zy1000: fix optimisaion bug in dcc writes
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include "zy1000_version.h"
52
53 #include <cyg/hal/hal_io.h>             // low level i/o
54 #include <cyg/hal/hal_diag.h>
55
56 #include <time.h>
57
58 #ifdef CYGPKG_HAL_NIOS2
59 #include <cyg/hal/io.h>
60 #include <cyg/firmwareutil/firmwareutil.h>
61 #endif
62
63 #define ZYLIN_VERSION GIT_ZY1000_VERSION
64 #define ZYLIN_DATE __DATE__
65 #define ZYLIN_TIME __TIME__
66 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
67 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
68
69
70 static int zy1000_khz(int khz, int *jtag_speed)
71 {
72         if (khz == 0)
73         {
74                 *jtag_speed = 0;
75         }
76         else
77         {
78                 *jtag_speed = 64000/khz;
79         }
80         return ERROR_OK;
81 }
82
83 static int zy1000_speed_div(int speed, int *khz)
84 {
85         if (speed == 0)
86         {
87                 *khz = 0;
88         }
89         else
90         {
91                 *khz = 64000/speed;
92         }
93
94         return ERROR_OK;
95 }
96
97 static bool readPowerDropout(void)
98 {
99         cyg_uint32 state;
100         // sample and clear power dropout
101         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
102         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
103         bool powerDropout;
104         powerDropout = (state & 0x80) != 0;
105         return powerDropout;
106 }
107
108
109 static bool readSRST(void)
110 {
111         cyg_uint32 state;
112         // sample and clear SRST sensing
113         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
114         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
115         bool srstAsserted;
116         srstAsserted = (state & 0x40) != 0;
117         return srstAsserted;
118 }
119
120 static int zy1000_srst_asserted(int *srst_asserted)
121 {
122         *srst_asserted = readSRST();
123         return ERROR_OK;
124 }
125
126 static int zy1000_power_dropout(int *dropout)
127 {
128         *dropout = readPowerDropout();
129         return ERROR_OK;
130 }
131
132 void zy1000_reset(int trst, int srst)
133 {
134         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
135
136         /* flush the JTAG FIFO. Not flushing the queue before messing with
137          * reset has such interesting bugs as causing hard to reproduce
138          * RCLK bugs as RCLK will stop responding when TRST is asserted
139          */
140         waitIdle();
141
142         if (!srst)
143         {
144                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
145         }
146         else
147         {
148                 /* Danger!!! if clk != 0 when in
149                  * idle in TAP_IDLE, reset halt on str912 will fail.
150                  */
151                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
152         }
153
154         if (!trst)
155         {
156                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
157         }
158         else
159         {
160                 /* assert reset */
161                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
162         }
163
164         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
165         {
166                 /* we're now in the RESET state until trst is deasserted */
167                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
168         } else
169         {
170                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
171                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
172         }
173
174         /* wait for srst to float back up */
175         if (!srst)
176         {
177                 int i;
178                 for (i = 0; i < 1000; i++)
179                 {
180                         // We don't want to sense our own reset, so we clear here.
181                         // There is of course a timing hole where we could loose
182                         // a "real" reset.
183                         if (!readSRST())
184                                 break;
185
186                         /* wait 1ms */
187                         alive_sleep(1);
188                 }
189
190                 if (i == 1000)
191                 {
192                         LOG_USER("SRST didn't deassert after %dms", i);
193                 } else if (i > 1)
194                 {
195                         LOG_USER("SRST took %dms to deassert", i);
196                 }
197         }
198 }
199
200 int zy1000_speed(int speed)
201 {
202         /* flush JTAG master FIFO before setting speed */
203         waitIdle();
204
205         if (speed == 0)
206         {
207                 /*0 means RCLK*/
208                 speed = 0;
209                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
210                 LOG_DEBUG("jtag_speed using RCLK");
211         }
212         else
213         {
214                 if (speed > 8190 || speed < 2)
215                 {
216                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
217                         return ERROR_INVALID_ARGUMENTS;
218                 }
219
220                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
221                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
222                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
223         }
224         return ERROR_OK;
225 }
226
227 static bool savePower;
228
229
230 static void setPower(bool power)
231 {
232         savePower = power;
233         if (power)
234         {
235                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
236         } else
237         {
238                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
239         }
240 }
241
242 COMMAND_HANDLER(handle_power_command)
243 {
244         switch (CMD_ARGC)
245         {
246         case 1: {
247                 bool enable;
248                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
249                 setPower(enable);
250                 // fall through
251         }
252         case 0:
253                 LOG_INFO("Target power %s", savePower ? "on" : "off");
254                 break;
255         default:
256                 return ERROR_INVALID_ARGUMENTS;
257         }
258
259         return ERROR_OK;
260 }
261
262
263 /* Give TELNET a way to find out what version this is */
264 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
265 {
266         if ((argc < 1) || (argc > 3))
267                 return JIM_ERR;
268         const char *version_str = NULL;
269
270         if (argc == 1)
271         {
272                 version_str = ZYLIN_OPENOCD_VERSION;
273         } else
274         {
275                 const char *str = Jim_GetString(argv[1], NULL);
276                 const char *str2 = NULL;
277                 if (argc > 2)
278                         str2 = Jim_GetString(argv[2], NULL);
279                 if (strcmp("openocd", str) == 0)
280                 {
281                         version_str = ZYLIN_OPENOCD;
282                 }
283                 else if (strcmp("zy1000", str) == 0)
284                 {
285                         version_str = ZYLIN_VERSION;
286                 }
287                 else if (strcmp("date", str) == 0)
288                 {
289                         version_str = ZYLIN_DATE;
290                 }
291                 else if (strcmp("time", str) == 0)
292                 {
293                         version_str = ZYLIN_TIME;
294                 }
295                 else if (strcmp("pcb", str) == 0)
296                 {
297 #ifdef CYGPKG_HAL_NIOS2
298                         version_str="c";
299 #else
300                         version_str="b";
301 #endif
302                 }
303 #ifdef CYGPKG_HAL_NIOS2
304                 else if (strcmp("fpga", str) == 0)
305                 {
306
307                         /* return a list of 32 bit integers to describe the expected
308                          * and actual FPGA
309                          */
310                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
311                         cyg_uint32 id, timestamp;
312                         HAL_READ_UINT32(SYSID_BASE, id);
313                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
314                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
315                         version_str = fpga_id;
316                         if ((argc>2) && (strcmp("time", str2) == 0))
317                         {
318                             time_t last_mod = timestamp;
319                             char * t = ctime (&last_mod) ;
320                             t[strlen(t)-1] = 0;
321                             version_str = t;
322                         }
323                 }
324 #endif
325
326                 else
327                 {
328                         return JIM_ERR;
329                 }
330         }
331
332         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
333
334         return JIM_OK;
335 }
336
337
338 #ifdef CYGPKG_HAL_NIOS2
339
340
341 struct info_forward
342 {
343         void *data;
344         struct cyg_upgrade_info *upgraded_file;
345 };
346
347 static void report_info(void *data, const char * format, va_list args)
348 {
349         char *s = alloc_vprintf(format, args);
350         LOG_USER_N("%s", s);
351         free(s);
352 }
353
354 struct cyg_upgrade_info firmware_info =
355 {
356                 (cyg_uint8 *)0x84000000,
357                 "/ram/firmware.phi",
358                 "Firmware",
359                 0x0300000,
360                 0x1f00000 -
361                 0x0300000,
362                 "ZylinNiosFirmware\n",
363                 report_info,
364 };
365
366 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
367 {
368         if (argc != 2)
369                 return JIM_ERR;
370
371         int length;
372         const char *str = Jim_GetString(argv[1], &length);
373
374         /* */
375         int tmpFile;
376         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
377         {
378                 return JIM_ERR;
379         }
380         bool success;
381         success = write(tmpFile, str, length) == length;
382         close(tmpFile);
383         if (!success)
384                 return JIM_ERR;
385
386         if (!cyg_firmware_upgrade(NULL, firmware_info))
387                 return JIM_ERR;
388
389         return JIM_OK;
390 }
391 #endif
392
393 static int
394 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
395                                                                    int argc,
396                 Jim_Obj * const *argv)
397 {
398         if (argc != 1)
399         {
400                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
401                 return JIM_ERR;
402         }
403
404         cyg_uint32 status;
405         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
406
407         Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
408
409         return JIM_OK;
410 }
411
412
413
414
415 int zy1000_init(void)
416 {
417         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
418
419         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
420
421         setPower(true); // on by default
422
423
424          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
425         zy1000_reset(0, 0);
426         zy1000_speed(jtag_get_speed());
427
428         return ERROR_OK;
429 }
430
431 int zy1000_quit(void)
432 {
433
434         return ERROR_OK;
435 }
436
437
438
439 int interface_jtag_execute_queue(void)
440 {
441         cyg_uint32 empty;
442
443         waitIdle();
444         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
445         /* clear JTAG error register */
446         ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
447
448         if ((empty&0x400) != 0)
449         {
450                 LOG_WARNING("RCLK timeout");
451                 /* the error is informative only as we don't want to break the firmware if there
452                  * is a false positive.
453                  */
454 //              return ERROR_FAIL;
455         }
456         return ERROR_OK;
457 }
458
459
460
461
462
463 static cyg_uint32 getShiftValue(void)
464 {
465         cyg_uint32 value;
466         waitIdle();
467         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
468         VERBOSE(LOG_INFO("getShiftValue %08x", value));
469         return value;
470 }
471 #if 0
472 static cyg_uint32 getShiftValueFlip(void)
473 {
474         cyg_uint32 value;
475         waitIdle();
476         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
477         VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
478         return value;
479 }
480 #endif
481
482 #if 0
483 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, cyg_uint32 value)
484 {
485         VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
486         cyg_uint32 a,b;
487         a = state;
488         b = endState;
489         ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
490         ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
491         VERBOSE(getShiftValueFlip());
492 }
493 #endif
494
495 // here we shuffle N bits out/in
496 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause, tap_state_t shiftState, tap_state_t end_state)
497 {
498         tap_state_t pause_state = shiftState;
499         for (int j = 0; j < num_bits; j += 32)
500         {
501                 int k = num_bits - j;
502                 if (k > 32)
503                 {
504                         k = 32;
505                         /* we have more to shift out */
506                 } else if (pause)
507                 {
508                         /* this was the last to shift out this time */
509                         pause_state = end_state;
510                 }
511
512                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
513                 // bits are pushed out LSB to MSB
514                 cyg_uint32 value;
515                 value = 0;
516                 if (out_value != NULL)
517                 {
518                         for (int l = 0; l < k; l += 8)
519                         {
520                                 value|=out_value[(j + l)/8]<<l;
521                         }
522                 }
523                 /* mask away unused bits for easier debugging */
524                 if (k < 32)
525                 {
526                         value&=~(((uint32_t)0xffffffff) << k);
527                 } else
528                 {
529                         /* Shifting by >= 32 is not defined by the C standard
530                          * and will in fact shift by &0x1f bits on nios */
531                 }
532
533                 shiftValueInner(shiftState, pause_state, k, value);
534
535                 if (in_value != NULL)
536                 {
537                         // data in, LSB to MSB
538                         value = getShiftValue();
539                         // we're shifting in data to MSB, shift data to be aligned for returning the value
540                         value >>= 32-k;
541
542                         for (int l = 0; l < k; l += 8)
543                         {
544                                 in_value[(j + l)/8]=(value >> l)&0xff;
545                         }
546                 }
547         }
548 }
549
550 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
551 {
552         for (int i = 0; i < num_fields; i++)
553         {
554                 scanBits(fields[i].out_value,
555                                 fields[i].in_value,
556                                 fields[i].num_bits,
557                                 (i == num_fields-1),
558                                 shiftState,
559                                 end_state);
560         }
561 }
562
563 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
564 {
565         int scan_size = 0;
566         struct jtag_tap *tap, *nextTap;
567         tap_state_t pause_state = TAP_IRSHIFT;
568
569         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
570         {
571                 nextTap = jtag_tap_next_enabled(tap);
572                 if (nextTap==NULL)
573                 {
574                         pause_state = state;
575                 }
576                 scan_size = tap->ir_length;
577
578                 /* search the list */
579                 if (tap == active)
580                 {
581                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
582                         /* update device information */
583                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
584
585                         tap->bypass = 0;
586                 } else
587                 {
588                         /* if a device isn't listed, set it to BYPASS */
589                         assert(scan_size <= 32);
590                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
591
592                         tap->bypass = 1;
593                 }
594         }
595
596         return ERROR_OK;
597 }
598
599
600
601
602
603 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
604 {
605         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
606         return ERROR_OK;
607 }
608
609 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
610 {
611         struct jtag_tap *tap, *nextTap;
612         tap_state_t pause_state = TAP_DRSHIFT;
613         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
614         {
615                 nextTap = jtag_tap_next_enabled(tap);
616                 if (nextTap==NULL)
617                 {
618                         pause_state = state;
619                 }
620
621                 /* Find a range of fields to write to this tap */
622                 if (tap == active)
623                 {
624                         assert(!tap->bypass);
625
626                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
627                 } else
628                 {
629                         /* Shift out a 0 for disabled tap's */
630                         assert(tap->bypass);
631                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
632                 }
633         }
634         return ERROR_OK;
635 }
636
637 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
638 {
639         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
640         return ERROR_OK;
641 }
642
643 int interface_jtag_add_tlr()
644 {
645         setCurrentState(TAP_RESET);
646         return ERROR_OK;
647 }
648
649
650 int interface_jtag_add_reset(int req_trst, int req_srst)
651 {
652         zy1000_reset(req_trst, req_srst);
653         return ERROR_OK;
654 }
655
656 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
657 {
658         /* num_cycles can be 0 */
659         setCurrentState(clockstate);
660
661         /* execute num_cycles, 32 at the time. */
662         int i;
663         for (i = 0; i < num_cycles; i += 32)
664         {
665                 int num;
666                 num = 32;
667                 if (num_cycles-i < num)
668                 {
669                         num = num_cycles-i;
670                 }
671                 shiftValueInner(clockstate, clockstate, num, 0);
672         }
673
674 #if !TEST_MANUAL()
675         /* finish in end_state */
676         setCurrentState(state);
677 #else
678         tap_state_t t = TAP_IDLE;
679         /* test manual drive code on any target */
680         int tms;
681         uint8_t tms_scan = tap_get_tms_path(t, state);
682         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
683
684         for (i = 0; i < tms_count; i++)
685         {
686                 tms = (tms_scan >> i) & 1;
687                 waitIdle();
688                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
689         }
690         waitIdle();
691         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
692 #endif
693
694         return ERROR_OK;
695 }
696
697 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
698 {
699         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
700 }
701
702 int interface_jtag_add_clocks(int num_cycles)
703 {
704         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
705 }
706
707 int interface_jtag_add_sleep(uint32_t us)
708 {
709         jtag_sleep(us);
710         return ERROR_OK;
711 }
712
713 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
714 {
715         /*wait for the fifo to be empty*/
716         waitIdle();
717
718         for (unsigned i = 0; i < num_bits; i++)
719         {
720                 int tms;
721
722                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
723                 {
724                         tms = 0;
725                 }
726                 else
727                 {
728                         tms = 1;
729                 }
730
731                 waitIdle();
732                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
733         }
734
735         waitIdle();
736         if (state != TAP_INVALID)
737         {
738                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
739         } else
740         {
741                 /* this would be normal if we are switching to SWD mode */
742         }
743         return ERROR_OK;
744 }
745
746 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
747 {
748         int state_count;
749         int tms = 0;
750
751         state_count = 0;
752
753         tap_state_t cur_state = cmd_queue_cur_state;
754
755         uint8_t seq[16];
756         memset(seq, 0, sizeof(seq));
757         assert(num_states < (int)((sizeof(seq) * 8)));
758
759         while (num_states)
760         {
761                 if (tap_state_transition(cur_state, false) == path[state_count])
762                 {
763                         tms = 0;
764                 }
765                 else if (tap_state_transition(cur_state, true) == path[state_count])
766                 {
767                         tms = 1;
768                 }
769                 else
770                 {
771                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
772                         exit(-1);
773                 }
774
775                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
776
777                 cur_state = path[state_count];
778                 state_count++;
779                 num_states--;
780         }
781
782         return interface_add_tms_seq(state_count, seq, cur_state);
783 }
784
785 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
786 {
787         /* bypass bits before and after */
788         int pre_bits = 0;
789         int post_bits = 0;
790
791         bool found = false;
792         struct jtag_tap *cur_tap, *nextTap;
793         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
794         {
795                 nextTap = jtag_tap_next_enabled(cur_tap);
796                 if (cur_tap == tap)
797                 {
798                         found = true;
799                 } else
800                 {
801                         if (found)
802                         {
803                                 post_bits++;
804                         } else
805                         {
806                                 pre_bits++;
807                         }
808                 }
809         }
810         *pre = pre_bits;
811         *post = post_bits;
812 }
813
814 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
815 {
816
817         int pre_bits;
818         int post_bits;
819         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
820
821         if (pre_bits + post_bits + 6 > 32)
822         {
823                 int i;
824                 for (i = 0; i < count; i++)
825                 {
826                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
827                         buffer += 4;
828                 }
829         } else
830         {
831                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
832                 int i;
833                 for (i = 0; i < count - 1; i++)
834                 {
835                         /* Fewer pokes means we get to use the FIFO more efficiently */
836                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
837                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
838                         buffer += 4;
839                 }
840                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
841                 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
842         }
843 }
844
845
846
847 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
848 {
849 #if 0
850         int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
851         return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
852 #else
853         static const int bits[] = {32, 2};
854         uint32_t values[] = {0, 0};
855
856         /* FIX!!!!!! the target_write_memory() API started this nasty problem
857          * with unaligned uint32_t * pointers... */
858         const uint8_t *t = (const uint8_t *)data;
859
860
861         /* bypass bits before and after */
862         int pre_bits;
863         int post_bits;
864         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
865
866         bool found = false;
867         struct jtag_tap *cur_tap, *nextTap;
868         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
869         {
870                 nextTap = jtag_tap_next_enabled(cur_tap);
871                 if (cur_tap == tap)
872                 {
873                         found = true;
874                 } else
875                 {
876                         if (found)
877                         {
878                                 post_bits++;
879                         } else
880                         {
881                                 pre_bits++;
882                         }
883                 }
884         }
885
886         post_bits+=2;
887
888
889         while (--count > 0)
890         {
891                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
892
893                 uint32_t value;
894                 value = *t++;
895                 value |= (*t++<<8);
896                 value |= (*t++<<16);
897                 value |= (*t++<<24);
898
899                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
900                 /* minimum 2 bits */
901                 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
902
903 #if 1
904                 /* copy & paste from arm11_dbgtap.c */
905                 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
906
907                 waitIdle();
908                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
909                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
910                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
911                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
912                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
913                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
914                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
915                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
916                 /* we don't have to wait for the queue to empty here. waitIdle();        */
917                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
918 #else
919                 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
920                 {
921                         TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
922                 };
923
924                 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
925                         arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
926 #endif
927         }
928
929         values[0] = *t++;
930         values[0] |= (*t++<<8);
931         values[0] |= (*t++<<16);
932         values[0] |= (*t++<<24);
933
934         /* This will happen on the last iteration updating the current tap state
935          * so we don't have to track it during the common code path */
936         jtag_add_dr_out(tap,
937                 2,
938                 bits,
939                 values,
940                 TAP_IDLE);
941
942         return jtag_execute_queue();
943 #endif
944 }
945
946
947 static const struct command_registration zy1000_commands[] = {
948         {
949                 .name = "power",
950                 .handler = handle_power_command,
951                 .mode = COMMAND_ANY,
952                 .help = "Turn power switch to target on/off. "
953                         "With no arguments, prints status.",
954                 .usage = "('on'|'off)",
955         },
956         {
957                 .name = "zy1000_version",
958                 .mode = COMMAND_ANY,
959                 .jim_handler = jim_zy1000_version,
960                 .help = "Print version info for zy1000.",
961                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
962         },
963         {
964                 .name = "powerstatus",
965                 .mode = COMMAND_ANY,
966                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
967                 .help = "Returns power status of target",
968         },
969 #ifdef CYGPKG_HAL_NIOS2
970         {
971                 .name = "updatezy1000firmware",
972                 .mode = COMMAND_ANY,
973                 .jim_handler = jim_zy1000_writefirmware,
974                 .help = "writes firmware to flash",
975                 /* .usage = "some_string", */
976         },
977 #endif
978         COMMAND_REGISTRATION_DONE
979 };
980
981
982
983 struct jtag_interface zy1000_interface =
984 {
985         .name = "ZY1000",
986         .supported = DEBUG_CAP_TMS_SEQ,
987         .execute_queue = NULL,
988         .speed = zy1000_speed,
989         .commands = zy1000_commands,
990         .init = zy1000_init,
991         .quit = zy1000_quit,
992         .khz = zy1000_khz,
993         .speed_div = zy1000_speed_div,
994         .power_dropout = zy1000_power_dropout,
995         .srst_asserted = zy1000_srst_asserted,
996 };
997