zy1000: wait for srst to deassert
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75 static int zy1000_khz(int khz, int *jtag_speed)
76 {
77         if (khz == 0)
78         {
79                 *jtag_speed = 0;
80         }
81         else
82         {
83                 *jtag_speed = 64000/khz;
84         }
85         return ERROR_OK;
86 }
87
88 static int zy1000_speed_div(int speed, int *khz)
89 {
90         if (speed == 0)
91         {
92                 *khz = 0;
93         }
94         else
95         {
96                 *khz = 64000/speed;
97         }
98
99         return ERROR_OK;
100 }
101
102 static bool readPowerDropout(void)
103 {
104         uint32_t state;
105         // sample and clear power dropout
106         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
107         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
108         bool powerDropout;
109         powerDropout = (state & 0x80) != 0;
110         return powerDropout;
111 }
112
113
114 static bool readSRST(void)
115 {
116         uint32_t state;
117         // sample and clear SRST sensing
118         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
119         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
120         bool srstAsserted;
121         srstAsserted = (state & 0x40) != 0;
122         return srstAsserted;
123 }
124
125 static int zy1000_srst_asserted(int *srst_asserted)
126 {
127         *srst_asserted = readSRST();
128         return ERROR_OK;
129 }
130
131 static int zy1000_power_dropout(int *dropout)
132 {
133         *dropout = readPowerDropout();
134         return ERROR_OK;
135 }
136
137 void zy1000_reset(int trst, int srst)
138 {
139         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
140
141         /* flush the JTAG FIFO. Not flushing the queue before messing with
142          * reset has such interesting bugs as causing hard to reproduce
143          * RCLK bugs as RCLK will stop responding when TRST is asserted
144          */
145         waitIdle();
146
147         if (!srst)
148         {
149                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
150         }
151         else
152         {
153                 /* Danger!!! if clk != 0 when in
154                  * idle in TAP_IDLE, reset halt on str912 will fail.
155                  */
156                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
157         }
158
159         if (!trst)
160         {
161                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
162         }
163         else
164         {
165                 /* assert reset */
166                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
167         }
168
169         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
170         {
171                 /* we're now in the RESET state until trst is deasserted */
172                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
173         } else
174         {
175                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
176                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
177         }
178
179         /* wait for srst to float back up */
180         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
181                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
182         {
183                 bool first = true;
184                 long long start;
185                 long total = 0;
186                 for (;;)
187                 {       
188                         // We don't want to sense our own reset, so we clear here.
189                         // There is of course a timing hole where we could loose
190                         // a "real" reset.
191                         if (!readSRST())
192                         {
193                                 if (total > 1)
194                                 {
195                                   LOG_USER("SRST took %dms to deassert", (int)total);
196                                 }
197                                 break;
198                         }
199
200                         if (first)
201                         {
202                             first = false;
203                             start = timeval_ms();
204                         }
205
206                         total = timeval_ms() - start;
207
208                         if (total > 5000)
209                         {
210                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
211                             break;
212                         }
213                 }
214
215         }
216 }
217
218 int zy1000_speed(int speed)
219 {
220         /* flush JTAG master FIFO before setting speed */
221         waitIdle();
222
223         if (speed == 0)
224         {
225                 /*0 means RCLK*/
226                 speed = 0;
227                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
228                 LOG_DEBUG("jtag_speed using RCLK");
229         }
230         else
231         {
232                 if (speed > 8190 || speed < 2)
233                 {
234                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
235                         return ERROR_INVALID_ARGUMENTS;
236                 }
237
238                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
239                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
240                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
241         }
242         return ERROR_OK;
243 }
244
245 static bool savePower;
246
247
248 static void setPower(bool power)
249 {
250         savePower = power;
251         if (power)
252         {
253                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
254         } else
255         {
256                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
257         }
258 }
259
260 COMMAND_HANDLER(handle_power_command)
261 {
262         switch (CMD_ARGC)
263         {
264         case 1: {
265                 bool enable;
266                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
267                 setPower(enable);
268                 // fall through
269         }
270         case 0:
271                 LOG_INFO("Target power %s", savePower ? "on" : "off");
272                 break;
273         default:
274                 return ERROR_INVALID_ARGUMENTS;
275         }
276
277         return ERROR_OK;
278 }
279
280 #if !BUILD_ECOSBOARD
281 static char *tcp_server = "notspecified";
282 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
283 {
284         if (argc != 2)
285                 return JIM_ERR;
286
287         tcp_server = strdup(Jim_GetString(argv[1], NULL));
288
289         return JIM_OK;
290 }
291 #endif
292
293 #if BUILD_ECOSBOARD
294 /* Give TELNET a way to find out what version this is */
295 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
296 {
297         if ((argc < 1) || (argc > 3))
298                 return JIM_ERR;
299         const char *version_str = NULL;
300
301         if (argc == 1)
302         {
303                 version_str = ZYLIN_OPENOCD_VERSION;
304         } else
305         {
306                 const char *str = Jim_GetString(argv[1], NULL);
307                 const char *str2 = NULL;
308                 if (argc > 2)
309                         str2 = Jim_GetString(argv[2], NULL);
310                 if (strcmp("openocd", str) == 0)
311                 {
312                         version_str = ZYLIN_OPENOCD;
313                 }
314                 else if (strcmp("zy1000", str) == 0)
315                 {
316                         version_str = ZYLIN_VERSION;
317                 }
318                 else if (strcmp("date", str) == 0)
319                 {
320                         version_str = ZYLIN_DATE;
321                 }
322                 else if (strcmp("time", str) == 0)
323                 {
324                         version_str = ZYLIN_TIME;
325                 }
326                 else if (strcmp("pcb", str) == 0)
327                 {
328 #ifdef CYGPKG_HAL_NIOS2
329                         version_str="c";
330 #else
331                         version_str="b";
332 #endif
333                 }
334 #ifdef CYGPKG_HAL_NIOS2
335                 else if (strcmp("fpga", str) == 0)
336                 {
337
338                         /* return a list of 32 bit integers to describe the expected
339                          * and actual FPGA
340                          */
341                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
342                         uint32_t id, timestamp;
343                         HAL_READ_UINT32(SYSID_BASE, id);
344                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
345                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
346                         version_str = fpga_id;
347                         if ((argc>2) && (strcmp("time", str2) == 0))
348                         {
349                             time_t last_mod = timestamp;
350                             char * t = ctime (&last_mod) ;
351                             t[strlen(t)-1] = 0;
352                             version_str = t;
353                         }
354                 }
355 #endif
356
357                 else
358                 {
359                         return JIM_ERR;
360                 }
361         }
362
363         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
364
365         return JIM_OK;
366 }
367 #endif
368
369 #ifdef CYGPKG_HAL_NIOS2
370
371
372 struct info_forward
373 {
374         void *data;
375         struct cyg_upgrade_info *upgraded_file;
376 };
377
378 static void report_info(void *data, const char * format, va_list args)
379 {
380         char *s = alloc_vprintf(format, args);
381         LOG_USER_N("%s", s);
382         free(s);
383 }
384
385 struct cyg_upgrade_info firmware_info =
386 {
387                 (uint8_t *)0x84000000,
388                 "/ram/firmware.phi",
389                 "Firmware",
390                 0x0300000,
391                 0x1f00000 -
392                 0x0300000,
393                 "ZylinNiosFirmware\n",
394                 report_info,
395 };
396
397 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
398 {
399         if (argc != 2)
400                 return JIM_ERR;
401
402         int length;
403         const char *str = Jim_GetString(argv[1], &length);
404
405         /* */
406         int tmpFile;
407         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
408         {
409                 return JIM_ERR;
410         }
411         bool success;
412         success = write(tmpFile, str, length) == length;
413         close(tmpFile);
414         if (!success)
415                 return JIM_ERR;
416
417         if (!cyg_firmware_upgrade(NULL, firmware_info))
418                 return JIM_ERR;
419
420         return JIM_OK;
421 }
422 #endif
423
424 static int
425 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
426                                                                    int argc,
427                 Jim_Obj * const *argv)
428 {
429         if (argc != 1)
430         {
431                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
432                 return JIM_ERR;
433         }
434
435         uint32_t status;
436         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
437
438         Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
439
440         return JIM_OK;
441 }
442
443
444
445 int zy1000_quit(void)
446 {
447
448         return ERROR_OK;
449 }
450
451
452
453 int interface_jtag_execute_queue(void)
454 {
455         uint32_t empty;
456
457         waitIdle();
458         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
459         /* clear JTAG error register */
460         ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
461
462         if ((empty&0x400) != 0)
463         {
464                 LOG_WARNING("RCLK timeout");
465                 /* the error is informative only as we don't want to break the firmware if there
466                  * is a false positive.
467                  */
468 //              return ERROR_FAIL;
469         }
470         return ERROR_OK;
471 }
472
473
474
475
476
477 static uint32_t getShiftValue(void)
478 {
479         uint32_t value;
480         waitIdle();
481         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
482         VERBOSE(LOG_INFO("getShiftValue %08x", value));
483         return value;
484 }
485 #if 0
486 static uint32_t getShiftValueFlip(void)
487 {
488         uint32_t value;
489         waitIdle();
490         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
491         VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
492         return value;
493 }
494 #endif
495
496 #if 0
497 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, uint32_t value)
498 {
499         VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
500         uint32_t a,b;
501         a = state;
502         b = endState;
503         ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
504         ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
505         VERBOSE(getShiftValueFlip());
506 }
507 #endif
508
509 // here we shuffle N bits out/in
510 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause, tap_state_t shiftState, tap_state_t end_state)
511 {
512         tap_state_t pause_state = shiftState;
513         for (int j = 0; j < num_bits; j += 32)
514         {
515                 int k = num_bits - j;
516                 if (k > 32)
517                 {
518                         k = 32;
519                         /* we have more to shift out */
520                 } else if (pause)
521                 {
522                         /* this was the last to shift out this time */
523                         pause_state = end_state;
524                 }
525
526                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
527                 // bits are pushed out LSB to MSB
528                 uint32_t value;
529                 value = 0;
530                 if (out_value != NULL)
531                 {
532                         for (int l = 0; l < k; l += 8)
533                         {
534                                 value|=out_value[(j + l)/8]<<l;
535                         }
536                 }
537                 /* mask away unused bits for easier debugging */
538                 if (k < 32)
539                 {
540                         value&=~(((uint32_t)0xffffffff) << k);
541                 } else
542                 {
543                         /* Shifting by >= 32 is not defined by the C standard
544                          * and will in fact shift by &0x1f bits on nios */
545                 }
546
547                 shiftValueInner(shiftState, pause_state, k, value);
548
549                 if (in_value != NULL)
550                 {
551                         // data in, LSB to MSB
552                         value = getShiftValue();
553                         // we're shifting in data to MSB, shift data to be aligned for returning the value
554                         value >>= 32-k;
555
556                         for (int l = 0; l < k; l += 8)
557                         {
558                                 in_value[(j + l)/8]=(value >> l)&0xff;
559                         }
560                 }
561         }
562 }
563
564 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
565 {
566         for (int i = 0; i < num_fields; i++)
567         {
568                 scanBits(fields[i].out_value,
569                                 fields[i].in_value,
570                                 fields[i].num_bits,
571                                 (i == num_fields-1),
572                                 shiftState,
573                                 end_state);
574         }
575 }
576
577 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
578 {
579         int scan_size = 0;
580         struct jtag_tap *tap, *nextTap;
581         tap_state_t pause_state = TAP_IRSHIFT;
582
583         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
584         {
585                 nextTap = jtag_tap_next_enabled(tap);
586                 if (nextTap==NULL)
587                 {
588                         pause_state = state;
589                 }
590                 scan_size = tap->ir_length;
591
592                 /* search the list */
593                 if (tap == active)
594                 {
595                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
596                         /* update device information */
597                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
598
599                         tap->bypass = 0;
600                 } else
601                 {
602                         /* if a device isn't listed, set it to BYPASS */
603                         assert(scan_size <= 32);
604                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
605
606                         tap->bypass = 1;
607                 }
608         }
609
610         return ERROR_OK;
611 }
612
613
614
615
616
617 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
618 {
619         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
620         return ERROR_OK;
621 }
622
623 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
624 {
625         struct jtag_tap *tap, *nextTap;
626         tap_state_t pause_state = TAP_DRSHIFT;
627         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
628         {
629                 nextTap = jtag_tap_next_enabled(tap);
630                 if (nextTap==NULL)
631                 {
632                         pause_state = state;
633                 }
634
635                 /* Find a range of fields to write to this tap */
636                 if (tap == active)
637                 {
638                         assert(!tap->bypass);
639
640                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
641                 } else
642                 {
643                         /* Shift out a 0 for disabled tap's */
644                         assert(tap->bypass);
645                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
646                 }
647         }
648         return ERROR_OK;
649 }
650
651 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
652 {
653         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
654         return ERROR_OK;
655 }
656
657 int interface_jtag_add_tlr()
658 {
659         setCurrentState(TAP_RESET);
660         return ERROR_OK;
661 }
662
663
664 int interface_jtag_add_reset(int req_trst, int req_srst)
665 {
666         zy1000_reset(req_trst, req_srst);
667         return ERROR_OK;
668 }
669
670 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
671 {
672         /* num_cycles can be 0 */
673         setCurrentState(clockstate);
674
675         /* execute num_cycles, 32 at the time. */
676         int i;
677         for (i = 0; i < num_cycles; i += 32)
678         {
679                 int num;
680                 num = 32;
681                 if (num_cycles-i < num)
682                 {
683                         num = num_cycles-i;
684                 }
685                 shiftValueInner(clockstate, clockstate, num, 0);
686         }
687
688 #if !TEST_MANUAL()
689         /* finish in end_state */
690         setCurrentState(state);
691 #else
692         tap_state_t t = TAP_IDLE;
693         /* test manual drive code on any target */
694         int tms;
695         uint8_t tms_scan = tap_get_tms_path(t, state);
696         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
697
698         for (i = 0; i < tms_count; i++)
699         {
700                 tms = (tms_scan >> i) & 1;
701                 waitIdle();
702                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
703         }
704         waitIdle();
705         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
706 #endif
707
708         return ERROR_OK;
709 }
710
711 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
712 {
713         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
714 }
715
716 int interface_jtag_add_clocks(int num_cycles)
717 {
718         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
719 }
720
721 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
722 {
723         /*wait for the fifo to be empty*/
724         waitIdle();
725
726         for (unsigned i = 0; i < num_bits; i++)
727         {
728                 int tms;
729
730                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
731                 {
732                         tms = 0;
733                 }
734                 else
735                 {
736                         tms = 1;
737                 }
738
739                 waitIdle();
740                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
741         }
742
743         waitIdle();
744         if (state != TAP_INVALID)
745         {
746                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
747         } else
748         {
749                 /* this would be normal if we are switching to SWD mode */
750         }
751         return ERROR_OK;
752 }
753
754 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
755 {
756         int state_count;
757         int tms = 0;
758
759         state_count = 0;
760
761         tap_state_t cur_state = cmd_queue_cur_state;
762
763         uint8_t seq[16];
764         memset(seq, 0, sizeof(seq));
765         assert(num_states < (int)((sizeof(seq) * 8)));
766
767         while (num_states)
768         {
769                 if (tap_state_transition(cur_state, false) == path[state_count])
770                 {
771                         tms = 0;
772                 }
773                 else if (tap_state_transition(cur_state, true) == path[state_count])
774                 {
775                         tms = 1;
776                 }
777                 else
778                 {
779                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
780                         exit(-1);
781                 }
782
783                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
784
785                 cur_state = path[state_count];
786                 state_count++;
787                 num_states--;
788         }
789
790         return interface_add_tms_seq(state_count, seq, cur_state);
791 }
792
793 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
794 {
795         /* bypass bits before and after */
796         int pre_bits = 0;
797         int post_bits = 0;
798
799         bool found = false;
800         struct jtag_tap *cur_tap, *nextTap;
801         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
802         {
803                 nextTap = jtag_tap_next_enabled(cur_tap);
804                 if (cur_tap == tap)
805                 {
806                         found = true;
807                 } else
808                 {
809                         if (found)
810                         {
811                                 post_bits++;
812                         } else
813                         {
814                                 pre_bits++;
815                         }
816                 }
817         }
818         *pre = pre_bits;
819         *post = post_bits;
820 }
821
822 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
823 {
824
825         int pre_bits;
826         int post_bits;
827         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
828
829         if (pre_bits + post_bits + 6 > 32)
830         {
831                 int i;
832                 for (i = 0; i < count; i++)
833                 {
834                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
835                         buffer += 4;
836                 }
837         } else
838         {
839                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
840                 int i;
841                 for (i = 0; i < count - 1; i++)
842                 {
843                         /* Fewer pokes means we get to use the FIFO more efficiently */
844                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
845                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
846                         buffer += 4;
847                 }
848                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
849                 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
850         }
851 }
852
853
854
855 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
856 {
857 #if 0
858         int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
859         return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
860 #else
861         static const int bits[] = {32, 2};
862         uint32_t values[] = {0, 0};
863
864         /* FIX!!!!!! the target_write_memory() API started this nasty problem
865          * with unaligned uint32_t * pointers... */
866         const uint8_t *t = (const uint8_t *)data;
867
868
869         /* bypass bits before and after */
870         int pre_bits;
871         int post_bits;
872         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
873
874         bool found = false;
875         struct jtag_tap *cur_tap, *nextTap;
876         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
877         {
878                 nextTap = jtag_tap_next_enabled(cur_tap);
879                 if (cur_tap == tap)
880                 {
881                         found = true;
882                 } else
883                 {
884                         if (found)
885                         {
886                                 post_bits++;
887                         } else
888                         {
889                                 pre_bits++;
890                         }
891                 }
892         }
893
894         post_bits+=2;
895
896
897         while (--count > 0)
898         {
899                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
900
901                 uint32_t value;
902                 value = *t++;
903                 value |= (*t++<<8);
904                 value |= (*t++<<16);
905                 value |= (*t++<<24);
906
907                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
908                 /* minimum 2 bits */
909                 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
910
911 #if 1
912                 /* copy & paste from arm11_dbgtap.c */
913                 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
914
915                 waitIdle();
916                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
917                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
918                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
919                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
920                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
921                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
922                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
923                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
924                 /* we don't have to wait for the queue to empty here. waitIdle();        */
925                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
926 #else
927                 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
928                 {
929                         TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
930                 };
931
932                 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
933                         arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
934 #endif
935         }
936
937         values[0] = *t++;
938         values[0] |= (*t++<<8);
939         values[0] |= (*t++<<16);
940         values[0] |= (*t++<<24);
941
942         /* This will happen on the last iteration updating the current tap state
943          * so we don't have to track it during the common code path */
944         jtag_add_dr_out(tap,
945                 2,
946                 bits,
947                 values,
948                 TAP_IDLE);
949
950         return jtag_execute_queue();
951 #endif
952 }
953
954
955 static const struct command_registration zy1000_commands[] = {
956         {
957                 .name = "power",
958                 .handler = handle_power_command,
959                 .mode = COMMAND_ANY,
960                 .help = "Turn power switch to target on/off. "
961                         "With no arguments, prints status.",
962                 .usage = "('on'|'off)",
963         },
964 #if BUILD_ECOSBOARD
965         {
966                 .name = "zy1000_version",
967                 .mode = COMMAND_ANY,
968                 .jim_handler = jim_zy1000_version,
969                 .help = "Print version info for zy1000.",
970                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
971         },
972 #else
973         {
974                 .name = "zy1000_server",
975                 .mode = COMMAND_ANY,
976                 .jim_handler = jim_zy1000_server,
977                 .help = "Tcpip address for ZY1000 server.",
978                 .usage = "address",
979         },
980 #endif
981         {
982                 .name = "powerstatus",
983                 .mode = COMMAND_ANY,
984                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
985                 .help = "Returns power status of target",
986         },
987 #ifdef CYGPKG_HAL_NIOS2
988         {
989                 .name = "updatezy1000firmware",
990                 .mode = COMMAND_ANY,
991                 .jim_handler = jim_zy1000_writefirmware,
992                 .help = "writes firmware to flash",
993                 /* .usage = "some_string", */
994         },
995 #endif
996         COMMAND_REGISTRATION_DONE
997 };
998
999
1000 static int tcp_ip = -1;
1001
1002 /* Write large packets if we can */
1003 static size_t out_pos;
1004 static uint8_t out_buffer[16384];
1005 static size_t in_pos;
1006 static size_t in_write;
1007 static uint8_t in_buffer[16384];
1008
1009 static bool flush_writes(void)
1010 {
1011         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1012         out_pos = 0;
1013         return ok;
1014 }
1015
1016 static bool writeLong(uint32_t l)
1017 {
1018         int i;
1019         for (i = 0; i < 4; i++)
1020         {
1021                 uint8_t c = (l >> (i*8))&0xff;
1022                 out_buffer[out_pos++] = c;
1023                 if (out_pos >= sizeof(out_buffer))
1024                 {
1025                         if (!flush_writes())
1026                         {
1027                                 return false;
1028                         }
1029                 }
1030         }
1031         return true;
1032 }
1033
1034 static bool readLong(uint32_t *out_data)
1035 {
1036         if (out_pos > 0)
1037         {
1038                 if (!flush_writes())
1039                 {
1040                         return false;
1041                 }
1042         }
1043
1044         uint32_t data = 0;
1045         int i;
1046         for (i = 0; i < 4; i++)
1047         {
1048                 uint8_t c;
1049                 if (in_pos == in_write)
1050                 {
1051                         /* read more */
1052                         int t;
1053                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1054                         if (t < 1)
1055                         {
1056                                 return false;
1057                         }
1058                         in_write = (size_t) t;
1059                         in_pos = 0;
1060                 }
1061                 c = in_buffer[in_pos++];
1062
1063                 data |= (c << (i*8));
1064         }
1065         *out_data = data;
1066         return true;
1067 }
1068
1069 enum ZY1000_CMD
1070 {
1071         ZY1000_CMD_POKE = 0x0,
1072         ZY1000_CMD_PEEK = 0x8,
1073         ZY1000_CMD_SLEEP = 0x1,
1074 };
1075
1076
1077 #if !BUILD_ECOSBOARD
1078
1079 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1080 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1081
1082 /* We initialize this late since we need to know the server address
1083  * first.
1084  */
1085 static void tcpip_open(void)
1086 {
1087         if (tcp_ip >= 0)
1088                 return;
1089
1090         struct sockaddr_in echoServAddr; /* Echo server address */
1091
1092         /* Create a reliable, stream socket using TCP */
1093         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1094         {
1095                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1096                 exit(-1);
1097         }
1098
1099         /* Construct the server address structure */
1100         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1101         echoServAddr.sin_family = AF_INET; /* Internet address family */
1102         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1103         echoServAddr.sin_port = htons(7777); /* Server port */
1104
1105         /* Establish the connection to the echo server */
1106         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1107         {
1108                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1109                 exit(-1);
1110         }
1111
1112         int flag = 1;
1113         setsockopt(tcp_ip,      /* socket affected */
1114                         IPPROTO_TCP,            /* set option at TCP level */
1115                         TCP_NODELAY,            /* name of option */
1116                         (char *)&flag,          /* the cast is historical cruft */
1117                         sizeof(int));           /* length of option value */
1118
1119 }
1120
1121
1122 /* send a poke */
1123 void zy1000_tcpout(uint32_t address, uint32_t data)
1124 {
1125         tcpip_open();
1126         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1127                         !writeLong(data))
1128         {
1129                 fprintf(stderr, "Could not write to zy1000 server\n");
1130                 exit(-1);
1131         }
1132 }
1133
1134 uint32_t zy1000_tcpin(uint32_t address)
1135 {
1136         tcpip_open();
1137         uint32_t data;
1138         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1139                         !readLong(&data))
1140         {
1141                 fprintf(stderr, "Could not read from zy1000 server\n");
1142                 exit(-1);
1143         }
1144         return data;
1145 }
1146
1147 int interface_jtag_add_sleep(uint32_t us)
1148 {
1149         tcpip_open();
1150         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1151                         !writeLong(us))
1152         {
1153                 fprintf(stderr, "Could not read from zy1000 server\n");
1154                 exit(-1);
1155         }
1156         return ERROR_OK;
1157 }
1158
1159
1160 #endif
1161
1162 #if BUILD_ECOSBOARD
1163 static char tcpip_stack[2048];
1164
1165 static cyg_thread tcpip_thread_object;
1166 static cyg_handle_t tcpip_thread_handle;
1167
1168 /* Infinite loop peeking & poking */
1169 static void tcpipserver(void)
1170 {
1171         for (;;)
1172         {
1173                 uint32_t address;
1174                 if (!readLong(&address))
1175                         return;
1176                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1177                 address &= 0xffffff;
1178                 switch (c)
1179                 {
1180                         case ZY1000_CMD_POKE:
1181                         {
1182                                 uint32_t data;
1183                                 if (!readLong(&data))
1184                                         return;
1185                                 address &= ~0x80000000;
1186                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1187                                 break;
1188                         }
1189                         case ZY1000_CMD_PEEK:
1190                         {
1191                                 uint32_t data;
1192                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1193                                 if (!writeLong(data))
1194                                         return;
1195                                 break;
1196                         }
1197                         case ZY1000_CMD_SLEEP:
1198                         {
1199                                 uint32_t data;
1200                                 if (!readLong(&data))
1201                                         return;
1202                                 jtag_sleep(data);
1203                                 break;
1204                         }
1205                         default:
1206                                 return;
1207                 }
1208         }
1209 }
1210
1211
1212 static void tcpip_server(cyg_addrword_t data)
1213 {
1214         int so_reuseaddr_option = 1;
1215
1216         int fd;
1217         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1218         {
1219                 LOG_ERROR("error creating socket: %s", strerror(errno));
1220                 exit(-1);
1221         }
1222
1223         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1224                         sizeof(int));
1225
1226         struct sockaddr_in sin;
1227         unsigned int address_size;
1228         address_size = sizeof(sin);
1229         memset(&sin, 0, sizeof(sin));
1230         sin.sin_family = AF_INET;
1231         sin.sin_addr.s_addr = INADDR_ANY;
1232         sin.sin_port = htons(7777);
1233
1234         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1235         {
1236                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1237                 exit(-1);
1238         }
1239
1240         if (listen(fd, 1) == -1)
1241         {
1242                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1243                 exit(-1);
1244         }
1245
1246
1247         for (;;)
1248         {
1249                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1250                 if (tcp_ip < 0)
1251                 {
1252                         continue;
1253                 }
1254
1255                 int flag = 1;
1256                 setsockopt(tcp_ip,      /* socket affected */
1257                                 IPPROTO_TCP,            /* set option at TCP level */
1258                                 TCP_NODELAY,            /* name of option */
1259                                 (char *)&flag,          /* the cast is historical cruft */
1260                                 sizeof(int));           /* length of option value */
1261
1262                 bool save_poll = jtag_poll_get_enabled();
1263
1264                 /* polling will screw up the "connection" */
1265                 jtag_poll_set_enabled(false);
1266
1267                 tcpipserver();
1268
1269                 jtag_poll_set_enabled(save_poll);
1270
1271                 close(tcp_ip);
1272
1273         }
1274         close(fd);
1275
1276 }
1277
1278 int interface_jtag_add_sleep(uint32_t us)
1279 {
1280         jtag_sleep(us);
1281         return ERROR_OK;
1282 }
1283
1284 #endif
1285
1286
1287 int zy1000_init(void)
1288 {
1289 #if BUILD_ECOSBOARD
1290         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1291 #endif
1292
1293         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1294
1295         setPower(true); // on by default
1296
1297
1298          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1299         zy1000_reset(0, 0);
1300         zy1000_speed(jtag_get_speed());
1301
1302
1303 #if BUILD_ECOSBOARD
1304         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1305                         (void *) tcpip_stack, sizeof(tcpip_stack),
1306                         &tcpip_thread_handle, &tcpip_thread_object);
1307         cyg_thread_resume(tcpip_thread_handle);
1308 #endif
1309
1310         return ERROR_OK;
1311 }
1312
1313
1314
1315 struct jtag_interface zy1000_interface =
1316 {
1317         .name = "ZY1000",
1318         .supported = DEBUG_CAP_TMS_SEQ,
1319         .execute_queue = NULL,
1320         .speed = zy1000_speed,
1321         .commands = zy1000_commands,
1322         .init = zy1000_init,
1323         .quit = zy1000_quit,
1324         .khz = zy1000_khz,
1325         .speed_div = zy1000_speed_div,
1326         .power_dropout = zy1000_power_dropout,
1327         .srst_asserted = zy1000_srst_asserted,
1328 };
1329