]> git.gag.com Git - fw/openocd/blob - src/jtag/zy1000/zy1000.c
debug-feature: jtagtcpip, improve jtag performance
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75
76 /* The software needs to check if it's in RCLK mode or not */
77 static bool zy1000_rclk = false;
78
79 static int zy1000_khz(int khz, int *jtag_speed)
80 {
81         if (khz == 0)
82         {
83                 *jtag_speed = 0;
84         }
85         else
86         {
87                 *jtag_speed = 64000/khz;
88         }
89         return ERROR_OK;
90 }
91
92 static int zy1000_speed_div(int speed, int *khz)
93 {
94         if (speed == 0)
95         {
96                 *khz = 0;
97         }
98         else
99         {
100                 *khz = 64000/speed;
101         }
102
103         return ERROR_OK;
104 }
105
106 static bool readPowerDropout(void)
107 {
108         uint32_t state;
109         // sample and clear power dropout
110         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
111         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
112         bool powerDropout;
113         powerDropout = (state & 0x80) != 0;
114         return powerDropout;
115 }
116
117
118 static bool readSRST(void)
119 {
120         uint32_t state;
121         // sample and clear SRST sensing
122         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
123         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
124         bool srstAsserted;
125         srstAsserted = (state & 0x40) != 0;
126         return srstAsserted;
127 }
128
129 static int zy1000_srst_asserted(int *srst_asserted)
130 {
131         *srst_asserted = readSRST();
132         return ERROR_OK;
133 }
134
135 static int zy1000_power_dropout(int *dropout)
136 {
137         *dropout = readPowerDropout();
138         return ERROR_OK;
139 }
140
141 void zy1000_reset(int trst, int srst)
142 {
143         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
144
145         /* flush the JTAG FIFO. Not flushing the queue before messing with
146          * reset has such interesting bugs as causing hard to reproduce
147          * RCLK bugs as RCLK will stop responding when TRST is asserted
148          */
149         waitIdle();
150
151         if (!srst)
152         {
153                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
154         }
155         else
156         {
157                 /* Danger!!! if clk != 0 when in
158                  * idle in TAP_IDLE, reset halt on str912 will fail.
159                  */
160                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
161         }
162
163         if (!trst)
164         {
165                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
166         }
167         else
168         {
169                 /* assert reset */
170                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
171         }
172
173         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
174         {
175                 /* we're now in the RESET state until trst is deasserted */
176                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
177         } else
178         {
179                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
180                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
181         }
182
183         /* wait for srst to float back up */
184         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
185                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
186         {
187                 bool first = true;
188                 long long start = 0;
189                 long total = 0;
190                 for (;;)
191                 {       
192                         // We don't want to sense our own reset, so we clear here.
193                         // There is of course a timing hole where we could loose
194                         // a "real" reset.
195                         if (!readSRST())
196                         {
197                                 if (total > 1)
198                                 {
199                                   LOG_USER("SRST took %dms to deassert", (int)total);
200                                 }
201                                 break;
202                         }
203
204                         if (first)
205                         {
206                             first = false;
207                             start = timeval_ms();
208                         }
209
210                         total = timeval_ms() - start;
211
212                         keep_alive();
213
214                         if (total > 5000)
215                         {
216                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
217                             break;
218                         }
219                 }
220
221         }
222 }
223
224 int zy1000_speed(int speed)
225 {
226         /* flush JTAG master FIFO before setting speed */
227         waitIdle();
228
229         zy1000_rclk = false;
230
231         if (speed == 0)
232         {
233                 /*0 means RCLK*/
234                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
235                 zy1000_rclk = true;
236                 LOG_DEBUG("jtag_speed using RCLK");
237         }
238         else
239         {
240                 if (speed > 8190 || speed < 2)
241                 {
242                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
243                         return ERROR_INVALID_ARGUMENTS;
244                 }
245
246                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
247                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
248                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
249         }
250         return ERROR_OK;
251 }
252
253 static bool savePower;
254
255
256 static void setPower(bool power)
257 {
258         savePower = power;
259         if (power)
260         {
261                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
262         } else
263         {
264                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
265         }
266 }
267
268 COMMAND_HANDLER(handle_power_command)
269 {
270         switch (CMD_ARGC)
271         {
272         case 1: {
273                 bool enable;
274                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
275                 setPower(enable);
276                 // fall through
277         }
278         case 0:
279                 LOG_INFO("Target power %s", savePower ? "on" : "off");
280                 break;
281         default:
282                 return ERROR_INVALID_ARGUMENTS;
283         }
284
285         return ERROR_OK;
286 }
287
288 #if !BUILD_ECOSBOARD
289 static char *tcp_server = "notspecified";
290 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
291 {
292         if (argc != 2)
293                 return JIM_ERR;
294
295         tcp_server = strdup(Jim_GetString(argv[1], NULL));
296
297         return JIM_OK;
298 }
299 #endif
300
301 #if BUILD_ECOSBOARD
302 /* Give TELNET a way to find out what version this is */
303 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
304 {
305         if ((argc < 1) || (argc > 3))
306                 return JIM_ERR;
307         const char *version_str = NULL;
308
309         if (argc == 1)
310         {
311                 version_str = ZYLIN_OPENOCD_VERSION;
312         } else
313         {
314                 const char *str = Jim_GetString(argv[1], NULL);
315                 const char *str2 = NULL;
316                 if (argc > 2)
317                         str2 = Jim_GetString(argv[2], NULL);
318                 if (strcmp("openocd", str) == 0)
319                 {
320                         version_str = ZYLIN_OPENOCD;
321                 }
322                 else if (strcmp("zy1000", str) == 0)
323                 {
324                         version_str = ZYLIN_VERSION;
325                 }
326                 else if (strcmp("date", str) == 0)
327                 {
328                         version_str = ZYLIN_DATE;
329                 }
330                 else if (strcmp("time", str) == 0)
331                 {
332                         version_str = ZYLIN_TIME;
333                 }
334                 else if (strcmp("pcb", str) == 0)
335                 {
336 #ifdef CYGPKG_HAL_NIOS2
337                         version_str="c";
338 #else
339                         version_str="b";
340 #endif
341                 }
342 #ifdef CYGPKG_HAL_NIOS2
343                 else if (strcmp("fpga", str) == 0)
344                 {
345
346                         /* return a list of 32 bit integers to describe the expected
347                          * and actual FPGA
348                          */
349                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
350                         uint32_t id, timestamp;
351                         HAL_READ_UINT32(SYSID_BASE, id);
352                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
353                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
354                         version_str = fpga_id;
355                         if ((argc>2) && (strcmp("time", str2) == 0))
356                         {
357                             time_t last_mod = timestamp;
358                             char * t = ctime (&last_mod) ;
359                             t[strlen(t)-1] = 0;
360                             version_str = t;
361                         }
362                 }
363 #endif
364
365                 else
366                 {
367                         return JIM_ERR;
368                 }
369         }
370
371         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
372
373         return JIM_OK;
374 }
375 #endif
376
377 #ifdef CYGPKG_HAL_NIOS2
378
379
380 struct info_forward
381 {
382         void *data;
383         struct cyg_upgrade_info *upgraded_file;
384 };
385
386 static void report_info(void *data, const char * format, va_list args)
387 {
388         char *s = alloc_vprintf(format, args);
389         LOG_USER_N("%s", s);
390         free(s);
391 }
392
393 struct cyg_upgrade_info firmware_info =
394 {
395                 (uint8_t *)0x84000000,
396                 "/ram/firmware.phi",
397                 "Firmware",
398                 0x0300000,
399                 0x1f00000 -
400                 0x0300000,
401                 "ZylinNiosFirmware\n",
402                 report_info,
403 };
404
405 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
406 {
407         if (argc != 2)
408                 return JIM_ERR;
409
410         int length;
411         const char *str = Jim_GetString(argv[1], &length);
412
413         /* */
414         int tmpFile;
415         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
416         {
417                 return JIM_ERR;
418         }
419         bool success;
420         success = write(tmpFile, str, length) == length;
421         close(tmpFile);
422         if (!success)
423                 return JIM_ERR;
424
425         if (!cyg_firmware_upgrade(NULL, firmware_info))
426                 return JIM_ERR;
427
428         return JIM_OK;
429 }
430 #endif
431
432 static int
433 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
434                                                                    int argc,
435                 Jim_Obj * const *argv)
436 {
437         if (argc != 1)
438         {
439                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
440                 return JIM_ERR;
441         }
442
443         bool dropout = readPowerDropout();
444
445         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
446
447         return JIM_OK;
448 }
449
450
451
452 int zy1000_quit(void)
453 {
454
455         return ERROR_OK;
456 }
457
458
459
460 int interface_jtag_execute_queue(void)
461 {
462         uint32_t empty;
463
464         waitIdle();
465
466         /* We must make sure to write data read back to memory location before we return
467          * from this fn
468          */
469         zy1000_flush_readqueue();
470
471         /* and handle any callbacks... */
472         zy1000_flush_callbackqueue();
473
474         if (zy1000_rclk)
475         {
476                 /* Only check for errors when using RCLK to speed up
477                  * jtag over TCP/IP
478                  */
479                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
480                 /* clear JTAG error register */
481                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
482
483                 if ((empty&0x400) != 0)
484                 {
485                         LOG_WARNING("RCLK timeout");
486                         /* the error is informative only as we don't want to break the firmware if there
487                          * is a false positive.
488                          */
489         //              return ERROR_FAIL;
490                 }
491         }
492         return ERROR_OK;
493 }
494
495
496
497
498 static void writeShiftValue(uint8_t *data, int bits);
499
500 // here we shuffle N bits out/in
501 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
502 {
503         tap_state_t pause_state = shiftState;
504         for (int j = 0; j < num_bits; j += 32)
505         {
506                 int k = num_bits - j;
507                 if (k > 32)
508                 {
509                         k = 32;
510                         /* we have more to shift out */
511                 } else if (pause_now)
512                 {
513                         /* this was the last to shift out this time */
514                         pause_state = end_state;
515                 }
516
517                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
518                 // bits are pushed out LSB to MSB
519                 uint32_t value;
520                 value = 0;
521                 if (out_value != NULL)
522                 {
523                         for (int l = 0; l < k; l += 8)
524                         {
525                                 value|=out_value[(j + l)/8]<<l;
526                         }
527                 }
528                 /* mask away unused bits for easier debugging */
529                 if (k < 32)
530                 {
531                         value&=~(((uint32_t)0xffffffff) << k);
532                 } else
533                 {
534                         /* Shifting by >= 32 is not defined by the C standard
535                          * and will in fact shift by &0x1f bits on nios */
536                 }
537
538                 shiftValueInner(shiftState, pause_state, k, value);
539
540                 if (in_value != NULL)
541                 {
542                         writeShiftValue(in_value + (j/8), k);
543                 }
544         }
545 }
546
547 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
548 {
549         for (int i = 0; i < num_fields; i++)
550         {
551                 scanBits(fields[i].out_value,
552                                 fields[i].in_value,
553                                 fields[i].num_bits,
554                                 (i == num_fields-1),
555                                 shiftState,
556                                 end_state);
557         }
558 }
559
560 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
561 {
562         int scan_size = 0;
563         struct jtag_tap *tap, *nextTap;
564         tap_state_t pause_state = TAP_IRSHIFT;
565
566         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
567         {
568                 nextTap = jtag_tap_next_enabled(tap);
569                 if (nextTap==NULL)
570                 {
571                         pause_state = state;
572                 }
573                 scan_size = tap->ir_length;
574
575                 /* search the list */
576                 if (tap == active)
577                 {
578                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
579                         /* update device information */
580                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
581
582                         tap->bypass = 0;
583                 } else
584                 {
585                         /* if a device isn't listed, set it to BYPASS */
586                         assert(scan_size <= 32);
587                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
588
589                         tap->bypass = 1;
590                 }
591         }
592
593         return ERROR_OK;
594 }
595
596
597
598
599
600 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
601 {
602         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
603         return ERROR_OK;
604 }
605
606 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
607 {
608         struct jtag_tap *tap, *nextTap;
609         tap_state_t pause_state = TAP_DRSHIFT;
610         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
611         {
612                 nextTap = jtag_tap_next_enabled(tap);
613                 if (nextTap==NULL)
614                 {
615                         pause_state = state;
616                 }
617
618                 /* Find a range of fields to write to this tap */
619                 if (tap == active)
620                 {
621                         assert(!tap->bypass);
622
623                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
624                 } else
625                 {
626                         /* Shift out a 0 for disabled tap's */
627                         assert(tap->bypass);
628                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
629                 }
630         }
631         return ERROR_OK;
632 }
633
634 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
635 {
636         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
637         return ERROR_OK;
638 }
639
640 int interface_jtag_add_tlr()
641 {
642         setCurrentState(TAP_RESET);
643         return ERROR_OK;
644 }
645
646
647 int interface_jtag_add_reset(int req_trst, int req_srst)
648 {
649         zy1000_reset(req_trst, req_srst);
650         return ERROR_OK;
651 }
652
653 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
654 {
655         /* num_cycles can be 0 */
656         setCurrentState(clockstate);
657
658         /* execute num_cycles, 32 at the time. */
659         int i;
660         for (i = 0; i < num_cycles; i += 32)
661         {
662                 int num;
663                 num = 32;
664                 if (num_cycles-i < num)
665                 {
666                         num = num_cycles-i;
667                 }
668                 shiftValueInner(clockstate, clockstate, num, 0);
669         }
670
671 #if !TEST_MANUAL()
672         /* finish in end_state */
673         setCurrentState(state);
674 #else
675         tap_state_t t = TAP_IDLE;
676         /* test manual drive code on any target */
677         int tms;
678         uint8_t tms_scan = tap_get_tms_path(t, state);
679         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
680
681         for (i = 0; i < tms_count; i++)
682         {
683                 tms = (tms_scan >> i) & 1;
684                 waitIdle();
685                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
686         }
687         waitIdle();
688         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
689 #endif
690
691         return ERROR_OK;
692 }
693
694 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
695 {
696         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
697 }
698
699 int interface_jtag_add_clocks(int num_cycles)
700 {
701         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
702 }
703
704 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
705 {
706         /*wait for the fifo to be empty*/
707         waitIdle();
708
709         for (unsigned i = 0; i < num_bits; i++)
710         {
711                 int tms;
712
713                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
714                 {
715                         tms = 0;
716                 }
717                 else
718                 {
719                         tms = 1;
720                 }
721
722                 waitIdle();
723                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
724         }
725
726         waitIdle();
727         if (state != TAP_INVALID)
728         {
729                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
730         } else
731         {
732                 /* this would be normal if we are switching to SWD mode */
733         }
734         return ERROR_OK;
735 }
736
737 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
738 {
739         int state_count;
740         int tms = 0;
741
742         state_count = 0;
743
744         tap_state_t cur_state = cmd_queue_cur_state;
745
746         uint8_t seq[16];
747         memset(seq, 0, sizeof(seq));
748         assert(num_states < (int)((sizeof(seq) * 8)));
749
750         while (num_states)
751         {
752                 if (tap_state_transition(cur_state, false) == path[state_count])
753                 {
754                         tms = 0;
755                 }
756                 else if (tap_state_transition(cur_state, true) == path[state_count])
757                 {
758                         tms = 1;
759                 }
760                 else
761                 {
762                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
763                         exit(-1);
764                 }
765
766                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
767
768                 cur_state = path[state_count];
769                 state_count++;
770                 num_states--;
771         }
772
773         return interface_add_tms_seq(state_count, seq, cur_state);
774 }
775
776 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
777 {
778         /* bypass bits before and after */
779         int pre_bits = 0;
780         int post_bits = 0;
781
782         bool found = false;
783         struct jtag_tap *cur_tap, *nextTap;
784         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
785         {
786                 nextTap = jtag_tap_next_enabled(cur_tap);
787                 if (cur_tap == tap)
788                 {
789                         found = true;
790                 } else
791                 {
792                         if (found)
793                         {
794                                 post_bits++;
795                         } else
796                         {
797                                 pre_bits++;
798                         }
799                 }
800         }
801         *pre = pre_bits;
802         *post = post_bits;
803 }
804
805 /*
806         static const int embeddedice_num_bits[] = {32, 6};
807         uint32_t values[2];
808
809         values[0] = value;
810         values[1] = (1 << 5) | reg_addr;
811
812         jtag_add_dr_out(tap,
813                         2,
814                         embeddedice_num_bits,
815                         values,
816                         TAP_IDLE);
817 */
818
819 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
820 {
821 #if 0
822         int i;
823         for (i = 0; i < count; i++)
824         {
825                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
826                 buffer += 4;
827         }
828 #else
829         int pre_bits;
830         int post_bits;
831         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
832
833         if ((pre_bits > 32) || (post_bits + 6 > 32))
834         {
835                 int i;
836                 for (i = 0; i < count; i++)
837                 {
838                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
839                         buffer += 4;
840                 }
841         } else
842         {
843                 int i;
844                 for (i = 0; i < count; i++)
845                 {
846                         /* Fewer pokes means we get to use the FIFO more efficiently */
847                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
848                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
849                         /* Danger! here we need to exit into the TAP_IDLE state to make
850                          * DCC pick up this value.
851                          */
852                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
853                         buffer += 4;
854                 }
855         }
856 #endif
857 }
858
859
860
861 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
862 {
863         /* bypass bits before and after */
864         int pre_bits;
865         int post_bits;
866         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
867         post_bits+=2;
868
869         if ((pre_bits > 32) || (post_bits > 32))
870         {
871                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
872                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
873         } else
874         {
875                 static const int bits[] = {32, 2};
876                 uint32_t values[] = {0, 0};
877
878                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
879                  * with unaligned uint32_t * pointers... */
880                 const uint8_t *t = (const uint8_t *)data;
881
882                 while (--count > 0)
883                 {
884 #if 1
885                         /* Danger! This code doesn't update cmd_queue_cur_state, so
886                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
887                          * this loop would fail!
888                          */
889                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
890
891                         uint32_t value;
892                         value = *t++;
893                         value |= (*t++<<8);
894                         value |= (*t++<<16);
895                         value |= (*t++<<24);
896
897                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
898                         /* minimum 2 bits */
899                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
900
901                         /* copy & paste from arm11_dbgtap.c */
902                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
903                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
904                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
905                          * or in the jtag registers module.
906                          */
907                         waitIdle();
908                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
909                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
910                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
911                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
912                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
913                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
914                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
915                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
916                         /* we don't have to wait for the queue to empty here */
917                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
918                         waitIdle();
919 #else
920                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
921                         {
922                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
923                         };
924
925                         values[0] = *t++;
926                         values[0] |= (*t++<<8);
927                         values[0] |= (*t++<<16);
928                         values[0] |= (*t++<<24);
929
930                         jtag_add_dr_out(tap,
931                                 2,
932                                 bits,
933                                 values,
934                                 TAP_IDLE);
935
936                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
937                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
938 #endif
939                 }
940
941                 values[0] = *t++;
942                 values[0] |= (*t++<<8);
943                 values[0] |= (*t++<<16);
944                 values[0] |= (*t++<<24);
945
946                 /* This will happen on the last iteration updating cmd_queue_cur_state
947                  * so we don't have to track it during the common code path
948                  */
949                 jtag_add_dr_out(tap,
950                         2,
951                         bits,
952                         values,
953                         TAP_IDLE);
954
955                 return jtag_execute_queue();
956         }
957 }
958
959
960 static const struct command_registration zy1000_commands[] = {
961         {
962                 .name = "power",
963                 .handler = handle_power_command,
964                 .mode = COMMAND_ANY,
965                 .help = "Turn power switch to target on/off. "
966                         "With no arguments, prints status.",
967                 .usage = "('on'|'off)",
968         },
969 #if BUILD_ECOSBOARD
970         {
971                 .name = "zy1000_version",
972                 .mode = COMMAND_ANY,
973                 .jim_handler = jim_zy1000_version,
974                 .help = "Print version info for zy1000.",
975                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
976         },
977 #else
978         {
979                 .name = "zy1000_server",
980                 .mode = COMMAND_ANY,
981                 .jim_handler = jim_zy1000_server,
982                 .help = "Tcpip address for ZY1000 server.",
983                 .usage = "address",
984         },
985 #endif
986         {
987                 .name = "powerstatus",
988                 .mode = COMMAND_ANY,
989                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
990                 .help = "Returns power status of target",
991         },
992 #ifdef CYGPKG_HAL_NIOS2
993         {
994                 .name = "updatezy1000firmware",
995                 .mode = COMMAND_ANY,
996                 .jim_handler = jim_zy1000_writefirmware,
997                 .help = "writes firmware to flash",
998                 /* .usage = "some_string", */
999         },
1000 #endif
1001         COMMAND_REGISTRATION_DONE
1002 };
1003
1004
1005 static int tcp_ip = -1;
1006
1007 /* Write large packets if we can */
1008 static size_t out_pos;
1009 static uint8_t out_buffer[16384];
1010 static size_t in_pos;
1011 static size_t in_write;
1012 static uint8_t in_buffer[16384];
1013
1014 static bool flush_writes(void)
1015 {
1016         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1017         out_pos = 0;
1018         return ok;
1019 }
1020
1021 static bool writeLong(uint32_t l)
1022 {
1023         int i;
1024         for (i = 0; i < 4; i++)
1025         {
1026                 uint8_t c = (l >> (i*8))&0xff;
1027                 out_buffer[out_pos++] = c;
1028                 if (out_pos >= sizeof(out_buffer))
1029                 {
1030                         if (!flush_writes())
1031                         {
1032                                 return false;
1033                         }
1034                 }
1035         }
1036         return true;
1037 }
1038
1039 static bool readLong(uint32_t *out_data)
1040 {
1041         if (out_pos > 0)
1042         {
1043                 if (!flush_writes())
1044                 {
1045                         return false;
1046                 }
1047         }
1048
1049         uint32_t data = 0;
1050         int i;
1051         for (i = 0; i < 4; i++)
1052         {
1053                 uint8_t c;
1054                 if (in_pos == in_write)
1055                 {
1056                         /* read more */
1057                         int t;
1058                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1059                         if (t < 1)
1060                         {
1061                                 return false;
1062                         }
1063                         in_write = (size_t) t;
1064                         in_pos = 0;
1065                 }
1066                 c = in_buffer[in_pos++];
1067
1068                 data |= (c << (i*8));
1069         }
1070         *out_data = data;
1071         return true;
1072 }
1073
1074 enum ZY1000_CMD
1075 {
1076         ZY1000_CMD_POKE = 0x0,
1077         ZY1000_CMD_PEEK = 0x8,
1078         ZY1000_CMD_SLEEP = 0x1,
1079         ZY1000_CMD_WAITIDLE = 2
1080 };
1081
1082
1083 #if !BUILD_ECOSBOARD
1084
1085 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1086 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1087
1088 /* We initialize this late since we need to know the server address
1089  * first.
1090  */
1091 static void tcpip_open(void)
1092 {
1093         if (tcp_ip >= 0)
1094                 return;
1095
1096         struct sockaddr_in echoServAddr; /* Echo server address */
1097
1098         /* Create a reliable, stream socket using TCP */
1099         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1100         {
1101                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1102                 exit(-1);
1103         }
1104
1105         /* Construct the server address structure */
1106         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1107         echoServAddr.sin_family = AF_INET; /* Internet address family */
1108         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1109         echoServAddr.sin_port = htons(7777); /* Server port */
1110
1111         /* Establish the connection to the echo server */
1112         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1113         {
1114                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1115                 exit(-1);
1116         }
1117
1118         int flag = 1;
1119         setsockopt(tcp_ip,      /* socket affected */
1120                         IPPROTO_TCP,            /* set option at TCP level */
1121                         TCP_NODELAY,            /* name of option */
1122                         (char *)&flag,          /* the cast is historical cruft */
1123                         sizeof(int));           /* length of option value */
1124
1125 }
1126
1127
1128 /* send a poke */
1129 void zy1000_tcpout(uint32_t address, uint32_t data)
1130 {
1131         tcpip_open();
1132         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1133                         !writeLong(data))
1134         {
1135                 fprintf(stderr, "Could not write to zy1000 server\n");
1136                 exit(-1);
1137         }
1138 }
1139
1140 /* By sending the wait to the server, we avoid a readback
1141  * of status. Radically improves performance for this operation
1142  * with long ping times.
1143  */
1144 void waitIdle(void)
1145 {
1146         tcpip_open();
1147         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1148         {
1149                 fprintf(stderr, "Could not write to zy1000 server\n");
1150                 exit(-1);
1151         }
1152 }
1153
1154 uint32_t zy1000_tcpin(uint32_t address)
1155 {
1156         tcpip_open();
1157
1158         zy1000_flush_readqueue();
1159
1160         uint32_t data;
1161         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1162                         !readLong(&data))
1163         {
1164                 fprintf(stderr, "Could not read from zy1000 server\n");
1165                 exit(-1);
1166         }
1167         return data;
1168 }
1169
1170 int interface_jtag_add_sleep(uint32_t us)
1171 {
1172         tcpip_open();
1173         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1174                         !writeLong(us))
1175         {
1176                 fprintf(stderr, "Could not read from zy1000 server\n");
1177                 exit(-1);
1178         }
1179         return ERROR_OK;
1180 }
1181
1182 /* queue a readback */
1183 #define readqueue_size 16384
1184 static struct
1185 {
1186         uint8_t *dest;
1187         int bits;
1188 } readqueue[readqueue_size];
1189
1190 static int readqueue_pos = 0;
1191
1192 /* flush the readqueue, this means reading any data that
1193  * we're expecting and store them into the final position
1194  */
1195 void zy1000_flush_readqueue(void)
1196 {
1197         if (readqueue_pos == 0)
1198         {
1199                 /* simply debugging by allowing easy breakpoints when there
1200                  * is something to do. */
1201                 return;
1202         }
1203         int i;
1204         tcpip_open();
1205         for (i = 0; i < readqueue_pos; i++)
1206         {
1207                 uint32_t value;
1208                 if (!readLong(&value))
1209                 {
1210                         fprintf(stderr, "Could not read from zy1000 server\n");
1211                         exit(-1);
1212                 }
1213
1214                 uint8_t *in_value = readqueue[i].dest;
1215                 int k = readqueue[i].bits;
1216
1217                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1218                 value >>= 32-k;
1219
1220                 for (int l = 0; l < k; l += 8)
1221                 {
1222                         in_value[l/8]=(value >> l)&0xff;
1223                 }
1224         }
1225         readqueue_pos = 0;
1226 }
1227
1228 /* By queuing the callback's we avoid flushing the
1229 read queue until jtag_execute_queue(). This can
1230 reduce latency dramatically for cases where
1231 callbacks are used extensively.
1232 */
1233 #define callbackqueue_size 128
1234 static struct callbackentry
1235 {
1236         jtag_callback_t callback;
1237         jtag_callback_data_t data0;
1238         jtag_callback_data_t data1;
1239         jtag_callback_data_t data2;
1240         jtag_callback_data_t data3;
1241 } callbackqueue[callbackqueue_size];
1242
1243 static int callbackqueue_pos = 0;
1244
1245 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1246 {
1247         if (callbackqueue_pos >= callbackqueue_size)
1248         {
1249                 zy1000_flush_callbackqueue();
1250         }
1251
1252         callbackqueue[callbackqueue_pos].callback = callback;
1253         callbackqueue[callbackqueue_pos].data0 = data0;
1254         callbackqueue[callbackqueue_pos].data1 = data1;
1255         callbackqueue[callbackqueue_pos].data2 = data2;
1256         callbackqueue[callbackqueue_pos].data3 = data3;
1257         callbackqueue_pos++;
1258 }
1259
1260 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1261 {
1262         ((jtag_callback1_t)data1)(data0);
1263         return ERROR_OK;
1264 }
1265
1266 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1267 {
1268         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1269 }
1270
1271 void zy1000_flush_callbackqueue(void)
1272 {
1273         /* we have to flush the read queue so we have access to
1274          the data the callbacks will use 
1275         */
1276         zy1000_flush_readqueue();
1277         int i;
1278         for (i = 0; i < callbackqueue_pos; i++)
1279         {
1280                 struct callbackentry *entry = &callbackqueue[i];
1281                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1282         }
1283         callbackqueue_pos = 0;
1284 }
1285
1286 static void writeShiftValue(uint8_t *data, int bits)
1287 {
1288         waitIdle();
1289
1290         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1291         {
1292                 fprintf(stderr, "Could not read from zy1000 server\n");
1293                 exit(-1);
1294         }
1295
1296         if (readqueue_pos >= readqueue_size)
1297         {
1298                 zy1000_flush_readqueue();
1299         }
1300
1301         readqueue[readqueue_pos].dest = data;
1302         readqueue[readqueue_pos].bits = bits;
1303         readqueue_pos++;
1304 }
1305
1306 #else
1307
1308 static void writeShiftValue(uint8_t *data, int bits)
1309 {
1310         uint32_t value;
1311         waitIdle();
1312         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1313         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1314
1315         // data in, LSB to MSB
1316         // we're shifting in data to MSB, shift data to be aligned for returning the value
1317         value >>= 32 - bits;
1318
1319         for (int l = 0; l < bits; l += 8)
1320         {
1321                 data[l/8]=(value >> l)&0xff;
1322         }
1323 }
1324
1325 #endif
1326
1327 #if BUILD_ECOSBOARD
1328 static char tcpip_stack[2048];
1329 static cyg_thread tcpip_thread_object;
1330 static cyg_handle_t tcpip_thread_handle;
1331
1332 static char watchdog_stack[2048];
1333 static cyg_thread watchdog_thread_object;
1334 static cyg_handle_t watchdog_thread_handle;
1335
1336 /* Infinite loop peeking & poking */
1337 static void tcpipserver(void)
1338 {
1339         for (;;)
1340         {
1341                 uint32_t address;
1342                 if (!readLong(&address))
1343                         return;
1344                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1345                 address &= 0xffffff;
1346                 switch (c)
1347                 {
1348                         case ZY1000_CMD_POKE:
1349                         {
1350                                 uint32_t data;
1351                                 if (!readLong(&data))
1352                                         return;
1353                                 address &= ~0x80000000;
1354                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1355                                 break;
1356                         }
1357                         case ZY1000_CMD_PEEK:
1358                         {
1359                                 uint32_t data;
1360                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1361                                 if (!writeLong(data))
1362                                         return;
1363                                 break;
1364                         }
1365                         case ZY1000_CMD_SLEEP:
1366                         {
1367                                 uint32_t data;
1368                                 if (!readLong(&data))
1369                                         return;
1370                                 jtag_sleep(data);
1371                                 break;
1372                         }
1373                         case ZY1000_CMD_WAITIDLE:
1374                         {
1375                                 waitIdle();
1376                                 break;
1377                         }
1378                         default:
1379                                 return;
1380                 }
1381         }
1382 }
1383
1384
1385 static void tcpip_server(cyg_addrword_t data)
1386 {
1387         int so_reuseaddr_option = 1;
1388
1389         int fd;
1390         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1391         {
1392                 LOG_ERROR("error creating socket: %s", strerror(errno));
1393                 exit(-1);
1394         }
1395
1396         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1397                         sizeof(int));
1398
1399         struct sockaddr_in sin;
1400         unsigned int address_size;
1401         address_size = sizeof(sin);
1402         memset(&sin, 0, sizeof(sin));
1403         sin.sin_family = AF_INET;
1404         sin.sin_addr.s_addr = INADDR_ANY;
1405         sin.sin_port = htons(7777);
1406
1407         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1408         {
1409                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1410                 exit(-1);
1411         }
1412
1413         if (listen(fd, 1) == -1)
1414         {
1415                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1416                 exit(-1);
1417         }
1418
1419
1420         for (;;)
1421         {
1422                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1423                 if (tcp_ip < 0)
1424                 {
1425                         continue;
1426                 }
1427
1428                 int flag = 1;
1429                 setsockopt(tcp_ip,      /* socket affected */
1430                                 IPPROTO_TCP,            /* set option at TCP level */
1431                                 TCP_NODELAY,            /* name of option */
1432                                 (char *)&flag,          /* the cast is historical cruft */
1433                                 sizeof(int));           /* length of option value */
1434
1435                 bool save_poll = jtag_poll_get_enabled();
1436
1437                 /* polling will screw up the "connection" */
1438                 jtag_poll_set_enabled(false);
1439
1440                 tcpipserver();
1441
1442                 jtag_poll_set_enabled(save_poll);
1443
1444                 close(tcp_ip);
1445
1446         }
1447         close(fd);
1448
1449 }
1450
1451 #ifdef WATCHDOG_BASE
1452 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1453 static void watchdog_server(cyg_addrword_t data)
1454 {
1455         int so_reuseaddr_option = 1;
1456
1457         int fd;
1458         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1459         {
1460                 LOG_ERROR("error creating socket: %s", strerror(errno));
1461                 exit(-1);
1462         }
1463
1464         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1465                         sizeof(int));
1466
1467         struct sockaddr_in sin;
1468         unsigned int address_size;
1469         address_size = sizeof(sin);
1470         memset(&sin, 0, sizeof(sin));
1471         sin.sin_family = AF_INET;
1472         sin.sin_addr.s_addr = INADDR_ANY;
1473         sin.sin_port = htons(8888);
1474
1475         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1476         {
1477                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1478                 exit(-1);
1479         }
1480
1481         if (listen(fd, 1) == -1)
1482         {
1483                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1484                 exit(-1);
1485         }
1486
1487
1488         for (;;)
1489         {
1490                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1491
1492                 /* Start watchdog, must be reset every 10 seconds. */
1493                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1494
1495                 if (watchdog_ip < 0)
1496                 {
1497                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1498                         exit(-1);
1499                 }
1500
1501                 int flag = 1;
1502                 setsockopt(watchdog_ip, /* socket affected */
1503                                 IPPROTO_TCP,            /* set option at TCP level */
1504                                 TCP_NODELAY,            /* name of option */
1505                                 (char *)&flag,          /* the cast is historical cruft */
1506                                 sizeof(int));           /* length of option value */
1507
1508
1509                 char buf;
1510                 for (;;)
1511                 {
1512                         if (read(watchdog_ip, &buf, 1) == 1)
1513                         {
1514                                 /* Reset timer */
1515                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1516                                 /* Echo so we can telnet in and see that resetting works */
1517                                 write(watchdog_ip, &buf, 1);
1518                         } else
1519                         {
1520                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1521                                  * now.
1522                                  */
1523                                 return;
1524                         }
1525
1526                 }
1527
1528                 /* Never reached */
1529         }
1530 }
1531 #endif
1532
1533 int interface_jtag_add_sleep(uint32_t us)
1534 {
1535         jtag_sleep(us);
1536         return ERROR_OK;
1537 }
1538
1539 #endif
1540
1541
1542 int zy1000_init(void)
1543 {
1544 #if BUILD_ECOSBOARD
1545         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1546 #endif
1547
1548         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1549
1550         setPower(true); // on by default
1551
1552
1553          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1554         zy1000_reset(0, 0);
1555         zy1000_speed(jtag_get_speed());
1556
1557
1558 #if BUILD_ECOSBOARD
1559         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1560                         (void *) tcpip_stack, sizeof(tcpip_stack),
1561                         &tcpip_thread_handle, &tcpip_thread_object);
1562         cyg_thread_resume(tcpip_thread_handle);
1563 #ifdef WATCHDOG_BASE
1564         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1565                         (void *) watchdog_stack, sizeof(watchdog_stack),
1566                         &watchdog_thread_handle, &watchdog_thread_object);
1567         cyg_thread_resume(watchdog_thread_handle);
1568 #endif
1569 #endif
1570
1571         return ERROR_OK;
1572 }
1573
1574
1575
1576 struct jtag_interface zy1000_interface =
1577 {
1578         .name = "ZY1000",
1579         .supported = DEBUG_CAP_TMS_SEQ,
1580         .execute_queue = NULL,
1581         .speed = zy1000_speed,
1582         .commands = zy1000_commands,
1583         .init = zy1000_init,
1584         .quit = zy1000_quit,
1585         .khz = zy1000_khz,
1586         .speed_div = zy1000_speed_div,
1587         .power_dropout = zy1000_power_dropout,
1588         .srst_asserted = zy1000_srst_asserted,
1589 };