zy1000: fix keep_alive() bug
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75 static int zy1000_khz(int khz, int *jtag_speed)
76 {
77         if (khz == 0)
78         {
79                 *jtag_speed = 0;
80         }
81         else
82         {
83                 *jtag_speed = 64000/khz;
84         }
85         return ERROR_OK;
86 }
87
88 static int zy1000_speed_div(int speed, int *khz)
89 {
90         if (speed == 0)
91         {
92                 *khz = 0;
93         }
94         else
95         {
96                 *khz = 64000/speed;
97         }
98
99         return ERROR_OK;
100 }
101
102 static bool readPowerDropout(void)
103 {
104         uint32_t state;
105         // sample and clear power dropout
106         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
107         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
108         bool powerDropout;
109         powerDropout = (state & 0x80) != 0;
110         return powerDropout;
111 }
112
113
114 static bool readSRST(void)
115 {
116         uint32_t state;
117         // sample and clear SRST sensing
118         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
119         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
120         bool srstAsserted;
121         srstAsserted = (state & 0x40) != 0;
122         return srstAsserted;
123 }
124
125 static int zy1000_srst_asserted(int *srst_asserted)
126 {
127         *srst_asserted = readSRST();
128         return ERROR_OK;
129 }
130
131 static int zy1000_power_dropout(int *dropout)
132 {
133         *dropout = readPowerDropout();
134         return ERROR_OK;
135 }
136
137 void zy1000_reset(int trst, int srst)
138 {
139         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
140
141         /* flush the JTAG FIFO. Not flushing the queue before messing with
142          * reset has such interesting bugs as causing hard to reproduce
143          * RCLK bugs as RCLK will stop responding when TRST is asserted
144          */
145         waitIdle();
146
147         if (!srst)
148         {
149                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
150         }
151         else
152         {
153                 /* Danger!!! if clk != 0 when in
154                  * idle in TAP_IDLE, reset halt on str912 will fail.
155                  */
156                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
157         }
158
159         if (!trst)
160         {
161                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
162         }
163         else
164         {
165                 /* assert reset */
166                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
167         }
168
169         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
170         {
171                 /* we're now in the RESET state until trst is deasserted */
172                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
173         } else
174         {
175                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
176                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
177         }
178
179         /* wait for srst to float back up */
180         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
181                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
182         {
183                 bool first = true;
184                 long long start;
185                 long total = 0;
186                 for (;;)
187                 {       
188                         // We don't want to sense our own reset, so we clear here.
189                         // There is of course a timing hole where we could loose
190                         // a "real" reset.
191                         if (!readSRST())
192                         {
193                                 if (total > 1)
194                                 {
195                                   LOG_USER("SRST took %dms to deassert", (int)total);
196                                 }
197                                 break;
198                         }
199
200                         if (first)
201                         {
202                             first = false;
203                             start = timeval_ms();
204                         }
205
206                         total = timeval_ms() - start;
207
208                         keep_alive();
209
210                         if (total > 5000)
211                         {
212                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
213                             break;
214                         }
215                 }
216
217         }
218 }
219
220 int zy1000_speed(int speed)
221 {
222         /* flush JTAG master FIFO before setting speed */
223         waitIdle();
224
225         if (speed == 0)
226         {
227                 /*0 means RCLK*/
228                 speed = 0;
229                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
230                 LOG_DEBUG("jtag_speed using RCLK");
231         }
232         else
233         {
234                 if (speed > 8190 || speed < 2)
235                 {
236                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
237                         return ERROR_INVALID_ARGUMENTS;
238                 }
239
240                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
241                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
242                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
243         }
244         return ERROR_OK;
245 }
246
247 static bool savePower;
248
249
250 static void setPower(bool power)
251 {
252         savePower = power;
253         if (power)
254         {
255                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
256         } else
257         {
258                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
259         }
260 }
261
262 COMMAND_HANDLER(handle_power_command)
263 {
264         switch (CMD_ARGC)
265         {
266         case 1: {
267                 bool enable;
268                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
269                 setPower(enable);
270                 // fall through
271         }
272         case 0:
273                 LOG_INFO("Target power %s", savePower ? "on" : "off");
274                 break;
275         default:
276                 return ERROR_INVALID_ARGUMENTS;
277         }
278
279         return ERROR_OK;
280 }
281
282 #if !BUILD_ECOSBOARD
283 static char *tcp_server = "notspecified";
284 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
285 {
286         if (argc != 2)
287                 return JIM_ERR;
288
289         tcp_server = strdup(Jim_GetString(argv[1], NULL));
290
291         return JIM_OK;
292 }
293 #endif
294
295 #if BUILD_ECOSBOARD
296 /* Give TELNET a way to find out what version this is */
297 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
298 {
299         if ((argc < 1) || (argc > 3))
300                 return JIM_ERR;
301         const char *version_str = NULL;
302
303         if (argc == 1)
304         {
305                 version_str = ZYLIN_OPENOCD_VERSION;
306         } else
307         {
308                 const char *str = Jim_GetString(argv[1], NULL);
309                 const char *str2 = NULL;
310                 if (argc > 2)
311                         str2 = Jim_GetString(argv[2], NULL);
312                 if (strcmp("openocd", str) == 0)
313                 {
314                         version_str = ZYLIN_OPENOCD;
315                 }
316                 else if (strcmp("zy1000", str) == 0)
317                 {
318                         version_str = ZYLIN_VERSION;
319                 }
320                 else if (strcmp("date", str) == 0)
321                 {
322                         version_str = ZYLIN_DATE;
323                 }
324                 else if (strcmp("time", str) == 0)
325                 {
326                         version_str = ZYLIN_TIME;
327                 }
328                 else if (strcmp("pcb", str) == 0)
329                 {
330 #ifdef CYGPKG_HAL_NIOS2
331                         version_str="c";
332 #else
333                         version_str="b";
334 #endif
335                 }
336 #ifdef CYGPKG_HAL_NIOS2
337                 else if (strcmp("fpga", str) == 0)
338                 {
339
340                         /* return a list of 32 bit integers to describe the expected
341                          * and actual FPGA
342                          */
343                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
344                         uint32_t id, timestamp;
345                         HAL_READ_UINT32(SYSID_BASE, id);
346                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
347                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
348                         version_str = fpga_id;
349                         if ((argc>2) && (strcmp("time", str2) == 0))
350                         {
351                             time_t last_mod = timestamp;
352                             char * t = ctime (&last_mod) ;
353                             t[strlen(t)-1] = 0;
354                             version_str = t;
355                         }
356                 }
357 #endif
358
359                 else
360                 {
361                         return JIM_ERR;
362                 }
363         }
364
365         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
366
367         return JIM_OK;
368 }
369 #endif
370
371 #ifdef CYGPKG_HAL_NIOS2
372
373
374 struct info_forward
375 {
376         void *data;
377         struct cyg_upgrade_info *upgraded_file;
378 };
379
380 static void report_info(void *data, const char * format, va_list args)
381 {
382         char *s = alloc_vprintf(format, args);
383         LOG_USER_N("%s", s);
384         free(s);
385 }
386
387 struct cyg_upgrade_info firmware_info =
388 {
389                 (uint8_t *)0x84000000,
390                 "/ram/firmware.phi",
391                 "Firmware",
392                 0x0300000,
393                 0x1f00000 -
394                 0x0300000,
395                 "ZylinNiosFirmware\n",
396                 report_info,
397 };
398
399 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
400 {
401         if (argc != 2)
402                 return JIM_ERR;
403
404         int length;
405         const char *str = Jim_GetString(argv[1], &length);
406
407         /* */
408         int tmpFile;
409         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
410         {
411                 return JIM_ERR;
412         }
413         bool success;
414         success = write(tmpFile, str, length) == length;
415         close(tmpFile);
416         if (!success)
417                 return JIM_ERR;
418
419         if (!cyg_firmware_upgrade(NULL, firmware_info))
420                 return JIM_ERR;
421
422         return JIM_OK;
423 }
424 #endif
425
426 static int
427 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
428                                                                    int argc,
429                 Jim_Obj * const *argv)
430 {
431         if (argc != 1)
432         {
433                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
434                 return JIM_ERR;
435         }
436
437         uint32_t status;
438         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
439
440         Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
441
442         return JIM_OK;
443 }
444
445
446
447 int zy1000_quit(void)
448 {
449
450         return ERROR_OK;
451 }
452
453
454
455 int interface_jtag_execute_queue(void)
456 {
457         uint32_t empty;
458
459         waitIdle();
460         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
461         /* clear JTAG error register */
462         ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
463
464         if ((empty&0x400) != 0)
465         {
466                 LOG_WARNING("RCLK timeout");
467                 /* the error is informative only as we don't want to break the firmware if there
468                  * is a false positive.
469                  */
470 //              return ERROR_FAIL;
471         }
472         return ERROR_OK;
473 }
474
475
476
477
478
479 static uint32_t getShiftValue(void)
480 {
481         uint32_t value;
482         waitIdle();
483         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
484         VERBOSE(LOG_INFO("getShiftValue %08x", value));
485         return value;
486 }
487 #if 0
488 static uint32_t getShiftValueFlip(void)
489 {
490         uint32_t value;
491         waitIdle();
492         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
493         VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
494         return value;
495 }
496 #endif
497
498 #if 0
499 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, uint32_t value)
500 {
501         VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
502         uint32_t a,b;
503         a = state;
504         b = endState;
505         ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
506         ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
507         VERBOSE(getShiftValueFlip());
508 }
509 #endif
510
511 // here we shuffle N bits out/in
512 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause, tap_state_t shiftState, tap_state_t end_state)
513 {
514         tap_state_t pause_state = shiftState;
515         for (int j = 0; j < num_bits; j += 32)
516         {
517                 int k = num_bits - j;
518                 if (k > 32)
519                 {
520                         k = 32;
521                         /* we have more to shift out */
522                 } else if (pause)
523                 {
524                         /* this was the last to shift out this time */
525                         pause_state = end_state;
526                 }
527
528                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
529                 // bits are pushed out LSB to MSB
530                 uint32_t value;
531                 value = 0;
532                 if (out_value != NULL)
533                 {
534                         for (int l = 0; l < k; l += 8)
535                         {
536                                 value|=out_value[(j + l)/8]<<l;
537                         }
538                 }
539                 /* mask away unused bits for easier debugging */
540                 if (k < 32)
541                 {
542                         value&=~(((uint32_t)0xffffffff) << k);
543                 } else
544                 {
545                         /* Shifting by >= 32 is not defined by the C standard
546                          * and will in fact shift by &0x1f bits on nios */
547                 }
548
549                 shiftValueInner(shiftState, pause_state, k, value);
550
551                 if (in_value != NULL)
552                 {
553                         // data in, LSB to MSB
554                         value = getShiftValue();
555                         // we're shifting in data to MSB, shift data to be aligned for returning the value
556                         value >>= 32-k;
557
558                         for (int l = 0; l < k; l += 8)
559                         {
560                                 in_value[(j + l)/8]=(value >> l)&0xff;
561                         }
562                 }
563         }
564 }
565
566 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
567 {
568         for (int i = 0; i < num_fields; i++)
569         {
570                 scanBits(fields[i].out_value,
571                                 fields[i].in_value,
572                                 fields[i].num_bits,
573                                 (i == num_fields-1),
574                                 shiftState,
575                                 end_state);
576         }
577 }
578
579 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
580 {
581         int scan_size = 0;
582         struct jtag_tap *tap, *nextTap;
583         tap_state_t pause_state = TAP_IRSHIFT;
584
585         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
586         {
587                 nextTap = jtag_tap_next_enabled(tap);
588                 if (nextTap==NULL)
589                 {
590                         pause_state = state;
591                 }
592                 scan_size = tap->ir_length;
593
594                 /* search the list */
595                 if (tap == active)
596                 {
597                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
598                         /* update device information */
599                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
600
601                         tap->bypass = 0;
602                 } else
603                 {
604                         /* if a device isn't listed, set it to BYPASS */
605                         assert(scan_size <= 32);
606                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
607
608                         tap->bypass = 1;
609                 }
610         }
611
612         return ERROR_OK;
613 }
614
615
616
617
618
619 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
620 {
621         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
622         return ERROR_OK;
623 }
624
625 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
626 {
627         struct jtag_tap *tap, *nextTap;
628         tap_state_t pause_state = TAP_DRSHIFT;
629         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
630         {
631                 nextTap = jtag_tap_next_enabled(tap);
632                 if (nextTap==NULL)
633                 {
634                         pause_state = state;
635                 }
636
637                 /* Find a range of fields to write to this tap */
638                 if (tap == active)
639                 {
640                         assert(!tap->bypass);
641
642                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
643                 } else
644                 {
645                         /* Shift out a 0 for disabled tap's */
646                         assert(tap->bypass);
647                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
648                 }
649         }
650         return ERROR_OK;
651 }
652
653 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
654 {
655         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
656         return ERROR_OK;
657 }
658
659 int interface_jtag_add_tlr()
660 {
661         setCurrentState(TAP_RESET);
662         return ERROR_OK;
663 }
664
665
666 int interface_jtag_add_reset(int req_trst, int req_srst)
667 {
668         zy1000_reset(req_trst, req_srst);
669         return ERROR_OK;
670 }
671
672 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
673 {
674         /* num_cycles can be 0 */
675         setCurrentState(clockstate);
676
677         /* execute num_cycles, 32 at the time. */
678         int i;
679         for (i = 0; i < num_cycles; i += 32)
680         {
681                 int num;
682                 num = 32;
683                 if (num_cycles-i < num)
684                 {
685                         num = num_cycles-i;
686                 }
687                 shiftValueInner(clockstate, clockstate, num, 0);
688         }
689
690 #if !TEST_MANUAL()
691         /* finish in end_state */
692         setCurrentState(state);
693 #else
694         tap_state_t t = TAP_IDLE;
695         /* test manual drive code on any target */
696         int tms;
697         uint8_t tms_scan = tap_get_tms_path(t, state);
698         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
699
700         for (i = 0; i < tms_count; i++)
701         {
702                 tms = (tms_scan >> i) & 1;
703                 waitIdle();
704                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
705         }
706         waitIdle();
707         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
708 #endif
709
710         return ERROR_OK;
711 }
712
713 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
714 {
715         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
716 }
717
718 int interface_jtag_add_clocks(int num_cycles)
719 {
720         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
721 }
722
723 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
724 {
725         /*wait for the fifo to be empty*/
726         waitIdle();
727
728         for (unsigned i = 0; i < num_bits; i++)
729         {
730                 int tms;
731
732                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
733                 {
734                         tms = 0;
735                 }
736                 else
737                 {
738                         tms = 1;
739                 }
740
741                 waitIdle();
742                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
743         }
744
745         waitIdle();
746         if (state != TAP_INVALID)
747         {
748                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
749         } else
750         {
751                 /* this would be normal if we are switching to SWD mode */
752         }
753         return ERROR_OK;
754 }
755
756 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
757 {
758         int state_count;
759         int tms = 0;
760
761         state_count = 0;
762
763         tap_state_t cur_state = cmd_queue_cur_state;
764
765         uint8_t seq[16];
766         memset(seq, 0, sizeof(seq));
767         assert(num_states < (int)((sizeof(seq) * 8)));
768
769         while (num_states)
770         {
771                 if (tap_state_transition(cur_state, false) == path[state_count])
772                 {
773                         tms = 0;
774                 }
775                 else if (tap_state_transition(cur_state, true) == path[state_count])
776                 {
777                         tms = 1;
778                 }
779                 else
780                 {
781                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
782                         exit(-1);
783                 }
784
785                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
786
787                 cur_state = path[state_count];
788                 state_count++;
789                 num_states--;
790         }
791
792         return interface_add_tms_seq(state_count, seq, cur_state);
793 }
794
795 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
796 {
797         /* bypass bits before and after */
798         int pre_bits = 0;
799         int post_bits = 0;
800
801         bool found = false;
802         struct jtag_tap *cur_tap, *nextTap;
803         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
804         {
805                 nextTap = jtag_tap_next_enabled(cur_tap);
806                 if (cur_tap == tap)
807                 {
808                         found = true;
809                 } else
810                 {
811                         if (found)
812                         {
813                                 post_bits++;
814                         } else
815                         {
816                                 pre_bits++;
817                         }
818                 }
819         }
820         *pre = pre_bits;
821         *post = post_bits;
822 }
823
824 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
825 {
826
827         int pre_bits;
828         int post_bits;
829         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
830
831         if (pre_bits + post_bits + 6 > 32)
832         {
833                 int i;
834                 for (i = 0; i < count; i++)
835                 {
836                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
837                         buffer += 4;
838                 }
839         } else
840         {
841                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
842                 int i;
843                 for (i = 0; i < count - 1; i++)
844                 {
845                         /* Fewer pokes means we get to use the FIFO more efficiently */
846                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
847                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
848                         buffer += 4;
849                 }
850                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
851                 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
852         }
853 }
854
855
856
857 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
858 {
859 #if 0
860         int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
861         return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
862 #else
863         static const int bits[] = {32, 2};
864         uint32_t values[] = {0, 0};
865
866         /* FIX!!!!!! the target_write_memory() API started this nasty problem
867          * with unaligned uint32_t * pointers... */
868         const uint8_t *t = (const uint8_t *)data;
869
870
871         /* bypass bits before and after */
872         int pre_bits;
873         int post_bits;
874         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
875
876         bool found = false;
877         struct jtag_tap *cur_tap, *nextTap;
878         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
879         {
880                 nextTap = jtag_tap_next_enabled(cur_tap);
881                 if (cur_tap == tap)
882                 {
883                         found = true;
884                 } else
885                 {
886                         if (found)
887                         {
888                                 post_bits++;
889                         } else
890                         {
891                                 pre_bits++;
892                         }
893                 }
894         }
895
896         post_bits+=2;
897
898
899         while (--count > 0)
900         {
901                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
902
903                 uint32_t value;
904                 value = *t++;
905                 value |= (*t++<<8);
906                 value |= (*t++<<16);
907                 value |= (*t++<<24);
908
909                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
910                 /* minimum 2 bits */
911                 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
912
913 #if 1
914                 /* copy & paste from arm11_dbgtap.c */
915                 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
916
917                 waitIdle();
918                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
919                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
920                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
921                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
922                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
923                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
924                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
925                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
926                 /* we don't have to wait for the queue to empty here. waitIdle();        */
927                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
928 #else
929                 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
930                 {
931                         TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
932                 };
933
934                 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
935                         arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
936 #endif
937         }
938
939         values[0] = *t++;
940         values[0] |= (*t++<<8);
941         values[0] |= (*t++<<16);
942         values[0] |= (*t++<<24);
943
944         /* This will happen on the last iteration updating the current tap state
945          * so we don't have to track it during the common code path */
946         jtag_add_dr_out(tap,
947                 2,
948                 bits,
949                 values,
950                 TAP_IDLE);
951
952         return jtag_execute_queue();
953 #endif
954 }
955
956
957 static const struct command_registration zy1000_commands[] = {
958         {
959                 .name = "power",
960                 .handler = handle_power_command,
961                 .mode = COMMAND_ANY,
962                 .help = "Turn power switch to target on/off. "
963                         "With no arguments, prints status.",
964                 .usage = "('on'|'off)",
965         },
966 #if BUILD_ECOSBOARD
967         {
968                 .name = "zy1000_version",
969                 .mode = COMMAND_ANY,
970                 .jim_handler = jim_zy1000_version,
971                 .help = "Print version info for zy1000.",
972                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
973         },
974 #else
975         {
976                 .name = "zy1000_server",
977                 .mode = COMMAND_ANY,
978                 .jim_handler = jim_zy1000_server,
979                 .help = "Tcpip address for ZY1000 server.",
980                 .usage = "address",
981         },
982 #endif
983         {
984                 .name = "powerstatus",
985                 .mode = COMMAND_ANY,
986                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
987                 .help = "Returns power status of target",
988         },
989 #ifdef CYGPKG_HAL_NIOS2
990         {
991                 .name = "updatezy1000firmware",
992                 .mode = COMMAND_ANY,
993                 .jim_handler = jim_zy1000_writefirmware,
994                 .help = "writes firmware to flash",
995                 /* .usage = "some_string", */
996         },
997 #endif
998         COMMAND_REGISTRATION_DONE
999 };
1000
1001
1002 static int tcp_ip = -1;
1003
1004 /* Write large packets if we can */
1005 static size_t out_pos;
1006 static uint8_t out_buffer[16384];
1007 static size_t in_pos;
1008 static size_t in_write;
1009 static uint8_t in_buffer[16384];
1010
1011 static bool flush_writes(void)
1012 {
1013         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1014         out_pos = 0;
1015         return ok;
1016 }
1017
1018 static bool writeLong(uint32_t l)
1019 {
1020         int i;
1021         for (i = 0; i < 4; i++)
1022         {
1023                 uint8_t c = (l >> (i*8))&0xff;
1024                 out_buffer[out_pos++] = c;
1025                 if (out_pos >= sizeof(out_buffer))
1026                 {
1027                         if (!flush_writes())
1028                         {
1029                                 return false;
1030                         }
1031                 }
1032         }
1033         return true;
1034 }
1035
1036 static bool readLong(uint32_t *out_data)
1037 {
1038         if (out_pos > 0)
1039         {
1040                 if (!flush_writes())
1041                 {
1042                         return false;
1043                 }
1044         }
1045
1046         uint32_t data = 0;
1047         int i;
1048         for (i = 0; i < 4; i++)
1049         {
1050                 uint8_t c;
1051                 if (in_pos == in_write)
1052                 {
1053                         /* read more */
1054                         int t;
1055                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1056                         if (t < 1)
1057                         {
1058                                 return false;
1059                         }
1060                         in_write = (size_t) t;
1061                         in_pos = 0;
1062                 }
1063                 c = in_buffer[in_pos++];
1064
1065                 data |= (c << (i*8));
1066         }
1067         *out_data = data;
1068         return true;
1069 }
1070
1071 enum ZY1000_CMD
1072 {
1073         ZY1000_CMD_POKE = 0x0,
1074         ZY1000_CMD_PEEK = 0x8,
1075         ZY1000_CMD_SLEEP = 0x1,
1076 };
1077
1078
1079 #if !BUILD_ECOSBOARD
1080
1081 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1082 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1083
1084 /* We initialize this late since we need to know the server address
1085  * first.
1086  */
1087 static void tcpip_open(void)
1088 {
1089         if (tcp_ip >= 0)
1090                 return;
1091
1092         struct sockaddr_in echoServAddr; /* Echo server address */
1093
1094         /* Create a reliable, stream socket using TCP */
1095         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1096         {
1097                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1098                 exit(-1);
1099         }
1100
1101         /* Construct the server address structure */
1102         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1103         echoServAddr.sin_family = AF_INET; /* Internet address family */
1104         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1105         echoServAddr.sin_port = htons(7777); /* Server port */
1106
1107         /* Establish the connection to the echo server */
1108         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1109         {
1110                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1111                 exit(-1);
1112         }
1113
1114         int flag = 1;
1115         setsockopt(tcp_ip,      /* socket affected */
1116                         IPPROTO_TCP,            /* set option at TCP level */
1117                         TCP_NODELAY,            /* name of option */
1118                         (char *)&flag,          /* the cast is historical cruft */
1119                         sizeof(int));           /* length of option value */
1120
1121 }
1122
1123
1124 /* send a poke */
1125 void zy1000_tcpout(uint32_t address, uint32_t data)
1126 {
1127         tcpip_open();
1128         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1129                         !writeLong(data))
1130         {
1131                 fprintf(stderr, "Could not write to zy1000 server\n");
1132                 exit(-1);
1133         }
1134 }
1135
1136 uint32_t zy1000_tcpin(uint32_t address)
1137 {
1138         tcpip_open();
1139         uint32_t data;
1140         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1141                         !readLong(&data))
1142         {
1143                 fprintf(stderr, "Could not read from zy1000 server\n");
1144                 exit(-1);
1145         }
1146         return data;
1147 }
1148
1149 int interface_jtag_add_sleep(uint32_t us)
1150 {
1151         tcpip_open();
1152         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1153                         !writeLong(us))
1154         {
1155                 fprintf(stderr, "Could not read from zy1000 server\n");
1156                 exit(-1);
1157         }
1158         return ERROR_OK;
1159 }
1160
1161
1162 #endif
1163
1164 #if BUILD_ECOSBOARD
1165 static char tcpip_stack[2048];
1166
1167 static cyg_thread tcpip_thread_object;
1168 static cyg_handle_t tcpip_thread_handle;
1169
1170 /* Infinite loop peeking & poking */
1171 static void tcpipserver(void)
1172 {
1173         for (;;)
1174         {
1175                 uint32_t address;
1176                 if (!readLong(&address))
1177                         return;
1178                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1179                 address &= 0xffffff;
1180                 switch (c)
1181                 {
1182                         case ZY1000_CMD_POKE:
1183                         {
1184                                 uint32_t data;
1185                                 if (!readLong(&data))
1186                                         return;
1187                                 address &= ~0x80000000;
1188                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1189                                 break;
1190                         }
1191                         case ZY1000_CMD_PEEK:
1192                         {
1193                                 uint32_t data;
1194                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1195                                 if (!writeLong(data))
1196                                         return;
1197                                 break;
1198                         }
1199                         case ZY1000_CMD_SLEEP:
1200                         {
1201                                 uint32_t data;
1202                                 if (!readLong(&data))
1203                                         return;
1204                                 jtag_sleep(data);
1205                                 break;
1206                         }
1207                         default:
1208                                 return;
1209                 }
1210         }
1211 }
1212
1213
1214 static void tcpip_server(cyg_addrword_t data)
1215 {
1216         int so_reuseaddr_option = 1;
1217
1218         int fd;
1219         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1220         {
1221                 LOG_ERROR("error creating socket: %s", strerror(errno));
1222                 exit(-1);
1223         }
1224
1225         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1226                         sizeof(int));
1227
1228         struct sockaddr_in sin;
1229         unsigned int address_size;
1230         address_size = sizeof(sin);
1231         memset(&sin, 0, sizeof(sin));
1232         sin.sin_family = AF_INET;
1233         sin.sin_addr.s_addr = INADDR_ANY;
1234         sin.sin_port = htons(7777);
1235
1236         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1237         {
1238                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1239                 exit(-1);
1240         }
1241
1242         if (listen(fd, 1) == -1)
1243         {
1244                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1245                 exit(-1);
1246         }
1247
1248
1249         for (;;)
1250         {
1251                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1252                 if (tcp_ip < 0)
1253                 {
1254                         continue;
1255                 }
1256
1257                 int flag = 1;
1258                 setsockopt(tcp_ip,      /* socket affected */
1259                                 IPPROTO_TCP,            /* set option at TCP level */
1260                                 TCP_NODELAY,            /* name of option */
1261                                 (char *)&flag,          /* the cast is historical cruft */
1262                                 sizeof(int));           /* length of option value */
1263
1264                 bool save_poll = jtag_poll_get_enabled();
1265
1266                 /* polling will screw up the "connection" */
1267                 jtag_poll_set_enabled(false);
1268
1269                 tcpipserver();
1270
1271                 jtag_poll_set_enabled(save_poll);
1272
1273                 close(tcp_ip);
1274
1275         }
1276         close(fd);
1277
1278 }
1279
1280 int interface_jtag_add_sleep(uint32_t us)
1281 {
1282         jtag_sleep(us);
1283         return ERROR_OK;
1284 }
1285
1286 #endif
1287
1288
1289 int zy1000_init(void)
1290 {
1291 #if BUILD_ECOSBOARD
1292         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1293 #endif
1294
1295         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1296
1297         setPower(true); // on by default
1298
1299
1300          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1301         zy1000_reset(0, 0);
1302         zy1000_speed(jtag_get_speed());
1303
1304
1305 #if BUILD_ECOSBOARD
1306         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1307                         (void *) tcpip_stack, sizeof(tcpip_stack),
1308                         &tcpip_thread_handle, &tcpip_thread_object);
1309         cyg_thread_resume(tcpip_thread_handle);
1310 #endif
1311
1312         return ERROR_OK;
1313 }
1314
1315
1316
1317 struct jtag_interface zy1000_interface =
1318 {
1319         .name = "ZY1000",
1320         .supported = DEBUG_CAP_TMS_SEQ,
1321         .execute_queue = NULL,
1322         .speed = zy1000_speed,
1323         .commands = zy1000_commands,
1324         .init = zy1000_init,
1325         .quit = zy1000_quit,
1326         .khz = zy1000_khz,
1327         .speed_div = zy1000_speed_div,
1328         .power_dropout = zy1000_power_dropout,
1329         .srst_asserted = zy1000_srst_asserted,
1330 };
1331