coding style: remove useless break after a goto or return
[fw/openocd] / src / jtag / drivers / ulink.c
1 /***************************************************************************
2  *   Copyright (C) 2011-2013 by Martin Schmoelzer                          *
3  *   <martin.schmoelzer@student.tuwien.ac.at>                              *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
17  ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include <math.h>
24 #include <jtag/interface.h>
25 #include <jtag/commands.h>
26 #include <target/image.h>
27 #include <libusb.h>
28 #include "OpenULINK/include/msgtypes.h"
29
30 /** USB Vendor ID of ULINK device in unconfigured state (no firmware loaded
31  *  yet) or with OpenULINK firmware. */
32 #define ULINK_VID                0xC251
33
34 /** USB Product ID of ULINK device in unconfigured state (no firmware loaded
35  *  yet) or with OpenULINK firmware. */
36 #define ULINK_PID                0x2710
37
38 /** Address of EZ-USB CPU Control & Status register. This register can be
39  *  written by issuing a Control EP0 vendor request. */
40 #define CPUCS_REG                0x7F92
41
42 /** USB Control EP0 bRequest: "Firmware Load". */
43 #define REQUEST_FIRMWARE_LOAD    0xA0
44
45 /** Value to write into CPUCS to put EZ-USB into reset. */
46 #define CPU_RESET                0x01
47
48 /** Value to write into CPUCS to put EZ-USB out of reset. */
49 #define CPU_START                0x00
50
51 /** Base address of firmware in EZ-USB code space. */
52 #define FIRMWARE_ADDR            0x0000
53
54 /** USB interface number */
55 #define USB_INTERFACE            0
56
57 /** libusb timeout in ms */
58 #define USB_TIMEOUT              5000
59
60 /** Delay (in microseconds) to wait while EZ-USB performs ReNumeration. */
61 #define ULINK_RENUMERATION_DELAY 1500000
62
63 /** Default location of OpenULINK firmware image. */
64 #define ULINK_FIRMWARE_FILE      PKGDATADIR "/OpenULINK/ulink_firmware.hex"
65
66 /** Maximum size of a single firmware section. Entire EZ-USB code space = 8kB */
67 #define SECTION_BUFFERSIZE       8192
68
69 /** Tuning of OpenOCD SCAN commands split into multiple OpenULINK commands. */
70 #define SPLIT_SCAN_THRESHOLD     10
71
72 /** ULINK hardware type */
73 enum ulink_type {
74         /** Original ULINK adapter, based on Cypress EZ-USB (AN2131):
75          *  Full JTAG support, no SWD support. */
76         ULINK_1,
77
78         /** Newer ULINK adapter, based on NXP LPC2148. Currently unsupported. */
79         ULINK_2,
80
81         /** Newer ULINK adapter, based on EZ-USB FX2 + FPGA. Currently unsupported. */
82         ULINK_PRO,
83
84         /** Newer ULINK adapter, possibly based on ULINK 2. Currently unsupported. */
85         ULINK_ME
86 };
87
88 enum ulink_payload_direction {
89         PAYLOAD_DIRECTION_OUT,
90         PAYLOAD_DIRECTION_IN
91 };
92
93 enum ulink_delay_type {
94         DELAY_CLOCK_TCK,
95         DELAY_CLOCK_TMS,
96         DELAY_SCAN_IN,
97         DELAY_SCAN_OUT,
98         DELAY_SCAN_IO
99 };
100
101 /**
102  * OpenULINK command (OpenULINK command queue element).
103  *
104  * For the OUT direction payload, things are quite easy: Payload is stored
105  * in a rather small array (up to 63 bytes), the payload is always allocated
106  * by the function generating the command and freed by ulink_clear_queue().
107  *
108  * For the IN direction payload, things get a little bit more complicated:
109  * The maximum IN payload size for a single command is 64 bytes. Assume that
110  * a single OpenOCD command needs to scan 256 bytes. This results in the
111  * generation of four OpenULINK commands. The function generating these
112  * commands shall allocate an uint8_t[256] array. Each command's #payload_in
113  * pointer shall point to the corresponding offset where IN data shall be
114  * placed, while #payload_in_start shall point to the first element of the 256
115  * byte array.
116  * - first command:  #payload_in_start + 0
117  * - second command: #payload_in_start + 64
118  * - third command:  #payload_in_start + 128
119  * - fourth command: #payload_in_start + 192
120  *
121  * The last command sets #needs_postprocessing to true.
122  */
123 struct ulink_cmd {
124         uint8_t id;                     /**< ULINK command ID */
125
126         uint8_t *payload_out;           /**< OUT direction payload data */
127         uint8_t payload_out_size;       /**< OUT direction payload size for this command */
128
129         uint8_t *payload_in_start;      /**< Pointer to first element of IN payload array */
130         uint8_t *payload_in;            /**< Pointer where IN payload shall be stored */
131         uint8_t payload_in_size;        /**< IN direction payload size for this command */
132
133         /** Indicates if this command needs post-processing */
134         bool needs_postprocessing;
135
136         /** Indicates if ulink_clear_queue() should free payload_in_start  */
137         bool free_payload_in_start;
138
139         /** Pointer to corresponding OpenOCD command for post-processing */
140         struct jtag_command *cmd_origin;
141
142         struct ulink_cmd *next;         /**< Pointer to next command (linked list) */
143 };
144
145 /** Describes one driver instance */
146 struct ulink {
147         struct libusb_context *libusb_ctx;
148         struct libusb_device_handle *usb_device_handle;
149         enum ulink_type type;
150
151         int delay_scan_in;      /**< Delay value for SCAN_IN commands */
152         int delay_scan_out;     /**< Delay value for SCAN_OUT commands */
153         int delay_scan_io;      /**< Delay value for SCAN_IO commands */
154         int delay_clock_tck;    /**< Delay value for CLOCK_TMS commands */
155         int delay_clock_tms;    /**< Delay value for CLOCK_TCK commands */
156
157         int commands_in_queue;          /**< Number of commands in queue */
158         struct ulink_cmd *queue_start;  /**< Pointer to first command in queue */
159         struct ulink_cmd *queue_end;    /**< Pointer to last command in queue */
160 };
161
162 /**************************** Function Prototypes *****************************/
163
164 /* USB helper functions */
165 int ulink_usb_open(struct ulink **device);
166 int ulink_usb_close(struct ulink **device);
167
168 /* ULINK MCU (Cypress EZ-USB) specific functions */
169 int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit);
170 int ulink_load_firmware_and_renumerate(struct ulink **device, const char *filename,
171                 uint32_t delay);
172 int ulink_load_firmware(struct ulink *device, const char *filename);
173 int ulink_write_firmware_section(struct ulink *device,
174                 struct image *firmware_image, int section_index);
175
176 /* Generic helper functions */
177 void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals);
178
179 /* OpenULINK command generation helper functions */
180 int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
181                 enum ulink_payload_direction direction);
182
183 /* OpenULINK command queue helper functions */
184 int ulink_get_queue_size(struct ulink *device,
185                 enum ulink_payload_direction direction);
186 void ulink_clear_queue(struct ulink *device);
187 int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd);
188 int ulink_execute_queued_commands(struct ulink *device, int timeout);
189
190 static void ulink_print_queue(struct ulink *device);
191
192 int ulink_append_scan_cmd(struct ulink *device,
193                 enum scan_type scan_type,
194                 int scan_size_bits,
195                 uint8_t *tdi,
196                 uint8_t *tdo_start,
197                 uint8_t *tdo,
198                 uint8_t tms_count_start,
199                 uint8_t tms_sequence_start,
200                 uint8_t tms_count_end,
201                 uint8_t tms_sequence_end,
202                 struct jtag_command *origin,
203                 bool postprocess);
204 int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
205                 uint8_t sequence);
206 int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count);
207 int ulink_append_get_signals_cmd(struct ulink *device);
208 int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
209                 uint8_t high);
210 int ulink_append_sleep_cmd(struct ulink *device, uint32_t us);
211 int ulink_append_configure_tck_cmd(struct ulink *device,
212                 int delay_scan_in,
213                 int delay_scan_out,
214                 int delay_scan_io,
215                 int delay_tck,
216                 int delay_tms);
217 int ulink_append_led_cmd(struct ulink *device, uint8_t led_state);
218 int ulink_append_test_cmd(struct ulink *device);
219
220 /* OpenULINK TCK frequency helper functions */
221 int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay);
222
223 /* Interface between OpenULINK and OpenOCD */
224 static void ulink_set_end_state(tap_state_t endstate);
225 int ulink_queue_statemove(struct ulink *device);
226
227 int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd);
228 int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd);
229 int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd);
230 int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd);
231 int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd);
232 int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd);
233 int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd);
234
235 int ulink_post_process_scan(struct ulink_cmd *ulink_cmd);
236 int ulink_post_process_queue(struct ulink *device);
237
238 /* adapter driver functions */
239 static int ulink_execute_queue(void);
240 static int ulink_khz(int khz, int *jtag_speed);
241 static int ulink_speed(int speed);
242 static int ulink_speed_div(int speed, int *khz);
243 static int ulink_init(void);
244 static int ulink_quit(void);
245
246 /****************************** Global Variables ******************************/
247
248 struct ulink *ulink_handle;
249
250 /**************************** USB helper functions ****************************/
251
252 /**
253  * Opens the ULINK device and claims its USB interface.
254  *
255  * Currently, only the original ULINK is supported
256  *
257  * @param device pointer to struct ulink identifying ULINK driver instance.
258  * @return on success: ERROR_OK
259  * @return on failure: ERROR_FAIL
260  */
261 int ulink_usb_open(struct ulink **device)
262 {
263         ssize_t num_devices, i;
264         bool found;
265         libusb_device **usb_devices;
266         struct libusb_device_descriptor usb_desc;
267         struct libusb_device_handle *usb_device_handle;
268
269         num_devices = libusb_get_device_list((*device)->libusb_ctx, &usb_devices);
270
271         if (num_devices <= 0)
272                 return ERROR_FAIL;
273
274         found = false;
275         for (i = 0; i < num_devices; i++) {
276                 if (libusb_get_device_descriptor(usb_devices[i], &usb_desc) != 0)
277                         continue;
278                 else if (usb_desc.idVendor == ULINK_VID && usb_desc.idProduct == ULINK_PID) {
279                         found = true;
280                         break;
281                 }
282         }
283
284         if (!found)
285                 return ERROR_FAIL;
286
287         if (libusb_open(usb_devices[i], &usb_device_handle) != 0)
288                 return ERROR_FAIL;
289         libusb_free_device_list(usb_devices, 1);
290
291         if (libusb_claim_interface(usb_device_handle, 0) != 0)
292                 return ERROR_FAIL;
293
294         (*device)->usb_device_handle = usb_device_handle;
295         (*device)->type = ULINK_1;
296
297         return ERROR_OK;
298 }
299
300 /**
301  * Releases the ULINK interface and closes the USB device handle.
302  *
303  * @param device pointer to struct ulink identifying ULINK driver instance.
304  * @return on success: ERROR_OK
305  * @return on failure: ERROR_FAIL
306  */
307 int ulink_usb_close(struct ulink **device)
308 {
309         if (libusb_release_interface((*device)->usb_device_handle, 0) != 0)
310                 return ERROR_FAIL;
311
312         libusb_close((*device)->usb_device_handle);
313
314         (*device)->usb_device_handle = NULL;
315
316         return ERROR_OK;
317 }
318
319 /******************* ULINK CPU (EZ-USB) specific functions ********************/
320
321 /**
322  * Writes '0' or '1' to the CPUCS register, putting the EZ-USB CPU into reset
323  * or out of reset.
324  *
325  * @param device pointer to struct ulink identifying ULINK driver instance.
326  * @param reset_bit 0 to put CPU into reset, 1 to put CPU out of reset.
327  * @return on success: ERROR_OK
328  * @return on failure: ERROR_FAIL
329  */
330 int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit)
331 {
332         int ret;
333
334         ret = libusb_control_transfer(device->usb_device_handle,
335                         (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
336                         REQUEST_FIRMWARE_LOAD, CPUCS_REG, 0, &reset_bit, 1, USB_TIMEOUT);
337
338         /* usb_control_msg() returns the number of bytes transferred during the
339          * DATA stage of the control transfer - must be exactly 1 in this case! */
340         if (ret != 1)
341                 return ERROR_FAIL;
342         return ERROR_OK;
343 }
344
345 /**
346  * Puts the ULINK's EZ-USB microcontroller into reset state, downloads
347  * the firmware image, resumes the microcontroller and re-enumerates
348  * USB devices.
349  *
350  * @param device pointer to struct ulink identifying ULINK driver instance.
351  *  The usb_handle member will be modified during re-enumeration.
352  * @param filename path to the Intel HEX file containing the firmware image.
353  * @param delay the delay to wait for the device to re-enumerate.
354  * @return on success: ERROR_OK
355  * @return on failure: ERROR_FAIL
356  */
357 int ulink_load_firmware_and_renumerate(struct ulink **device,
358         const char *filename, uint32_t delay)
359 {
360         int ret;
361
362         /* Basic process: After downloading the firmware, the ULINK will disconnect
363          * itself and re-connect after a short amount of time so we have to close
364          * the handle and re-enumerate USB devices */
365
366         ret = ulink_load_firmware(*device, filename);
367         if (ret != ERROR_OK)
368                 return ret;
369
370         ret = ulink_usb_close(device);
371         if (ret != ERROR_OK)
372                 return ret;
373
374         usleep(delay);
375
376         ret = ulink_usb_open(device);
377         if (ret != ERROR_OK)
378                 return ret;
379
380         return ERROR_OK;
381 }
382
383 /**
384  * Downloads a firmware image to the ULINK's EZ-USB microcontroller
385  * over the USB bus.
386  *
387  * @param device pointer to struct ulink identifying ULINK driver instance.
388  * @param filename an absolute or relative path to the Intel HEX file
389  *  containing the firmware image.
390  * @return on success: ERROR_OK
391  * @return on failure: ERROR_FAIL
392  */
393 int ulink_load_firmware(struct ulink *device, const char *filename)
394 {
395         struct image ulink_firmware_image;
396         int ret, i;
397
398         ret = ulink_cpu_reset(device, CPU_RESET);
399         if (ret != ERROR_OK) {
400                 LOG_ERROR("Could not halt ULINK CPU");
401                 return ret;
402         }
403
404         ulink_firmware_image.base_address = 0;
405         ulink_firmware_image.base_address_set = 0;
406
407         ret = image_open(&ulink_firmware_image, filename, "ihex");
408         if (ret != ERROR_OK) {
409                 LOG_ERROR("Could not load firmware image");
410                 return ret;
411         }
412
413         /* Download all sections in the image to ULINK */
414         for (i = 0; i < ulink_firmware_image.num_sections; i++) {
415                 ret = ulink_write_firmware_section(device, &ulink_firmware_image, i);
416                 if (ret != ERROR_OK)
417                         return ret;
418         }
419
420         image_close(&ulink_firmware_image);
421
422         ret = ulink_cpu_reset(device, CPU_START);
423         if (ret != ERROR_OK) {
424                 LOG_ERROR("Could not restart ULINK CPU");
425                 return ret;
426         }
427
428         return ERROR_OK;
429 }
430
431 /**
432  * Send one contiguous firmware section to the ULINK's EZ-USB microcontroller
433  * over the USB bus.
434  *
435  * @param device pointer to struct ulink identifying ULINK driver instance.
436  * @param firmware_image pointer to the firmware image that contains the section
437  *  which should be sent to the ULINK's EZ-USB microcontroller.
438  * @param section_index index of the section within the firmware image.
439  * @return on success: ERROR_OK
440  * @return on failure: ERROR_FAIL
441  */
442 int ulink_write_firmware_section(struct ulink *device,
443         struct image *firmware_image, int section_index)
444 {
445         uint16_t addr, size, bytes_remaining, chunk_size;
446         uint8_t data[SECTION_BUFFERSIZE];
447         uint8_t *data_ptr = data;
448         size_t size_read;
449         int ret;
450
451         size = (uint16_t)firmware_image->sections[section_index].size;
452         addr = (uint16_t)firmware_image->sections[section_index].base_address;
453
454         LOG_DEBUG("section %02i at addr 0x%04x (size 0x%04x)", section_index, addr,
455                 size);
456
457         /* Copy section contents to local buffer */
458         ret = image_read_section(firmware_image, section_index, 0, size, data,
459                         &size_read);
460
461         if ((ret != ERROR_OK) || (size_read != size)) {
462                 /* Propagating the return code would return '0' (misleadingly indicating
463                  * successful execution of the function) if only the size check fails. */
464                 return ERROR_FAIL;
465         }
466
467         bytes_remaining = size;
468
469         /* Send section data in chunks of up to 64 bytes to ULINK */
470         while (bytes_remaining > 0) {
471                 if (bytes_remaining > 64)
472                         chunk_size = 64;
473                 else
474                         chunk_size = bytes_remaining;
475
476                 ret = libusb_control_transfer(device->usb_device_handle,
477                                 (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
478                                 REQUEST_FIRMWARE_LOAD, addr, FIRMWARE_ADDR, (unsigned char *)data_ptr,
479                                 chunk_size, USB_TIMEOUT);
480
481                 if (ret != (int)chunk_size) {
482                         /* Abort if libusb sent less data than requested */
483                         return ERROR_FAIL;
484                 }
485
486                 bytes_remaining -= chunk_size;
487                 addr += chunk_size;
488                 data_ptr += chunk_size;
489         }
490
491         return ERROR_OK;
492 }
493
494 /************************** Generic helper functions **************************/
495
496 /**
497  * Print state of interesting signals via LOG_INFO().
498  *
499  * @param input_signals input signal states as returned by CMD_GET_SIGNALS
500  * @param output_signals output signal states as returned by CMD_GET_SIGNALS
501  */
502 void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals)
503 {
504         LOG_INFO("ULINK signal states: TDI: %i, TDO: %i, TMS: %i, TCK: %i, TRST: %i,"
505                 " SRST: %i",
506                 (output_signals & SIGNAL_TDI   ? 1 : 0),
507                 (input_signals  & SIGNAL_TDO   ? 1 : 0),
508                 (output_signals & SIGNAL_TMS   ? 1 : 0),
509                 (output_signals & SIGNAL_TCK   ? 1 : 0),
510                 (output_signals & SIGNAL_TRST  ? 0 : 1),        /* Inverted by hardware */
511                 (output_signals & SIGNAL_RESET ? 0 : 1));       /* Inverted by hardware */
512 }
513
514 /**************** OpenULINK command generation helper functions ***************/
515
516 /**
517  * Allocate and initialize space in memory for OpenULINK command payload.
518  *
519  * @param ulink_cmd pointer to command whose payload should be allocated.
520  * @param size the amount of memory to allocate (bytes).
521  * @param direction which payload to allocate.
522  * @return on success: ERROR_OK
523  * @return on failure: ERROR_FAIL
524  */
525 int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
526         enum ulink_payload_direction direction)
527 {
528         uint8_t *payload;
529
530         payload = calloc(size, sizeof(uint8_t));
531
532         if (payload == NULL) {
533                 LOG_ERROR("Could not allocate OpenULINK command payload: out of memory");
534                 return ERROR_FAIL;
535         }
536
537         switch (direction) {
538             case PAYLOAD_DIRECTION_OUT:
539                     if (ulink_cmd->payload_out != NULL) {
540                             LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
541                             free(payload);
542                             return ERROR_FAIL;
543                     } else {
544                             ulink_cmd->payload_out = payload;
545                             ulink_cmd->payload_out_size = size;
546                     }
547                     break;
548             case PAYLOAD_DIRECTION_IN:
549                     if (ulink_cmd->payload_in_start != NULL) {
550                             LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
551                             free(payload);
552                             return ERROR_FAIL;
553                     } else {
554                             ulink_cmd->payload_in_start = payload;
555                             ulink_cmd->payload_in = payload;
556                             ulink_cmd->payload_in_size = size;
557
558                                 /* By default, free payload_in_start in ulink_clear_queue(). Commands
559                                  * that do not want this behavior (e. g. split scans) must turn it off
560                                  * separately! */
561                             ulink_cmd->free_payload_in_start = true;
562                     }
563                     break;
564         }
565
566         return ERROR_OK;
567 }
568
569 /****************** OpenULINK command queue helper functions ******************/
570
571 /**
572  * Get the current number of bytes in the queue, including command IDs.
573  *
574  * @param device pointer to struct ulink identifying ULINK driver instance.
575  * @param direction the transfer direction for which to get byte count.
576  * @return the number of bytes currently stored in the queue for the specified
577  *  direction.
578  */
579 int ulink_get_queue_size(struct ulink *device,
580         enum ulink_payload_direction direction)
581 {
582         struct ulink_cmd *current = device->queue_start;
583         int sum = 0;
584
585         while (current != NULL) {
586                 switch (direction) {
587                     case PAYLOAD_DIRECTION_OUT:
588                             sum += current->payload_out_size + 1;       /* + 1 byte for Command ID */
589                             break;
590                     case PAYLOAD_DIRECTION_IN:
591                             sum += current->payload_in_size;
592                             break;
593                 }
594
595                 current = current->next;
596         }
597
598         return sum;
599 }
600
601 /**
602  * Clear the OpenULINK command queue.
603  *
604  * @param device pointer to struct ulink identifying ULINK driver instance.
605  * @return on success: ERROR_OK
606  * @return on failure: ERROR_FAIL
607  */
608 void ulink_clear_queue(struct ulink *device)
609 {
610         struct ulink_cmd *current = device->queue_start;
611         struct ulink_cmd *next = NULL;
612
613         while (current != NULL) {
614                 /* Save pointer to next element */
615                 next = current->next;
616
617                 /* Free payloads: OUT payload can be freed immediately */
618                 free(current->payload_out);
619                 current->payload_out = NULL;
620
621                 /* IN payload MUST be freed ONLY if no other commands use the
622                  * payload_in_start buffer */
623                 if (current->free_payload_in_start == true) {
624                         free(current->payload_in_start);
625                         current->payload_in_start = NULL;
626                         current->payload_in = NULL;
627                 }
628
629                 /* Free queue element */
630                 free(current);
631
632                 /* Proceed with next element */
633                 current = next;
634         }
635
636         device->commands_in_queue = 0;
637         device->queue_start = NULL;
638         device->queue_end = NULL;
639 }
640
641 /**
642  * Add a command to the OpenULINK command queue.
643  *
644  * @param device pointer to struct ulink identifying ULINK driver instance.
645  * @param ulink_cmd pointer to command that shall be appended to the OpenULINK
646  *  command queue.
647  * @return on success: ERROR_OK
648  * @return on failure: ERROR_FAIL
649  */
650 int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd)
651 {
652         int newsize_out, newsize_in;
653         int ret = ERROR_OK;
654
655         newsize_out = ulink_get_queue_size(device, PAYLOAD_DIRECTION_OUT) + 1
656                 + ulink_cmd->payload_out_size;
657
658         newsize_in = ulink_get_queue_size(device, PAYLOAD_DIRECTION_IN)
659                 + ulink_cmd->payload_in_size;
660
661         /* Check if the current command can be appended to the queue */
662         if ((newsize_out > 64) || (newsize_in > 64)) {
663                 /* New command does not fit. Execute all commands in queue before starting
664                  * new queue with the current command as first entry. */
665                 ret = ulink_execute_queued_commands(device, USB_TIMEOUT);
666
667                 if (ret == ERROR_OK)
668                         ret = ulink_post_process_queue(device);
669
670                 if (ret == ERROR_OK)
671                         ulink_clear_queue(device);
672         }
673
674         if (device->queue_start == NULL) {
675                 /* Queue was empty */
676                 device->commands_in_queue = 1;
677
678                 device->queue_start = ulink_cmd;
679                 device->queue_end = ulink_cmd;
680         } else {
681                 /* There are already commands in the queue */
682                 device->commands_in_queue++;
683
684                 device->queue_end->next = ulink_cmd;
685                 device->queue_end = ulink_cmd;
686         }
687
688         if (ret != ERROR_OK)
689                 ulink_clear_queue(device);
690
691         return ret;
692 }
693
694 /**
695  * Sends all queued OpenULINK commands to the ULINK for execution.
696  *
697  * @param device pointer to struct ulink identifying ULINK driver instance.
698  * @return on success: ERROR_OK
699  * @return on failure: ERROR_FAIL
700  */
701 int ulink_execute_queued_commands(struct ulink *device, int timeout)
702 {
703         struct ulink_cmd *current;
704         int ret, i, index_out, index_in, count_out, count_in, transferred;
705         uint8_t buffer[64];
706
707         if (LOG_LEVEL_IS(LOG_LVL_DEBUG_IO))
708                 ulink_print_queue(device);
709
710         index_out = 0;
711         count_out = 0;
712         count_in = 0;
713
714         for (current = device->queue_start; current; current = current->next) {
715                 /* Add command to packet */
716                 buffer[index_out] = current->id;
717                 index_out++;
718                 count_out++;
719
720                 for (i = 0; i < current->payload_out_size; i++)
721                         buffer[index_out + i] = current->payload_out[i];
722                 index_out += current->payload_out_size;
723                 count_in += current->payload_in_size;
724                 count_out += current->payload_out_size;
725         }
726
727         /* Send packet to ULINK */
728         ret = libusb_bulk_transfer(device->usb_device_handle, (2 | LIBUSB_ENDPOINT_OUT),
729                         (unsigned char *)buffer, count_out, &transferred, timeout);
730         if (ret != 0)
731                 return ERROR_FAIL;
732         if (transferred != count_out)
733                 return ERROR_FAIL;
734
735         /* Wait for response if commands contain IN payload data */
736         if (count_in > 0) {
737                 ret = libusb_bulk_transfer(device->usb_device_handle, (2 | LIBUSB_ENDPOINT_IN),
738                                 (unsigned char *)buffer, 64, &transferred, timeout);
739                 if (ret != 0)
740                         return ERROR_FAIL;
741                 if (transferred != count_in)
742                         return ERROR_FAIL;
743
744                 /* Write back IN payload data */
745                 index_in = 0;
746                 for (current = device->queue_start; current; current = current->next) {
747                         for (i = 0; i < current->payload_in_size; i++) {
748                                 current->payload_in[i] = buffer[index_in];
749                                 index_in++;
750                         }
751                 }
752         }
753
754         return ERROR_OK;
755 }
756
757 /**
758  * Convert an OpenULINK command ID (\a id) to a human-readable string.
759  *
760  * @param id the OpenULINK command ID.
761  * @return the corresponding human-readable string.
762  */
763 static const char *ulink_cmd_id_string(uint8_t id)
764 {
765         switch (id) {
766         case CMD_SCAN_IN:
767                 return "CMD_SCAN_IN";
768         case CMD_SLOW_SCAN_IN:
769                 return "CMD_SLOW_SCAN_IN";
770         case CMD_SCAN_OUT:
771                 return "CMD_SCAN_OUT";
772         case CMD_SLOW_SCAN_OUT:
773                 return "CMD_SLOW_SCAN_OUT";
774         case CMD_SCAN_IO:
775                 return "CMD_SCAN_IO";
776         case CMD_SLOW_SCAN_IO:
777                 return "CMD_SLOW_SCAN_IO";
778         case CMD_CLOCK_TMS:
779                 return "CMD_CLOCK_TMS";
780         case CMD_SLOW_CLOCK_TMS:
781                 return "CMD_SLOW_CLOCK_TMS";
782         case CMD_CLOCK_TCK:
783                 return "CMD_CLOCK_TCK";
784         case CMD_SLOW_CLOCK_TCK:
785                 return "CMD_SLOW_CLOCK_TCK";
786         case CMD_SLEEP_US:
787                 return "CMD_SLEEP_US";
788         case CMD_SLEEP_MS:
789                 return "CMD_SLEEP_MS";
790         case CMD_GET_SIGNALS:
791                 return "CMD_GET_SIGNALS";
792         case CMD_SET_SIGNALS:
793                 return "CMD_SET_SIGNALS";
794         case CMD_CONFIGURE_TCK_FREQ:
795                 return "CMD_CONFIGURE_TCK_FREQ";
796         case CMD_SET_LEDS:
797                 return "CMD_SET_LEDS";
798         case CMD_TEST:
799                 return "CMD_TEST";
800         default:
801                 return "CMD_UNKNOWN";
802         }
803 }
804
805 /**
806  * Print one OpenULINK command to stdout.
807  *
808  * @param ulink_cmd pointer to OpenULINK command.
809  */
810 static void ulink_print_command(struct ulink_cmd *ulink_cmd)
811 {
812         int i;
813
814         printf("  %-22s | OUT size = %i, bytes = 0x",
815                 ulink_cmd_id_string(ulink_cmd->id), ulink_cmd->payload_out_size);
816
817         for (i = 0; i < ulink_cmd->payload_out_size; i++)
818                 printf("%02X ", ulink_cmd->payload_out[i]);
819         printf("\n                         | IN size  = %i\n",
820                 ulink_cmd->payload_in_size);
821 }
822
823 /**
824  * Print the OpenULINK command queue to stdout.
825  *
826  * @param device pointer to struct ulink identifying ULINK driver instance.
827  */
828 static void ulink_print_queue(struct ulink *device)
829 {
830         struct ulink_cmd *current;
831
832         printf("OpenULINK command queue:\n");
833
834         for (current = device->queue_start; current; current = current->next)
835                 ulink_print_command(current);
836 }
837
838 /**
839  * Perform JTAG scan
840  *
841  * Creates and appends a JTAG scan command to the OpenULINK command queue.
842  * A JTAG scan consists of three steps:
843  * - Move to the desired SHIFT state, depending on scan type (IR/DR scan).
844  * - Shift TDI data into the JTAG chain, optionally reading the TDO pin.
845  * - Move to the desired end state.
846  *
847  * @param device pointer to struct ulink identifying ULINK driver instance.
848  * @param scan_type the type of the scan (IN, OUT, IO (bidirectional)).
849  * @param scan_size_bits number of bits to shift into the JTAG chain.
850  * @param tdi pointer to array containing TDI data.
851  * @param tdo_start pointer to first element of array where TDO data shall be
852  *  stored. See #ulink_cmd for details.
853  * @param tdo pointer to array where TDO data shall be stored
854  * @param tms_count_start number of TMS state transitions to perform BEFORE
855  *  shifting data into the JTAG chain.
856  * @param tms_sequence_start sequence of TMS state transitions that will be
857  *  performed BEFORE shifting data into the JTAG chain.
858  * @param tms_count_end number of TMS state transitions to perform AFTER
859  *  shifting data into the JTAG chain.
860  * @param tms_sequence_end sequence of TMS state transitions that will be
861  *  performed AFTER shifting data into the JTAG chain.
862  * @param origin pointer to OpenOCD command that generated this scan command.
863  * @param postprocess whether this command needs to be post-processed after
864  *  execution.
865  * @return on success: ERROR_OK
866  * @return on failure: ERROR_FAIL
867  */
868 int ulink_append_scan_cmd(struct ulink *device, enum scan_type scan_type,
869         int scan_size_bits, uint8_t *tdi, uint8_t *tdo_start, uint8_t *tdo,
870         uint8_t tms_count_start, uint8_t tms_sequence_start, uint8_t tms_count_end,
871         uint8_t tms_sequence_end, struct jtag_command *origin, bool postprocess)
872 {
873         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
874         int ret, i, scan_size_bytes;
875         uint8_t bits_last_byte;
876
877         if (cmd == NULL)
878                 return ERROR_FAIL;
879
880         /* Check size of command. USB buffer can hold 64 bytes, 1 byte is command ID,
881          * 5 bytes are setup data -> 58 remaining payload bytes for TDI data */
882         if (scan_size_bits > (58 * 8)) {
883                 LOG_ERROR("BUG: Tried to create CMD_SCAN_IO OpenULINK command with too"
884                         " large payload");
885                 free(cmd);
886                 return ERROR_FAIL;
887         }
888
889         scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
890
891         bits_last_byte = scan_size_bits % 8;
892         if (bits_last_byte == 0)
893                 bits_last_byte = 8;
894
895         /* Allocate out_payload depending on scan type */
896         switch (scan_type) {
897             case SCAN_IN:
898                     if (device->delay_scan_in < 0)
899                             cmd->id = CMD_SCAN_IN;
900                     else
901                             cmd->id = CMD_SLOW_SCAN_IN;
902                     ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
903                     break;
904             case SCAN_OUT:
905                     if (device->delay_scan_out < 0)
906                             cmd->id = CMD_SCAN_OUT;
907                     else
908                             cmd->id = CMD_SLOW_SCAN_OUT;
909                     ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
910                     break;
911             case SCAN_IO:
912                     if (device->delay_scan_io < 0)
913                             cmd->id = CMD_SCAN_IO;
914                     else
915                             cmd->id = CMD_SLOW_SCAN_IO;
916                     ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
917                     break;
918             default:
919                     LOG_ERROR("BUG: ulink_append_scan_cmd() encountered an unknown scan type");
920                     ret = ERROR_FAIL;
921                     break;
922         }
923
924         if (ret != ERROR_OK) {
925                 free(cmd);
926                 return ret;
927         }
928
929         /* Build payload_out that is common to all scan types */
930         cmd->payload_out[0] = scan_size_bytes & 0xFF;
931         cmd->payload_out[1] = bits_last_byte & 0xFF;
932         cmd->payload_out[2] = ((tms_count_start & 0x0F) << 4) | (tms_count_end & 0x0F);
933         cmd->payload_out[3] = tms_sequence_start;
934         cmd->payload_out[4] = tms_sequence_end;
935
936         /* Setup payload_out for types with OUT transfer */
937         if ((scan_type == SCAN_OUT) || (scan_type == SCAN_IO)) {
938                 for (i = 0; i < scan_size_bytes; i++)
939                         cmd->payload_out[i + 5] = tdi[i];
940         }
941
942         /* Setup payload_in pointers for types with IN transfer */
943         if ((scan_type == SCAN_IN) || (scan_type == SCAN_IO)) {
944                 cmd->payload_in_start = tdo_start;
945                 cmd->payload_in = tdo;
946                 cmd->payload_in_size = scan_size_bytes;
947         }
948
949         cmd->needs_postprocessing = postprocess;
950         cmd->cmd_origin = origin;
951
952         /* For scan commands, we free payload_in_start only when the command is
953          * the last in a series of split commands or a stand-alone command */
954         cmd->free_payload_in_start = postprocess;
955
956         return ulink_append_queue(device, cmd);
957 }
958
959 /**
960  * Perform TAP state transitions
961  *
962  * @param device pointer to struct ulink identifying ULINK driver instance.
963  * @param count defines the number of TCK clock cycles generated (up to 8).
964  * @param sequence defines the TMS pin levels for each state transition. The
965  *  Least-Significant Bit is read first.
966  * @return on success: ERROR_OK
967  * @return on failure: ERROR_FAIL
968  */
969 int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
970         uint8_t sequence)
971 {
972         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
973         int ret;
974
975         if (cmd == NULL)
976                 return ERROR_FAIL;
977
978         if (device->delay_clock_tms < 0)
979                 cmd->id = CMD_CLOCK_TMS;
980         else
981                 cmd->id = CMD_SLOW_CLOCK_TMS;
982
983         /* CMD_CLOCK_TMS has two OUT payload bytes and zero IN payload bytes */
984         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
985         if (ret != ERROR_OK) {
986                 free(cmd);
987                 return ret;
988         }
989
990         cmd->payload_out[0] = count;
991         cmd->payload_out[1] = sequence;
992
993         return ulink_append_queue(device, cmd);
994 }
995
996 /**
997  * Generate a defined amount of TCK clock cycles
998  *
999  * All other JTAG signals are left unchanged.
1000  *
1001  * @param device pointer to struct ulink identifying ULINK driver instance.
1002  * @param count the number of TCK clock cycles to generate.
1003  * @return on success: ERROR_OK
1004  * @return on failure: ERROR_FAIL
1005  */
1006 int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count)
1007 {
1008         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1009         int ret;
1010
1011         if (cmd == NULL)
1012                 return ERROR_FAIL;
1013
1014         if (device->delay_clock_tck < 0)
1015                 cmd->id = CMD_CLOCK_TCK;
1016         else
1017                 cmd->id = CMD_SLOW_CLOCK_TCK;
1018
1019         /* CMD_CLOCK_TCK has two OUT payload bytes and zero IN payload bytes */
1020         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1021         if (ret != ERROR_OK) {
1022                 free(cmd);
1023                 return ret;
1024         }
1025
1026         cmd->payload_out[0] = count & 0xff;
1027         cmd->payload_out[1] = (count >> 8) & 0xff;
1028
1029         return ulink_append_queue(device, cmd);
1030 }
1031
1032 /**
1033  * Read JTAG signals.
1034  *
1035  * @param device pointer to struct ulink identifying ULINK driver instance.
1036  * @return on success: ERROR_OK
1037  * @return on failure: ERROR_FAIL
1038  */
1039 int ulink_append_get_signals_cmd(struct ulink *device)
1040 {
1041         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1042         int ret;
1043
1044         if (cmd == NULL)
1045                 return ERROR_FAIL;
1046
1047         cmd->id = CMD_GET_SIGNALS;
1048         cmd->needs_postprocessing = true;
1049
1050         /* CMD_GET_SIGNALS has two IN payload bytes */
1051         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_IN);
1052
1053         if (ret != ERROR_OK) {
1054                 free(cmd);
1055                 return ret;
1056         }
1057
1058         return ulink_append_queue(device, cmd);
1059 }
1060
1061 /**
1062  * Arbitrarily set JTAG output signals.
1063  *
1064  * @param device pointer to struct ulink identifying ULINK driver instance.
1065  * @param low defines which signals will be de-asserted. Each bit corresponds
1066  *  to a JTAG signal:
1067  *  - SIGNAL_TDI
1068  *  - SIGNAL_TMS
1069  *  - SIGNAL_TCK
1070  *  - SIGNAL_TRST
1071  *  - SIGNAL_BRKIN
1072  *  - SIGNAL_RESET
1073  *  - SIGNAL_OCDSE
1074  * @param high defines which signals will be asserted.
1075  * @return on success: ERROR_OK
1076  * @return on failure: ERROR_FAIL
1077  */
1078 int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
1079         uint8_t high)
1080 {
1081         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1082         int ret;
1083
1084         if (cmd == NULL)
1085                 return ERROR_FAIL;
1086
1087         cmd->id = CMD_SET_SIGNALS;
1088
1089         /* CMD_SET_SIGNALS has two OUT payload bytes and zero IN payload bytes */
1090         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1091
1092         if (ret != ERROR_OK) {
1093                 free(cmd);
1094                 return ret;
1095         }
1096
1097         cmd->payload_out[0] = low;
1098         cmd->payload_out[1] = high;
1099
1100         return ulink_append_queue(device, cmd);
1101 }
1102
1103 /**
1104  * Sleep for a pre-defined number of microseconds
1105  *
1106  * @param device pointer to struct ulink identifying ULINK driver instance.
1107  * @param us the number microseconds to sleep.
1108  * @return on success: ERROR_OK
1109  * @return on failure: ERROR_FAIL
1110  */
1111 int ulink_append_sleep_cmd(struct ulink *device, uint32_t us)
1112 {
1113         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1114         int ret;
1115
1116         if (cmd == NULL)
1117                 return ERROR_FAIL;
1118
1119         cmd->id = CMD_SLEEP_US;
1120
1121         /* CMD_SLEEP_US has two OUT payload bytes and zero IN payload bytes */
1122         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1123
1124         if (ret != ERROR_OK) {
1125                 free(cmd);
1126                 return ret;
1127         }
1128
1129         cmd->payload_out[0] = us & 0x00ff;
1130         cmd->payload_out[1] = (us >> 8) & 0x00ff;
1131
1132         return ulink_append_queue(device, cmd);
1133 }
1134
1135 /**
1136  * Set TCK delay counters
1137  *
1138  * @param device pointer to struct ulink identifying ULINK driver instance.
1139  * @param delay_scan_in delay count top value in jtag_slow_scan_in() function.
1140  * @param delay_scan_out delay count top value in jtag_slow_scan_out() function.
1141  * @param delay_scan_io delay count top value in jtag_slow_scan_io() function.
1142  * @param delay_tck delay count top value in jtag_clock_tck() function.
1143  * @param delay_tms delay count top value in jtag_slow_clock_tms() function.
1144  * @return on success: ERROR_OK
1145  * @return on failure: ERROR_FAIL
1146  */
1147 int ulink_append_configure_tck_cmd(struct ulink *device, int delay_scan_in,
1148         int delay_scan_out, int delay_scan_io, int delay_tck, int delay_tms)
1149 {
1150         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1151         int ret;
1152
1153         if (cmd == NULL)
1154                 return ERROR_FAIL;
1155
1156         cmd->id = CMD_CONFIGURE_TCK_FREQ;
1157
1158         /* CMD_CONFIGURE_TCK_FREQ has five OUT payload bytes and zero
1159          * IN payload bytes */
1160         ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
1161         if (ret != ERROR_OK) {
1162                 free(cmd);
1163                 return ret;
1164         }
1165
1166         if (delay_scan_in < 0)
1167                 cmd->payload_out[0] = 0;
1168         else
1169                 cmd->payload_out[0] = (uint8_t)delay_scan_in;
1170
1171         if (delay_scan_out < 0)
1172                 cmd->payload_out[1] = 0;
1173         else
1174                 cmd->payload_out[1] = (uint8_t)delay_scan_out;
1175
1176         if (delay_scan_io < 0)
1177                 cmd->payload_out[2] = 0;
1178         else
1179                 cmd->payload_out[2] = (uint8_t)delay_scan_io;
1180
1181         if (delay_tck < 0)
1182                 cmd->payload_out[3] = 0;
1183         else
1184                 cmd->payload_out[3] = (uint8_t)delay_tck;
1185
1186         if (delay_tms < 0)
1187                 cmd->payload_out[4] = 0;
1188         else
1189                 cmd->payload_out[4] = (uint8_t)delay_tms;
1190
1191         return ulink_append_queue(device, cmd);
1192 }
1193
1194 /**
1195  * Turn on/off ULINK LEDs.
1196  *
1197  * @param device pointer to struct ulink identifying ULINK driver instance.
1198  * @param led_state which LED(s) to turn on or off. The following bits
1199  *  influence the LEDS:
1200  *  - Bit 0: Turn COM LED on
1201  *  - Bit 1: Turn RUN LED on
1202  *  - Bit 2: Turn COM LED off
1203  *  - Bit 3: Turn RUN LED off
1204  *  If both the on-bit and the off-bit for the same LED is set, the LED is
1205  *  turned off.
1206  * @return on success: ERROR_OK
1207  * @return on failure: ERROR_FAIL
1208  */
1209 int ulink_append_led_cmd(struct ulink *device, uint8_t led_state)
1210 {
1211         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1212         int ret;
1213
1214         if (cmd == NULL)
1215                 return ERROR_FAIL;
1216
1217         cmd->id = CMD_SET_LEDS;
1218
1219         /* CMD_SET_LEDS has one OUT payload byte and zero IN payload bytes */
1220         ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
1221         if (ret != ERROR_OK) {
1222                 free(cmd);
1223                 return ret;
1224         }
1225
1226         cmd->payload_out[0] = led_state;
1227
1228         return ulink_append_queue(device, cmd);
1229 }
1230
1231 /**
1232  * Test command. Used to check if the ULINK device is ready to accept new
1233  * commands.
1234  *
1235  * @param device pointer to struct ulink identifying ULINK driver instance.
1236  * @return on success: ERROR_OK
1237  * @return on failure: ERROR_FAIL
1238  */
1239 int ulink_append_test_cmd(struct ulink *device)
1240 {
1241         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1242         int ret;
1243
1244         if (cmd == NULL)
1245                 return ERROR_FAIL;
1246
1247         cmd->id = CMD_TEST;
1248
1249         /* CMD_TEST has one OUT payload byte and zero IN payload bytes */
1250         ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
1251         if (ret != ERROR_OK) {
1252                 free(cmd);
1253                 return ret;
1254         }
1255
1256         cmd->payload_out[0] = 0xAA;
1257
1258         return ulink_append_queue(device, cmd);
1259 }
1260
1261 /****************** OpenULINK TCK frequency helper functions ******************/
1262
1263 /**
1264  * Calculate delay values for a given TCK frequency.
1265  *
1266  * The OpenULINK firmware uses five different speed values for different
1267  * commands. These speed values are calculated in these functions.
1268  *
1269  * The five different commands which support variable TCK frequency are
1270  * implemented twice in the firmware:
1271  *   1. Maximum possible frequency without any artificial delay
1272  *   2. Variable frequency with artificial linear delay loop
1273  *
1274  * To set the ULINK to maximum frequency, it is only neccessary to use the
1275  * corresponding command IDs. To set the ULINK to a lower frequency, the
1276  * delay loop top values have to be calculated first. Then, a
1277  * CMD_CONFIGURE_TCK_FREQ command needs to be sent to the ULINK device.
1278  *
1279  * The delay values are described by linear equations:
1280  *    t = k * x + d
1281  *    (t = period, k = constant, x = delay value, d = constant)
1282  *
1283  * Thus, the delay can be calculated as in the following equation:
1284  *    x = (t - d) / k
1285  *
1286  * The constants in these equations have been determined and validated by
1287  * measuring the frequency resulting from different delay values.
1288  *
1289  * @param type for which command to calculate the delay value.
1290  * @param f TCK frequency for which to calculate the delay value in Hz.
1291  * @param delay where to store resulting delay value.
1292  * @return on success: ERROR_OK
1293  * @return on failure: ERROR_FAIL
1294  */
1295 int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay)
1296 {
1297         float t, x, x_ceil;
1298
1299         /* Calculate period of requested TCK frequency */
1300         t = 1.0 / (float)(f);
1301
1302         switch (type) {
1303             case DELAY_CLOCK_TCK:
1304                     x = (t - (float)(6E-6)) / (float)(4E-6);
1305                     break;
1306             case DELAY_CLOCK_TMS:
1307                     x = (t - (float)(8.5E-6)) / (float)(4E-6);
1308                     break;
1309             case DELAY_SCAN_IN:
1310                     x = (t - (float)(8.8308E-6)) / (float)(4E-6);
1311                     break;
1312             case DELAY_SCAN_OUT:
1313                     x = (t - (float)(1.0527E-5)) / (float)(4E-6);
1314                     break;
1315             case DELAY_SCAN_IO:
1316                     x = (t - (float)(1.3132E-5)) / (float)(4E-6);
1317                     break;
1318             default:
1319                     return ERROR_FAIL;
1320                     break;
1321         }
1322
1323         /* Check if the delay value is negative. This happens when a frequency is
1324          * requested that is too high for the delay loop implementation. In this
1325          * case, set delay value to zero. */
1326         if (x < 0)
1327                 x = 0;
1328
1329         /* We need to convert the exact delay value to an integer. Therefore, we
1330          * round the exact value UP to ensure that the resulting frequency is NOT
1331          * higher than the requested frequency. */
1332         x_ceil = ceilf(x);
1333
1334         /* Check if the value is within limits */
1335         if (x_ceil > 255)
1336                 return ERROR_FAIL;
1337
1338         *delay = (int)x_ceil;
1339
1340         return ERROR_OK;
1341 }
1342
1343 /**
1344  * Calculate frequency for a given delay value.
1345  *
1346  * Similar to the #ulink_calculate_delay function, this function calculates the
1347  * TCK frequency for a given delay value by using linear equations of the form:
1348  *    t = k * x + d
1349  *    (t = period, k = constant, x = delay value, d = constant)
1350  *
1351  * @param type for which command to calculate the delay value.
1352  * @param delay delay value for which to calculate the resulting TCK frequency.
1353  * @return the resulting TCK frequency
1354  */
1355 static long ulink_calculate_frequency(enum ulink_delay_type type, int delay)
1356 {
1357         float t, f_float;
1358
1359         if (delay > 255)
1360                 return 0;
1361
1362         switch (type) {
1363             case DELAY_CLOCK_TCK:
1364                     if (delay < 0)
1365                             t = (float)(2.666E-6);
1366                     else
1367                             t = (float)(4E-6) * (float)(delay) + (float)(6E-6);
1368                     break;
1369             case DELAY_CLOCK_TMS:
1370                     if (delay < 0)
1371                             t = (float)(5.666E-6);
1372                     else
1373                             t = (float)(4E-6) * (float)(delay) + (float)(8.5E-6);
1374                     break;
1375             case DELAY_SCAN_IN:
1376                     if (delay < 0)
1377                             t = (float)(5.5E-6);
1378                     else
1379                             t = (float)(4E-6) * (float)(delay) + (float)(8.8308E-6);
1380                     break;
1381             case DELAY_SCAN_OUT:
1382                     if (delay < 0)
1383                             t = (float)(7.0E-6);
1384                     else
1385                             t = (float)(4E-6) * (float)(delay) + (float)(1.0527E-5);
1386                     break;
1387             case DELAY_SCAN_IO:
1388                     if (delay < 0)
1389                             t = (float)(9.926E-6);
1390                     else
1391                             t = (float)(4E-6) * (float)(delay) + (float)(1.3132E-5);
1392                     break;
1393             default:
1394                     return 0;
1395         }
1396
1397         f_float = 1.0 / t;
1398         return roundf(f_float);
1399 }
1400
1401 /******************* Interface between OpenULINK and OpenOCD ******************/
1402
1403 /**
1404  * Sets the end state follower (see interface.h) if \a endstate is a stable
1405  * state.
1406  *
1407  * @param endstate the state the end state follower should be set to.
1408  */
1409 static void ulink_set_end_state(tap_state_t endstate)
1410 {
1411         if (tap_is_state_stable(endstate))
1412                 tap_set_end_state(endstate);
1413         else {
1414                 LOG_ERROR("BUG: %s is not a valid end state", tap_state_name(endstate));
1415                 exit(EXIT_FAILURE);
1416         }
1417 }
1418
1419 /**
1420  * Move from the current TAP state to the current TAP end state.
1421  *
1422  * @param device pointer to struct ulink identifying ULINK driver instance.
1423  * @return on success: ERROR_OK
1424  * @return on failure: ERROR_FAIL
1425  */
1426 int ulink_queue_statemove(struct ulink *device)
1427 {
1428         uint8_t tms_sequence, tms_count;
1429         int ret;
1430
1431         if (tap_get_state() == tap_get_end_state()) {
1432                 /* Do nothing if we are already there */
1433                 return ERROR_OK;
1434         }
1435
1436         tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1437         tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1438
1439         ret = ulink_append_clock_tms_cmd(device, tms_count, tms_sequence);
1440
1441         if (ret == ERROR_OK)
1442                 tap_set_state(tap_get_end_state());
1443
1444         return ret;
1445 }
1446
1447 /**
1448  * Perform a scan operation on a JTAG register.
1449  *
1450  * @param device pointer to struct ulink identifying ULINK driver instance.
1451  * @param cmd pointer to the command that shall be executed.
1452  * @return on success: ERROR_OK
1453  * @return on failure: ERROR_FAIL
1454  */
1455 int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd)
1456 {
1457         uint32_t scan_size_bits, scan_size_bytes, bits_last_scan;
1458         uint32_t scans_max_payload, bytecount;
1459         uint8_t *tdi_buffer_start = NULL, *tdi_buffer = NULL;
1460         uint8_t *tdo_buffer_start = NULL, *tdo_buffer = NULL;
1461
1462         uint8_t first_tms_count, first_tms_sequence;
1463         uint8_t last_tms_count, last_tms_sequence;
1464
1465         uint8_t tms_count_pause, tms_sequence_pause;
1466         uint8_t tms_count_resume, tms_sequence_resume;
1467
1468         uint8_t tms_count_start, tms_sequence_start;
1469         uint8_t tms_count_end, tms_sequence_end;
1470
1471         enum scan_type type;
1472         int ret;
1473
1474         /* Determine scan size */
1475         scan_size_bits = jtag_scan_size(cmd->cmd.scan);
1476         scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
1477
1478         /* Determine scan type (IN/OUT/IO) */
1479         type = jtag_scan_type(cmd->cmd.scan);
1480
1481         /* Determine number of scan commands with maximum payload */
1482         scans_max_payload = scan_size_bytes / 58;
1483
1484         /* Determine size of last shift command */
1485         bits_last_scan = scan_size_bits - (scans_max_payload * 58 * 8);
1486
1487         /* Allocate TDO buffer if required */
1488         if ((type == SCAN_IN) || (type == SCAN_IO)) {
1489                 tdo_buffer_start = calloc(sizeof(uint8_t), scan_size_bytes);
1490
1491                 if (tdo_buffer_start == NULL)
1492                         return ERROR_FAIL;
1493
1494                 tdo_buffer = tdo_buffer_start;
1495         }
1496
1497         /* Fill TDI buffer if required */
1498         if ((type == SCAN_OUT) || (type == SCAN_IO)) {
1499                 jtag_build_buffer(cmd->cmd.scan, &tdi_buffer_start);
1500                 tdi_buffer = tdi_buffer_start;
1501         }
1502
1503         /* Get TAP state transitions */
1504         if (cmd->cmd.scan->ir_scan) {
1505                 ulink_set_end_state(TAP_IRSHIFT);
1506                 first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1507                 first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1508
1509                 tap_set_state(TAP_IRSHIFT);
1510                 tap_set_end_state(cmd->cmd.scan->end_state);
1511                 last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1512                 last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1513
1514                 /* TAP state transitions for split scans */
1515                 tms_count_pause = tap_get_tms_path_len(TAP_IRSHIFT, TAP_IRPAUSE);
1516                 tms_sequence_pause = tap_get_tms_path(TAP_IRSHIFT, TAP_IRPAUSE);
1517                 tms_count_resume = tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRSHIFT);
1518                 tms_sequence_resume = tap_get_tms_path(TAP_IRPAUSE, TAP_IRSHIFT);
1519         } else {
1520                 ulink_set_end_state(TAP_DRSHIFT);
1521                 first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1522                 first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1523
1524                 tap_set_state(TAP_DRSHIFT);
1525                 tap_set_end_state(cmd->cmd.scan->end_state);
1526                 last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1527                 last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1528
1529                 /* TAP state transitions for split scans */
1530                 tms_count_pause = tap_get_tms_path_len(TAP_DRSHIFT, TAP_DRPAUSE);
1531                 tms_sequence_pause = tap_get_tms_path(TAP_DRSHIFT, TAP_DRPAUSE);
1532                 tms_count_resume = tap_get_tms_path_len(TAP_DRPAUSE, TAP_DRSHIFT);
1533                 tms_sequence_resume = tap_get_tms_path(TAP_DRPAUSE, TAP_DRSHIFT);
1534         }
1535
1536         /* Generate scan commands */
1537         bytecount = scan_size_bytes;
1538         while (bytecount > 0) {
1539                 if (bytecount == scan_size_bytes) {
1540                         /* This is the first scan */
1541                         tms_count_start = first_tms_count;
1542                         tms_sequence_start = first_tms_sequence;
1543                 } else {
1544                         /* Resume from previous scan */
1545                         tms_count_start = tms_count_resume;
1546                         tms_sequence_start = tms_sequence_resume;
1547                 }
1548
1549                 if (bytecount > 58) {   /* Full scan, at least one scan will follow */
1550                         tms_count_end = tms_count_pause;
1551                         tms_sequence_end = tms_sequence_pause;
1552
1553                         ret = ulink_append_scan_cmd(device,
1554                                         type,
1555                                         58 * 8,
1556                                         tdi_buffer,
1557                                         tdo_buffer_start,
1558                                         tdo_buffer,
1559                                         tms_count_start,
1560                                         tms_sequence_start,
1561                                         tms_count_end,
1562                                         tms_sequence_end,
1563                                         cmd,
1564                                         false);
1565
1566                         bytecount -= 58;
1567
1568                         /* Update TDI and TDO buffer pointers */
1569                         if (tdi_buffer_start != NULL)
1570                                 tdi_buffer += 58;
1571                         if (tdo_buffer_start != NULL)
1572                                 tdo_buffer += 58;
1573                 } else if (bytecount == 58) {   /* Full scan, no further scans */
1574                         tms_count_end = last_tms_count;
1575                         tms_sequence_end = last_tms_sequence;
1576
1577                         ret = ulink_append_scan_cmd(device,
1578                                         type,
1579                                         58 * 8,
1580                                         tdi_buffer,
1581                                         tdo_buffer_start,
1582                                         tdo_buffer,
1583                                         tms_count_start,
1584                                         tms_sequence_start,
1585                                         tms_count_end,
1586                                         tms_sequence_end,
1587                                         cmd,
1588                                         true);
1589
1590                         bytecount = 0;
1591                 } else {/* Scan with less than maximum payload, no further scans */
1592                         tms_count_end = last_tms_count;
1593                         tms_sequence_end = last_tms_sequence;
1594
1595                         ret = ulink_append_scan_cmd(device,
1596                                         type,
1597                                         bits_last_scan,
1598                                         tdi_buffer,
1599                                         tdo_buffer_start,
1600                                         tdo_buffer,
1601                                         tms_count_start,
1602                                         tms_sequence_start,
1603                                         tms_count_end,
1604                                         tms_sequence_end,
1605                                         cmd,
1606                                         true);
1607
1608                         bytecount = 0;
1609                 }
1610
1611                 if (ret != ERROR_OK) {
1612                         free(tdi_buffer_start);
1613                         free(tdo_buffer_start);
1614                         return ret;
1615                 }
1616         }
1617
1618         free(tdi_buffer_start);
1619
1620         /* Set current state to the end state requested by the command */
1621         tap_set_state(cmd->cmd.scan->end_state);
1622
1623         return ERROR_OK;
1624 }
1625
1626 /**
1627  * Move the TAP into the Test Logic Reset state.
1628  *
1629  * @param device pointer to struct ulink identifying ULINK driver instance.
1630  * @param cmd pointer to the command that shall be executed.
1631  * @return on success: ERROR_OK
1632  * @return on failure: ERROR_FAIL
1633  */
1634 int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd)
1635 {
1636         int ret;
1637
1638         ret = ulink_append_clock_tms_cmd(device, 5, 0xff);
1639
1640         if (ret == ERROR_OK)
1641                 tap_set_state(TAP_RESET);
1642
1643         return ret;
1644 }
1645
1646 /**
1647  * Run Test.
1648  *
1649  * Generate TCK clock cycles while remaining
1650  * in the Run-Test/Idle state.
1651  *
1652  * @param device pointer to struct ulink identifying ULINK driver instance.
1653  * @param cmd pointer to the command that shall be executed.
1654  * @return on success: ERROR_OK
1655  * @return on failure: ERROR_FAIL
1656  */
1657 int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd)
1658 {
1659         int ret;
1660
1661         /* Only perform statemove if the TAP currently isn't in the TAP_IDLE state */
1662         if (tap_get_state() != TAP_IDLE) {
1663                 ulink_set_end_state(TAP_IDLE);
1664                 ulink_queue_statemove(device);
1665         }
1666
1667         /* Generate the clock cycles */
1668         ret = ulink_append_clock_tck_cmd(device, cmd->cmd.runtest->num_cycles);
1669         if (ret != ERROR_OK)
1670                 return ret;
1671
1672         /* Move to end state specified in command */
1673         if (cmd->cmd.runtest->end_state != tap_get_state()) {
1674                 tap_set_end_state(cmd->cmd.runtest->end_state);
1675                 ulink_queue_statemove(device);
1676         }
1677
1678         return ERROR_OK;
1679 }
1680
1681 /**
1682  * Execute a JTAG_RESET command
1683  *
1684  * @param cmd pointer to the command that shall be executed.
1685  * @return on success: ERROR_OK
1686  * @return on failure: ERROR_FAIL
1687  */
1688 int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd)
1689 {
1690         uint8_t low = 0, high = 0;
1691
1692         if (cmd->cmd.reset->trst) {
1693                 tap_set_state(TAP_RESET);
1694                 high |= SIGNAL_TRST;
1695         } else
1696                 low |= SIGNAL_TRST;
1697
1698         if (cmd->cmd.reset->srst)
1699                 high |= SIGNAL_RESET;
1700         else
1701                 low |= SIGNAL_RESET;
1702
1703         return ulink_append_set_signals_cmd(device, low, high);
1704 }
1705
1706 /**
1707  * Move to one TAP state or several states in succession.
1708  *
1709  * @param device pointer to struct ulink identifying ULINK driver instance.
1710  * @param cmd pointer to the command that shall be executed.
1711  * @return on success: ERROR_OK
1712  * @return on failure: ERROR_FAIL
1713  */
1714 int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd)
1715 {
1716         int ret, i, num_states, batch_size, state_count;
1717         tap_state_t *path;
1718         uint8_t tms_sequence;
1719
1720         num_states = cmd->cmd.pathmove->num_states;
1721         path = cmd->cmd.pathmove->path;
1722         state_count = 0;
1723
1724         while (num_states > 0) {
1725                 tms_sequence = 0;
1726
1727                 /* Determine batch size */
1728                 if (num_states >= 8)
1729                         batch_size = 8;
1730                 else
1731                         batch_size = num_states;
1732
1733                 for (i = 0; i < batch_size; i++) {
1734                         if (tap_state_transition(tap_get_state(), false) == path[state_count]) {
1735                                 /* Append '0' transition: clear bit 'i' in tms_sequence */
1736                                 buf_set_u32(&tms_sequence, i, 1, 0x0);
1737                         } else if (tap_state_transition(tap_get_state(), true)
1738                                    == path[state_count]) {
1739                                 /* Append '1' transition: set bit 'i' in tms_sequence */
1740                                 buf_set_u32(&tms_sequence, i, 1, 0x1);
1741                         } else {
1742                                 /* Invalid state transition */
1743                                 LOG_ERROR("BUG: %s -> %s isn't a valid TAP state transition",
1744                                         tap_state_name(tap_get_state()),
1745                                         tap_state_name(path[state_count]));
1746                                 return ERROR_FAIL;
1747                         }
1748
1749                         tap_set_state(path[state_count]);
1750                         state_count++;
1751                         num_states--;
1752                 }
1753
1754                 /* Append CLOCK_TMS command to OpenULINK command queue */
1755                 LOG_INFO(
1756                         "pathmove batch: count = %i, sequence = 0x%x", batch_size, tms_sequence);
1757                 ret = ulink_append_clock_tms_cmd(ulink_handle, batch_size, tms_sequence);
1758                 if (ret != ERROR_OK)
1759                         return ret;
1760         }
1761
1762         return ERROR_OK;
1763 }
1764
1765 /**
1766  * Sleep for a specific amount of time.
1767  *
1768  * @param device pointer to struct ulink identifying ULINK driver instance.
1769  * @param cmd pointer to the command that shall be executed.
1770  * @return on success: ERROR_OK
1771  * @return on failure: ERROR_FAIL
1772  */
1773 int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd)
1774 {
1775         /* IMPORTANT! Due to the time offset in command execution introduced by
1776          * command queueing, this needs to be implemented in the ULINK device */
1777         return ulink_append_sleep_cmd(device, cmd->cmd.sleep->us);
1778 }
1779
1780 /**
1781  * Generate TCK cycles while remaining in a stable state.
1782  *
1783  * @param device pointer to struct ulink identifying ULINK driver instance.
1784  * @param cmd pointer to the command that shall be executed.
1785  */
1786 int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd)
1787 {
1788         int ret;
1789         unsigned num_cycles;
1790
1791         if (!tap_is_state_stable(tap_get_state())) {
1792                 LOG_ERROR("JTAG_STABLECLOCKS: state not stable");
1793                 return ERROR_FAIL;
1794         }
1795
1796         num_cycles = cmd->cmd.stableclocks->num_cycles;
1797
1798         /* TMS stays either high (Test Logic Reset state) or low (all other states) */
1799         if (tap_get_state() == TAP_RESET)
1800                 ret = ulink_append_set_signals_cmd(device, 0, SIGNAL_TMS);
1801         else
1802                 ret = ulink_append_set_signals_cmd(device, SIGNAL_TMS, 0);
1803
1804         if (ret != ERROR_OK)
1805                 return ret;
1806
1807         while (num_cycles > 0) {
1808                 if (num_cycles > 0xFFFF) {
1809                         /* OpenULINK CMD_CLOCK_TCK can generate up to 0xFFFF (uint16_t) cycles */
1810                         ret = ulink_append_clock_tck_cmd(device, 0xFFFF);
1811                         num_cycles -= 0xFFFF;
1812                 } else {
1813                         ret = ulink_append_clock_tck_cmd(device, num_cycles);
1814                         num_cycles = 0;
1815                 }
1816
1817                 if (ret != ERROR_OK)
1818                         return ret;
1819         }
1820
1821         return ERROR_OK;
1822 }
1823
1824 /**
1825  * Post-process JTAG_SCAN command
1826  *
1827  * @param ulink_cmd pointer to OpenULINK command that shall be processed.
1828  * @return on success: ERROR_OK
1829  * @return on failure: ERROR_FAIL
1830  */
1831 int ulink_post_process_scan(struct ulink_cmd *ulink_cmd)
1832 {
1833         struct jtag_command *cmd = ulink_cmd->cmd_origin;
1834         int ret;
1835
1836         switch (jtag_scan_type(cmd->cmd.scan)) {
1837             case SCAN_IN:
1838             case SCAN_IO:
1839                     ret = jtag_read_buffer(ulink_cmd->payload_in_start, cmd->cmd.scan);
1840                     break;
1841             case SCAN_OUT:
1842                         /* Nothing to do for OUT scans */
1843                     ret = ERROR_OK;
1844                     break;
1845             default:
1846                     LOG_ERROR("BUG: ulink_post_process_scan() encountered an unknown"
1847                         " JTAG scan type");
1848                     ret = ERROR_FAIL;
1849                     break;
1850         }
1851
1852         return ret;
1853 }
1854
1855 /**
1856  * Perform post-processing of commands after OpenULINK queue has been executed.
1857  *
1858  * @param device pointer to struct ulink identifying ULINK driver instance.
1859  * @return on success: ERROR_OK
1860  * @return on failure: ERROR_FAIL
1861  */
1862 int ulink_post_process_queue(struct ulink *device)
1863 {
1864         struct ulink_cmd *current;
1865         struct jtag_command *openocd_cmd;
1866         int ret;
1867
1868         current = device->queue_start;
1869
1870         while (current != NULL) {
1871                 openocd_cmd = current->cmd_origin;
1872
1873                 /* Check if a corresponding OpenOCD command is stored for this
1874                  * OpenULINK command */
1875                 if ((current->needs_postprocessing == true) && (openocd_cmd != NULL)) {
1876                         switch (openocd_cmd->type) {
1877                             case JTAG_SCAN:
1878                                     ret = ulink_post_process_scan(current);
1879                                     break;
1880                             case JTAG_TLR_RESET:
1881                             case JTAG_RUNTEST:
1882                             case JTAG_RESET:
1883                             case JTAG_PATHMOVE:
1884                             case JTAG_SLEEP:
1885                             case JTAG_STABLECLOCKS:
1886                                         /* Nothing to do for these commands */
1887                                     ret = ERROR_OK;
1888                                     break;
1889                             default:
1890                                     ret = ERROR_FAIL;
1891                                     LOG_ERROR("BUG: ulink_post_process_queue() encountered unknown JTAG "
1892                                         "command type");
1893                                     break;
1894                         }
1895
1896                         if (ret != ERROR_OK)
1897                                 return ret;
1898                 }
1899
1900                 current = current->next;
1901         }
1902
1903         return ERROR_OK;
1904 }
1905
1906 /**************************** JTAG driver functions ***************************/
1907
1908 /**
1909  * Executes the JTAG Command Queue.
1910  *
1911  * This is done in three stages: First, all OpenOCD commands are processed into
1912  * queued OpenULINK commands. Next, the OpenULINK command queue is sent to the
1913  * ULINK device and data received from the ULINK device is cached. Finally,
1914  * the post-processing function writes back data to the corresponding OpenOCD
1915  * commands.
1916  *
1917  * @return on success: ERROR_OK
1918  * @return on failure: ERROR_FAIL
1919  */
1920 static int ulink_execute_queue(void)
1921 {
1922         struct jtag_command *cmd = jtag_command_queue;
1923         int ret;
1924
1925         while (cmd) {
1926                 switch (cmd->type) {
1927                     case JTAG_SCAN:
1928                             ret = ulink_queue_scan(ulink_handle, cmd);
1929                             break;
1930                     case JTAG_TLR_RESET:
1931                             ret = ulink_queue_tlr_reset(ulink_handle, cmd);
1932                             break;
1933                     case JTAG_RUNTEST:
1934                             ret = ulink_queue_runtest(ulink_handle, cmd);
1935                             break;
1936                     case JTAG_RESET:
1937                             ret = ulink_queue_reset(ulink_handle, cmd);
1938                             break;
1939                     case JTAG_PATHMOVE:
1940                             ret = ulink_queue_pathmove(ulink_handle, cmd);
1941                             break;
1942                     case JTAG_SLEEP:
1943                             ret = ulink_queue_sleep(ulink_handle, cmd);
1944                             break;
1945                     case JTAG_STABLECLOCKS:
1946                             ret = ulink_queue_stableclocks(ulink_handle, cmd);
1947                             break;
1948                     default:
1949                             ret = ERROR_FAIL;
1950                             LOG_ERROR("BUG: encountered unknown JTAG command type");
1951                             break;
1952                 }
1953
1954                 if (ret != ERROR_OK)
1955                         return ret;
1956
1957                 cmd = cmd->next;
1958         }
1959
1960         if (ulink_handle->commands_in_queue > 0) {
1961                 ret = ulink_execute_queued_commands(ulink_handle, USB_TIMEOUT);
1962                 if (ret != ERROR_OK)
1963                         return ret;
1964
1965                 ret = ulink_post_process_queue(ulink_handle);
1966                 if (ret != ERROR_OK)
1967                         return ret;
1968
1969                 ulink_clear_queue(ulink_handle);
1970         }
1971
1972         return ERROR_OK;
1973 }
1974
1975 /**
1976  * Set the TCK frequency of the ULINK adapter.
1977  *
1978  * @param khz desired JTAG TCK frequency.
1979  * @param jtag_speed where to store corresponding adapter-specific speed value.
1980  * @return on success: ERROR_OK
1981  * @return on failure: ERROR_FAIL
1982  */
1983 static int ulink_khz(int khz, int *jtag_speed)
1984 {
1985         int ret;
1986
1987         if (khz == 0) {
1988                 LOG_ERROR("RCLK not supported");
1989                 return ERROR_FAIL;
1990         }
1991
1992         /* CLOCK_TCK commands are decoupled from others. Therefore, the frequency
1993          * setting can be done independently from all other commands. */
1994         if (khz >= 375)
1995                 ulink_handle->delay_clock_tck = -1;
1996         else {
1997                 ret = ulink_calculate_delay(DELAY_CLOCK_TCK, khz * 1000,
1998                                 &ulink_handle->delay_clock_tck);
1999                 if (ret != ERROR_OK)
2000                         return ret;
2001         }
2002
2003         /* SCAN_{IN,OUT,IO} commands invoke CLOCK_TMS commands. Therefore, if the
2004          * requested frequency goes below the maximum frequency for SLOW_CLOCK_TMS
2005          * commands, all SCAN commands MUST also use the variable frequency
2006          * implementation! */
2007         if (khz >= 176) {
2008                 ulink_handle->delay_clock_tms = -1;
2009                 ulink_handle->delay_scan_in = -1;
2010                 ulink_handle->delay_scan_out = -1;
2011                 ulink_handle->delay_scan_io = -1;
2012         } else {
2013                 ret = ulink_calculate_delay(DELAY_CLOCK_TMS, khz * 1000,
2014                                 &ulink_handle->delay_clock_tms);
2015                 if (ret != ERROR_OK)
2016                         return ret;
2017
2018                 ret = ulink_calculate_delay(DELAY_SCAN_IN, khz * 1000,
2019                                 &ulink_handle->delay_scan_in);
2020                 if (ret != ERROR_OK)
2021                         return ret;
2022
2023                 ret = ulink_calculate_delay(DELAY_SCAN_OUT, khz * 1000,
2024                                 &ulink_handle->delay_scan_out);
2025                 if (ret != ERROR_OK)
2026                         return ret;
2027
2028                 ret = ulink_calculate_delay(DELAY_SCAN_IO, khz * 1000,
2029                                 &ulink_handle->delay_scan_io);
2030                 if (ret != ERROR_OK)
2031                         return ret;
2032         }
2033
2034         LOG_DEBUG_IO("ULINK TCK setup: delay_tck      = %i (%li Hz),",
2035                 ulink_handle->delay_clock_tck,
2036                 ulink_calculate_frequency(DELAY_CLOCK_TCK, ulink_handle->delay_clock_tck));
2037         LOG_DEBUG_IO("                 delay_tms      = %i (%li Hz),",
2038                 ulink_handle->delay_clock_tms,
2039                 ulink_calculate_frequency(DELAY_CLOCK_TMS, ulink_handle->delay_clock_tms));
2040         LOG_DEBUG_IO("                 delay_scan_in  = %i (%li Hz),",
2041                 ulink_handle->delay_scan_in,
2042                 ulink_calculate_frequency(DELAY_SCAN_IN, ulink_handle->delay_scan_in));
2043         LOG_DEBUG_IO("                 delay_scan_out = %i (%li Hz),",
2044                 ulink_handle->delay_scan_out,
2045                 ulink_calculate_frequency(DELAY_SCAN_OUT, ulink_handle->delay_scan_out));
2046         LOG_DEBUG_IO("                 delay_scan_io  = %i (%li Hz),",
2047                 ulink_handle->delay_scan_io,
2048                 ulink_calculate_frequency(DELAY_SCAN_IO, ulink_handle->delay_scan_io));
2049
2050         /* Configure the ULINK device with the new delay values */
2051         ret = ulink_append_configure_tck_cmd(ulink_handle,
2052                         ulink_handle->delay_scan_in,
2053                         ulink_handle->delay_scan_out,
2054                         ulink_handle->delay_scan_io,
2055                         ulink_handle->delay_clock_tck,
2056                         ulink_handle->delay_clock_tms);
2057
2058         if (ret != ERROR_OK)
2059                 return ret;
2060
2061         *jtag_speed = khz;
2062
2063         return ERROR_OK;
2064 }
2065
2066 /**
2067  * Set the TCK frequency of the ULINK adapter.
2068  *
2069  * Because of the way the TCK frequency is set up in the OpenULINK firmware,
2070  * there are five different speed settings. To simplify things, the
2071  * adapter-specific speed setting value is identical to the TCK frequency in
2072  * khz.
2073  *
2074  * @param speed desired adapter-specific speed value.
2075  * @return on success: ERROR_OK
2076  * @return on failure: ERROR_FAIL
2077  */
2078 static int ulink_speed(int speed)
2079 {
2080         int dummy;
2081
2082         return ulink_khz(speed, &dummy);
2083 }
2084
2085 /**
2086  * Convert adapter-specific speed value to corresponding TCK frequency in kHz.
2087  *
2088  * Because of the way the TCK frequency is set up in the OpenULINK firmware,
2089  * there are five different speed settings. To simplify things, the
2090  * adapter-specific speed setting value is identical to the TCK frequency in
2091  * khz.
2092  *
2093  * @param speed adapter-specific speed value.
2094  * @param khz where to store corresponding TCK frequency in kHz.
2095  * @return on success: ERROR_OK
2096  * @return on failure: ERROR_FAIL
2097  */
2098 static int ulink_speed_div(int speed, int *khz)
2099 {
2100         *khz = speed;
2101
2102         return ERROR_OK;
2103 }
2104
2105 /**
2106  * Initiates the firmware download to the ULINK adapter and prepares
2107  * the USB handle.
2108  *
2109  * @return on success: ERROR_OK
2110  * @return on failure: ERROR_FAIL
2111  */
2112 static int ulink_init(void)
2113 {
2114         int ret, transferred;
2115         char str_manufacturer[20];
2116         bool download_firmware = false;
2117         unsigned char *dummy;
2118         uint8_t input_signals, output_signals;
2119
2120         ulink_handle = calloc(1, sizeof(struct ulink));
2121         if (ulink_handle == NULL)
2122                 return ERROR_FAIL;
2123
2124         libusb_init(&ulink_handle->libusb_ctx);
2125
2126         ret = ulink_usb_open(&ulink_handle);
2127         if (ret != ERROR_OK) {
2128                 LOG_ERROR("Could not open ULINK device");
2129                 free(ulink_handle);
2130                 ulink_handle = NULL;
2131                 return ret;
2132         }
2133
2134         /* Get String Descriptor to determine if firmware needs to be loaded */
2135         ret = libusb_get_string_descriptor_ascii(ulink_handle->usb_device_handle, 1, (unsigned char *)str_manufacturer, 20);
2136         if (ret < 0) {
2137                 /* Could not get descriptor -> Unconfigured or original Keil firmware */
2138                 download_firmware = true;
2139         } else {
2140                 /* We got a String Descriptor, check if it is the correct one */
2141                 if (strncmp(str_manufacturer, "OpenULINK", 9) != 0)
2142                         download_firmware = true;
2143         }
2144
2145         if (download_firmware == true) {
2146                 LOG_INFO("Loading OpenULINK firmware. This is reversible by power-cycling"
2147                         " ULINK device.");
2148                 ret = ulink_load_firmware_and_renumerate(&ulink_handle,
2149                                 ULINK_FIRMWARE_FILE, ULINK_RENUMERATION_DELAY);
2150                 if (ret != ERROR_OK) {
2151                         LOG_ERROR("Could not download firmware and re-numerate ULINK");
2152                         free(ulink_handle);
2153                         ulink_handle = NULL;
2154                         return ret;
2155                 }
2156         } else
2157                 LOG_INFO("ULINK device is already running OpenULINK firmware");
2158
2159         /* Initialize OpenULINK command queue */
2160         ulink_clear_queue(ulink_handle);
2161
2162         /* Issue one test command with short timeout */
2163         ret = ulink_append_test_cmd(ulink_handle);
2164         if (ret != ERROR_OK)
2165                 return ret;
2166
2167         ret = ulink_execute_queued_commands(ulink_handle, 200);
2168         if (ret != ERROR_OK) {
2169                 /* Sending test command failed. The ULINK device may be forever waiting for
2170                  * the host to fetch an USB Bulk IN packet (e. g. OpenOCD crashed or was
2171                  * shut down by the user via Ctrl-C. Try to retrieve this Bulk IN packet. */
2172                 dummy = calloc(64, sizeof(uint8_t));
2173
2174                 ret = libusb_bulk_transfer(ulink_handle->usb_device_handle, (2 | LIBUSB_ENDPOINT_IN),
2175                                 dummy, 64, &transferred, 200);
2176
2177                 free(dummy);
2178
2179                 if (ret != 0 || transferred == 0) {
2180                         /* Bulk IN transfer failed -> unrecoverable error condition */
2181                         LOG_ERROR("Cannot communicate with ULINK device. Disconnect ULINK from "
2182                                 "the USB port and re-connect, then re-run OpenOCD");
2183                         free(ulink_handle);
2184                         ulink_handle = NULL;
2185                         return ERROR_FAIL;
2186                 }
2187 #ifdef _DEBUG_USB_COMMS_
2188                 else {
2189                         /* Successfully received Bulk IN packet -> continue */
2190                         LOG_INFO("Recovered from lost Bulk IN packet");
2191                 }
2192 #endif
2193         }
2194         ulink_clear_queue(ulink_handle);
2195
2196         ret = ulink_append_get_signals_cmd(ulink_handle);
2197         if (ret == ERROR_OK)
2198                 ret = ulink_execute_queued_commands(ulink_handle, 200);
2199
2200         if (ret == ERROR_OK) {
2201                 /* Post-process the single CMD_GET_SIGNALS command */
2202                 input_signals = ulink_handle->queue_start->payload_in[0];
2203                 output_signals = ulink_handle->queue_start->payload_in[1];
2204
2205                 ulink_print_signal_states(input_signals, output_signals);
2206         }
2207
2208         ulink_clear_queue(ulink_handle);
2209
2210         return ERROR_OK;
2211 }
2212
2213 /**
2214  * Closes the USB handle for the ULINK device.
2215  *
2216  * @return on success: ERROR_OK
2217  * @return on failure: ERROR_FAIL
2218  */
2219 static int ulink_quit(void)
2220 {
2221         int ret;
2222
2223         ret = ulink_usb_close(&ulink_handle);
2224         free(ulink_handle);
2225
2226         return ret;
2227 }
2228
2229 /**
2230  * Set a custom path to ULINK firmware image and force downloading to ULINK.
2231  */
2232 COMMAND_HANDLER(ulink_download_firmware_handler)
2233 {
2234         int ret;
2235
2236         if (CMD_ARGC != 1)
2237                 return ERROR_COMMAND_SYNTAX_ERROR;
2238
2239
2240         LOG_INFO("Downloading ULINK firmware image %s", CMD_ARGV[0]);
2241
2242         /* Download firmware image in CMD_ARGV[0] */
2243         ret = ulink_load_firmware_and_renumerate(&ulink_handle, CMD_ARGV[0],
2244                         ULINK_RENUMERATION_DELAY);
2245
2246         return ret;
2247 }
2248
2249 /*************************** Command Registration **************************/
2250
2251 static const struct command_registration ulink_command_handlers[] = {
2252         {
2253                 .name = "ulink_download_firmware",
2254                 .handler = &ulink_download_firmware_handler,
2255                 .mode = COMMAND_EXEC,
2256                 .help = "download firmware image to ULINK device",
2257                 .usage = "path/to/ulink_firmware.hex",
2258         },
2259         COMMAND_REGISTRATION_DONE,
2260 };
2261
2262 static struct jtag_interface ulink_interface = {
2263         .execute_queue = ulink_execute_queue,
2264 };
2265
2266 struct adapter_driver ulink_adapter_driver = {
2267         .name = "ulink",
2268         .transports = jtag_only,
2269         .commands = ulink_command_handlers,
2270
2271         .init = ulink_init,
2272         .quit = ulink_quit,
2273         .speed = ulink_speed,
2274         .khz = ulink_khz,
2275         .speed_div = ulink_speed_div,
2276
2277         .jtag_ops = &ulink_interface,
2278 };