debug feature: jtagtcpip, improve performance
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75
76 /* The software needs to check if it's in RCLK mode or not */
77 static bool zy1000_rclk = false;
78
79 static int zy1000_khz(int khz, int *jtag_speed)
80 {
81         if (khz == 0)
82         {
83                 *jtag_speed = 0;
84         }
85         else
86         {
87                 *jtag_speed = 64000/khz;
88         }
89         return ERROR_OK;
90 }
91
92 static int zy1000_speed_div(int speed, int *khz)
93 {
94         if (speed == 0)
95         {
96                 *khz = 0;
97         }
98         else
99         {
100                 *khz = 64000/speed;
101         }
102
103         return ERROR_OK;
104 }
105
106 static bool readPowerDropout(void)
107 {
108         uint32_t state;
109         // sample and clear power dropout
110         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
111         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
112         bool powerDropout;
113         powerDropout = (state & 0x80) != 0;
114         return powerDropout;
115 }
116
117
118 static bool readSRST(void)
119 {
120         uint32_t state;
121         // sample and clear SRST sensing
122         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
123         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
124         bool srstAsserted;
125         srstAsserted = (state & 0x40) != 0;
126         return srstAsserted;
127 }
128
129 static int zy1000_srst_asserted(int *srst_asserted)
130 {
131         *srst_asserted = readSRST();
132         return ERROR_OK;
133 }
134
135 static int zy1000_power_dropout(int *dropout)
136 {
137         *dropout = readPowerDropout();
138         return ERROR_OK;
139 }
140
141 void zy1000_reset(int trst, int srst)
142 {
143         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
144
145         /* flush the JTAG FIFO. Not flushing the queue before messing with
146          * reset has such interesting bugs as causing hard to reproduce
147          * RCLK bugs as RCLK will stop responding when TRST is asserted
148          */
149         waitIdle();
150
151         if (!srst)
152         {
153                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
154         }
155         else
156         {
157                 /* Danger!!! if clk != 0 when in
158                  * idle in TAP_IDLE, reset halt on str912 will fail.
159                  */
160                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
161         }
162
163         if (!trst)
164         {
165                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
166         }
167         else
168         {
169                 /* assert reset */
170                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
171         }
172
173         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
174         {
175                 /* we're now in the RESET state until trst is deasserted */
176                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
177         } else
178         {
179                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
180                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
181         }
182
183         /* wait for srst to float back up */
184         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
185                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
186         {
187                 bool first = true;
188                 long long start = 0;
189                 long total = 0;
190                 for (;;)
191                 {       
192                         // We don't want to sense our own reset, so we clear here.
193                         // There is of course a timing hole where we could loose
194                         // a "real" reset.
195                         if (!readSRST())
196                         {
197                                 if (total > 1)
198                                 {
199                                   LOG_USER("SRST took %dms to deassert", (int)total);
200                                 }
201                                 break;
202                         }
203
204                         if (first)
205                         {
206                             first = false;
207                             start = timeval_ms();
208                         }
209
210                         total = timeval_ms() - start;
211
212                         keep_alive();
213
214                         if (total > 5000)
215                         {
216                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
217                             break;
218                         }
219                 }
220
221         }
222 }
223
224 int zy1000_speed(int speed)
225 {
226         /* flush JTAG master FIFO before setting speed */
227         waitIdle();
228
229         zy1000_rclk = false;
230
231         if (speed == 0)
232         {
233                 /*0 means RCLK*/
234                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
235                 zy1000_rclk = true;
236                 LOG_DEBUG("jtag_speed using RCLK");
237         }
238         else
239         {
240                 if (speed > 8190 || speed < 2)
241                 {
242                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
243                         return ERROR_INVALID_ARGUMENTS;
244                 }
245
246                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
247                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
248                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
249         }
250         return ERROR_OK;
251 }
252
253 static bool savePower;
254
255
256 static void setPower(bool power)
257 {
258         savePower = power;
259         if (power)
260         {
261                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
262         } else
263         {
264                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
265         }
266 }
267
268 COMMAND_HANDLER(handle_power_command)
269 {
270         switch (CMD_ARGC)
271         {
272         case 1: {
273                 bool enable;
274                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
275                 setPower(enable);
276                 // fall through
277         }
278         case 0:
279                 LOG_INFO("Target power %s", savePower ? "on" : "off");
280                 break;
281         default:
282                 return ERROR_INVALID_ARGUMENTS;
283         }
284
285         return ERROR_OK;
286 }
287
288 #if !BUILD_ECOSBOARD
289 static char *tcp_server = "notspecified";
290 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
291 {
292         if (argc != 2)
293                 return JIM_ERR;
294
295         tcp_server = strdup(Jim_GetString(argv[1], NULL));
296
297         return JIM_OK;
298 }
299 #endif
300
301 #if BUILD_ECOSBOARD
302 /* Give TELNET a way to find out what version this is */
303 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
304 {
305         if ((argc < 1) || (argc > 3))
306                 return JIM_ERR;
307         const char *version_str = NULL;
308
309         if (argc == 1)
310         {
311                 version_str = ZYLIN_OPENOCD_VERSION;
312         } else
313         {
314                 const char *str = Jim_GetString(argv[1], NULL);
315                 const char *str2 = NULL;
316                 if (argc > 2)
317                         str2 = Jim_GetString(argv[2], NULL);
318                 if (strcmp("openocd", str) == 0)
319                 {
320                         version_str = ZYLIN_OPENOCD;
321                 }
322                 else if (strcmp("zy1000", str) == 0)
323                 {
324                         version_str = ZYLIN_VERSION;
325                 }
326                 else if (strcmp("date", str) == 0)
327                 {
328                         version_str = ZYLIN_DATE;
329                 }
330                 else if (strcmp("time", str) == 0)
331                 {
332                         version_str = ZYLIN_TIME;
333                 }
334                 else if (strcmp("pcb", str) == 0)
335                 {
336 #ifdef CYGPKG_HAL_NIOS2
337                         version_str="c";
338 #else
339                         version_str="b";
340 #endif
341                 }
342 #ifdef CYGPKG_HAL_NIOS2
343                 else if (strcmp("fpga", str) == 0)
344                 {
345
346                         /* return a list of 32 bit integers to describe the expected
347                          * and actual FPGA
348                          */
349                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
350                         uint32_t id, timestamp;
351                         HAL_READ_UINT32(SYSID_BASE, id);
352                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
353                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
354                         version_str = fpga_id;
355                         if ((argc>2) && (strcmp("time", str2) == 0))
356                         {
357                             time_t last_mod = timestamp;
358                             char * t = ctime (&last_mod) ;
359                             t[strlen(t)-1] = 0;
360                             version_str = t;
361                         }
362                 }
363 #endif
364
365                 else
366                 {
367                         return JIM_ERR;
368                 }
369         }
370
371         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
372
373         return JIM_OK;
374 }
375 #endif
376
377 #ifdef CYGPKG_HAL_NIOS2
378
379
380 struct info_forward
381 {
382         void *data;
383         struct cyg_upgrade_info *upgraded_file;
384 };
385
386 static void report_info(void *data, const char * format, va_list args)
387 {
388         char *s = alloc_vprintf(format, args);
389         LOG_USER_N("%s", s);
390         free(s);
391 }
392
393 struct cyg_upgrade_info firmware_info =
394 {
395                 (uint8_t *)0x84000000,
396                 "/ram/firmware.phi",
397                 "Firmware",
398                 0x0300000,
399                 0x1f00000 -
400                 0x0300000,
401                 "ZylinNiosFirmware\n",
402                 report_info,
403 };
404
405 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
406 {
407         if (argc != 2)
408                 return JIM_ERR;
409
410         int length;
411         const char *str = Jim_GetString(argv[1], &length);
412
413         /* */
414         int tmpFile;
415         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
416         {
417                 return JIM_ERR;
418         }
419         bool success;
420         success = write(tmpFile, str, length) == length;
421         close(tmpFile);
422         if (!success)
423                 return JIM_ERR;
424
425         if (!cyg_firmware_upgrade(NULL, firmware_info))
426                 return JIM_ERR;
427
428         return JIM_OK;
429 }
430 #endif
431
432 static int
433 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
434                                                                    int argc,
435                 Jim_Obj * const *argv)
436 {
437         if (argc != 1)
438         {
439                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
440                 return JIM_ERR;
441         }
442
443         bool dropout = readPowerDropout();
444
445         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
446
447         return JIM_OK;
448 }
449
450
451
452 int zy1000_quit(void)
453 {
454
455         return ERROR_OK;
456 }
457
458
459
460 int interface_jtag_execute_queue(void)
461 {
462         uint32_t empty;
463
464         waitIdle();
465
466         if (zy1000_rclk)
467         {
468                 /* Only check for errors when using RCLK to speed up
469                  * jtag over TCP/IP
470                  */
471                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
472                 /* clear JTAG error register */
473                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
474
475                 if ((empty&0x400) != 0)
476                 {
477                         LOG_WARNING("RCLK timeout");
478                         /* the error is informative only as we don't want to break the firmware if there
479                          * is a false positive.
480                          */
481         //              return ERROR_FAIL;
482                 }
483         }
484         return ERROR_OK;
485 }
486
487
488
489
490
491 static uint32_t getShiftValue(void)
492 {
493         uint32_t value;
494         waitIdle();
495         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
496         VERBOSE(LOG_INFO("getShiftValue %08x", value));
497         return value;
498 }
499 #if 0
500 static uint32_t getShiftValueFlip(void)
501 {
502         uint32_t value;
503         waitIdle();
504         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
505         VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
506         return value;
507 }
508 #endif
509
510 #if 0
511 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, uint32_t value)
512 {
513         VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
514         uint32_t a,b;
515         a = state;
516         b = endState;
517         ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
518         ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
519         VERBOSE(getShiftValueFlip());
520 }
521 #endif
522
523 // here we shuffle N bits out/in
524 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
525 {
526         tap_state_t pause_state = shiftState;
527         for (int j = 0; j < num_bits; j += 32)
528         {
529                 int k = num_bits - j;
530                 if (k > 32)
531                 {
532                         k = 32;
533                         /* we have more to shift out */
534                 } else if (pause_now)
535                 {
536                         /* this was the last to shift out this time */
537                         pause_state = end_state;
538                 }
539
540                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
541                 // bits are pushed out LSB to MSB
542                 uint32_t value;
543                 value = 0;
544                 if (out_value != NULL)
545                 {
546                         for (int l = 0; l < k; l += 8)
547                         {
548                                 value|=out_value[(j + l)/8]<<l;
549                         }
550                 }
551                 /* mask away unused bits for easier debugging */
552                 if (k < 32)
553                 {
554                         value&=~(((uint32_t)0xffffffff) << k);
555                 } else
556                 {
557                         /* Shifting by >= 32 is not defined by the C standard
558                          * and will in fact shift by &0x1f bits on nios */
559                 }
560
561                 shiftValueInner(shiftState, pause_state, k, value);
562
563                 if (in_value != NULL)
564                 {
565                         // data in, LSB to MSB
566                         value = getShiftValue();
567                         // we're shifting in data to MSB, shift data to be aligned for returning the value
568                         value >>= 32-k;
569
570                         for (int l = 0; l < k; l += 8)
571                         {
572                                 in_value[(j + l)/8]=(value >> l)&0xff;
573                         }
574                 }
575         }
576 }
577
578 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
579 {
580         for (int i = 0; i < num_fields; i++)
581         {
582                 scanBits(fields[i].out_value,
583                                 fields[i].in_value,
584                                 fields[i].num_bits,
585                                 (i == num_fields-1),
586                                 shiftState,
587                                 end_state);
588         }
589 }
590
591 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
592 {
593         int scan_size = 0;
594         struct jtag_tap *tap, *nextTap;
595         tap_state_t pause_state = TAP_IRSHIFT;
596
597         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
598         {
599                 nextTap = jtag_tap_next_enabled(tap);
600                 if (nextTap==NULL)
601                 {
602                         pause_state = state;
603                 }
604                 scan_size = tap->ir_length;
605
606                 /* search the list */
607                 if (tap == active)
608                 {
609                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
610                         /* update device information */
611                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
612
613                         tap->bypass = 0;
614                 } else
615                 {
616                         /* if a device isn't listed, set it to BYPASS */
617                         assert(scan_size <= 32);
618                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
619
620                         tap->bypass = 1;
621                 }
622         }
623
624         return ERROR_OK;
625 }
626
627
628
629
630
631 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
632 {
633         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
634         return ERROR_OK;
635 }
636
637 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
638 {
639         struct jtag_tap *tap, *nextTap;
640         tap_state_t pause_state = TAP_DRSHIFT;
641         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
642         {
643                 nextTap = jtag_tap_next_enabled(tap);
644                 if (nextTap==NULL)
645                 {
646                         pause_state = state;
647                 }
648
649                 /* Find a range of fields to write to this tap */
650                 if (tap == active)
651                 {
652                         assert(!tap->bypass);
653
654                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
655                 } else
656                 {
657                         /* Shift out a 0 for disabled tap's */
658                         assert(tap->bypass);
659                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
660                 }
661         }
662         return ERROR_OK;
663 }
664
665 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
666 {
667         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
668         return ERROR_OK;
669 }
670
671 int interface_jtag_add_tlr()
672 {
673         setCurrentState(TAP_RESET);
674         return ERROR_OK;
675 }
676
677
678 int interface_jtag_add_reset(int req_trst, int req_srst)
679 {
680         zy1000_reset(req_trst, req_srst);
681         return ERROR_OK;
682 }
683
684 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
685 {
686         /* num_cycles can be 0 */
687         setCurrentState(clockstate);
688
689         /* execute num_cycles, 32 at the time. */
690         int i;
691         for (i = 0; i < num_cycles; i += 32)
692         {
693                 int num;
694                 num = 32;
695                 if (num_cycles-i < num)
696                 {
697                         num = num_cycles-i;
698                 }
699                 shiftValueInner(clockstate, clockstate, num, 0);
700         }
701
702 #if !TEST_MANUAL()
703         /* finish in end_state */
704         setCurrentState(state);
705 #else
706         tap_state_t t = TAP_IDLE;
707         /* test manual drive code on any target */
708         int tms;
709         uint8_t tms_scan = tap_get_tms_path(t, state);
710         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
711
712         for (i = 0; i < tms_count; i++)
713         {
714                 tms = (tms_scan >> i) & 1;
715                 waitIdle();
716                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
717         }
718         waitIdle();
719         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
720 #endif
721
722         return ERROR_OK;
723 }
724
725 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
726 {
727         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
728 }
729
730 int interface_jtag_add_clocks(int num_cycles)
731 {
732         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
733 }
734
735 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
736 {
737         /*wait for the fifo to be empty*/
738         waitIdle();
739
740         for (unsigned i = 0; i < num_bits; i++)
741         {
742                 int tms;
743
744                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
745                 {
746                         tms = 0;
747                 }
748                 else
749                 {
750                         tms = 1;
751                 }
752
753                 waitIdle();
754                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
755         }
756
757         waitIdle();
758         if (state != TAP_INVALID)
759         {
760                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
761         } else
762         {
763                 /* this would be normal if we are switching to SWD mode */
764         }
765         return ERROR_OK;
766 }
767
768 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
769 {
770         int state_count;
771         int tms = 0;
772
773         state_count = 0;
774
775         tap_state_t cur_state = cmd_queue_cur_state;
776
777         uint8_t seq[16];
778         memset(seq, 0, sizeof(seq));
779         assert(num_states < (int)((sizeof(seq) * 8)));
780
781         while (num_states)
782         {
783                 if (tap_state_transition(cur_state, false) == path[state_count])
784                 {
785                         tms = 0;
786                 }
787                 else if (tap_state_transition(cur_state, true) == path[state_count])
788                 {
789                         tms = 1;
790                 }
791                 else
792                 {
793                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
794                         exit(-1);
795                 }
796
797                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
798
799                 cur_state = path[state_count];
800                 state_count++;
801                 num_states--;
802         }
803
804         return interface_add_tms_seq(state_count, seq, cur_state);
805 }
806
807 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
808 {
809         /* bypass bits before and after */
810         int pre_bits = 0;
811         int post_bits = 0;
812
813         bool found = false;
814         struct jtag_tap *cur_tap, *nextTap;
815         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
816         {
817                 nextTap = jtag_tap_next_enabled(cur_tap);
818                 if (cur_tap == tap)
819                 {
820                         found = true;
821                 } else
822                 {
823                         if (found)
824                         {
825                                 post_bits++;
826                         } else
827                         {
828                                 pre_bits++;
829                         }
830                 }
831         }
832         *pre = pre_bits;
833         *post = post_bits;
834 }
835
836 /*
837         static const int embeddedice_num_bits[] = {32, 6};
838         uint32_t values[2];
839
840         values[0] = value;
841         values[1] = (1 << 5) | reg_addr;
842
843         jtag_add_dr_out(tap,
844                         2,
845                         embeddedice_num_bits,
846                         values,
847                         TAP_IDLE);
848 */
849
850 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
851 {
852 #if 0
853         int i;
854         for (i = 0; i < count; i++)
855         {
856                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
857                 buffer += 4;
858         }
859 #else
860         int pre_bits;
861         int post_bits;
862         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
863
864         if ((pre_bits > 32) || (post_bits + 6 > 32))
865         {
866                 int i;
867                 for (i = 0; i < count; i++)
868                 {
869                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
870                         buffer += 4;
871                 }
872         } else
873         {
874                 int i;
875                 for (i = 0; i < count; i++)
876                 {
877                         /* Fewer pokes means we get to use the FIFO more efficiently */
878                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
879                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
880                         /* Danger! here we need to exit into the TAP_IDLE state to make
881                          * DCC pick up this value.
882                          */
883                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
884                         buffer += 4;
885                 }
886         }
887 #endif
888 }
889
890
891
892 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
893 {
894         /* bypass bits before and after */
895         int pre_bits;
896         int post_bits;
897         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
898         post_bits+=2;
899
900         if ((pre_bits > 32) || (post_bits > 32))
901         {
902                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
903                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
904         } else
905         {
906                 static const int bits[] = {32, 2};
907                 uint32_t values[] = {0, 0};
908
909                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
910                  * with unaligned uint32_t * pointers... */
911                 const uint8_t *t = (const uint8_t *)data;
912
913                 while (--count > 0)
914                 {
915 #if 1
916                         /* Danger! This code doesn't update cmd_queue_cur_state, so
917                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
918                          * this loop would fail!
919                          */
920                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
921
922                         uint32_t value;
923                         value = *t++;
924                         value |= (*t++<<8);
925                         value |= (*t++<<16);
926                         value |= (*t++<<24);
927
928                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
929                         /* minimum 2 bits */
930                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
931
932                         /* copy & paste from arm11_dbgtap.c */
933                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
934                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
935                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
936                          * or in the jtag registers module.
937                          */
938                         waitIdle();
939                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
940                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
941                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
942                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
943                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
944                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
945                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
946                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
947                         /* we don't have to wait for the queue to empty here */
948                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
949                         waitIdle();
950 #else
951                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
952                         {
953                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
954                         };
955
956                         values[0] = *t++;
957                         values[0] |= (*t++<<8);
958                         values[0] |= (*t++<<16);
959                         values[0] |= (*t++<<24);
960
961                         jtag_add_dr_out(tap,
962                                 2,
963                                 bits,
964                                 values,
965                                 TAP_IDLE);
966
967                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
968                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
969 #endif
970                 }
971
972                 values[0] = *t++;
973                 values[0] |= (*t++<<8);
974                 values[0] |= (*t++<<16);
975                 values[0] |= (*t++<<24);
976
977                 /* This will happen on the last iteration updating cmd_queue_cur_state
978                  * so we don't have to track it during the common code path
979                  */
980                 jtag_add_dr_out(tap,
981                         2,
982                         bits,
983                         values,
984                         TAP_IDLE);
985
986                 return jtag_execute_queue();
987         }
988 }
989
990
991 static const struct command_registration zy1000_commands[] = {
992         {
993                 .name = "power",
994                 .handler = handle_power_command,
995                 .mode = COMMAND_ANY,
996                 .help = "Turn power switch to target on/off. "
997                         "With no arguments, prints status.",
998                 .usage = "('on'|'off)",
999         },
1000 #if BUILD_ECOSBOARD
1001         {
1002                 .name = "zy1000_version",
1003                 .mode = COMMAND_ANY,
1004                 .jim_handler = jim_zy1000_version,
1005                 .help = "Print version info for zy1000.",
1006                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1007         },
1008 #else
1009         {
1010                 .name = "zy1000_server",
1011                 .mode = COMMAND_ANY,
1012                 .jim_handler = jim_zy1000_server,
1013                 .help = "Tcpip address for ZY1000 server.",
1014                 .usage = "address",
1015         },
1016 #endif
1017         {
1018                 .name = "powerstatus",
1019                 .mode = COMMAND_ANY,
1020                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1021                 .help = "Returns power status of target",
1022         },
1023 #ifdef CYGPKG_HAL_NIOS2
1024         {
1025                 .name = "updatezy1000firmware",
1026                 .mode = COMMAND_ANY,
1027                 .jim_handler = jim_zy1000_writefirmware,
1028                 .help = "writes firmware to flash",
1029                 /* .usage = "some_string", */
1030         },
1031 #endif
1032         COMMAND_REGISTRATION_DONE
1033 };
1034
1035
1036 static int tcp_ip = -1;
1037
1038 /* Write large packets if we can */
1039 static size_t out_pos;
1040 static uint8_t out_buffer[16384];
1041 static size_t in_pos;
1042 static size_t in_write;
1043 static uint8_t in_buffer[16384];
1044
1045 static bool flush_writes(void)
1046 {
1047         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1048         out_pos = 0;
1049         return ok;
1050 }
1051
1052 static bool writeLong(uint32_t l)
1053 {
1054         int i;
1055         for (i = 0; i < 4; i++)
1056         {
1057                 uint8_t c = (l >> (i*8))&0xff;
1058                 out_buffer[out_pos++] = c;
1059                 if (out_pos >= sizeof(out_buffer))
1060                 {
1061                         if (!flush_writes())
1062                         {
1063                                 return false;
1064                         }
1065                 }
1066         }
1067         return true;
1068 }
1069
1070 static bool readLong(uint32_t *out_data)
1071 {
1072         if (out_pos > 0)
1073         {
1074                 if (!flush_writes())
1075                 {
1076                         return false;
1077                 }
1078         }
1079
1080         uint32_t data = 0;
1081         int i;
1082         for (i = 0; i < 4; i++)
1083         {
1084                 uint8_t c;
1085                 if (in_pos == in_write)
1086                 {
1087                         /* read more */
1088                         int t;
1089                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1090                         if (t < 1)
1091                         {
1092                                 return false;
1093                         }
1094                         in_write = (size_t) t;
1095                         in_pos = 0;
1096                 }
1097                 c = in_buffer[in_pos++];
1098
1099                 data |= (c << (i*8));
1100         }
1101         *out_data = data;
1102         return true;
1103 }
1104
1105 enum ZY1000_CMD
1106 {
1107         ZY1000_CMD_POKE = 0x0,
1108         ZY1000_CMD_PEEK = 0x8,
1109         ZY1000_CMD_SLEEP = 0x1,
1110         ZY1000_CMD_WAITIDLE = 2
1111 };
1112
1113
1114 #if !BUILD_ECOSBOARD
1115
1116 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1117 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1118
1119 /* We initialize this late since we need to know the server address
1120  * first.
1121  */
1122 static void tcpip_open(void)
1123 {
1124         if (tcp_ip >= 0)
1125                 return;
1126
1127         struct sockaddr_in echoServAddr; /* Echo server address */
1128
1129         /* Create a reliable, stream socket using TCP */
1130         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1131         {
1132                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1133                 exit(-1);
1134         }
1135
1136         /* Construct the server address structure */
1137         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1138         echoServAddr.sin_family = AF_INET; /* Internet address family */
1139         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1140         echoServAddr.sin_port = htons(7777); /* Server port */
1141
1142         /* Establish the connection to the echo server */
1143         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1144         {
1145                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1146                 exit(-1);
1147         }
1148
1149         int flag = 1;
1150         setsockopt(tcp_ip,      /* socket affected */
1151                         IPPROTO_TCP,            /* set option at TCP level */
1152                         TCP_NODELAY,            /* name of option */
1153                         (char *)&flag,          /* the cast is historical cruft */
1154                         sizeof(int));           /* length of option value */
1155
1156 }
1157
1158
1159 /* send a poke */
1160 void zy1000_tcpout(uint32_t address, uint32_t data)
1161 {
1162         tcpip_open();
1163         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1164                         !writeLong(data))
1165         {
1166                 fprintf(stderr, "Could not write to zy1000 server\n");
1167                 exit(-1);
1168         }
1169 }
1170
1171 /* By sending the wait to the server, we avoid a readback
1172  * of status. Radically improves performance for this operation
1173  * with long ping times.
1174  */
1175 void waitIdle(void)
1176 {
1177         tcpip_open();
1178         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1179         {
1180                 fprintf(stderr, "Could not write to zy1000 server\n");
1181                 exit(-1);
1182         }
1183 }
1184
1185
1186
1187 uint32_t zy1000_tcpin(uint32_t address)
1188 {
1189         tcpip_open();
1190         uint32_t data;
1191         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1192                         !readLong(&data))
1193         {
1194                 fprintf(stderr, "Could not read from zy1000 server\n");
1195                 exit(-1);
1196         }
1197         return data;
1198 }
1199
1200 int interface_jtag_add_sleep(uint32_t us)
1201 {
1202         tcpip_open();
1203         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1204                         !writeLong(us))
1205         {
1206                 fprintf(stderr, "Could not read from zy1000 server\n");
1207                 exit(-1);
1208         }
1209         return ERROR_OK;
1210 }
1211
1212
1213 #endif
1214
1215 #if BUILD_ECOSBOARD
1216 static char tcpip_stack[2048];
1217 static cyg_thread tcpip_thread_object;
1218 static cyg_handle_t tcpip_thread_handle;
1219
1220 static char watchdog_stack[2048];
1221 static cyg_thread watchdog_thread_object;
1222 static cyg_handle_t watchdog_thread_handle;
1223
1224 /* Infinite loop peeking & poking */
1225 static void tcpipserver(void)
1226 {
1227         for (;;)
1228         {
1229                 uint32_t address;
1230                 if (!readLong(&address))
1231                         return;
1232                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1233                 address &= 0xffffff;
1234                 switch (c)
1235                 {
1236                         case ZY1000_CMD_POKE:
1237                         {
1238                                 uint32_t data;
1239                                 if (!readLong(&data))
1240                                         return;
1241                                 address &= ~0x80000000;
1242                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1243                                 break;
1244                         }
1245                         case ZY1000_CMD_PEEK:
1246                         {
1247                                 uint32_t data;
1248                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1249                                 if (!writeLong(data))
1250                                         return;
1251                                 break;
1252                         }
1253                         case ZY1000_CMD_SLEEP:
1254                         {
1255                                 uint32_t data;
1256                                 if (!readLong(&data))
1257                                         return;
1258                                 jtag_sleep(data);
1259                                 break;
1260                         }
1261                         case ZY1000_CMD_WAITIDLE:
1262                         {
1263                                 waitIdle();
1264                                 break;
1265                         }
1266                         default:
1267                                 return;
1268                 }
1269         }
1270 }
1271
1272
1273 static void tcpip_server(cyg_addrword_t data)
1274 {
1275         int so_reuseaddr_option = 1;
1276
1277         int fd;
1278         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1279         {
1280                 LOG_ERROR("error creating socket: %s", strerror(errno));
1281                 exit(-1);
1282         }
1283
1284         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1285                         sizeof(int));
1286
1287         struct sockaddr_in sin;
1288         unsigned int address_size;
1289         address_size = sizeof(sin);
1290         memset(&sin, 0, sizeof(sin));
1291         sin.sin_family = AF_INET;
1292         sin.sin_addr.s_addr = INADDR_ANY;
1293         sin.sin_port = htons(7777);
1294
1295         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1296         {
1297                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1298                 exit(-1);
1299         }
1300
1301         if (listen(fd, 1) == -1)
1302         {
1303                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1304                 exit(-1);
1305         }
1306
1307
1308         for (;;)
1309         {
1310                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1311                 if (tcp_ip < 0)
1312                 {
1313                         continue;
1314                 }
1315
1316                 int flag = 1;
1317                 setsockopt(tcp_ip,      /* socket affected */
1318                                 IPPROTO_TCP,            /* set option at TCP level */
1319                                 TCP_NODELAY,            /* name of option */
1320                                 (char *)&flag,          /* the cast is historical cruft */
1321                                 sizeof(int));           /* length of option value */
1322
1323                 bool save_poll = jtag_poll_get_enabled();
1324
1325                 /* polling will screw up the "connection" */
1326                 jtag_poll_set_enabled(false);
1327
1328                 tcpipserver();
1329
1330                 jtag_poll_set_enabled(save_poll);
1331
1332                 close(tcp_ip);
1333
1334         }
1335         close(fd);
1336
1337 }
1338
1339 #ifdef WATCHDOG_BASE
1340 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1341 static void watchdog_server(cyg_addrword_t data)
1342 {
1343         int so_reuseaddr_option = 1;
1344
1345         int fd;
1346         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1347         {
1348                 LOG_ERROR("error creating socket: %s", strerror(errno));
1349                 exit(-1);
1350         }
1351
1352         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1353                         sizeof(int));
1354
1355         struct sockaddr_in sin;
1356         unsigned int address_size;
1357         address_size = sizeof(sin);
1358         memset(&sin, 0, sizeof(sin));
1359         sin.sin_family = AF_INET;
1360         sin.sin_addr.s_addr = INADDR_ANY;
1361         sin.sin_port = htons(8888);
1362
1363         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1364         {
1365                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1366                 exit(-1);
1367         }
1368
1369         if (listen(fd, 1) == -1)
1370         {
1371                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1372                 exit(-1);
1373         }
1374
1375
1376         for (;;)
1377         {
1378                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1379
1380                 /* Start watchdog, must be reset every 10 seconds. */
1381                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1382
1383                 if (watchdog_ip < 0)
1384                 {
1385                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1386                         exit(-1);
1387                 }
1388
1389                 int flag = 1;
1390                 setsockopt(watchdog_ip, /* socket affected */
1391                                 IPPROTO_TCP,            /* set option at TCP level */
1392                                 TCP_NODELAY,            /* name of option */
1393                                 (char *)&flag,          /* the cast is historical cruft */
1394                                 sizeof(int));           /* length of option value */
1395
1396
1397                 char buf;
1398                 for (;;)
1399                 {
1400                         if (read(watchdog_ip, &buf, 1) == 1)
1401                         {
1402                                 /* Reset timer */
1403                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1404                                 /* Echo so we can telnet in and see that resetting works */
1405                                 write(watchdog_ip, &buf, 1);
1406                         } else
1407                         {
1408                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1409                                  * now.
1410                                  */
1411                                 return;
1412                         }
1413
1414                 }
1415
1416                 /* Never reached */
1417         }
1418 }
1419 #endif
1420
1421 int interface_jtag_add_sleep(uint32_t us)
1422 {
1423         jtag_sleep(us);
1424         return ERROR_OK;
1425 }
1426
1427 #endif
1428
1429
1430 int zy1000_init(void)
1431 {
1432 #if BUILD_ECOSBOARD
1433         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1434 #endif
1435
1436         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1437
1438         setPower(true); // on by default
1439
1440
1441          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1442         zy1000_reset(0, 0);
1443         zy1000_speed(jtag_get_speed());
1444
1445
1446 #if BUILD_ECOSBOARD
1447         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1448                         (void *) tcpip_stack, sizeof(tcpip_stack),
1449                         &tcpip_thread_handle, &tcpip_thread_object);
1450         cyg_thread_resume(tcpip_thread_handle);
1451 #ifdef WATCHDOG_BASE
1452         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1453                         (void *) watchdog_stack, sizeof(watchdog_stack),
1454                         &watchdog_thread_handle, &watchdog_thread_object);
1455         cyg_thread_resume(watchdog_thread_handle);
1456 #endif
1457 #endif
1458
1459         return ERROR_OK;
1460 }
1461
1462
1463
1464 struct jtag_interface zy1000_interface =
1465 {
1466         .name = "ZY1000",
1467         .supported = DEBUG_CAP_TMS_SEQ,
1468         .execute_queue = NULL,
1469         .speed = zy1000_speed,
1470         .commands = zy1000_commands,
1471         .init = zy1000_init,
1472         .quit = zy1000_quit,
1473         .khz = zy1000_khz,
1474         .speed_div = zy1000_speed_div,
1475         .power_dropout = zy1000_power_dropout,
1476         .srst_asserted = zy1000_srst_asserted,
1477 };
1478