adapter: switch from struct jtag_interface to adapter_driver
[fw/openocd] / src / jtag / drivers / ulink.c
1 /***************************************************************************
2  *   Copyright (C) 2011-2013 by Martin Schmoelzer                          *
3  *   <martin.schmoelzer@student.tuwien.ac.at>                              *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
17  ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include <math.h>
24 #include <jtag/interface.h>
25 #include <jtag/commands.h>
26 #include <target/image.h>
27 #include <libusb.h>
28 #include "OpenULINK/include/msgtypes.h"
29
30 /** USB Vendor ID of ULINK device in unconfigured state (no firmware loaded
31  *  yet) or with OpenULINK firmware. */
32 #define ULINK_VID                0xC251
33
34 /** USB Product ID of ULINK device in unconfigured state (no firmware loaded
35  *  yet) or with OpenULINK firmware. */
36 #define ULINK_PID                0x2710
37
38 /** Address of EZ-USB CPU Control & Status register. This register can be
39  *  written by issuing a Control EP0 vendor request. */
40 #define CPUCS_REG                0x7F92
41
42 /** USB Control EP0 bRequest: "Firmware Load". */
43 #define REQUEST_FIRMWARE_LOAD    0xA0
44
45 /** Value to write into CPUCS to put EZ-USB into reset. */
46 #define CPU_RESET                0x01
47
48 /** Value to write into CPUCS to put EZ-USB out of reset. */
49 #define CPU_START                0x00
50
51 /** Base address of firmware in EZ-USB code space. */
52 #define FIRMWARE_ADDR            0x0000
53
54 /** USB interface number */
55 #define USB_INTERFACE            0
56
57 /** libusb timeout in ms */
58 #define USB_TIMEOUT              5000
59
60 /** Delay (in microseconds) to wait while EZ-USB performs ReNumeration. */
61 #define ULINK_RENUMERATION_DELAY 1500000
62
63 /** Default location of OpenULINK firmware image. */
64 #define ULINK_FIRMWARE_FILE      PKGDATADIR "/OpenULINK/ulink_firmware.hex"
65
66 /** Maximum size of a single firmware section. Entire EZ-USB code space = 8kB */
67 #define SECTION_BUFFERSIZE       8192
68
69 /** Tuning of OpenOCD SCAN commands split into multiple OpenULINK commands. */
70 #define SPLIT_SCAN_THRESHOLD     10
71
72 /** ULINK hardware type */
73 enum ulink_type {
74         /** Original ULINK adapter, based on Cypress EZ-USB (AN2131):
75          *  Full JTAG support, no SWD support. */
76         ULINK_1,
77
78         /** Newer ULINK adapter, based on NXP LPC2148. Currently unsupported. */
79         ULINK_2,
80
81         /** Newer ULINK adapter, based on EZ-USB FX2 + FPGA. Currently unsupported. */
82         ULINK_PRO,
83
84         /** Newer ULINK adapter, possibly based on ULINK 2. Currently unsupported. */
85         ULINK_ME
86 };
87
88 enum ulink_payload_direction {
89         PAYLOAD_DIRECTION_OUT,
90         PAYLOAD_DIRECTION_IN
91 };
92
93 enum ulink_delay_type {
94         DELAY_CLOCK_TCK,
95         DELAY_CLOCK_TMS,
96         DELAY_SCAN_IN,
97         DELAY_SCAN_OUT,
98         DELAY_SCAN_IO
99 };
100
101 /**
102  * OpenULINK command (OpenULINK command queue element).
103  *
104  * For the OUT direction payload, things are quite easy: Payload is stored
105  * in a rather small array (up to 63 bytes), the payload is always allocated
106  * by the function generating the command and freed by ulink_clear_queue().
107  *
108  * For the IN direction payload, things get a little bit more complicated:
109  * The maximum IN payload size for a single command is 64 bytes. Assume that
110  * a single OpenOCD command needs to scan 256 bytes. This results in the
111  * generation of four OpenULINK commands. The function generating these
112  * commands shall allocate an uint8_t[256] array. Each command's #payload_in
113  * pointer shall point to the corresponding offset where IN data shall be
114  * placed, while #payload_in_start shall point to the first element of the 256
115  * byte array.
116  * - first command:  #payload_in_start + 0
117  * - second command: #payload_in_start + 64
118  * - third command:  #payload_in_start + 128
119  * - fourth command: #payload_in_start + 192
120  *
121  * The last command sets #needs_postprocessing to true.
122  */
123 struct ulink_cmd {
124         uint8_t id;                     /**< ULINK command ID */
125
126         uint8_t *payload_out;           /**< OUT direction payload data */
127         uint8_t payload_out_size;       /**< OUT direction payload size for this command */
128
129         uint8_t *payload_in_start;      /**< Pointer to first element of IN payload array */
130         uint8_t *payload_in;            /**< Pointer where IN payload shall be stored */
131         uint8_t payload_in_size;        /**< IN direction payload size for this command */
132
133         /** Indicates if this command needs post-processing */
134         bool needs_postprocessing;
135
136         /** Indicates if ulink_clear_queue() should free payload_in_start  */
137         bool free_payload_in_start;
138
139         /** Pointer to corresponding OpenOCD command for post-processing */
140         struct jtag_command *cmd_origin;
141
142         struct ulink_cmd *next;         /**< Pointer to next command (linked list) */
143 };
144
145 /** Describes one driver instance */
146 struct ulink {
147         struct libusb_context *libusb_ctx;
148         struct libusb_device_handle *usb_device_handle;
149         enum ulink_type type;
150
151         int delay_scan_in;      /**< Delay value for SCAN_IN commands */
152         int delay_scan_out;     /**< Delay value for SCAN_OUT commands */
153         int delay_scan_io;      /**< Delay value for SCAN_IO commands */
154         int delay_clock_tck;    /**< Delay value for CLOCK_TMS commands */
155         int delay_clock_tms;    /**< Delay value for CLOCK_TCK commands */
156
157         int commands_in_queue;          /**< Number of commands in queue */
158         struct ulink_cmd *queue_start;  /**< Pointer to first command in queue */
159         struct ulink_cmd *queue_end;    /**< Pointer to last command in queue */
160 };
161
162 /**************************** Function Prototypes *****************************/
163
164 /* USB helper functions */
165 int ulink_usb_open(struct ulink **device);
166 int ulink_usb_close(struct ulink **device);
167
168 /* ULINK MCU (Cypress EZ-USB) specific functions */
169 int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit);
170 int ulink_load_firmware_and_renumerate(struct ulink **device, const char *filename,
171                 uint32_t delay);
172 int ulink_load_firmware(struct ulink *device, const char *filename);
173 int ulink_write_firmware_section(struct ulink *device,
174                 struct image *firmware_image, int section_index);
175
176 /* Generic helper functions */
177 void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals);
178
179 /* OpenULINK command generation helper functions */
180 int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
181                 enum ulink_payload_direction direction);
182
183 /* OpenULINK command queue helper functions */
184 int ulink_get_queue_size(struct ulink *device,
185                 enum ulink_payload_direction direction);
186 void ulink_clear_queue(struct ulink *device);
187 int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd);
188 int ulink_execute_queued_commands(struct ulink *device, int timeout);
189
190 static void ulink_print_queue(struct ulink *device);
191
192 int ulink_append_scan_cmd(struct ulink *device,
193                 enum scan_type scan_type,
194                 int scan_size_bits,
195                 uint8_t *tdi,
196                 uint8_t *tdo_start,
197                 uint8_t *tdo,
198                 uint8_t tms_count_start,
199                 uint8_t tms_sequence_start,
200                 uint8_t tms_count_end,
201                 uint8_t tms_sequence_end,
202                 struct jtag_command *origin,
203                 bool postprocess);
204 int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
205                 uint8_t sequence);
206 int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count);
207 int ulink_append_get_signals_cmd(struct ulink *device);
208 int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
209                 uint8_t high);
210 int ulink_append_sleep_cmd(struct ulink *device, uint32_t us);
211 int ulink_append_configure_tck_cmd(struct ulink *device,
212                 int delay_scan_in,
213                 int delay_scan_out,
214                 int delay_scan_io,
215                 int delay_tck,
216                 int delay_tms);
217 int ulink_append_led_cmd(struct ulink *device, uint8_t led_state);
218 int ulink_append_test_cmd(struct ulink *device);
219
220 /* OpenULINK TCK frequency helper functions */
221 int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay);
222
223 /* Interface between OpenULINK and OpenOCD */
224 static void ulink_set_end_state(tap_state_t endstate);
225 int ulink_queue_statemove(struct ulink *device);
226
227 int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd);
228 int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd);
229 int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd);
230 int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd);
231 int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd);
232 int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd);
233 int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd);
234
235 int ulink_post_process_scan(struct ulink_cmd *ulink_cmd);
236 int ulink_post_process_queue(struct ulink *device);
237
238 /* adapter driver functions */
239 static int ulink_execute_queue(void);
240 static int ulink_khz(int khz, int *jtag_speed);
241 static int ulink_speed(int speed);
242 static int ulink_speed_div(int speed, int *khz);
243 static int ulink_init(void);
244 static int ulink_quit(void);
245
246 /****************************** Global Variables ******************************/
247
248 struct ulink *ulink_handle;
249
250 /**************************** USB helper functions ****************************/
251
252 /**
253  * Opens the ULINK device and claims its USB interface.
254  *
255  * Currently, only the original ULINK is supported
256  *
257  * @param device pointer to struct ulink identifying ULINK driver instance.
258  * @return on success: ERROR_OK
259  * @return on failure: ERROR_FAIL
260  */
261 int ulink_usb_open(struct ulink **device)
262 {
263         ssize_t num_devices, i;
264         bool found;
265         libusb_device **usb_devices;
266         struct libusb_device_descriptor usb_desc;
267         struct libusb_device_handle *usb_device_handle;
268
269         num_devices = libusb_get_device_list((*device)->libusb_ctx, &usb_devices);
270
271         if (num_devices <= 0)
272                 return ERROR_FAIL;
273
274         found = false;
275         for (i = 0; i < num_devices; i++) {
276                 if (libusb_get_device_descriptor(usb_devices[i], &usb_desc) != 0)
277                         continue;
278                 else if (usb_desc.idVendor == ULINK_VID && usb_desc.idProduct == ULINK_PID) {
279                         found = true;
280                         break;
281                 }
282         }
283
284         if (!found)
285                 return ERROR_FAIL;
286
287         if (libusb_open(usb_devices[i], &usb_device_handle) != 0)
288                 return ERROR_FAIL;
289         libusb_free_device_list(usb_devices, 1);
290
291         if (libusb_claim_interface(usb_device_handle, 0) != 0)
292                 return ERROR_FAIL;
293
294         (*device)->usb_device_handle = usb_device_handle;
295         (*device)->type = ULINK_1;
296
297         return ERROR_OK;
298 }
299
300 /**
301  * Releases the ULINK interface and closes the USB device handle.
302  *
303  * @param device pointer to struct ulink identifying ULINK driver instance.
304  * @return on success: ERROR_OK
305  * @return on failure: ERROR_FAIL
306  */
307 int ulink_usb_close(struct ulink **device)
308 {
309         if (libusb_release_interface((*device)->usb_device_handle, 0) != 0)
310                 return ERROR_FAIL;
311
312         libusb_close((*device)->usb_device_handle);
313
314         (*device)->usb_device_handle = NULL;
315
316         return ERROR_OK;
317 }
318
319 /******************* ULINK CPU (EZ-USB) specific functions ********************/
320
321 /**
322  * Writes '0' or '1' to the CPUCS register, putting the EZ-USB CPU into reset
323  * or out of reset.
324  *
325  * @param device pointer to struct ulink identifying ULINK driver instance.
326  * @param reset_bit 0 to put CPU into reset, 1 to put CPU out of reset.
327  * @return on success: ERROR_OK
328  * @return on failure: ERROR_FAIL
329  */
330 int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit)
331 {
332         int ret;
333
334         ret = libusb_control_transfer(device->usb_device_handle,
335                         (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
336                         REQUEST_FIRMWARE_LOAD, CPUCS_REG, 0, &reset_bit, 1, USB_TIMEOUT);
337
338         /* usb_control_msg() returns the number of bytes transferred during the
339          * DATA stage of the control transfer - must be exactly 1 in this case! */
340         if (ret != 1)
341                 return ERROR_FAIL;
342         return ERROR_OK;
343 }
344
345 /**
346  * Puts the ULINK's EZ-USB microcontroller into reset state, downloads
347  * the firmware image, resumes the microcontroller and re-enumerates
348  * USB devices.
349  *
350  * @param device pointer to struct ulink identifying ULINK driver instance.
351  *  The usb_handle member will be modified during re-enumeration.
352  * @param filename path to the Intel HEX file containing the firmware image.
353  * @param delay the delay to wait for the device to re-enumerate.
354  * @return on success: ERROR_OK
355  * @return on failure: ERROR_FAIL
356  */
357 int ulink_load_firmware_and_renumerate(struct ulink **device,
358         const char *filename, uint32_t delay)
359 {
360         int ret;
361
362         /* Basic process: After downloading the firmware, the ULINK will disconnect
363          * itself and re-connect after a short amount of time so we have to close
364          * the handle and re-enumerate USB devices */
365
366         ret = ulink_load_firmware(*device, filename);
367         if (ret != ERROR_OK)
368                 return ret;
369
370         ret = ulink_usb_close(device);
371         if (ret != ERROR_OK)
372                 return ret;
373
374         usleep(delay);
375
376         ret = ulink_usb_open(device);
377         if (ret != ERROR_OK)
378                 return ret;
379
380         return ERROR_OK;
381 }
382
383 /**
384  * Downloads a firmware image to the ULINK's EZ-USB microcontroller
385  * over the USB bus.
386  *
387  * @param device pointer to struct ulink identifying ULINK driver instance.
388  * @param filename an absolute or relative path to the Intel HEX file
389  *  containing the firmware image.
390  * @return on success: ERROR_OK
391  * @return on failure: ERROR_FAIL
392  */
393 int ulink_load_firmware(struct ulink *device, const char *filename)
394 {
395         struct image ulink_firmware_image;
396         int ret, i;
397
398         ret = ulink_cpu_reset(device, CPU_RESET);
399         if (ret != ERROR_OK) {
400                 LOG_ERROR("Could not halt ULINK CPU");
401                 return ret;
402         }
403
404         ulink_firmware_image.base_address = 0;
405         ulink_firmware_image.base_address_set = 0;
406
407         ret = image_open(&ulink_firmware_image, filename, "ihex");
408         if (ret != ERROR_OK) {
409                 LOG_ERROR("Could not load firmware image");
410                 return ret;
411         }
412
413         /* Download all sections in the image to ULINK */
414         for (i = 0; i < ulink_firmware_image.num_sections; i++) {
415                 ret = ulink_write_firmware_section(device, &ulink_firmware_image, i);
416                 if (ret != ERROR_OK)
417                         return ret;
418         }
419
420         image_close(&ulink_firmware_image);
421
422         ret = ulink_cpu_reset(device, CPU_START);
423         if (ret != ERROR_OK) {
424                 LOG_ERROR("Could not restart ULINK CPU");
425                 return ret;
426         }
427
428         return ERROR_OK;
429 }
430
431 /**
432  * Send one contiguous firmware section to the ULINK's EZ-USB microcontroller
433  * over the USB bus.
434  *
435  * @param device pointer to struct ulink identifying ULINK driver instance.
436  * @param firmware_image pointer to the firmware image that contains the section
437  *  which should be sent to the ULINK's EZ-USB microcontroller.
438  * @param section_index index of the section within the firmware image.
439  * @return on success: ERROR_OK
440  * @return on failure: ERROR_FAIL
441  */
442 int ulink_write_firmware_section(struct ulink *device,
443         struct image *firmware_image, int section_index)
444 {
445         uint16_t addr, size, bytes_remaining, chunk_size;
446         uint8_t data[SECTION_BUFFERSIZE];
447         uint8_t *data_ptr = data;
448         size_t size_read;
449         int ret;
450
451         size = (uint16_t)firmware_image->sections[section_index].size;
452         addr = (uint16_t)firmware_image->sections[section_index].base_address;
453
454         LOG_DEBUG("section %02i at addr 0x%04x (size 0x%04x)", section_index, addr,
455                 size);
456
457         /* Copy section contents to local buffer */
458         ret = image_read_section(firmware_image, section_index, 0, size, data,
459                         &size_read);
460
461         if ((ret != ERROR_OK) || (size_read != size)) {
462                 /* Propagating the return code would return '0' (misleadingly indicating
463                  * successful execution of the function) if only the size check fails. */
464                 return ERROR_FAIL;
465         }
466
467         bytes_remaining = size;
468
469         /* Send section data in chunks of up to 64 bytes to ULINK */
470         while (bytes_remaining > 0) {
471                 if (bytes_remaining > 64)
472                         chunk_size = 64;
473                 else
474                         chunk_size = bytes_remaining;
475
476                 ret = libusb_control_transfer(device->usb_device_handle,
477                                 (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
478                                 REQUEST_FIRMWARE_LOAD, addr, FIRMWARE_ADDR, (unsigned char *)data_ptr,
479                                 chunk_size, USB_TIMEOUT);
480
481                 if (ret != (int)chunk_size) {
482                         /* Abort if libusb sent less data than requested */
483                         return ERROR_FAIL;
484                 }
485
486                 bytes_remaining -= chunk_size;
487                 addr += chunk_size;
488                 data_ptr += chunk_size;
489         }
490
491         return ERROR_OK;
492 }
493
494 /************************** Generic helper functions **************************/
495
496 /**
497  * Print state of interesting signals via LOG_INFO().
498  *
499  * @param input_signals input signal states as returned by CMD_GET_SIGNALS
500  * @param output_signals output signal states as returned by CMD_GET_SIGNALS
501  */
502 void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals)
503 {
504         LOG_INFO("ULINK signal states: TDI: %i, TDO: %i, TMS: %i, TCK: %i, TRST: %i,"
505                 " SRST: %i",
506                 (output_signals & SIGNAL_TDI   ? 1 : 0),
507                 (input_signals  & SIGNAL_TDO   ? 1 : 0),
508                 (output_signals & SIGNAL_TMS   ? 1 : 0),
509                 (output_signals & SIGNAL_TCK   ? 1 : 0),
510                 (output_signals & SIGNAL_TRST  ? 0 : 1),        /* Inverted by hardware */
511                 (output_signals & SIGNAL_RESET ? 0 : 1));       /* Inverted by hardware */
512 }
513
514 /**************** OpenULINK command generation helper functions ***************/
515
516 /**
517  * Allocate and initialize space in memory for OpenULINK command payload.
518  *
519  * @param ulink_cmd pointer to command whose payload should be allocated.
520  * @param size the amount of memory to allocate (bytes).
521  * @param direction which payload to allocate.
522  * @return on success: ERROR_OK
523  * @return on failure: ERROR_FAIL
524  */
525 int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
526         enum ulink_payload_direction direction)
527 {
528         uint8_t *payload;
529
530         payload = calloc(size, sizeof(uint8_t));
531
532         if (payload == NULL) {
533                 LOG_ERROR("Could not allocate OpenULINK command payload: out of memory");
534                 return ERROR_FAIL;
535         }
536
537         switch (direction) {
538             case PAYLOAD_DIRECTION_OUT:
539                     if (ulink_cmd->payload_out != NULL) {
540                             LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
541                             free(payload);
542                             return ERROR_FAIL;
543                     } else {
544                             ulink_cmd->payload_out = payload;
545                             ulink_cmd->payload_out_size = size;
546                     }
547                     break;
548             case PAYLOAD_DIRECTION_IN:
549                     if (ulink_cmd->payload_in_start != NULL) {
550                             LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
551                             free(payload);
552                             return ERROR_FAIL;
553                     } else {
554                             ulink_cmd->payload_in_start = payload;
555                             ulink_cmd->payload_in = payload;
556                             ulink_cmd->payload_in_size = size;
557
558                                 /* By default, free payload_in_start in ulink_clear_queue(). Commands
559                                  * that do not want this behavior (e. g. split scans) must turn it off
560                                  * separately! */
561                             ulink_cmd->free_payload_in_start = true;
562                     }
563                     break;
564         }
565
566         return ERROR_OK;
567 }
568
569 /****************** OpenULINK command queue helper functions ******************/
570
571 /**
572  * Get the current number of bytes in the queue, including command IDs.
573  *
574  * @param device pointer to struct ulink identifying ULINK driver instance.
575  * @param direction the transfer direction for which to get byte count.
576  * @return the number of bytes currently stored in the queue for the specified
577  *  direction.
578  */
579 int ulink_get_queue_size(struct ulink *device,
580         enum ulink_payload_direction direction)
581 {
582         struct ulink_cmd *current = device->queue_start;
583         int sum = 0;
584
585         while (current != NULL) {
586                 switch (direction) {
587                     case PAYLOAD_DIRECTION_OUT:
588                             sum += current->payload_out_size + 1;       /* + 1 byte for Command ID */
589                             break;
590                     case PAYLOAD_DIRECTION_IN:
591                             sum += current->payload_in_size;
592                             break;
593                 }
594
595                 current = current->next;
596         }
597
598         return sum;
599 }
600
601 /**
602  * Clear the OpenULINK command queue.
603  *
604  * @param device pointer to struct ulink identifying ULINK driver instance.
605  * @return on success: ERROR_OK
606  * @return on failure: ERROR_FAIL
607  */
608 void ulink_clear_queue(struct ulink *device)
609 {
610         struct ulink_cmd *current = device->queue_start;
611         struct ulink_cmd *next = NULL;
612
613         while (current != NULL) {
614                 /* Save pointer to next element */
615                 next = current->next;
616
617                 /* Free payloads: OUT payload can be freed immediately */
618                 free(current->payload_out);
619                 current->payload_out = NULL;
620
621                 /* IN payload MUST be freed ONLY if no other commands use the
622                  * payload_in_start buffer */
623                 if (current->free_payload_in_start == true) {
624                         free(current->payload_in_start);
625                         current->payload_in_start = NULL;
626                         current->payload_in = NULL;
627                 }
628
629                 /* Free queue element */
630                 free(current);
631
632                 /* Proceed with next element */
633                 current = next;
634         }
635
636         device->commands_in_queue = 0;
637         device->queue_start = NULL;
638         device->queue_end = NULL;
639 }
640
641 /**
642  * Add a command to the OpenULINK command queue.
643  *
644  * @param device pointer to struct ulink identifying ULINK driver instance.
645  * @param ulink_cmd pointer to command that shall be appended to the OpenULINK
646  *  command queue.
647  * @return on success: ERROR_OK
648  * @return on failure: ERROR_FAIL
649  */
650 int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd)
651 {
652         int newsize_out, newsize_in;
653         int ret;
654
655         newsize_out = ulink_get_queue_size(device, PAYLOAD_DIRECTION_OUT) + 1
656                 + ulink_cmd->payload_out_size;
657
658         newsize_in = ulink_get_queue_size(device, PAYLOAD_DIRECTION_IN)
659                 + ulink_cmd->payload_in_size;
660
661         /* Check if the current command can be appended to the queue */
662         if ((newsize_out > 64) || (newsize_in > 64)) {
663                 /* New command does not fit. Execute all commands in queue before starting
664                  * new queue with the current command as first entry. */
665                 ret = ulink_execute_queued_commands(device, USB_TIMEOUT);
666                 if (ret != ERROR_OK)
667                         return ret;
668
669                 ret = ulink_post_process_queue(device);
670                 if (ret != ERROR_OK)
671                         return ret;
672
673                 ulink_clear_queue(device);
674         }
675
676         if (device->queue_start == NULL) {
677                 /* Queue was empty */
678                 device->commands_in_queue = 1;
679
680                 device->queue_start = ulink_cmd;
681                 device->queue_end = ulink_cmd;
682         } else {
683                 /* There are already commands in the queue */
684                 device->commands_in_queue++;
685
686                 device->queue_end->next = ulink_cmd;
687                 device->queue_end = ulink_cmd;
688         }
689
690         return ERROR_OK;
691 }
692
693 /**
694  * Sends all queued OpenULINK commands to the ULINK for execution.
695  *
696  * @param device pointer to struct ulink identifying ULINK driver instance.
697  * @return on success: ERROR_OK
698  * @return on failure: ERROR_FAIL
699  */
700 int ulink_execute_queued_commands(struct ulink *device, int timeout)
701 {
702         struct ulink_cmd *current;
703         int ret, i, index_out, index_in, count_out, count_in, transferred;
704         uint8_t buffer[64];
705
706         if (LOG_LEVEL_IS(LOG_LVL_DEBUG_IO))
707                 ulink_print_queue(device);
708
709         index_out = 0;
710         count_out = 0;
711         count_in = 0;
712
713         for (current = device->queue_start; current; current = current->next) {
714                 /* Add command to packet */
715                 buffer[index_out] = current->id;
716                 index_out++;
717                 count_out++;
718
719                 for (i = 0; i < current->payload_out_size; i++)
720                         buffer[index_out + i] = current->payload_out[i];
721                 index_out += current->payload_out_size;
722                 count_in += current->payload_in_size;
723                 count_out += current->payload_out_size;
724         }
725
726         /* Send packet to ULINK */
727         ret = libusb_bulk_transfer(device->usb_device_handle, (2 | LIBUSB_ENDPOINT_OUT),
728                         (unsigned char *)buffer, count_out, &transferred, timeout);
729         if (ret != 0)
730                 return ERROR_FAIL;
731         if (transferred != count_out)
732                 return ERROR_FAIL;
733
734         /* Wait for response if commands contain IN payload data */
735         if (count_in > 0) {
736                 ret = libusb_bulk_transfer(device->usb_device_handle, (2 | LIBUSB_ENDPOINT_IN),
737                                 (unsigned char *)buffer, 64, &transferred, timeout);
738                 if (ret != 0)
739                         return ERROR_FAIL;
740                 if (transferred != count_in)
741                         return ERROR_FAIL;
742
743                 /* Write back IN payload data */
744                 index_in = 0;
745                 for (current = device->queue_start; current; current = current->next) {
746                         for (i = 0; i < current->payload_in_size; i++) {
747                                 current->payload_in[i] = buffer[index_in];
748                                 index_in++;
749                         }
750                 }
751         }
752
753         return ERROR_OK;
754 }
755
756 /**
757  * Convert an OpenULINK command ID (\a id) to a human-readable string.
758  *
759  * @param id the OpenULINK command ID.
760  * @return the corresponding human-readable string.
761  */
762 static const char *ulink_cmd_id_string(uint8_t id)
763 {
764         switch (id) {
765         case CMD_SCAN_IN:
766                 return "CMD_SCAN_IN";
767                 break;
768         case CMD_SLOW_SCAN_IN:
769                 return "CMD_SLOW_SCAN_IN";
770                 break;
771         case CMD_SCAN_OUT:
772                 return "CMD_SCAN_OUT";
773                 break;
774         case CMD_SLOW_SCAN_OUT:
775                 return "CMD_SLOW_SCAN_OUT";
776                 break;
777         case CMD_SCAN_IO:
778                 return "CMD_SCAN_IO";
779                 break;
780         case CMD_SLOW_SCAN_IO:
781                 return "CMD_SLOW_SCAN_IO";
782                 break;
783         case CMD_CLOCK_TMS:
784                 return "CMD_CLOCK_TMS";
785                 break;
786         case CMD_SLOW_CLOCK_TMS:
787                 return "CMD_SLOW_CLOCK_TMS";
788                 break;
789         case CMD_CLOCK_TCK:
790                 return "CMD_CLOCK_TCK";
791                 break;
792         case CMD_SLOW_CLOCK_TCK:
793                 return "CMD_SLOW_CLOCK_TCK";
794                 break;
795         case CMD_SLEEP_US:
796                 return "CMD_SLEEP_US";
797                 break;
798         case CMD_SLEEP_MS:
799                 return "CMD_SLEEP_MS";
800                 break;
801         case CMD_GET_SIGNALS:
802                 return "CMD_GET_SIGNALS";
803                 break;
804         case CMD_SET_SIGNALS:
805                 return "CMD_SET_SIGNALS";
806                 break;
807         case CMD_CONFIGURE_TCK_FREQ:
808                 return "CMD_CONFIGURE_TCK_FREQ";
809                 break;
810         case CMD_SET_LEDS:
811                 return "CMD_SET_LEDS";
812                 break;
813         case CMD_TEST:
814                 return "CMD_TEST";
815                 break;
816         default:
817                 return "CMD_UNKNOWN";
818                 break;
819         }
820 }
821
822 /**
823  * Print one OpenULINK command to stdout.
824  *
825  * @param ulink_cmd pointer to OpenULINK command.
826  */
827 static void ulink_print_command(struct ulink_cmd *ulink_cmd)
828 {
829         int i;
830
831         printf("  %-22s | OUT size = %i, bytes = 0x",
832                 ulink_cmd_id_string(ulink_cmd->id), ulink_cmd->payload_out_size);
833
834         for (i = 0; i < ulink_cmd->payload_out_size; i++)
835                 printf("%02X ", ulink_cmd->payload_out[i]);
836         printf("\n                         | IN size  = %i\n",
837                 ulink_cmd->payload_in_size);
838 }
839
840 /**
841  * Print the OpenULINK command queue to stdout.
842  *
843  * @param device pointer to struct ulink identifying ULINK driver instance.
844  */
845 static void ulink_print_queue(struct ulink *device)
846 {
847         struct ulink_cmd *current;
848
849         printf("OpenULINK command queue:\n");
850
851         for (current = device->queue_start; current; current = current->next)
852                 ulink_print_command(current);
853 }
854
855 /**
856  * Perform JTAG scan
857  *
858  * Creates and appends a JTAG scan command to the OpenULINK command queue.
859  * A JTAG scan consists of three steps:
860  * - Move to the desired SHIFT state, depending on scan type (IR/DR scan).
861  * - Shift TDI data into the JTAG chain, optionally reading the TDO pin.
862  * - Move to the desired end state.
863  *
864  * @param device pointer to struct ulink identifying ULINK driver instance.
865  * @param scan_type the type of the scan (IN, OUT, IO (bidirectional)).
866  * @param scan_size_bits number of bits to shift into the JTAG chain.
867  * @param tdi pointer to array containing TDI data.
868  * @param tdo_start pointer to first element of array where TDO data shall be
869  *  stored. See #ulink_cmd for details.
870  * @param tdo pointer to array where TDO data shall be stored
871  * @param tms_count_start number of TMS state transitions to perform BEFORE
872  *  shifting data into the JTAG chain.
873  * @param tms_sequence_start sequence of TMS state transitions that will be
874  *  performed BEFORE shifting data into the JTAG chain.
875  * @param tms_count_end number of TMS state transitions to perform AFTER
876  *  shifting data into the JTAG chain.
877  * @param tms_sequence_end sequence of TMS state transitions that will be
878  *  performed AFTER shifting data into the JTAG chain.
879  * @param origin pointer to OpenOCD command that generated this scan command.
880  * @param postprocess whether this command needs to be post-processed after
881  *  execution.
882  * @return on success: ERROR_OK
883  * @return on failure: ERROR_FAIL
884  */
885 int ulink_append_scan_cmd(struct ulink *device, enum scan_type scan_type,
886         int scan_size_bits, uint8_t *tdi, uint8_t *tdo_start, uint8_t *tdo,
887         uint8_t tms_count_start, uint8_t tms_sequence_start, uint8_t tms_count_end,
888         uint8_t tms_sequence_end, struct jtag_command *origin, bool postprocess)
889 {
890         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
891         int ret, i, scan_size_bytes;
892         uint8_t bits_last_byte;
893
894         if (cmd == NULL)
895                 return ERROR_FAIL;
896
897         /* Check size of command. USB buffer can hold 64 bytes, 1 byte is command ID,
898          * 5 bytes are setup data -> 58 remaining payload bytes for TDI data */
899         if (scan_size_bits > (58 * 8)) {
900                 LOG_ERROR("BUG: Tried to create CMD_SCAN_IO OpenULINK command with too"
901                         " large payload");
902                 free(cmd);
903                 return ERROR_FAIL;
904         }
905
906         scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
907
908         bits_last_byte = scan_size_bits % 8;
909         if (bits_last_byte == 0)
910                 bits_last_byte = 8;
911
912         /* Allocate out_payload depending on scan type */
913         switch (scan_type) {
914             case SCAN_IN:
915                     if (device->delay_scan_in < 0)
916                             cmd->id = CMD_SCAN_IN;
917                     else
918                             cmd->id = CMD_SLOW_SCAN_IN;
919                     ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
920                     break;
921             case SCAN_OUT:
922                     if (device->delay_scan_out < 0)
923                             cmd->id = CMD_SCAN_OUT;
924                     else
925                             cmd->id = CMD_SLOW_SCAN_OUT;
926                     ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
927                     break;
928             case SCAN_IO:
929                     if (device->delay_scan_io < 0)
930                             cmd->id = CMD_SCAN_IO;
931                     else
932                             cmd->id = CMD_SLOW_SCAN_IO;
933                     ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
934                     break;
935             default:
936                     LOG_ERROR("BUG: ulink_append_scan_cmd() encountered an unknown scan type");
937                     ret = ERROR_FAIL;
938                     break;
939         }
940
941         if (ret != ERROR_OK) {
942                 free(cmd);
943                 return ret;
944         }
945
946         /* Build payload_out that is common to all scan types */
947         cmd->payload_out[0] = scan_size_bytes & 0xFF;
948         cmd->payload_out[1] = bits_last_byte & 0xFF;
949         cmd->payload_out[2] = ((tms_count_start & 0x0F) << 4) | (tms_count_end & 0x0F);
950         cmd->payload_out[3] = tms_sequence_start;
951         cmd->payload_out[4] = tms_sequence_end;
952
953         /* Setup payload_out for types with OUT transfer */
954         if ((scan_type == SCAN_OUT) || (scan_type == SCAN_IO)) {
955                 for (i = 0; i < scan_size_bytes; i++)
956                         cmd->payload_out[i + 5] = tdi[i];
957         }
958
959         /* Setup payload_in pointers for types with IN transfer */
960         if ((scan_type == SCAN_IN) || (scan_type == SCAN_IO)) {
961                 cmd->payload_in_start = tdo_start;
962                 cmd->payload_in = tdo;
963                 cmd->payload_in_size = scan_size_bytes;
964         }
965
966         cmd->needs_postprocessing = postprocess;
967         cmd->cmd_origin = origin;
968
969         /* For scan commands, we free payload_in_start only when the command is
970          * the last in a series of split commands or a stand-alone command */
971         cmd->free_payload_in_start = postprocess;
972
973         return ulink_append_queue(device, cmd);
974 }
975
976 /**
977  * Perform TAP state transitions
978  *
979  * @param device pointer to struct ulink identifying ULINK driver instance.
980  * @param count defines the number of TCK clock cycles generated (up to 8).
981  * @param sequence defines the TMS pin levels for each state transition. The
982  *  Least-Significant Bit is read first.
983  * @return on success: ERROR_OK
984  * @return on failure: ERROR_FAIL
985  */
986 int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
987         uint8_t sequence)
988 {
989         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
990         int ret;
991
992         if (cmd == NULL)
993                 return ERROR_FAIL;
994
995         if (device->delay_clock_tms < 0)
996                 cmd->id = CMD_CLOCK_TMS;
997         else
998                 cmd->id = CMD_SLOW_CLOCK_TMS;
999
1000         /* CMD_CLOCK_TMS has two OUT payload bytes and zero IN payload bytes */
1001         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1002         if (ret != ERROR_OK) {
1003                 free(cmd);
1004                 return ret;
1005         }
1006
1007         cmd->payload_out[0] = count;
1008         cmd->payload_out[1] = sequence;
1009
1010         return ulink_append_queue(device, cmd);
1011 }
1012
1013 /**
1014  * Generate a defined amount of TCK clock cycles
1015  *
1016  * All other JTAG signals are left unchanged.
1017  *
1018  * @param device pointer to struct ulink identifying ULINK driver instance.
1019  * @param count the number of TCK clock cycles to generate.
1020  * @return on success: ERROR_OK
1021  * @return on failure: ERROR_FAIL
1022  */
1023 int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count)
1024 {
1025         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1026         int ret;
1027
1028         if (cmd == NULL)
1029                 return ERROR_FAIL;
1030
1031         if (device->delay_clock_tck < 0)
1032                 cmd->id = CMD_CLOCK_TCK;
1033         else
1034                 cmd->id = CMD_SLOW_CLOCK_TCK;
1035
1036         /* CMD_CLOCK_TCK has two OUT payload bytes and zero IN payload bytes */
1037         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1038         if (ret != ERROR_OK) {
1039                 free(cmd);
1040                 return ret;
1041         }
1042
1043         cmd->payload_out[0] = count & 0xff;
1044         cmd->payload_out[1] = (count >> 8) & 0xff;
1045
1046         return ulink_append_queue(device, cmd);
1047 }
1048
1049 /**
1050  * Read JTAG signals.
1051  *
1052  * @param device pointer to struct ulink identifying ULINK driver instance.
1053  * @return on success: ERROR_OK
1054  * @return on failure: ERROR_FAIL
1055  */
1056 int ulink_append_get_signals_cmd(struct ulink *device)
1057 {
1058         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1059         int ret;
1060
1061         if (cmd == NULL)
1062                 return ERROR_FAIL;
1063
1064         cmd->id = CMD_GET_SIGNALS;
1065         cmd->needs_postprocessing = true;
1066
1067         /* CMD_GET_SIGNALS has two IN payload bytes */
1068         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_IN);
1069
1070         if (ret != ERROR_OK) {
1071                 free(cmd);
1072                 return ret;
1073         }
1074
1075         return ulink_append_queue(device, cmd);
1076 }
1077
1078 /**
1079  * Arbitrarily set JTAG output signals.
1080  *
1081  * @param device pointer to struct ulink identifying ULINK driver instance.
1082  * @param low defines which signals will be de-asserted. Each bit corresponds
1083  *  to a JTAG signal:
1084  *  - SIGNAL_TDI
1085  *  - SIGNAL_TMS
1086  *  - SIGNAL_TCK
1087  *  - SIGNAL_TRST
1088  *  - SIGNAL_BRKIN
1089  *  - SIGNAL_RESET
1090  *  - SIGNAL_OCDSE
1091  * @param high defines which signals will be asserted.
1092  * @return on success: ERROR_OK
1093  * @return on failure: ERROR_FAIL
1094  */
1095 int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
1096         uint8_t high)
1097 {
1098         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1099         int ret;
1100
1101         if (cmd == NULL)
1102                 return ERROR_FAIL;
1103
1104         cmd->id = CMD_SET_SIGNALS;
1105
1106         /* CMD_SET_SIGNALS has two OUT payload bytes and zero IN payload bytes */
1107         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1108
1109         if (ret != ERROR_OK) {
1110                 free(cmd);
1111                 return ret;
1112         }
1113
1114         cmd->payload_out[0] = low;
1115         cmd->payload_out[1] = high;
1116
1117         return ulink_append_queue(device, cmd);
1118 }
1119
1120 /**
1121  * Sleep for a pre-defined number of microseconds
1122  *
1123  * @param device pointer to struct ulink identifying ULINK driver instance.
1124  * @param us the number microseconds to sleep.
1125  * @return on success: ERROR_OK
1126  * @return on failure: ERROR_FAIL
1127  */
1128 int ulink_append_sleep_cmd(struct ulink *device, uint32_t us)
1129 {
1130         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1131         int ret;
1132
1133         if (cmd == NULL)
1134                 return ERROR_FAIL;
1135
1136         cmd->id = CMD_SLEEP_US;
1137
1138         /* CMD_SLEEP_US has two OUT payload bytes and zero IN payload bytes */
1139         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1140
1141         if (ret != ERROR_OK) {
1142                 free(cmd);
1143                 return ret;
1144         }
1145
1146         cmd->payload_out[0] = us & 0x00ff;
1147         cmd->payload_out[1] = (us >> 8) & 0x00ff;
1148
1149         return ulink_append_queue(device, cmd);
1150 }
1151
1152 /**
1153  * Set TCK delay counters
1154  *
1155  * @param device pointer to struct ulink identifying ULINK driver instance.
1156  * @param delay_scan_in delay count top value in jtag_slow_scan_in() function.
1157  * @param delay_scan_out delay count top value in jtag_slow_scan_out() function.
1158  * @param delay_scan_io delay count top value in jtag_slow_scan_io() function.
1159  * @param delay_tck delay count top value in jtag_clock_tck() function.
1160  * @param delay_tms delay count top value in jtag_slow_clock_tms() function.
1161  * @return on success: ERROR_OK
1162  * @return on failure: ERROR_FAIL
1163  */
1164 int ulink_append_configure_tck_cmd(struct ulink *device, int delay_scan_in,
1165         int delay_scan_out, int delay_scan_io, int delay_tck, int delay_tms)
1166 {
1167         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1168         int ret;
1169
1170         if (cmd == NULL)
1171                 return ERROR_FAIL;
1172
1173         cmd->id = CMD_CONFIGURE_TCK_FREQ;
1174
1175         /* CMD_CONFIGURE_TCK_FREQ has five OUT payload bytes and zero
1176          * IN payload bytes */
1177         ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
1178         if (ret != ERROR_OK) {
1179                 free(cmd);
1180                 return ret;
1181         }
1182
1183         if (delay_scan_in < 0)
1184                 cmd->payload_out[0] = 0;
1185         else
1186                 cmd->payload_out[0] = (uint8_t)delay_scan_in;
1187
1188         if (delay_scan_out < 0)
1189                 cmd->payload_out[1] = 0;
1190         else
1191                 cmd->payload_out[1] = (uint8_t)delay_scan_out;
1192
1193         if (delay_scan_io < 0)
1194                 cmd->payload_out[2] = 0;
1195         else
1196                 cmd->payload_out[2] = (uint8_t)delay_scan_io;
1197
1198         if (delay_tck < 0)
1199                 cmd->payload_out[3] = 0;
1200         else
1201                 cmd->payload_out[3] = (uint8_t)delay_tck;
1202
1203         if (delay_tms < 0)
1204                 cmd->payload_out[4] = 0;
1205         else
1206                 cmd->payload_out[4] = (uint8_t)delay_tms;
1207
1208         return ulink_append_queue(device, cmd);
1209 }
1210
1211 /**
1212  * Turn on/off ULINK LEDs.
1213  *
1214  * @param device pointer to struct ulink identifying ULINK driver instance.
1215  * @param led_state which LED(s) to turn on or off. The following bits
1216  *  influence the LEDS:
1217  *  - Bit 0: Turn COM LED on
1218  *  - Bit 1: Turn RUN LED on
1219  *  - Bit 2: Turn COM LED off
1220  *  - Bit 3: Turn RUN LED off
1221  *  If both the on-bit and the off-bit for the same LED is set, the LED is
1222  *  turned off.
1223  * @return on success: ERROR_OK
1224  * @return on failure: ERROR_FAIL
1225  */
1226 int ulink_append_led_cmd(struct ulink *device, uint8_t led_state)
1227 {
1228         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1229         int ret;
1230
1231         if (cmd == NULL)
1232                 return ERROR_FAIL;
1233
1234         cmd->id = CMD_SET_LEDS;
1235
1236         /* CMD_SET_LEDS has one OUT payload byte and zero IN payload bytes */
1237         ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
1238         if (ret != ERROR_OK) {
1239                 free(cmd);
1240                 return ret;
1241         }
1242
1243         cmd->payload_out[0] = led_state;
1244
1245         return ulink_append_queue(device, cmd);
1246 }
1247
1248 /**
1249  * Test command. Used to check if the ULINK device is ready to accept new
1250  * commands.
1251  *
1252  * @param device pointer to struct ulink identifying ULINK driver instance.
1253  * @return on success: ERROR_OK
1254  * @return on failure: ERROR_FAIL
1255  */
1256 int ulink_append_test_cmd(struct ulink *device)
1257 {
1258         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1259         int ret;
1260
1261         if (cmd == NULL)
1262                 return ERROR_FAIL;
1263
1264         cmd->id = CMD_TEST;
1265
1266         /* CMD_TEST has one OUT payload byte and zero IN payload bytes */
1267         ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
1268         if (ret != ERROR_OK) {
1269                 free(cmd);
1270                 return ret;
1271         }
1272
1273         cmd->payload_out[0] = 0xAA;
1274
1275         return ulink_append_queue(device, cmd);
1276 }
1277
1278 /****************** OpenULINK TCK frequency helper functions ******************/
1279
1280 /**
1281  * Calculate delay values for a given TCK frequency.
1282  *
1283  * The OpenULINK firmware uses five different speed values for different
1284  * commands. These speed values are calculated in these functions.
1285  *
1286  * The five different commands which support variable TCK frequency are
1287  * implemented twice in the firmware:
1288  *   1. Maximum possible frequency without any artificial delay
1289  *   2. Variable frequency with artificial linear delay loop
1290  *
1291  * To set the ULINK to maximum frequency, it is only neccessary to use the
1292  * corresponding command IDs. To set the ULINK to a lower frequency, the
1293  * delay loop top values have to be calculated first. Then, a
1294  * CMD_CONFIGURE_TCK_FREQ command needs to be sent to the ULINK device.
1295  *
1296  * The delay values are described by linear equations:
1297  *    t = k * x + d
1298  *    (t = period, k = constant, x = delay value, d = constant)
1299  *
1300  * Thus, the delay can be calculated as in the following equation:
1301  *    x = (t - d) / k
1302  *
1303  * The constants in these equations have been determined and validated by
1304  * measuring the frequency resulting from different delay values.
1305  *
1306  * @param type for which command to calculate the delay value.
1307  * @param f TCK frequency for which to calculate the delay value in Hz.
1308  * @param delay where to store resulting delay value.
1309  * @return on success: ERROR_OK
1310  * @return on failure: ERROR_FAIL
1311  */
1312 int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay)
1313 {
1314         float t, x, x_ceil;
1315
1316         /* Calculate period of requested TCK frequency */
1317         t = 1.0 / (float)(f);
1318
1319         switch (type) {
1320             case DELAY_CLOCK_TCK:
1321                     x = (t - (float)(6E-6)) / (float)(4E-6);
1322                     break;
1323             case DELAY_CLOCK_TMS:
1324                     x = (t - (float)(8.5E-6)) / (float)(4E-6);
1325                     break;
1326             case DELAY_SCAN_IN:
1327                     x = (t - (float)(8.8308E-6)) / (float)(4E-6);
1328                     break;
1329             case DELAY_SCAN_OUT:
1330                     x = (t - (float)(1.0527E-5)) / (float)(4E-6);
1331                     break;
1332             case DELAY_SCAN_IO:
1333                     x = (t - (float)(1.3132E-5)) / (float)(4E-6);
1334                     break;
1335             default:
1336                     return ERROR_FAIL;
1337                     break;
1338         }
1339
1340         /* Check if the delay value is negative. This happens when a frequency is
1341          * requested that is too high for the delay loop implementation. In this
1342          * case, set delay value to zero. */
1343         if (x < 0)
1344                 x = 0;
1345
1346         /* We need to convert the exact delay value to an integer. Therefore, we
1347          * round the exact value UP to ensure that the resulting frequency is NOT
1348          * higher than the requested frequency. */
1349         x_ceil = ceilf(x);
1350
1351         /* Check if the value is within limits */
1352         if (x_ceil > 255)
1353                 return ERROR_FAIL;
1354
1355         *delay = (int)x_ceil;
1356
1357         return ERROR_OK;
1358 }
1359
1360 /**
1361  * Calculate frequency for a given delay value.
1362  *
1363  * Similar to the #ulink_calculate_delay function, this function calculates the
1364  * TCK frequency for a given delay value by using linear equations of the form:
1365  *    t = k * x + d
1366  *    (t = period, k = constant, x = delay value, d = constant)
1367  *
1368  * @param type for which command to calculate the delay value.
1369  * @param delay delay value for which to calculate the resulting TCK frequency.
1370  * @return the resulting TCK frequency
1371  */
1372 static long ulink_calculate_frequency(enum ulink_delay_type type, int delay)
1373 {
1374         float t, f_float;
1375
1376         if (delay > 255)
1377                 return 0;
1378
1379         switch (type) {
1380             case DELAY_CLOCK_TCK:
1381                     if (delay < 0)
1382                             t = (float)(2.666E-6);
1383                     else
1384                             t = (float)(4E-6) * (float)(delay) + (float)(6E-6);
1385                     break;
1386             case DELAY_CLOCK_TMS:
1387                     if (delay < 0)
1388                             t = (float)(5.666E-6);
1389                     else
1390                             t = (float)(4E-6) * (float)(delay) + (float)(8.5E-6);
1391                     break;
1392             case DELAY_SCAN_IN:
1393                     if (delay < 0)
1394                             t = (float)(5.5E-6);
1395                     else
1396                             t = (float)(4E-6) * (float)(delay) + (float)(8.8308E-6);
1397                     break;
1398             case DELAY_SCAN_OUT:
1399                     if (delay < 0)
1400                             t = (float)(7.0E-6);
1401                     else
1402                             t = (float)(4E-6) * (float)(delay) + (float)(1.0527E-5);
1403                     break;
1404             case DELAY_SCAN_IO:
1405                     if (delay < 0)
1406                             t = (float)(9.926E-6);
1407                     else
1408                             t = (float)(4E-6) * (float)(delay) + (float)(1.3132E-5);
1409                     break;
1410             default:
1411                     return 0;
1412         }
1413
1414         f_float = 1.0 / t;
1415         return roundf(f_float);
1416 }
1417
1418 /******************* Interface between OpenULINK and OpenOCD ******************/
1419
1420 /**
1421  * Sets the end state follower (see interface.h) if \a endstate is a stable
1422  * state.
1423  *
1424  * @param endstate the state the end state follower should be set to.
1425  */
1426 static void ulink_set_end_state(tap_state_t endstate)
1427 {
1428         if (tap_is_state_stable(endstate))
1429                 tap_set_end_state(endstate);
1430         else {
1431                 LOG_ERROR("BUG: %s is not a valid end state", tap_state_name(endstate));
1432                 exit(EXIT_FAILURE);
1433         }
1434 }
1435
1436 /**
1437  * Move from the current TAP state to the current TAP end state.
1438  *
1439  * @param device pointer to struct ulink identifying ULINK driver instance.
1440  * @return on success: ERROR_OK
1441  * @return on failure: ERROR_FAIL
1442  */
1443 int ulink_queue_statemove(struct ulink *device)
1444 {
1445         uint8_t tms_sequence, tms_count;
1446         int ret;
1447
1448         if (tap_get_state() == tap_get_end_state()) {
1449                 /* Do nothing if we are already there */
1450                 return ERROR_OK;
1451         }
1452
1453         tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1454         tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1455
1456         ret = ulink_append_clock_tms_cmd(device, tms_count, tms_sequence);
1457
1458         if (ret == ERROR_OK)
1459                 tap_set_state(tap_get_end_state());
1460
1461         return ret;
1462 }
1463
1464 /**
1465  * Perform a scan operation on a JTAG register.
1466  *
1467  * @param device pointer to struct ulink identifying ULINK driver instance.
1468  * @param cmd pointer to the command that shall be executed.
1469  * @return on success: ERROR_OK
1470  * @return on failure: ERROR_FAIL
1471  */
1472 int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd)
1473 {
1474         uint32_t scan_size_bits, scan_size_bytes, bits_last_scan;
1475         uint32_t scans_max_payload, bytecount;
1476         uint8_t *tdi_buffer_start = NULL, *tdi_buffer = NULL;
1477         uint8_t *tdo_buffer_start = NULL, *tdo_buffer = NULL;
1478
1479         uint8_t first_tms_count, first_tms_sequence;
1480         uint8_t last_tms_count, last_tms_sequence;
1481
1482         uint8_t tms_count_pause, tms_sequence_pause;
1483         uint8_t tms_count_resume, tms_sequence_resume;
1484
1485         uint8_t tms_count_start, tms_sequence_start;
1486         uint8_t tms_count_end, tms_sequence_end;
1487
1488         enum scan_type type;
1489         int ret;
1490
1491         /* Determine scan size */
1492         scan_size_bits = jtag_scan_size(cmd->cmd.scan);
1493         scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
1494
1495         /* Determine scan type (IN/OUT/IO) */
1496         type = jtag_scan_type(cmd->cmd.scan);
1497
1498         /* Determine number of scan commands with maximum payload */
1499         scans_max_payload = scan_size_bytes / 58;
1500
1501         /* Determine size of last shift command */
1502         bits_last_scan = scan_size_bits - (scans_max_payload * 58 * 8);
1503
1504         /* Allocate TDO buffer if required */
1505         if ((type == SCAN_IN) || (type == SCAN_IO)) {
1506                 tdo_buffer_start = calloc(sizeof(uint8_t), scan_size_bytes);
1507
1508                 if (tdo_buffer_start == NULL)
1509                         return ERROR_FAIL;
1510
1511                 tdo_buffer = tdo_buffer_start;
1512         }
1513
1514         /* Fill TDI buffer if required */
1515         if ((type == SCAN_OUT) || (type == SCAN_IO)) {
1516                 jtag_build_buffer(cmd->cmd.scan, &tdi_buffer_start);
1517                 tdi_buffer = tdi_buffer_start;
1518         }
1519
1520         /* Get TAP state transitions */
1521         if (cmd->cmd.scan->ir_scan) {
1522                 ulink_set_end_state(TAP_IRSHIFT);
1523                 first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1524                 first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1525
1526                 tap_set_state(TAP_IRSHIFT);
1527                 tap_set_end_state(cmd->cmd.scan->end_state);
1528                 last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1529                 last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1530
1531                 /* TAP state transitions for split scans */
1532                 tms_count_pause = tap_get_tms_path_len(TAP_IRSHIFT, TAP_IRPAUSE);
1533                 tms_sequence_pause = tap_get_tms_path(TAP_IRSHIFT, TAP_IRPAUSE);
1534                 tms_count_resume = tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRSHIFT);
1535                 tms_sequence_resume = tap_get_tms_path(TAP_IRPAUSE, TAP_IRSHIFT);
1536         } else {
1537                 ulink_set_end_state(TAP_DRSHIFT);
1538                 first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1539                 first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1540
1541                 tap_set_state(TAP_DRSHIFT);
1542                 tap_set_end_state(cmd->cmd.scan->end_state);
1543                 last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1544                 last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1545
1546                 /* TAP state transitions for split scans */
1547                 tms_count_pause = tap_get_tms_path_len(TAP_DRSHIFT, TAP_DRPAUSE);
1548                 tms_sequence_pause = tap_get_tms_path(TAP_DRSHIFT, TAP_DRPAUSE);
1549                 tms_count_resume = tap_get_tms_path_len(TAP_DRPAUSE, TAP_DRSHIFT);
1550                 tms_sequence_resume = tap_get_tms_path(TAP_DRPAUSE, TAP_DRSHIFT);
1551         }
1552
1553         /* Generate scan commands */
1554         bytecount = scan_size_bytes;
1555         while (bytecount > 0) {
1556                 if (bytecount == scan_size_bytes) {
1557                         /* This is the first scan */
1558                         tms_count_start = first_tms_count;
1559                         tms_sequence_start = first_tms_sequence;
1560                 } else {
1561                         /* Resume from previous scan */
1562                         tms_count_start = tms_count_resume;
1563                         tms_sequence_start = tms_sequence_resume;
1564                 }
1565
1566                 if (bytecount > 58) {   /* Full scan, at least one scan will follow */
1567                         tms_count_end = tms_count_pause;
1568                         tms_sequence_end = tms_sequence_pause;
1569
1570                         ret = ulink_append_scan_cmd(device,
1571                                         type,
1572                                         58 * 8,
1573                                         tdi_buffer,
1574                                         tdo_buffer_start,
1575                                         tdo_buffer,
1576                                         tms_count_start,
1577                                         tms_sequence_start,
1578                                         tms_count_end,
1579                                         tms_sequence_end,
1580                                         cmd,
1581                                         false);
1582
1583                         bytecount -= 58;
1584
1585                         /* Update TDI and TDO buffer pointers */
1586                         if (tdi_buffer_start != NULL)
1587                                 tdi_buffer += 58;
1588                         if (tdo_buffer_start != NULL)
1589                                 tdo_buffer += 58;
1590                 } else if (bytecount == 58) {   /* Full scan, no further scans */
1591                         tms_count_end = last_tms_count;
1592                         tms_sequence_end = last_tms_sequence;
1593
1594                         ret = ulink_append_scan_cmd(device,
1595                                         type,
1596                                         58 * 8,
1597                                         tdi_buffer,
1598                                         tdo_buffer_start,
1599                                         tdo_buffer,
1600                                         tms_count_start,
1601                                         tms_sequence_start,
1602                                         tms_count_end,
1603                                         tms_sequence_end,
1604                                         cmd,
1605                                         true);
1606
1607                         bytecount = 0;
1608                 } else {/* Scan with less than maximum payload, no further scans */
1609                         tms_count_end = last_tms_count;
1610                         tms_sequence_end = last_tms_sequence;
1611
1612                         ret = ulink_append_scan_cmd(device,
1613                                         type,
1614                                         bits_last_scan,
1615                                         tdi_buffer,
1616                                         tdo_buffer_start,
1617                                         tdo_buffer,
1618                                         tms_count_start,
1619                                         tms_sequence_start,
1620                                         tms_count_end,
1621                                         tms_sequence_end,
1622                                         cmd,
1623                                         true);
1624
1625                         bytecount = 0;
1626                 }
1627
1628                 if (ret != ERROR_OK) {
1629                         free(tdi_buffer_start);
1630                         return ret;
1631                 }
1632         }
1633
1634         free(tdi_buffer_start);
1635
1636         /* Set current state to the end state requested by the command */
1637         tap_set_state(cmd->cmd.scan->end_state);
1638
1639         return ERROR_OK;
1640 }
1641
1642 /**
1643  * Move the TAP into the Test Logic Reset state.
1644  *
1645  * @param device pointer to struct ulink identifying ULINK driver instance.
1646  * @param cmd pointer to the command that shall be executed.
1647  * @return on success: ERROR_OK
1648  * @return on failure: ERROR_FAIL
1649  */
1650 int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd)
1651 {
1652         int ret;
1653
1654         ret = ulink_append_clock_tms_cmd(device, 5, 0xff);
1655
1656         if (ret == ERROR_OK)
1657                 tap_set_state(TAP_RESET);
1658
1659         return ret;
1660 }
1661
1662 /**
1663  * Run Test.
1664  *
1665  * Generate TCK clock cycles while remaining
1666  * in the Run-Test/Idle state.
1667  *
1668  * @param device pointer to struct ulink identifying ULINK driver instance.
1669  * @param cmd pointer to the command that shall be executed.
1670  * @return on success: ERROR_OK
1671  * @return on failure: ERROR_FAIL
1672  */
1673 int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd)
1674 {
1675         int ret;
1676
1677         /* Only perform statemove if the TAP currently isn't in the TAP_IDLE state */
1678         if (tap_get_state() != TAP_IDLE) {
1679                 ulink_set_end_state(TAP_IDLE);
1680                 ulink_queue_statemove(device);
1681         }
1682
1683         /* Generate the clock cycles */
1684         ret = ulink_append_clock_tck_cmd(device, cmd->cmd.runtest->num_cycles);
1685         if (ret != ERROR_OK)
1686                 return ret;
1687
1688         /* Move to end state specified in command */
1689         if (cmd->cmd.runtest->end_state != tap_get_state()) {
1690                 tap_set_end_state(cmd->cmd.runtest->end_state);
1691                 ulink_queue_statemove(device);
1692         }
1693
1694         return ERROR_OK;
1695 }
1696
1697 /**
1698  * Execute a JTAG_RESET command
1699  *
1700  * @param cmd pointer to the command that shall be executed.
1701  * @return on success: ERROR_OK
1702  * @return on failure: ERROR_FAIL
1703  */
1704 int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd)
1705 {
1706         uint8_t low = 0, high = 0;
1707
1708         if (cmd->cmd.reset->trst) {
1709                 tap_set_state(TAP_RESET);
1710                 high |= SIGNAL_TRST;
1711         } else
1712                 low |= SIGNAL_TRST;
1713
1714         if (cmd->cmd.reset->srst)
1715                 high |= SIGNAL_RESET;
1716         else
1717                 low |= SIGNAL_RESET;
1718
1719         return ulink_append_set_signals_cmd(device, low, high);
1720 }
1721
1722 /**
1723  * Move to one TAP state or several states in succession.
1724  *
1725  * @param device pointer to struct ulink identifying ULINK driver instance.
1726  * @param cmd pointer to the command that shall be executed.
1727  * @return on success: ERROR_OK
1728  * @return on failure: ERROR_FAIL
1729  */
1730 int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd)
1731 {
1732         int ret, i, num_states, batch_size, state_count;
1733         tap_state_t *path;
1734         uint8_t tms_sequence;
1735
1736         num_states = cmd->cmd.pathmove->num_states;
1737         path = cmd->cmd.pathmove->path;
1738         state_count = 0;
1739
1740         while (num_states > 0) {
1741                 tms_sequence = 0;
1742
1743                 /* Determine batch size */
1744                 if (num_states >= 8)
1745                         batch_size = 8;
1746                 else
1747                         batch_size = num_states;
1748
1749                 for (i = 0; i < batch_size; i++) {
1750                         if (tap_state_transition(tap_get_state(), false) == path[state_count]) {
1751                                 /* Append '0' transition: clear bit 'i' in tms_sequence */
1752                                 buf_set_u32(&tms_sequence, i, 1, 0x0);
1753                         } else if (tap_state_transition(tap_get_state(), true)
1754                                    == path[state_count]) {
1755                                 /* Append '1' transition: set bit 'i' in tms_sequence */
1756                                 buf_set_u32(&tms_sequence, i, 1, 0x1);
1757                         } else {
1758                                 /* Invalid state transition */
1759                                 LOG_ERROR("BUG: %s -> %s isn't a valid TAP state transition",
1760                                         tap_state_name(tap_get_state()),
1761                                         tap_state_name(path[state_count]));
1762                                 return ERROR_FAIL;
1763                         }
1764
1765                         tap_set_state(path[state_count]);
1766                         state_count++;
1767                         num_states--;
1768                 }
1769
1770                 /* Append CLOCK_TMS command to OpenULINK command queue */
1771                 LOG_INFO(
1772                         "pathmove batch: count = %i, sequence = 0x%x", batch_size, tms_sequence);
1773                 ret = ulink_append_clock_tms_cmd(ulink_handle, batch_size, tms_sequence);
1774                 if (ret != ERROR_OK)
1775                         return ret;
1776         }
1777
1778         return ERROR_OK;
1779 }
1780
1781 /**
1782  * Sleep for a specific amount of time.
1783  *
1784  * @param device pointer to struct ulink identifying ULINK driver instance.
1785  * @param cmd pointer to the command that shall be executed.
1786  * @return on success: ERROR_OK
1787  * @return on failure: ERROR_FAIL
1788  */
1789 int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd)
1790 {
1791         /* IMPORTANT! Due to the time offset in command execution introduced by
1792          * command queueing, this needs to be implemented in the ULINK device */
1793         return ulink_append_sleep_cmd(device, cmd->cmd.sleep->us);
1794 }
1795
1796 /**
1797  * Generate TCK cycles while remaining in a stable state.
1798  *
1799  * @param device pointer to struct ulink identifying ULINK driver instance.
1800  * @param cmd pointer to the command that shall be executed.
1801  */
1802 int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd)
1803 {
1804         int ret;
1805         unsigned num_cycles;
1806
1807         if (!tap_is_state_stable(tap_get_state())) {
1808                 LOG_ERROR("JTAG_STABLECLOCKS: state not stable");
1809                 return ERROR_FAIL;
1810         }
1811
1812         num_cycles = cmd->cmd.stableclocks->num_cycles;
1813
1814         /* TMS stays either high (Test Logic Reset state) or low (all other states) */
1815         if (tap_get_state() == TAP_RESET)
1816                 ret = ulink_append_set_signals_cmd(device, 0, SIGNAL_TMS);
1817         else
1818                 ret = ulink_append_set_signals_cmd(device, SIGNAL_TMS, 0);
1819
1820         if (ret != ERROR_OK)
1821                 return ret;
1822
1823         while (num_cycles > 0) {
1824                 if (num_cycles > 0xFFFF) {
1825                         /* OpenULINK CMD_CLOCK_TCK can generate up to 0xFFFF (uint16_t) cycles */
1826                         ret = ulink_append_clock_tck_cmd(device, 0xFFFF);
1827                         num_cycles -= 0xFFFF;
1828                 } else {
1829                         ret = ulink_append_clock_tck_cmd(device, num_cycles);
1830                         num_cycles = 0;
1831                 }
1832
1833                 if (ret != ERROR_OK)
1834                         return ret;
1835         }
1836
1837         return ERROR_OK;
1838 }
1839
1840 /**
1841  * Post-process JTAG_SCAN command
1842  *
1843  * @param ulink_cmd pointer to OpenULINK command that shall be processed.
1844  * @return on success: ERROR_OK
1845  * @return on failure: ERROR_FAIL
1846  */
1847 int ulink_post_process_scan(struct ulink_cmd *ulink_cmd)
1848 {
1849         struct jtag_command *cmd = ulink_cmd->cmd_origin;
1850         int ret;
1851
1852         switch (jtag_scan_type(cmd->cmd.scan)) {
1853             case SCAN_IN:
1854             case SCAN_IO:
1855                     ret = jtag_read_buffer(ulink_cmd->payload_in_start, cmd->cmd.scan);
1856                     break;
1857             case SCAN_OUT:
1858                         /* Nothing to do for OUT scans */
1859                     ret = ERROR_OK;
1860                     break;
1861             default:
1862                     LOG_ERROR("BUG: ulink_post_process_scan() encountered an unknown"
1863                         " JTAG scan type");
1864                     ret = ERROR_FAIL;
1865                     break;
1866         }
1867
1868         return ret;
1869 }
1870
1871 /**
1872  * Perform post-processing of commands after OpenULINK queue has been executed.
1873  *
1874  * @param device pointer to struct ulink identifying ULINK driver instance.
1875  * @return on success: ERROR_OK
1876  * @return on failure: ERROR_FAIL
1877  */
1878 int ulink_post_process_queue(struct ulink *device)
1879 {
1880         struct ulink_cmd *current;
1881         struct jtag_command *openocd_cmd;
1882         int ret;
1883
1884         current = device->queue_start;
1885
1886         while (current != NULL) {
1887                 openocd_cmd = current->cmd_origin;
1888
1889                 /* Check if a corresponding OpenOCD command is stored for this
1890                  * OpenULINK command */
1891                 if ((current->needs_postprocessing == true) && (openocd_cmd != NULL)) {
1892                         switch (openocd_cmd->type) {
1893                             case JTAG_SCAN:
1894                                     ret = ulink_post_process_scan(current);
1895                                     break;
1896                             case JTAG_TLR_RESET:
1897                             case JTAG_RUNTEST:
1898                             case JTAG_RESET:
1899                             case JTAG_PATHMOVE:
1900                             case JTAG_SLEEP:
1901                             case JTAG_STABLECLOCKS:
1902                                         /* Nothing to do for these commands */
1903                                     ret = ERROR_OK;
1904                                     break;
1905                             default:
1906                                     ret = ERROR_FAIL;
1907                                     LOG_ERROR("BUG: ulink_post_process_queue() encountered unknown JTAG "
1908                                         "command type");
1909                                     break;
1910                         }
1911
1912                         if (ret != ERROR_OK)
1913                                 return ret;
1914                 }
1915
1916                 current = current->next;
1917         }
1918
1919         return ERROR_OK;
1920 }
1921
1922 /**************************** JTAG driver functions ***************************/
1923
1924 /**
1925  * Executes the JTAG Command Queue.
1926  *
1927  * This is done in three stages: First, all OpenOCD commands are processed into
1928  * queued OpenULINK commands. Next, the OpenULINK command queue is sent to the
1929  * ULINK device and data received from the ULINK device is cached. Finally,
1930  * the post-processing function writes back data to the corresponding OpenOCD
1931  * commands.
1932  *
1933  * @return on success: ERROR_OK
1934  * @return on failure: ERROR_FAIL
1935  */
1936 static int ulink_execute_queue(void)
1937 {
1938         struct jtag_command *cmd = jtag_command_queue;
1939         int ret;
1940
1941         while (cmd) {
1942                 switch (cmd->type) {
1943                     case JTAG_SCAN:
1944                             ret = ulink_queue_scan(ulink_handle, cmd);
1945                             break;
1946                     case JTAG_TLR_RESET:
1947                             ret = ulink_queue_tlr_reset(ulink_handle, cmd);
1948                             break;
1949                     case JTAG_RUNTEST:
1950                             ret = ulink_queue_runtest(ulink_handle, cmd);
1951                             break;
1952                     case JTAG_RESET:
1953                             ret = ulink_queue_reset(ulink_handle, cmd);
1954                             break;
1955                     case JTAG_PATHMOVE:
1956                             ret = ulink_queue_pathmove(ulink_handle, cmd);
1957                             break;
1958                     case JTAG_SLEEP:
1959                             ret = ulink_queue_sleep(ulink_handle, cmd);
1960                             break;
1961                     case JTAG_STABLECLOCKS:
1962                             ret = ulink_queue_stableclocks(ulink_handle, cmd);
1963                             break;
1964                     default:
1965                             ret = ERROR_FAIL;
1966                             LOG_ERROR("BUG: encountered unknown JTAG command type");
1967                             break;
1968                 }
1969
1970                 if (ret != ERROR_OK)
1971                         return ret;
1972
1973                 cmd = cmd->next;
1974         }
1975
1976         if (ulink_handle->commands_in_queue > 0) {
1977                 ret = ulink_execute_queued_commands(ulink_handle, USB_TIMEOUT);
1978                 if (ret != ERROR_OK)
1979                         return ret;
1980
1981                 ret = ulink_post_process_queue(ulink_handle);
1982                 if (ret != ERROR_OK)
1983                         return ret;
1984
1985                 ulink_clear_queue(ulink_handle);
1986         }
1987
1988         return ERROR_OK;
1989 }
1990
1991 /**
1992  * Set the TCK frequency of the ULINK adapter.
1993  *
1994  * @param khz desired JTAG TCK frequency.
1995  * @param jtag_speed where to store corresponding adapter-specific speed value.
1996  * @return on success: ERROR_OK
1997  * @return on failure: ERROR_FAIL
1998  */
1999 static int ulink_khz(int khz, int *jtag_speed)
2000 {
2001         int ret;
2002
2003         if (khz == 0) {
2004                 LOG_ERROR("RCLK not supported");
2005                 return ERROR_FAIL;
2006         }
2007
2008         /* CLOCK_TCK commands are decoupled from others. Therefore, the frequency
2009          * setting can be done independently from all other commands. */
2010         if (khz >= 375)
2011                 ulink_handle->delay_clock_tck = -1;
2012         else {
2013                 ret = ulink_calculate_delay(DELAY_CLOCK_TCK, khz * 1000,
2014                                 &ulink_handle->delay_clock_tck);
2015                 if (ret != ERROR_OK)
2016                         return ret;
2017         }
2018
2019         /* SCAN_{IN,OUT,IO} commands invoke CLOCK_TMS commands. Therefore, if the
2020          * requested frequency goes below the maximum frequency for SLOW_CLOCK_TMS
2021          * commands, all SCAN commands MUST also use the variable frequency
2022          * implementation! */
2023         if (khz >= 176) {
2024                 ulink_handle->delay_clock_tms = -1;
2025                 ulink_handle->delay_scan_in = -1;
2026                 ulink_handle->delay_scan_out = -1;
2027                 ulink_handle->delay_scan_io = -1;
2028         } else {
2029                 ret = ulink_calculate_delay(DELAY_CLOCK_TMS, khz * 1000,
2030                                 &ulink_handle->delay_clock_tms);
2031                 if (ret != ERROR_OK)
2032                         return ret;
2033
2034                 ret = ulink_calculate_delay(DELAY_SCAN_IN, khz * 1000,
2035                                 &ulink_handle->delay_scan_in);
2036                 if (ret != ERROR_OK)
2037                         return ret;
2038
2039                 ret = ulink_calculate_delay(DELAY_SCAN_OUT, khz * 1000,
2040                                 &ulink_handle->delay_scan_out);
2041                 if (ret != ERROR_OK)
2042                         return ret;
2043
2044                 ret = ulink_calculate_delay(DELAY_SCAN_IO, khz * 1000,
2045                                 &ulink_handle->delay_scan_io);
2046                 if (ret != ERROR_OK)
2047                         return ret;
2048         }
2049
2050         LOG_DEBUG_IO("ULINK TCK setup: delay_tck      = %i (%li Hz),",
2051                 ulink_handle->delay_clock_tck,
2052                 ulink_calculate_frequency(DELAY_CLOCK_TCK, ulink_handle->delay_clock_tck));
2053         LOG_DEBUG_IO("                 delay_tms      = %i (%li Hz),",
2054                 ulink_handle->delay_clock_tms,
2055                 ulink_calculate_frequency(DELAY_CLOCK_TMS, ulink_handle->delay_clock_tms));
2056         LOG_DEBUG_IO("                 delay_scan_in  = %i (%li Hz),",
2057                 ulink_handle->delay_scan_in,
2058                 ulink_calculate_frequency(DELAY_SCAN_IN, ulink_handle->delay_scan_in));
2059         LOG_DEBUG_IO("                 delay_scan_out = %i (%li Hz),",
2060                 ulink_handle->delay_scan_out,
2061                 ulink_calculate_frequency(DELAY_SCAN_OUT, ulink_handle->delay_scan_out));
2062         LOG_DEBUG_IO("                 delay_scan_io  = %i (%li Hz),",
2063                 ulink_handle->delay_scan_io,
2064                 ulink_calculate_frequency(DELAY_SCAN_IO, ulink_handle->delay_scan_io));
2065
2066         /* Configure the ULINK device with the new delay values */
2067         ret = ulink_append_configure_tck_cmd(ulink_handle,
2068                         ulink_handle->delay_scan_in,
2069                         ulink_handle->delay_scan_out,
2070                         ulink_handle->delay_scan_io,
2071                         ulink_handle->delay_clock_tck,
2072                         ulink_handle->delay_clock_tms);
2073
2074         if (ret != ERROR_OK)
2075                 return ret;
2076
2077         *jtag_speed = khz;
2078
2079         return ERROR_OK;
2080 }
2081
2082 /**
2083  * Set the TCK frequency of the ULINK adapter.
2084  *
2085  * Because of the way the TCK frequency is set up in the OpenULINK firmware,
2086  * there are five different speed settings. To simplify things, the
2087  * adapter-specific speed setting value is identical to the TCK frequency in
2088  * khz.
2089  *
2090  * @param speed desired adapter-specific speed value.
2091  * @return on success: ERROR_OK
2092  * @return on failure: ERROR_FAIL
2093  */
2094 static int ulink_speed(int speed)
2095 {
2096         int dummy;
2097
2098         return ulink_khz(speed, &dummy);
2099 }
2100
2101 /**
2102  * Convert adapter-specific speed value to corresponding TCK frequency in kHz.
2103  *
2104  * Because of the way the TCK frequency is set up in the OpenULINK firmware,
2105  * there are five different speed settings. To simplify things, the
2106  * adapter-specific speed setting value is identical to the TCK frequency in
2107  * khz.
2108  *
2109  * @param speed adapter-specific speed value.
2110  * @param khz where to store corresponding TCK frequency in kHz.
2111  * @return on success: ERROR_OK
2112  * @return on failure: ERROR_FAIL
2113  */
2114 static int ulink_speed_div(int speed, int *khz)
2115 {
2116         *khz = speed;
2117
2118         return ERROR_OK;
2119 }
2120
2121 /**
2122  * Initiates the firmware download to the ULINK adapter and prepares
2123  * the USB handle.
2124  *
2125  * @return on success: ERROR_OK
2126  * @return on failure: ERROR_FAIL
2127  */
2128 static int ulink_init(void)
2129 {
2130         int ret, transferred;
2131         char str_manufacturer[20];
2132         bool download_firmware = false;
2133         unsigned char *dummy;
2134         uint8_t input_signals, output_signals;
2135
2136         ulink_handle = calloc(1, sizeof(struct ulink));
2137         if (ulink_handle == NULL)
2138                 return ERROR_FAIL;
2139
2140         libusb_init(&ulink_handle->libusb_ctx);
2141
2142         ret = ulink_usb_open(&ulink_handle);
2143         if (ret != ERROR_OK) {
2144                 LOG_ERROR("Could not open ULINK device");
2145                 free(ulink_handle);
2146                 ulink_handle = NULL;
2147                 return ret;
2148         }
2149
2150         /* Get String Descriptor to determine if firmware needs to be loaded */
2151         ret = libusb_get_string_descriptor_ascii(ulink_handle->usb_device_handle, 1, (unsigned char *)str_manufacturer, 20);
2152         if (ret < 0) {
2153                 /* Could not get descriptor -> Unconfigured or original Keil firmware */
2154                 download_firmware = true;
2155         } else {
2156                 /* We got a String Descriptor, check if it is the correct one */
2157                 if (strncmp(str_manufacturer, "OpenULINK", 9) != 0)
2158                         download_firmware = true;
2159         }
2160
2161         if (download_firmware == true) {
2162                 LOG_INFO("Loading OpenULINK firmware. This is reversible by power-cycling"
2163                         " ULINK device.");
2164                 ret = ulink_load_firmware_and_renumerate(&ulink_handle,
2165                                 ULINK_FIRMWARE_FILE, ULINK_RENUMERATION_DELAY);
2166                 if (ret != ERROR_OK) {
2167                         LOG_ERROR("Could not download firmware and re-numerate ULINK");
2168                         free(ulink_handle);
2169                         ulink_handle = NULL;
2170                         return ret;
2171                 }
2172         } else
2173                 LOG_INFO("ULINK device is already running OpenULINK firmware");
2174
2175         /* Initialize OpenULINK command queue */
2176         ulink_clear_queue(ulink_handle);
2177
2178         /* Issue one test command with short timeout */
2179         ret = ulink_append_test_cmd(ulink_handle);
2180         if (ret != ERROR_OK)
2181                 return ret;
2182
2183         ret = ulink_execute_queued_commands(ulink_handle, 200);
2184         if (ret != ERROR_OK) {
2185                 /* Sending test command failed. The ULINK device may be forever waiting for
2186                  * the host to fetch an USB Bulk IN packet (e. g. OpenOCD crashed or was
2187                  * shut down by the user via Ctrl-C. Try to retrieve this Bulk IN packet. */
2188                 dummy = calloc(64, sizeof(uint8_t));
2189
2190                 ret = libusb_bulk_transfer(ulink_handle->usb_device_handle, (2 | LIBUSB_ENDPOINT_IN),
2191                                 dummy, 64, &transferred, 200);
2192
2193                 free(dummy);
2194
2195                 if (ret != 0 || transferred == 0) {
2196                         /* Bulk IN transfer failed -> unrecoverable error condition */
2197                         LOG_ERROR("Cannot communicate with ULINK device. Disconnect ULINK from "
2198                                 "the USB port and re-connect, then re-run OpenOCD");
2199                         free(ulink_handle);
2200                         ulink_handle = NULL;
2201                         return ERROR_FAIL;
2202                 }
2203 #ifdef _DEBUG_USB_COMMS_
2204                 else {
2205                         /* Successfully received Bulk IN packet -> continue */
2206                         LOG_INFO("Recovered from lost Bulk IN packet");
2207                 }
2208 #endif
2209         }
2210         ulink_clear_queue(ulink_handle);
2211
2212         ulink_append_get_signals_cmd(ulink_handle);
2213         ulink_execute_queued_commands(ulink_handle, 200);
2214
2215         /* Post-process the single CMD_GET_SIGNALS command */
2216         input_signals = ulink_handle->queue_start->payload_in[0];
2217         output_signals = ulink_handle->queue_start->payload_in[1];
2218
2219         ulink_print_signal_states(input_signals, output_signals);
2220
2221         ulink_clear_queue(ulink_handle);
2222
2223         return ERROR_OK;
2224 }
2225
2226 /**
2227  * Closes the USB handle for the ULINK device.
2228  *
2229  * @return on success: ERROR_OK
2230  * @return on failure: ERROR_FAIL
2231  */
2232 static int ulink_quit(void)
2233 {
2234         int ret;
2235
2236         ret = ulink_usb_close(&ulink_handle);
2237         free(ulink_handle);
2238
2239         return ret;
2240 }
2241
2242 /**
2243  * Set a custom path to ULINK firmware image and force downloading to ULINK.
2244  */
2245 COMMAND_HANDLER(ulink_download_firmware_handler)
2246 {
2247         int ret;
2248
2249         if (CMD_ARGC != 1)
2250                 return ERROR_COMMAND_SYNTAX_ERROR;
2251
2252
2253         LOG_INFO("Downloading ULINK firmware image %s", CMD_ARGV[0]);
2254
2255         /* Download firmware image in CMD_ARGV[0] */
2256         ret = ulink_load_firmware_and_renumerate(&ulink_handle, CMD_ARGV[0],
2257                         ULINK_RENUMERATION_DELAY);
2258
2259         return ret;
2260 }
2261
2262 /*************************** Command Registration **************************/
2263
2264 static const struct command_registration ulink_command_handlers[] = {
2265         {
2266                 .name = "ulink_download_firmware",
2267                 .handler = &ulink_download_firmware_handler,
2268                 .mode = COMMAND_EXEC,
2269                 .help = "download firmware image to ULINK device",
2270                 .usage = "path/to/ulink_firmware.hex",
2271         },
2272         COMMAND_REGISTRATION_DONE,
2273 };
2274
2275 static struct jtag_interface ulink_interface = {
2276         .execute_queue = ulink_execute_queue,
2277 };
2278
2279 struct adapter_driver ulink_adapter_driver = {
2280         .name = "ulink",
2281         .transports = jtag_only,
2282         .commands = ulink_command_handlers,
2283
2284         .init = ulink_init,
2285         .quit = ulink_quit,
2286         .speed = ulink_speed,
2287         .khz = ulink_khz,
2288         .speed_div = ulink_speed_div,
2289
2290         .jtag_ops = &ulink_interface,
2291 };