmware",
976                 .mode = COMMAND_ANY,
977                 .jim_handler = jim_zy1000_writefirmware,
978                 .help = "writes firmware to flash",
979                 /* .usage = "some_string", */
980         },
981 #endif
982         COMMAND_REGISTRATION_DONE
983 };
984
985
986 static int tcp_ip = -1;
987
988 /* Write large packets if we can */
989 static size_t out_pos;
990 static uint8_t out_buffer[16384];
991 static size_t in_pos;
992 static size_t in_write;
993 static uint8_t in_buffer[16384];
994
995 static bool flush_writes(void)
996 {
997         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
998         out_pos = 0;
999         return ok;
1000 }
1001
1002 static bool writeLong(uint32_t l)
1003 {
1004         int i;
1005         for (i = 0; i < 4; i++)
1006         {
1007                 uint8_t c = (l >> (i*8))&0xff;
1008                 out_buffer[out_pos++] = c;
1009                 if (out_pos >= sizeof(out_buffer))
1010                 {
1011                         if (!flush_writes())
1012                         {
1013                                 return false;
1014                         }
1015                 }
1016         }
1017         return true;
1018 }
1019
1020 static bool readLong(uint32_t *out_data)
1021 {
1022         if (out_pos > 0)
1023         {
1024                 if (!flush_writes())
1025                 {
1026                         return false;
1027                 }
1028         }
1029
1030         uint32_t data = 0;
1031         int i;
1032         for (i = 0; i < 4; i++)
1033         {
1034                 uint8_t c;
1035                 if (in_pos == in_write)
1036                 {
1037                         /* read more */
1038                         int t;
1039                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1040                         if (t < 1)
1041                         {
1042                                 return false;
1043                         }
1044                         in_write = (size_t) t;
1045                         in_pos = 0;
1046                 }
1047                 c = in_buffer[in_pos++];
1048
1049                 data |= (c << (i*8));
1050         }
1051         *out_data = data;
1052         return true;
1053 }
1054
1055 enum ZY1000_CMD
1056 {
1057         ZY1000_CMD_POKE = 0x0,
1058         ZY1000_CMD_PEEK = 0x8,
1059         ZY1000_CMD_SLEEP = 0x1,
1060 };
1061
1062
1063 #if !BUILD_ECOSBOARD
1064
1065 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1066 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1067
1068 /* We initialize this late since we need to know the server address
1069  * first.
1070  */
1071 static void tcpip_open(void)
1072 {
1073         if (tcp_ip >= 0)
1074                 return;
1075
1076         struct sockaddr_in echoServAddr; /* Echo server address */
1077
1078         /* Create a reliable, stream socket using TCP */
1079         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1080         {
1081                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1082                 exit(-1);
1083         }
1084
1085         /* Construct the server address structure */
1086         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1087         echoServAddr.sin_family = AF_INET; /* Internet address family */
1088         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1089         echoServAddr.sin_port = htons(7777); /* Server port */
1090
1091         /* Establish the connection to the echo server */
1092         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1093         {
1094                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1095                 exit(-1);
1096         }
1097
1098         int flag = 1;
1099         setsockopt(tcp_ip,      /* socket affected */
1100                         IPPROTO_TCP,            /* set option at TCP level */
1101                         TCP_NODELAY,            /* name of option */
1102                         (char *)&flag,          /* the cast is historical cruft */
1103                         sizeof(int));           /* length of option value */
1104
1105 }
1106
1107
1108 /* send a poke */
1109 void zy1000_tcpout(uint32_t address, uint32_t data)
1110 {
1111         tcpip_open();
1112         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1113                         !writeLong(data))
1114         {
1115                 fprintf(stderr, "Could not write to zy1000 server\n");
1116                 exit(-1);
1117         }
1118 }
1119
1120 uint32_t zy1000_tcpin(uint32_t address)
1121 {
1122         tcpip_open();
1123         uint32_t data;
1124         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1125                         !readLong(&data))
1126         {
1127                 fprintf(stderr, "Could not read from zy1000 server\n");
1128                 exit(-1);
1129         }
1130         return data;
1131 }
1132
1133 int interface_jtag_add_sleep(uint32_t us)
1134 {
1135         tcpip_open();
1136         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1137                         !writeLong(us))
1138         {
1139                 fprintf(stderr, "Could not read from zy1000 server\n");
1140                 exit(-1);
1141         }
1142         return ERROR_OK;
1143 }
1144
1145
1146 #endif
1147
1148 #if BUILD_ECOSBOARD
1149 static char tcpip_stack[2048];
1150
1151 static cyg_thread tcpip_thread_object;
1152 static cyg_handle_t tcpip_thread_handle;
1153
1154 /* Infinite loop peeking & poking */
1155 static void tcpipserver(void)
1156 {
1157         for (;;)
1158         {
1159                 uint32_t address;
1160                 if (!readLong(&address))
1161                         return;
1162                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1163                 address &= 0xffffff;
1164                 switch (c)
1165                 {
1166                         case ZY1000_CMD_POKE:
1167                         {
1168                                 uint32_t data;
1169                                 if (!readLong(&data))
1170                                         return;
1171                                 address &= ~0x80000000;
1172                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1173                                 break;
1174                         }
1175                         case ZY1000_CMD_PEEK:
1176                         {
1177                                 uint32_t data;
1178                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1179                                 if (!writeLong(data))
1180                                         return;
1181                                 break;
1182                         }
1183                         case ZY1000_CMD_SLEEP:
1184                         {
1185                                 uint32_t data;
1186                                 if (!readLong(&data))
1187                                         return;
1188                                 jtag_sleep(data);
1189                                 break;
1190                         }
1191                         default:
1192                                 return;
1193                 }
1194         }
1195 }
1196
1197
1198 static void tcpip_server(cyg_addrword_t data)
1199 {
1200         int so_reuseaddr_option = 1;
1201
1202         int fd;
1203         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1204         {
1205                 LOG_ERROR("error creating socket: %s", strerror(errno));
1206                 exit(-1);
1207         }
1208
1209         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1210                         sizeof(int));
1211
1212         struct sockaddr_in sin;
1213         unsigned int address_size;
1214         address_size = sizeof(sin);
1215         memset(&sin, 0, sizeof(sin));
1216         sin.sin_family = AF_INET;
1217         sin.sin_addr.s_addr = INADDR_ANY;
1218         sin.sin_port = htons(7777);
1219
1220         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1221         {
1222                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1223                 exit(-1);
1224         }
1225
1226         if (listen(fd, 1) == -1)
1227         {
1228                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1229                 exit(-1);
1230         }
1231
1232
1233         for (;;)
1234         {
1235                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1236                 if (tcp_ip < 0)
1237                 {
1238                         continue;
1239                 }
1240
1241                 int flag = 1;
1242                 setsockopt(tcp_ip,      /* socket affected */
1243                                 IPPROTO_TCP,            /* set option at TCP level */
1244                                 TCP_NODELAY,            /* name of option */
1245                                 (char *)&flag,          /* the cast is historical cruft */
1246                                 sizeof(int));           /* length of option value */
1247
1248                 bool save_poll = jtag_poll_get_enabled();
1249
1250                 /* polling will screw up the "connection" */
1251                 jtag_poll_set_enabled(false);
1252
1253                 tcpipserver();
1254
1255                 jtag_poll_set_enabled(save_poll);
1256
1257                 close(tcp_ip);
1258
1259         }
1260         close(fd);
1261
1262 }
1263
1264 int interface_jtag_add_sleep(uint32_t us)
1265 {
1266         jtag_sleep(us);
1267         return ERROR_OK;
1268 }
1269
1270 #endif
1271
1272
1273 int zy1000_init(void)
1274 {
1275 #if BUILD_ECOSBOARD
1276         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1277 #endif
1278
1279         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1280
1281         setPower(true); // on by default
1282
1283
1284          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1285         zy1000_reset(0, 0);
1286         zy1000_speed(jtag_get_speed());
1287
1288
1289 #if BUILD_ECOSBOARD
1290         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1291                         (void *) tcpip_stack, sizeof(tcpip_stack),
1292                         &tcpip_thread_handle, &tcpip_thread_object);
1293         cyg_thread_resume(tcpip_thread_handle);
1294 #endif
1295
1296         return ERROR_OK;
1297 }
1298
1299
1300
1301 struct jtag_interface zy1000_interface =
1302 {
1303         .name = "ZY1000",
1304         .supported = DEBUG_CAP_TMS_SEQ,
1305         .execute_queue = NULL,
1306         .speed = zy1000_speed,
1307         .commands = zy1000_commands,
1308         .init = zy1000_init,
1309         .quit = zy1000_quit,
1310         .khz = zy1000_khz,
1311         .speed_div = zy1000_speed_div,
1312         .power_dropout = zy1000_power_dropout,
1313         .srst_asserted = zy1000_srst_asserted,
1314 };
1315