zy1000: add code to check that SRST asserts
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <pthread.h>
49
50 #include <target/embeddedice.h>
51 #include <jtag/minidriver.h>
52 #include <jtag/interface.h>
53 #include <time.h>
54 #include <helper/time_support.h>
55
56 #include <netinet/tcp.h>
57
58 #if BUILD_ECOSBOARD
59 #include "zy1000_version.h"
60
61 #include <cyg/hal/hal_io.h>             // low level i/o
62 #include <cyg/hal/hal_diag.h>
63
64 #ifdef CYGPKG_HAL_NIOS2
65 #include <cyg/hal/io.h>
66 #include <cyg/firmwareutil/firmwareutil.h>
67 #define ZYLIN_KHZ 60000
68 #else
69 #define ZYLIN_KHZ 64000
70 #endif
71
72 #define ZYLIN_VERSION GIT_ZY1000_VERSION
73 #define ZYLIN_DATE __DATE__
74 #define ZYLIN_TIME __TIME__
75 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
76 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
77
78 #else
79 /* Assume we're connecting to a revc w/60MHz clock. */
80 #define ZYLIN_KHZ 60000
81 #endif
82
83
84 /* The software needs to check if it's in RCLK mode or not */
85 static bool zy1000_rclk = false;
86
87 static int zy1000_khz(int khz, int *jtag_speed)
88 {
89         if (khz == 0)
90         {
91                 *jtag_speed = 0;
92         }
93         else
94         {
95                 int speed;
96                 /* Round speed up to nearest divisor.
97                  *
98                  * E.g. 16000kHz
99                  * (64000 + 15999) / 16000 = 4
100                  * (4 + 1) / 2 = 2
101                  * 2 * 2 = 4
102                  *
103                  * 64000 / 4 = 16000
104                  *
105                  * E.g. 15999
106                  * (64000 + 15998) / 15999 = 5
107                  * (5 + 1) / 2 = 3
108                  * 3 * 2 = 6
109                  *
110                  * 64000 / 6 = 10666
111                  *
112                  */
113                 speed = (ZYLIN_KHZ + (khz -1)) / khz;
114                 speed = (speed + 1 ) / 2;
115                 speed *= 2;
116                 if (speed > 8190)
117                 {
118                         /* maximum dividend */
119                         speed = 8190;
120                 }
121                 *jtag_speed = speed;
122         }
123         return ERROR_OK;
124 }
125
126 static int zy1000_speed_div(int speed, int *khz)
127 {
128         if (speed == 0)
129         {
130                 *khz = 0;
131         }
132         else
133         {
134                 *khz = ZYLIN_KHZ / speed;
135         }
136
137         return ERROR_OK;
138 }
139
140 static bool readPowerDropout(void)
141 {
142         uint32_t state;
143         // sample and clear power dropout
144         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
145         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
146         bool powerDropout;
147         powerDropout = (state & 0x80) != 0;
148         return powerDropout;
149 }
150
151
152 static bool readSRST(void)
153 {
154         uint32_t state;
155         // sample and clear SRST sensing
156         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
157         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
158         bool srstAsserted;
159         srstAsserted = (state & 0x40) != 0;
160         return srstAsserted;
161 }
162
163 static int zy1000_srst_asserted(int *srst_asserted)
164 {
165         *srst_asserted = readSRST();
166         return ERROR_OK;
167 }
168
169 static int zy1000_power_dropout(int *dropout)
170 {
171         *dropout = readPowerDropout();
172         return ERROR_OK;
173 }
174
175 /* Wait for SRST to assert or deassert */
176 static void waitSRST(bool asserted)
177 {
178         bool first = true;
179         long long start = 0;
180         long total = 0;
181         const char *mode = asserted ? "assert" : "deassert";
182
183         for (;;)
184         {
185                 bool srstAsserted = readSRST();
186                 if ( (asserted && srstAsserted) || (!asserted && !srstAsserted) )
187                 {
188                         if (total > 1)
189                         {
190                                 LOG_USER("SRST took %dms to %s", (int)total, mode);
191                         }
192                         break;
193                 }
194
195                 if (first)
196                 {
197                         first = false;
198                         start = timeval_ms();
199                 }
200
201                 total = timeval_ms() - start;
202
203                 keep_alive();
204
205                 if (total > 5000)
206                 {
207                         LOG_ERROR("SRST took too long to %s: %dms", mode, (int)total);
208                         break;
209                 }
210         }
211 }
212
213
214 void zy1000_reset(int trst, int srst)
215 {
216         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
217
218         /* flush the JTAG FIFO. Not flushing the queue before messing with
219          * reset has such interesting bugs as causing hard to reproduce
220          * RCLK bugs as RCLK will stop responding when TRST is asserted
221          */
222         waitIdle();
223
224         if (!srst)
225         {
226                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
227         }
228         else
229         {
230                 /* Danger!!! if clk != 0 when in
231                  * idle in TAP_IDLE, reset halt on str912 will fail.
232                  */
233                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
234
235                 waitSRST(true);
236         }
237
238         if (!trst)
239         {
240                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
241         }
242         else
243         {
244                 /* assert reset */
245                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
246         }
247
248         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
249         {
250                 /* we're now in the RESET state until trst is deasserted */
251                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
252         } else
253         {
254                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
255                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
256         }
257
258         /* wait for srst to float back up */
259         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
260                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
261         {
262                 waitSRST(false);
263         }
264 }
265
266 int zy1000_speed(int speed)
267 {
268         /* flush JTAG master FIFO before setting speed */
269         waitIdle();
270
271         zy1000_rclk = false;
272
273         if (speed == 0)
274         {
275                 /*0 means RCLK*/
276                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
277                 zy1000_rclk = true;
278                 LOG_DEBUG("jtag_speed using RCLK");
279         }
280         else
281         {
282                 if (speed > 8190 || speed < 2)
283                 {
284                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
285                                         ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
286                         return ERROR_INVALID_ARGUMENTS;
287                 }
288
289                 int khz;
290                 speed &= ~1;
291                 zy1000_speed_div(speed, &khz);
292                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
293                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
294                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
295         }
296         return ERROR_OK;
297 }
298
299 static bool savePower;
300
301
302 static void setPower(bool power)
303 {
304         savePower = power;
305         if (power)
306         {
307                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
308         } else
309         {
310                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
311         }
312 }
313
314 COMMAND_HANDLER(handle_power_command)
315 {
316         switch (CMD_ARGC)
317         {
318         case 1: {
319                 bool enable;
320                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
321                 setPower(enable);
322                 // fall through
323         }
324         case 0:
325                 LOG_INFO("Target power %s", savePower ? "on" : "off");
326                 break;
327         default:
328                 return ERROR_INVALID_ARGUMENTS;
329         }
330
331         return ERROR_OK;
332 }
333
334 #if !BUILD_ZY1000_MASTER
335 static char *tcp_server = "notspecified";
336 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
337 {
338         if (argc != 2)
339                 return JIM_ERR;
340
341         tcp_server = strdup(Jim_GetString(argv[1], NULL));
342
343         return JIM_OK;
344 }
345 #endif
346
347 #if BUILD_ECOSBOARD
348 /* Give TELNET a way to find out what version this is */
349 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
350 {
351         if ((argc < 1) || (argc > 3))
352                 return JIM_ERR;
353         const char *version_str = NULL;
354
355         if (argc == 1)
356         {
357                 version_str = ZYLIN_OPENOCD_VERSION;
358         } else
359         {
360                 const char *str = Jim_GetString(argv[1], NULL);
361                 const char *str2 = NULL;
362                 if (argc > 2)
363                         str2 = Jim_GetString(argv[2], NULL);
364                 if (strcmp("openocd", str) == 0)
365                 {
366                         version_str = ZYLIN_OPENOCD;
367                 }
368                 else if (strcmp("zy1000", str) == 0)
369                 {
370                         version_str = ZYLIN_VERSION;
371                 }
372                 else if (strcmp("date", str) == 0)
373                 {
374                         version_str = ZYLIN_DATE;
375                 }
376                 else if (strcmp("time", str) == 0)
377                 {
378                         version_str = ZYLIN_TIME;
379                 }
380                 else if (strcmp("pcb", str) == 0)
381                 {
382 #ifdef CYGPKG_HAL_NIOS2
383                         version_str="c";
384 #else
385                         version_str="b";
386 #endif
387                 }
388 #ifdef CYGPKG_HAL_NIOS2
389                 else if (strcmp("fpga", str) == 0)
390                 {
391
392                         /* return a list of 32 bit integers to describe the expected
393                          * and actual FPGA
394                          */
395                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
396                         uint32_t id, timestamp;
397                         HAL_READ_UINT32(SYSID_BASE, id);
398                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
399                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
400                         version_str = fpga_id;
401                         if ((argc>2) && (strcmp("time", str2) == 0))
402                         {
403                             time_t last_mod = timestamp;
404                             char * t = ctime (&last_mod) ;
405                             t[strlen(t)-1] = 0;
406                             version_str = t;
407                         }
408                 }
409 #endif
410
411                 else
412                 {
413                         return JIM_ERR;
414                 }
415         }
416
417         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
418
419         return JIM_OK;
420 }
421 #endif
422
423 #ifdef CYGPKG_HAL_NIOS2
424
425
426 struct info_forward
427 {
428         void *data;
429         struct cyg_upgrade_info *upgraded_file;
430 };
431
432 static void report_info(void *data, const char * format, va_list args)
433 {
434         char *s = alloc_vprintf(format, args);
435         LOG_USER_N("%s", s);
436         free(s);
437 }
438
439 struct cyg_upgrade_info firmware_info =
440 {
441                 (uint8_t *)0x84000000,
442                 "/ram/firmware.phi",
443                 "Firmware",
444                 0x0300000,
445                 0x1f00000 -
446                 0x0300000,
447                 "ZylinNiosFirmware\n",
448                 report_info,
449 };
450
451 // File written to /ram/firmware.phi before arriving at this fn
452 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
453 {
454         if (argc != 1)
455                 return JIM_ERR;
456
457         if (!cyg_firmware_upgrade(NULL, firmware_info))
458                 return JIM_ERR;
459
460         return JIM_OK;
461 }
462 #endif
463
464 static int
465 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
466                                                                    int argc,
467                 Jim_Obj * const *argv)
468 {
469         if (argc != 1)
470         {
471                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
472                 return JIM_ERR;
473         }
474
475         bool dropout = readPowerDropout();
476
477         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
478
479         return JIM_OK;
480 }
481
482
483
484 int zy1000_quit(void)
485 {
486
487         return ERROR_OK;
488 }
489
490
491
492 int interface_jtag_execute_queue(void)
493 {
494         uint32_t empty;
495
496         waitIdle();
497
498         /* We must make sure to write data read back to memory location before we return
499          * from this fn
500          */
501         zy1000_flush_readqueue();
502
503         /* and handle any callbacks... */
504         zy1000_flush_callbackqueue();
505
506         if (zy1000_rclk)
507         {
508                 /* Only check for errors when using RCLK to speed up
509                  * jtag over TCP/IP
510                  */
511                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
512                 /* clear JTAG error register */
513                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
514
515                 if ((empty&0x400) != 0)
516                 {
517                         LOG_WARNING("RCLK timeout");
518                         /* the error is informative only as we don't want to break the firmware if there
519                          * is a false positive.
520                          */
521         //              return ERROR_FAIL;
522                 }
523         }
524         return ERROR_OK;
525 }
526
527
528
529
530 static void writeShiftValue(uint8_t *data, int bits);
531
532 // here we shuffle N bits out/in
533 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
534 {
535         tap_state_t pause_state = shiftState;
536         for (int j = 0; j < num_bits; j += 32)
537         {
538                 int k = num_bits - j;
539                 if (k > 32)
540                 {
541                         k = 32;
542                         /* we have more to shift out */
543                 } else if (pause_now)
544                 {
545                         /* this was the last to shift out this time */
546                         pause_state = end_state;
547                 }
548
549                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
550                 // bits are pushed out LSB to MSB
551                 uint32_t value;
552                 value = 0;
553                 if (out_value != NULL)
554                 {
555                         for (int l = 0; l < k; l += 8)
556                         {
557                                 value|=out_value[(j + l)/8]<<l;
558                         }
559                 }
560                 /* mask away unused bits for easier debugging */
561                 if (k < 32)
562                 {
563                         value&=~(((uint32_t)0xffffffff) << k);
564                 } else
565                 {
566                         /* Shifting by >= 32 is not defined by the C standard
567                          * and will in fact shift by &0x1f bits on nios */
568                 }
569
570                 shiftValueInner(shiftState, pause_state, k, value);
571
572                 if (in_value != NULL)
573                 {
574                         writeShiftValue(in_value + (j/8), k);
575                 }
576         }
577 }
578
579 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
580 {
581         for (int i = 0; i < num_fields; i++)
582         {
583                 scanBits(fields[i].out_value,
584                                 fields[i].in_value,
585                                 fields[i].num_bits,
586                                 (i == num_fields-1),
587                                 shiftState,
588                                 end_state);
589         }
590 }
591
592 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
593 {
594         int scan_size = 0;
595         struct jtag_tap *tap, *nextTap;
596         tap_state_t pause_state = TAP_IRSHIFT;
597
598         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
599         {
600                 nextTap = jtag_tap_next_enabled(tap);
601                 if (nextTap==NULL)
602                 {
603                         pause_state = state;
604                 }
605                 scan_size = tap->ir_length;
606
607                 /* search the list */
608                 if (tap == active)
609                 {
610                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
611                         /* update device information */
612                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
613
614                         tap->bypass = 0;
615                 } else
616                 {
617                         /* if a device isn't listed, set it to BYPASS */
618                         assert(scan_size <= 32);
619                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
620
621                         tap->bypass = 1;
622                 }
623         }
624
625         return ERROR_OK;
626 }
627
628
629
630
631
632 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
633 {
634         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
635         return ERROR_OK;
636 }
637
638 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
639 {
640         struct jtag_tap *tap, *nextTap;
641         tap_state_t pause_state = TAP_DRSHIFT;
642         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
643         {
644                 nextTap = jtag_tap_next_enabled(tap);
645                 if (nextTap==NULL)
646                 {
647                         pause_state = state;
648                 }
649
650                 /* Find a range of fields to write to this tap */
651                 if (tap == active)
652                 {
653                         assert(!tap->bypass);
654
655                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
656                 } else
657                 {
658                         /* Shift out a 0 for disabled tap's */
659                         assert(tap->bypass);
660                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
661                 }
662         }
663         return ERROR_OK;
664 }
665
666 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
667 {
668         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
669         return ERROR_OK;
670 }
671
672 int interface_jtag_add_tlr()
673 {
674         setCurrentState(TAP_RESET);
675         return ERROR_OK;
676 }
677
678
679 int interface_jtag_add_reset(int req_trst, int req_srst)
680 {
681         zy1000_reset(req_trst, req_srst);
682         return ERROR_OK;
683 }
684
685 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
686 {
687         /* num_cycles can be 0 */
688         setCurrentState(clockstate);
689
690         /* execute num_cycles, 32 at the time. */
691         int i;
692         for (i = 0; i < num_cycles; i += 32)
693         {
694                 int num;
695                 num = 32;
696                 if (num_cycles-i < num)
697                 {
698                         num = num_cycles-i;
699                 }
700                 shiftValueInner(clockstate, clockstate, num, 0);
701         }
702
703 #if !TEST_MANUAL()
704         /* finish in end_state */
705         setCurrentState(state);
706 #else
707         tap_state_t t = TAP_IDLE;
708         /* test manual drive code on any target */
709         int tms;
710         uint8_t tms_scan = tap_get_tms_path(t, state);
711         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
712
713         for (i = 0; i < tms_count; i++)
714         {
715                 tms = (tms_scan >> i) & 1;
716                 waitIdle();
717                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
718         }
719         waitIdle();
720         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
721 #endif
722
723         return ERROR_OK;
724 }
725
726 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
727 {
728         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
729 }
730
731 int interface_jtag_add_clocks(int num_cycles)
732 {
733         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
734 }
735
736 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
737 {
738         /*wait for the fifo to be empty*/
739         waitIdle();
740
741         for (unsigned i = 0; i < num_bits; i++)
742         {
743                 int tms;
744
745                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
746                 {
747                         tms = 0;
748                 }
749                 else
750                 {
751                         tms = 1;
752                 }
753
754                 waitIdle();
755                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
756         }
757
758         waitIdle();
759         if (state != TAP_INVALID)
760         {
761                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
762         } else
763         {
764                 /* this would be normal if we are switching to SWD mode */
765         }
766         return ERROR_OK;
767 }
768
769 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
770 {
771         int state_count;
772         int tms = 0;
773
774         state_count = 0;
775
776         tap_state_t cur_state = cmd_queue_cur_state;
777
778         uint8_t seq[16];
779         memset(seq, 0, sizeof(seq));
780         assert(num_states < (int)((sizeof(seq) * 8)));
781
782         while (num_states)
783         {
784                 if (tap_state_transition(cur_state, false) == path[state_count])
785                 {
786                         tms = 0;
787                 }
788                 else if (tap_state_transition(cur_state, true) == path[state_count])
789                 {
790                         tms = 1;
791                 }
792                 else
793                 {
794                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
795                         exit(-1);
796                 }
797
798                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
799
800                 cur_state = path[state_count];
801                 state_count++;
802                 num_states--;
803         }
804
805         return interface_add_tms_seq(state_count, seq, cur_state);
806 }
807
808 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
809 {
810         /* bypass bits before and after */
811         int pre_bits = 0;
812         int post_bits = 0;
813
814         bool found = false;
815         struct jtag_tap *cur_tap, *nextTap;
816         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
817         {
818                 nextTap = jtag_tap_next_enabled(cur_tap);
819                 if (cur_tap == tap)
820                 {
821                         found = true;
822                 } else
823                 {
824                         if (found)
825                         {
826                                 post_bits++;
827                         } else
828                         {
829                                 pre_bits++;
830                         }
831                 }
832         }
833         *pre = pre_bits;
834         *post = post_bits;
835 }
836
837 /*
838         static const int embeddedice_num_bits[] = {32, 6};
839         uint32_t values[2];
840
841         values[0] = value;
842         values[1] = (1 << 5) | reg_addr;
843
844         jtag_add_dr_out(tap,
845                         2,
846                         embeddedice_num_bits,
847                         values,
848                         TAP_IDLE);
849 */
850
851 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
852 {
853 #if 0
854         int i;
855         for (i = 0; i < count; i++)
856         {
857                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
858                 buffer += 4;
859         }
860 #else
861         int pre_bits;
862         int post_bits;
863         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
864
865         if ((pre_bits > 32) || (post_bits + 6 > 32))
866         {
867                 int i;
868                 for (i = 0; i < count; i++)
869                 {
870                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
871                         buffer += 4;
872                 }
873         } else
874         {
875                 int i;
876                 for (i = 0; i < count; i++)
877                 {
878                         /* Fewer pokes means we get to use the FIFO more efficiently */
879                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
880                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
881                         /* Danger! here we need to exit into the TAP_IDLE state to make
882                          * DCC pick up this value.
883                          */
884                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
885                         buffer += 4;
886                 }
887         }
888 #endif
889 }
890
891
892
893 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
894 {
895         /* bypass bits before and after */
896         int pre_bits;
897         int post_bits;
898         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
899         post_bits+=2;
900
901         if ((pre_bits > 32) || (post_bits > 32))
902         {
903                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
904                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
905         } else
906         {
907                 static const int bits[] = {32, 2};
908                 uint32_t values[] = {0, 0};
909
910                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
911                  * with unaligned uint32_t * pointers... */
912                 const uint8_t *t = (const uint8_t *)data;
913
914                 while (--count > 0)
915                 {
916 #if 1
917                         /* Danger! This code doesn't update cmd_queue_cur_state, so
918                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
919                          * this loop would fail!
920                          */
921                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
922
923                         uint32_t value;
924                         value = *t++;
925                         value |= (*t++<<8);
926                         value |= (*t++<<16);
927                         value |= (*t++<<24);
928
929                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
930                         /* minimum 2 bits */
931                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
932
933                         /* copy & paste from arm11_dbgtap.c */
934                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
935                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
936                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
937                          * or in the jtag registers module.
938                          */
939                         waitIdle();
940                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
941                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
942                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
943                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
944                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
945                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
946                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
947                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
948                         /* we don't have to wait for the queue to empty here */
949                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
950                         waitIdle();
951 #else
952                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
953                         {
954                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
955                         };
956
957                         values[0] = *t++;
958                         values[0] |= (*t++<<8);
959                         values[0] |= (*t++<<16);
960                         values[0] |= (*t++<<24);
961
962                         jtag_add_dr_out(tap,
963                                 2,
964                                 bits,
965                                 values,
966                                 TAP_IDLE);
967
968                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
969                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
970 #endif
971                 }
972
973                 values[0] = *t++;
974                 values[0] |= (*t++<<8);
975                 values[0] |= (*t++<<16);
976                 values[0] |= (*t++<<24);
977
978                 /* This will happen on the last iteration updating cmd_queue_cur_state
979                  * so we don't have to track it during the common code path
980                  */
981                 jtag_add_dr_out(tap,
982                         2,
983                         bits,
984                         values,
985                         TAP_IDLE);
986
987                 return jtag_execute_queue();
988         }
989 }
990
991
992 static const struct command_registration zy1000_commands[] = {
993         {
994                 .name = "power",
995                 .handler = handle_power_command,
996                 .mode = COMMAND_ANY,
997                 .help = "Turn power switch to target on/off. "
998                         "With no arguments, prints status.",
999                 .usage = "('on'|'off)",
1000         },
1001 #if BUILD_ZY1000_MASTER
1002 #if BUILD_ECOSBOARD
1003         {
1004                 .name = "zy1000_version",
1005                 .mode = COMMAND_ANY,
1006                 .jim_handler = jim_zy1000_version,
1007                 .help = "Print version info for zy1000.",
1008                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1009         },
1010 #endif
1011 #else
1012         {
1013                 .name = "zy1000_server",
1014                 .mode = COMMAND_ANY,
1015                 .jim_handler = jim_zy1000_server,
1016                 .help = "Tcpip address for ZY1000 server.",
1017                 .usage = "address",
1018         },
1019 #endif
1020         {
1021                 .name = "powerstatus",
1022                 .mode = COMMAND_ANY,
1023                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1024                 .help = "Returns power status of target",
1025         },
1026 #ifdef CYGPKG_HAL_NIOS2
1027         {
1028                 .name = "updatezy1000firmware",
1029                 .mode = COMMAND_ANY,
1030                 .jim_handler = jim_zy1000_writefirmware,
1031                 .help = "writes firmware to flash",
1032                 /* .usage = "some_string", */
1033         },
1034 #endif
1035         COMMAND_REGISTRATION_DONE
1036 };
1037
1038
1039 static int tcp_ip = -1;
1040
1041 /* Write large packets if we can */
1042 static size_t out_pos;
1043 static uint8_t out_buffer[16384];
1044 static size_t in_pos;
1045 static size_t in_write;
1046 static uint8_t in_buffer[16384];
1047
1048 static bool flush_writes(void)
1049 {
1050         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1051         out_pos = 0;
1052         return ok;
1053 }
1054
1055 static bool writeLong(uint32_t l)
1056 {
1057         int i;
1058         for (i = 0; i < 4; i++)
1059         {
1060                 uint8_t c = (l >> (i*8))&0xff;
1061                 out_buffer[out_pos++] = c;
1062                 if (out_pos >= sizeof(out_buffer))
1063                 {
1064                         if (!flush_writes())
1065                         {
1066                                 return false;
1067                         }
1068                 }
1069         }
1070         return true;
1071 }
1072
1073 static bool readLong(uint32_t *out_data)
1074 {
1075         uint32_t data = 0;
1076         int i;
1077         for (i = 0; i < 4; i++)
1078         {
1079                 uint8_t c;
1080                 if (in_pos == in_write)
1081                 {
1082                         /* If we have some data that we can send, send them before
1083                          * we wait for more data
1084                          */
1085                         if (out_pos > 0)
1086                         {
1087                                 if (!flush_writes())
1088                                 {
1089                                         return false;
1090                                 }
1091                         }
1092
1093                         /* read more */
1094                         int t;
1095                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1096                         if (t < 1)
1097                         {
1098                                 return false;
1099                         }
1100                         in_write = (size_t) t;
1101                         in_pos = 0;
1102                 }
1103                 c = in_buffer[in_pos++];
1104
1105                 data |= (c << (i*8));
1106         }
1107         *out_data = data;
1108         return true;
1109 }
1110
1111 enum ZY1000_CMD
1112 {
1113         ZY1000_CMD_POKE = 0x0,
1114         ZY1000_CMD_PEEK = 0x8,
1115         ZY1000_CMD_SLEEP = 0x1,
1116         ZY1000_CMD_WAITIDLE = 2
1117 };
1118
1119
1120 #if !BUILD_ZY1000_MASTER
1121
1122 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1123 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1124
1125 /* We initialize this late since we need to know the server address
1126  * first.
1127  */
1128 static void tcpip_open(void)
1129 {
1130         if (tcp_ip >= 0)
1131                 return;
1132
1133         struct sockaddr_in echoServAddr; /* Echo server address */
1134
1135         /* Create a reliable, stream socket using TCP */
1136         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1137         {
1138                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1139                 exit(-1);
1140         }
1141
1142         /* Construct the server address structure */
1143         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1144         echoServAddr.sin_family = AF_INET; /* Internet address family */
1145         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1146         echoServAddr.sin_port = htons(7777); /* Server port */
1147
1148         /* Establish the connection to the echo server */
1149         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1150         {
1151                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1152                 exit(-1);
1153         }
1154
1155         int flag = 1;
1156         setsockopt(tcp_ip,      /* socket affected */
1157                         IPPROTO_TCP,            /* set option at TCP level */
1158                         TCP_NODELAY,            /* name of option */
1159                         (char *)&flag,          /* the cast is historical cruft */
1160                         sizeof(int));           /* length of option value */
1161
1162 }
1163
1164
1165 /* send a poke */
1166 void zy1000_tcpout(uint32_t address, uint32_t data)
1167 {
1168         tcpip_open();
1169         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1170                         !writeLong(data))
1171         {
1172                 fprintf(stderr, "Could not write to zy1000 server\n");
1173                 exit(-1);
1174         }
1175 }
1176
1177 /* By sending the wait to the server, we avoid a readback
1178  * of status. Radically improves performance for this operation
1179  * with long ping times.
1180  */
1181 void waitIdle(void)
1182 {
1183         tcpip_open();
1184         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1185         {
1186                 fprintf(stderr, "Could not write to zy1000 server\n");
1187                 exit(-1);
1188         }
1189 }
1190
1191 uint32_t zy1000_tcpin(uint32_t address)
1192 {
1193         tcpip_open();
1194
1195         zy1000_flush_readqueue();
1196
1197         uint32_t data;
1198         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1199                         !readLong(&data))
1200         {
1201                 fprintf(stderr, "Could not read from zy1000 server\n");
1202                 exit(-1);
1203         }
1204         return data;
1205 }
1206
1207 int interface_jtag_add_sleep(uint32_t us)
1208 {
1209         tcpip_open();
1210         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1211                         !writeLong(us))
1212         {
1213                 fprintf(stderr, "Could not read from zy1000 server\n");
1214                 exit(-1);
1215         }
1216         return ERROR_OK;
1217 }
1218
1219 /* queue a readback */
1220 #define readqueue_size 16384
1221 static struct
1222 {
1223         uint8_t *dest;
1224         int bits;
1225 } readqueue[readqueue_size];
1226
1227 static int readqueue_pos = 0;
1228
1229 /* flush the readqueue, this means reading any data that
1230  * we're expecting and store them into the final position
1231  */
1232 void zy1000_flush_readqueue(void)
1233 {
1234         if (readqueue_pos == 0)
1235         {
1236                 /* simply debugging by allowing easy breakpoints when there
1237                  * is something to do. */
1238                 return;
1239         }
1240         int i;
1241         tcpip_open();
1242         for (i = 0; i < readqueue_pos; i++)
1243         {
1244                 uint32_t value;
1245                 if (!readLong(&value))
1246                 {
1247                         fprintf(stderr, "Could not read from zy1000 server\n");
1248                         exit(-1);
1249                 }
1250
1251                 uint8_t *in_value = readqueue[i].dest;
1252                 int k = readqueue[i].bits;
1253
1254                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1255                 value >>= 32-k;
1256
1257                 for (int l = 0; l < k; l += 8)
1258                 {
1259                         in_value[l/8]=(value >> l)&0xff;
1260                 }
1261         }
1262         readqueue_pos = 0;
1263 }
1264
1265 /* By queuing the callback's we avoid flushing the
1266 read queue until jtag_execute_queue(). This can
1267 reduce latency dramatically for cases where
1268 callbacks are used extensively.
1269 */
1270 #define callbackqueue_size 128
1271 static struct callbackentry
1272 {
1273         jtag_callback_t callback;
1274         jtag_callback_data_t data0;
1275         jtag_callback_data_t data1;
1276         jtag_callback_data_t data2;
1277         jtag_callback_data_t data3;
1278 } callbackqueue[callbackqueue_size];
1279
1280 static int callbackqueue_pos = 0;
1281
1282 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1283 {
1284         if (callbackqueue_pos >= callbackqueue_size)
1285         {
1286                 zy1000_flush_callbackqueue();
1287         }
1288
1289         callbackqueue[callbackqueue_pos].callback = callback;
1290         callbackqueue[callbackqueue_pos].data0 = data0;
1291         callbackqueue[callbackqueue_pos].data1 = data1;
1292         callbackqueue[callbackqueue_pos].data2 = data2;
1293         callbackqueue[callbackqueue_pos].data3 = data3;
1294         callbackqueue_pos++;
1295 }
1296
1297 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1298 {
1299         ((jtag_callback1_t)data1)(data0);
1300         return ERROR_OK;
1301 }
1302
1303 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1304 {
1305         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1306 }
1307
1308 void zy1000_flush_callbackqueue(void)
1309 {
1310         /* we have to flush the read queue so we have access to
1311          the data the callbacks will use 
1312         */
1313         zy1000_flush_readqueue();
1314         int i;
1315         for (i = 0; i < callbackqueue_pos; i++)
1316         {
1317                 struct callbackentry *entry = &callbackqueue[i];
1318                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1319         }
1320         callbackqueue_pos = 0;
1321 }
1322
1323 static void writeShiftValue(uint8_t *data, int bits)
1324 {
1325         waitIdle();
1326
1327         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1328         {
1329                 fprintf(stderr, "Could not read from zy1000 server\n");
1330                 exit(-1);
1331         }
1332
1333         if (readqueue_pos >= readqueue_size)
1334         {
1335                 zy1000_flush_readqueue();
1336         }
1337
1338         readqueue[readqueue_pos].dest = data;
1339         readqueue[readqueue_pos].bits = bits;
1340         readqueue_pos++;
1341 }
1342
1343 #else
1344
1345 static void writeShiftValue(uint8_t *data, int bits)
1346 {
1347         uint32_t value;
1348         waitIdle();
1349         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1350         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1351
1352         // data in, LSB to MSB
1353         // we're shifting in data to MSB, shift data to be aligned for returning the value
1354         value >>= 32 - bits;
1355
1356         for (int l = 0; l < bits; l += 8)
1357         {
1358                 data[l/8]=(value >> l)&0xff;
1359         }
1360 }
1361
1362 #endif
1363
1364 #if BUILD_ZY1000_MASTER
1365
1366 pthread_t thread;
1367
1368 #if BUILD_ECOSBOARD
1369 static char watchdog_stack[2048];
1370 static cyg_thread watchdog_thread_object;
1371 static cyg_handle_t watchdog_thread_handle;
1372 #endif
1373
1374 /* Infinite loop peeking & poking */
1375 static void tcpipserver(void)
1376 {
1377         for (;;)
1378         {
1379                 uint32_t address;
1380                 if (!readLong(&address))
1381                         return;
1382                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1383                 address &= 0xffffff;
1384                 switch (c)
1385                 {
1386                         case ZY1000_CMD_POKE:
1387                         {
1388                                 uint32_t data;
1389                                 if (!readLong(&data))
1390                                         return;
1391                                 address &= ~0x80000000;
1392                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1393                                 break;
1394                         }
1395                         case ZY1000_CMD_PEEK:
1396                         {
1397                                 uint32_t data;
1398                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1399                                 if (!writeLong(data))
1400                                         return;
1401                                 break;
1402                         }
1403                         case ZY1000_CMD_SLEEP:
1404                         {
1405                                 uint32_t data;
1406                                 if (!readLong(&data))
1407                                         return;
1408                                 /* Wait for some us */
1409                                 usleep(data);
1410                                 break;
1411                         }
1412                         case ZY1000_CMD_WAITIDLE:
1413                         {
1414                                 waitIdle();
1415                                 break;
1416                         }
1417                         default:
1418                                 return;
1419                 }
1420         }
1421 }
1422
1423
1424 static void *tcpip_server(void *data)
1425 {
1426         int so_reuseaddr_option = 1;
1427
1428         int fd;
1429         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1430         {
1431                 LOG_ERROR("error creating socket: %s", strerror(errno));
1432                 exit(-1);
1433         }
1434
1435         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1436                         sizeof(int));
1437
1438         struct sockaddr_in sin;
1439         unsigned int address_size;
1440         address_size = sizeof(sin);
1441         memset(&sin, 0, sizeof(sin));
1442         sin.sin_family = AF_INET;
1443         sin.sin_addr.s_addr = INADDR_ANY;
1444         sin.sin_port = htons(7777);
1445
1446         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1447         {
1448                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1449                 exit(-1);
1450         }
1451
1452         if (listen(fd, 1) == -1)
1453         {
1454                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1455                 exit(-1);
1456         }
1457
1458
1459         for (;;)
1460         {
1461                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1462                 if (tcp_ip < 0)
1463                 {
1464                         continue;
1465                 }
1466
1467                 int flag = 1;
1468                 setsockopt(tcp_ip,      /* socket affected */
1469                                 IPPROTO_TCP,            /* set option at TCP level */
1470                                 TCP_NODELAY,            /* name of option */
1471                                 (char *)&flag,          /* the cast is historical cruft */
1472                                 sizeof(int));           /* length of option value */
1473
1474                 bool save_poll = jtag_poll_get_enabled();
1475
1476                 /* polling will screw up the "connection" */
1477                 jtag_poll_set_enabled(false);
1478
1479                 tcpipserver();
1480
1481                 jtag_poll_set_enabled(save_poll);
1482
1483                 close(tcp_ip);
1484
1485         }
1486         /* Never reached actually */
1487         close(fd);
1488
1489         return NULL;
1490 }
1491
1492 #ifdef WATCHDOG_BASE
1493 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1494 static void watchdog_server(cyg_addrword_t data)
1495 {
1496         int so_reuseaddr_option = 1;
1497
1498         int fd;
1499         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1500         {
1501                 LOG_ERROR("error creating socket: %s", strerror(errno));
1502                 exit(-1);
1503         }
1504
1505         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1506                         sizeof(int));
1507
1508         struct sockaddr_in sin;
1509         unsigned int address_size;
1510         address_size = sizeof(sin);
1511         memset(&sin, 0, sizeof(sin));
1512         sin.sin_family = AF_INET;
1513         sin.sin_addr.s_addr = INADDR_ANY;
1514         sin.sin_port = htons(8888);
1515
1516         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1517         {
1518                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1519                 exit(-1);
1520         }
1521
1522         if (listen(fd, 1) == -1)
1523         {
1524                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1525                 exit(-1);
1526         }
1527
1528
1529         for (;;)
1530         {
1531                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1532
1533                 /* Start watchdog, must be reset every 10 seconds. */
1534                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1535
1536                 if (watchdog_ip < 0)
1537                 {
1538                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1539                         exit(-1);
1540                 }
1541
1542                 int flag = 1;
1543                 setsockopt(watchdog_ip, /* socket affected */
1544                                 IPPROTO_TCP,            /* set option at TCP level */
1545                                 TCP_NODELAY,            /* name of option */
1546                                 (char *)&flag,          /* the cast is historical cruft */
1547                                 sizeof(int));           /* length of option value */
1548
1549
1550                 char buf;
1551                 for (;;)
1552                 {
1553                         if (read(watchdog_ip, &buf, 1) == 1)
1554                         {
1555                                 /* Reset timer */
1556                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1557                                 /* Echo so we can telnet in and see that resetting works */
1558                                 write(watchdog_ip, &buf, 1);
1559                         } else
1560                         {
1561                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1562                                  * now.
1563                                  */
1564                                 return;
1565                         }
1566
1567                 }
1568
1569                 /* Never reached */
1570         }
1571 }
1572 #endif
1573
1574 #endif
1575
1576 #if BUILD_ZY1000_MASTER
1577 int interface_jtag_add_sleep(uint32_t us)
1578 {
1579         jtag_sleep(us);
1580         return ERROR_OK;
1581 }
1582 #endif
1583
1584 #if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
1585 volatile void *zy1000_jtag_master;
1586 #include <sys/mman.h>
1587 #endif
1588
1589 int zy1000_init(void)
1590 {
1591 #if BUILD_ECOSBOARD
1592         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1593 #elif BUILD_ZY1000_MASTER
1594         int fd;
1595         if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
1596         {
1597                 LOG_ERROR("No access to /dev/mem");
1598                 return ERROR_FAIL;
1599         }
1600 #ifndef REGISTERS_BASE
1601 #define REGISTERS_BASE 0x9002000
1602 #define REGISTERS_SPAN 128
1603 #endif
1604     
1605     zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
1606     
1607     if(zy1000_jtag_master == (void *) -1) 
1608     {
1609             close(fd);
1610                 LOG_ERROR("No access to /dev/mem");
1611                 return ERROR_FAIL;
1612     } 
1613 #endif
1614
1615
1616
1617         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1618
1619         setPower(true); // on by default
1620
1621
1622          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1623         zy1000_reset(0, 0);
1624         int jtag_speed_var;
1625         int retval = jtag_get_speed(&jtag_speed_var);
1626         if (retval != ERROR_OK)
1627                 return retval;
1628         zy1000_speed(jtag_speed_var);
1629
1630 #if BUILD_ZY1000_MASTER
1631         pthread_create(&thread, NULL, tcpip_server, NULL);
1632
1633 #if BUILD_ECOSBOARD
1634 #ifdef WATCHDOG_BASE
1635         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1636                         (void *) watchdog_stack, sizeof(watchdog_stack),
1637                         &watchdog_thread_handle, &watchdog_thread_object);
1638         cyg_thread_resume(watchdog_thread_handle);
1639 #endif
1640 #endif
1641 #endif
1642
1643         return ERROR_OK;
1644 }
1645
1646
1647
1648 struct jtag_interface zy1000_interface =
1649 {
1650         .name = "ZY1000",
1651         .supported = DEBUG_CAP_TMS_SEQ,
1652         .execute_queue = NULL,
1653         .speed = zy1000_speed,
1654         .commands = zy1000_commands,
1655         .init = zy1000_init,
1656         .quit = zy1000_quit,
1657         .khz = zy1000_khz,
1658         .speed_div = zy1000_speed_div,
1659         .power_dropout = zy1000_power_dropout,
1660         .srst_asserted = zy1000_srst_asserted,
1661 };