doxygen: fix some function prototype description
[fw/openocd] / src / jtag / drivers / ulink.c
1 /***************************************************************************
2  *   Copyright (C) 2011-2013 by Martin Schmoelzer                          *
3  *   <martin.schmoelzer@student.tuwien.ac.at>                              *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
17  ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include <math.h>
24 #include "helper/system.h"
25 #include <jtag/interface.h>
26 #include <jtag/commands.h>
27 #include <target/image.h>
28 #include <libusb.h>
29 #include "libusb_helper.h"
30 #include "OpenULINK/include/msgtypes.h"
31
32 /** USB Vendor ID of ULINK device in unconfigured state (no firmware loaded
33  *  yet) or with OpenULINK firmware. */
34 #define ULINK_VID                0xC251
35
36 /** USB Product ID of ULINK device in unconfigured state (no firmware loaded
37  *  yet) or with OpenULINK firmware. */
38 #define ULINK_PID                0x2710
39
40 /** Address of EZ-USB CPU Control & Status register. This register can be
41  *  written by issuing a Control EP0 vendor request. */
42 #define CPUCS_REG                0x7F92
43
44 /** USB Control EP0 bRequest: "Firmware Load". */
45 #define REQUEST_FIRMWARE_LOAD    0xA0
46
47 /** Value to write into CPUCS to put EZ-USB into reset. */
48 #define CPU_RESET                0x01
49
50 /** Value to write into CPUCS to put EZ-USB out of reset. */
51 #define CPU_START                0x00
52
53 /** Base address of firmware in EZ-USB code space. */
54 #define FIRMWARE_ADDR            0x0000
55
56 /** USB interface number */
57 #define USB_INTERFACE            0
58
59 /** libusb timeout in ms */
60 #define USB_TIMEOUT              5000
61
62 /** Delay (in microseconds) to wait while EZ-USB performs ReNumeration. */
63 #define ULINK_RENUMERATION_DELAY 1500000
64
65 /** Default location of OpenULINK firmware image. */
66 #define ULINK_FIRMWARE_FILE      PKGDATADIR "/OpenULINK/ulink_firmware.hex"
67
68 /** Maximum size of a single firmware section. Entire EZ-USB code space = 8kB */
69 #define SECTION_BUFFERSIZE       8192
70
71 /** Tuning of OpenOCD SCAN commands split into multiple OpenULINK commands. */
72 #define SPLIT_SCAN_THRESHOLD     10
73
74 /** ULINK hardware type */
75 enum ulink_type {
76         /** Original ULINK adapter, based on Cypress EZ-USB (AN2131):
77          *  Full JTAG support, no SWD support. */
78         ULINK_1,
79
80         /** Newer ULINK adapter, based on NXP LPC2148. Currently unsupported. */
81         ULINK_2,
82
83         /** Newer ULINK adapter, based on EZ-USB FX2 + FPGA. Currently unsupported. */
84         ULINK_PRO,
85
86         /** Newer ULINK adapter, possibly based on ULINK 2. Currently unsupported. */
87         ULINK_ME
88 };
89
90 enum ulink_payload_direction {
91         PAYLOAD_DIRECTION_OUT,
92         PAYLOAD_DIRECTION_IN
93 };
94
95 enum ulink_delay_type {
96         DELAY_CLOCK_TCK,
97         DELAY_CLOCK_TMS,
98         DELAY_SCAN_IN,
99         DELAY_SCAN_OUT,
100         DELAY_SCAN_IO
101 };
102
103 /**
104  * OpenULINK command (OpenULINK command queue element).
105  *
106  * For the OUT direction payload, things are quite easy: Payload is stored
107  * in a rather small array (up to 63 bytes), the payload is always allocated
108  * by the function generating the command and freed by ulink_clear_queue().
109  *
110  * For the IN direction payload, things get a little bit more complicated:
111  * The maximum IN payload size for a single command is 64 bytes. Assume that
112  * a single OpenOCD command needs to scan 256 bytes. This results in the
113  * generation of four OpenULINK commands. The function generating these
114  * commands shall allocate an uint8_t[256] array. Each command's #payload_in
115  * pointer shall point to the corresponding offset where IN data shall be
116  * placed, while #payload_in_start shall point to the first element of the 256
117  * byte array.
118  * - first command:  #payload_in_start + 0
119  * - second command: #payload_in_start + 64
120  * - third command:  #payload_in_start + 128
121  * - fourth command: #payload_in_start + 192
122  *
123  * The last command sets #needs_postprocessing to true.
124  */
125 struct ulink_cmd {
126         uint8_t id;                     /**< ULINK command ID */
127
128         uint8_t *payload_out;           /**< OUT direction payload data */
129         uint8_t payload_out_size;       /**< OUT direction payload size for this command */
130
131         uint8_t *payload_in_start;      /**< Pointer to first element of IN payload array */
132         uint8_t *payload_in;            /**< Pointer where IN payload shall be stored */
133         uint8_t payload_in_size;        /**< IN direction payload size for this command */
134
135         /** Indicates if this command needs post-processing */
136         bool needs_postprocessing;
137
138         /** Indicates if ulink_clear_queue() should free payload_in_start  */
139         bool free_payload_in_start;
140
141         /** Pointer to corresponding OpenOCD command for post-processing */
142         struct jtag_command *cmd_origin;
143
144         struct ulink_cmd *next;         /**< Pointer to next command (linked list) */
145 };
146
147 /** Describes one driver instance */
148 struct ulink {
149         struct libusb_context *libusb_ctx;
150         struct libusb_device_handle *usb_device_handle;
151         enum ulink_type type;
152
153         unsigned int ep_in;             /**< IN endpoint number */
154         unsigned int ep_out;            /**< OUT endpoint number */
155
156         int delay_scan_in;      /**< Delay value for SCAN_IN commands */
157         int delay_scan_out;     /**< Delay value for SCAN_OUT commands */
158         int delay_scan_io;      /**< Delay value for SCAN_IO commands */
159         int delay_clock_tck;    /**< Delay value for CLOCK_TMS commands */
160         int delay_clock_tms;    /**< Delay value for CLOCK_TCK commands */
161
162         int commands_in_queue;          /**< Number of commands in queue */
163         struct ulink_cmd *queue_start;  /**< Pointer to first command in queue */
164         struct ulink_cmd *queue_end;    /**< Pointer to last command in queue */
165 };
166
167 /**************************** Function Prototypes *****************************/
168
169 /* USB helper functions */
170 static int ulink_usb_open(struct ulink **device);
171 static int ulink_usb_close(struct ulink **device);
172
173 /* ULINK MCU (Cypress EZ-USB) specific functions */
174 static int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit);
175 static int ulink_load_firmware_and_renumerate(struct ulink **device, const char *filename,
176                 uint32_t delay);
177 static int ulink_load_firmware(struct ulink *device, const char *filename);
178 static int ulink_write_firmware_section(struct ulink *device,
179                 struct image *firmware_image, int section_index);
180
181 /* Generic helper functions */
182 static void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals);
183
184 /* OpenULINK command generation helper functions */
185 static int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
186                 enum ulink_payload_direction direction);
187
188 /* OpenULINK command queue helper functions */
189 static int ulink_get_queue_size(struct ulink *device,
190                 enum ulink_payload_direction direction);
191 static void ulink_clear_queue(struct ulink *device);
192 static int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd);
193 static int ulink_execute_queued_commands(struct ulink *device, int timeout);
194
195 static void ulink_print_queue(struct ulink *device);
196
197 static int ulink_append_scan_cmd(struct ulink *device,
198                 enum scan_type scan_type,
199                 int scan_size_bits,
200                 uint8_t *tdi,
201                 uint8_t *tdo_start,
202                 uint8_t *tdo,
203                 uint8_t tms_count_start,
204                 uint8_t tms_sequence_start,
205                 uint8_t tms_count_end,
206                 uint8_t tms_sequence_end,
207                 struct jtag_command *origin,
208                 bool postprocess);
209 static int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
210                 uint8_t sequence);
211 static int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count);
212 static int ulink_append_get_signals_cmd(struct ulink *device);
213 static int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
214                 uint8_t high);
215 static int ulink_append_sleep_cmd(struct ulink *device, uint32_t us);
216 static int ulink_append_configure_tck_cmd(struct ulink *device,
217                 int delay_scan_in,
218                 int delay_scan_out,
219                 int delay_scan_io,
220                 int delay_tck,
221                 int delay_tms);
222 static int __attribute__((unused)) ulink_append_led_cmd(struct ulink *device, uint8_t led_state);
223 static int ulink_append_test_cmd(struct ulink *device);
224
225 /* OpenULINK TCK frequency helper functions */
226 static int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay);
227
228 /* Interface between OpenULINK and OpenOCD */
229 static void ulink_set_end_state(tap_state_t endstate);
230 static int ulink_queue_statemove(struct ulink *device);
231
232 static int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd);
233 static int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd);
234 static int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd);
235 static int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd);
236 static int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd);
237 static int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd);
238 static int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd);
239
240 static int ulink_post_process_scan(struct ulink_cmd *ulink_cmd);
241 static int ulink_post_process_queue(struct ulink *device);
242
243 /* adapter driver functions */
244 static int ulink_execute_queue(void);
245 static int ulink_khz(int khz, int *jtag_speed);
246 static int ulink_speed(int speed);
247 static int ulink_speed_div(int speed, int *khz);
248 static int ulink_init(void);
249 static int ulink_quit(void);
250
251 /****************************** Global Variables ******************************/
252
253 static struct ulink *ulink_handle;
254
255 /**************************** USB helper functions ****************************/
256
257 /**
258  * Opens the ULINK device
259  *
260  * Currently, only the original ULINK is supported
261  *
262  * @param device pointer to struct ulink identifying ULINK driver instance.
263  * @return on success: ERROR_OK
264  * @return on failure: ERROR_FAIL
265  */
266 static int ulink_usb_open(struct ulink **device)
267 {
268         ssize_t num_devices, i;
269         bool found;
270         struct libusb_device **usb_devices;
271         struct libusb_device_descriptor usb_desc;
272         struct libusb_device_handle *usb_device_handle;
273
274         num_devices = libusb_get_device_list((*device)->libusb_ctx, &usb_devices);
275
276         if (num_devices <= 0)
277                 return ERROR_FAIL;
278
279         found = false;
280         for (i = 0; i < num_devices; i++) {
281                 if (libusb_get_device_descriptor(usb_devices[i], &usb_desc) != 0)
282                         continue;
283                 else if (usb_desc.idVendor == ULINK_VID && usb_desc.idProduct == ULINK_PID) {
284                         found = true;
285                         break;
286                 }
287         }
288
289         if (!found)
290                 return ERROR_FAIL;
291
292         if (libusb_open(usb_devices[i], &usb_device_handle) != 0)
293                 return ERROR_FAIL;
294         libusb_free_device_list(usb_devices, 1);
295
296         (*device)->usb_device_handle = usb_device_handle;
297         (*device)->type = ULINK_1;
298
299         return ERROR_OK;
300 }
301
302 /**
303  * Releases the ULINK interface and closes the USB device handle.
304  *
305  * @param device pointer to struct ulink identifying ULINK driver instance.
306  * @return on success: ERROR_OK
307  * @return on failure: ERROR_FAIL
308  */
309 static int ulink_usb_close(struct ulink **device)
310 {
311         if (libusb_release_interface((*device)->usb_device_handle, 0) != 0)
312                 return ERROR_FAIL;
313
314         libusb_close((*device)->usb_device_handle);
315
316         (*device)->usb_device_handle = NULL;
317
318         return ERROR_OK;
319 }
320
321 /******************* ULINK CPU (EZ-USB) specific functions ********************/
322
323 /**
324  * Writes '0' or '1' to the CPUCS register, putting the EZ-USB CPU into reset
325  * or out of reset.
326  *
327  * @param device pointer to struct ulink identifying ULINK driver instance.
328  * @param reset_bit 0 to put CPU into reset, 1 to put CPU out of reset.
329  * @return on success: ERROR_OK
330  * @return on failure: ERROR_FAIL
331  */
332 static int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit)
333 {
334         int ret;
335
336         ret = libusb_control_transfer(device->usb_device_handle,
337                         (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
338                         REQUEST_FIRMWARE_LOAD, CPUCS_REG, 0, &reset_bit, 1, USB_TIMEOUT);
339
340         /* usb_control_msg() returns the number of bytes transferred during the
341          * DATA stage of the control transfer - must be exactly 1 in this case! */
342         if (ret != 1)
343                 return ERROR_FAIL;
344         return ERROR_OK;
345 }
346
347 /**
348  * Puts the ULINK's EZ-USB microcontroller into reset state, downloads
349  * the firmware image, resumes the microcontroller and re-enumerates
350  * USB devices.
351  *
352  * @param device pointer to struct ulink identifying ULINK driver instance.
353  *  The usb_handle member will be modified during re-enumeration.
354  * @param filename path to the Intel HEX file containing the firmware image.
355  * @param delay the delay to wait for the device to re-enumerate.
356  * @return on success: ERROR_OK
357  * @return on failure: ERROR_FAIL
358  */
359 static int ulink_load_firmware_and_renumerate(struct ulink **device,
360         const char *filename, uint32_t delay)
361 {
362         int ret;
363
364         /* Basic process: After downloading the firmware, the ULINK will disconnect
365          * itself and re-connect after a short amount of time so we have to close
366          * the handle and re-enumerate USB devices */
367
368         ret = ulink_load_firmware(*device, filename);
369         if (ret != ERROR_OK)
370                 return ret;
371
372         ret = ulink_usb_close(device);
373         if (ret != ERROR_OK)
374                 return ret;
375
376         usleep(delay);
377
378         ret = ulink_usb_open(device);
379         if (ret != ERROR_OK)
380                 return ret;
381
382         return ERROR_OK;
383 }
384
385 /**
386  * Downloads a firmware image to the ULINK's EZ-USB microcontroller
387  * over the USB bus.
388  *
389  * @param device pointer to struct ulink identifying ULINK driver instance.
390  * @param filename an absolute or relative path to the Intel HEX file
391  *  containing the firmware image.
392  * @return on success: ERROR_OK
393  * @return on failure: ERROR_FAIL
394  */
395 static int ulink_load_firmware(struct ulink *device, const char *filename)
396 {
397         struct image ulink_firmware_image;
398         int ret;
399
400         ret = ulink_cpu_reset(device, CPU_RESET);
401         if (ret != ERROR_OK) {
402                 LOG_ERROR("Could not halt ULINK CPU");
403                 return ret;
404         }
405
406         ulink_firmware_image.base_address = 0;
407         ulink_firmware_image.base_address_set = false;
408
409         ret = image_open(&ulink_firmware_image, filename, "ihex");
410         if (ret != ERROR_OK) {
411                 LOG_ERROR("Could not load firmware image");
412                 return ret;
413         }
414
415         /* Download all sections in the image to ULINK */
416         for (unsigned int i = 0; i < ulink_firmware_image.num_sections; i++) {
417                 ret = ulink_write_firmware_section(device, &ulink_firmware_image, i);
418                 if (ret != ERROR_OK)
419                         return ret;
420         }
421
422         image_close(&ulink_firmware_image);
423
424         ret = ulink_cpu_reset(device, CPU_START);
425         if (ret != ERROR_OK) {
426                 LOG_ERROR("Could not restart ULINK CPU");
427                 return ret;
428         }
429
430         return ERROR_OK;
431 }
432
433 /**
434  * Send one contiguous firmware section to the ULINK's EZ-USB microcontroller
435  * over the USB bus.
436  *
437  * @param device pointer to struct ulink identifying ULINK driver instance.
438  * @param firmware_image pointer to the firmware image that contains the section
439  *  which should be sent to the ULINK's EZ-USB microcontroller.
440  * @param section_index index of the section within the firmware image.
441  * @return on success: ERROR_OK
442  * @return on failure: ERROR_FAIL
443  */
444 static int ulink_write_firmware_section(struct ulink *device,
445         struct image *firmware_image, int section_index)
446 {
447         uint16_t addr, size, bytes_remaining, chunk_size;
448         uint8_t data[SECTION_BUFFERSIZE];
449         uint8_t *data_ptr = data;
450         size_t size_read;
451         int ret;
452
453         size = (uint16_t)firmware_image->sections[section_index].size;
454         addr = (uint16_t)firmware_image->sections[section_index].base_address;
455
456         LOG_DEBUG("section %02i at addr 0x%04x (size 0x%04x)", section_index, addr,
457                 size);
458
459         /* Copy section contents to local buffer */
460         ret = image_read_section(firmware_image, section_index, 0, size, data,
461                         &size_read);
462
463         if ((ret != ERROR_OK) || (size_read != size)) {
464                 /* Propagating the return code would return '0' (misleadingly indicating
465                  * successful execution of the function) if only the size check fails. */
466                 return ERROR_FAIL;
467         }
468
469         bytes_remaining = size;
470
471         /* Send section data in chunks of up to 64 bytes to ULINK */
472         while (bytes_remaining > 0) {
473                 if (bytes_remaining > 64)
474                         chunk_size = 64;
475                 else
476                         chunk_size = bytes_remaining;
477
478                 ret = libusb_control_transfer(device->usb_device_handle,
479                                 (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
480                                 REQUEST_FIRMWARE_LOAD, addr, FIRMWARE_ADDR, (unsigned char *)data_ptr,
481                                 chunk_size, USB_TIMEOUT);
482
483                 if (ret != (int)chunk_size) {
484                         /* Abort if libusb sent less data than requested */
485                         return ERROR_FAIL;
486                 }
487
488                 bytes_remaining -= chunk_size;
489                 addr += chunk_size;
490                 data_ptr += chunk_size;
491         }
492
493         return ERROR_OK;
494 }
495
496 /************************** Generic helper functions **************************/
497
498 /**
499  * Print state of interesting signals via LOG_INFO().
500  *
501  * @param input_signals input signal states as returned by CMD_GET_SIGNALS
502  * @param output_signals output signal states as returned by CMD_GET_SIGNALS
503  */
504 static void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals)
505 {
506         LOG_INFO("ULINK signal states: TDI: %i, TDO: %i, TMS: %i, TCK: %i, TRST: %i,"
507                 " SRST: %i",
508                 (output_signals & SIGNAL_TDI   ? 1 : 0),
509                 (input_signals  & SIGNAL_TDO   ? 1 : 0),
510                 (output_signals & SIGNAL_TMS   ? 1 : 0),
511                 (output_signals & SIGNAL_TCK   ? 1 : 0),
512                 (output_signals & SIGNAL_TRST  ? 0 : 1),        /* Inverted by hardware */
513                 (output_signals & SIGNAL_RESET ? 0 : 1));       /* Inverted by hardware */
514 }
515
516 /**************** OpenULINK command generation helper functions ***************/
517
518 /**
519  * Allocate and initialize space in memory for OpenULINK command payload.
520  *
521  * @param ulink_cmd pointer to command whose payload should be allocated.
522  * @param size the amount of memory to allocate (bytes).
523  * @param direction which payload to allocate.
524  * @return on success: ERROR_OK
525  * @return on failure: ERROR_FAIL
526  */
527 static int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
528         enum ulink_payload_direction direction)
529 {
530         uint8_t *payload;
531
532         payload = calloc(size, sizeof(uint8_t));
533
534         if (!payload) {
535                 LOG_ERROR("Could not allocate OpenULINK command payload: out of memory");
536                 return ERROR_FAIL;
537         }
538
539         switch (direction) {
540             case PAYLOAD_DIRECTION_OUT:
541                     if (ulink_cmd->payload_out) {
542                             LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
543                             free(payload);
544                             return ERROR_FAIL;
545                     } else {
546                             ulink_cmd->payload_out = payload;
547                             ulink_cmd->payload_out_size = size;
548                     }
549                     break;
550             case PAYLOAD_DIRECTION_IN:
551                     if (ulink_cmd->payload_in_start) {
552                             LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
553                             free(payload);
554                             return ERROR_FAIL;
555                     } else {
556                             ulink_cmd->payload_in_start = payload;
557                             ulink_cmd->payload_in = payload;
558                             ulink_cmd->payload_in_size = size;
559
560                                 /* By default, free payload_in_start in ulink_clear_queue(). Commands
561                                  * that do not want this behavior (e. g. split scans) must turn it off
562                                  * separately! */
563                             ulink_cmd->free_payload_in_start = true;
564                     }
565                     break;
566         }
567
568         return ERROR_OK;
569 }
570
571 /****************** OpenULINK command queue helper functions ******************/
572
573 /**
574  * Get the current number of bytes in the queue, including command IDs.
575  *
576  * @param device pointer to struct ulink identifying ULINK driver instance.
577  * @param direction the transfer direction for which to get byte count.
578  * @return the number of bytes currently stored in the queue for the specified
579  *  direction.
580  */
581 static int ulink_get_queue_size(struct ulink *device,
582         enum ulink_payload_direction direction)
583 {
584         struct ulink_cmd *current = device->queue_start;
585         int sum = 0;
586
587         while (current) {
588                 switch (direction) {
589                     case PAYLOAD_DIRECTION_OUT:
590                             sum += current->payload_out_size + 1;       /* + 1 byte for Command ID */
591                             break;
592                     case PAYLOAD_DIRECTION_IN:
593                             sum += current->payload_in_size;
594                             break;
595                 }
596
597                 current = current->next;
598         }
599
600         return sum;
601 }
602
603 /**
604  * Clear the OpenULINK command queue.
605  *
606  * @param device pointer to struct ulink identifying ULINK driver instance.
607  */
608 static void ulink_clear_queue(struct ulink *device)
609 {
610         struct ulink_cmd *current = device->queue_start;
611         struct ulink_cmd *next = NULL;
612
613         while (current) {
614                 /* Save pointer to next element */
615                 next = current->next;
616
617                 /* Free payloads: OUT payload can be freed immediately */
618                 free(current->payload_out);
619                 current->payload_out = NULL;
620
621                 /* IN payload MUST be freed ONLY if no other commands use the
622                  * payload_in_start buffer */
623                 if (current->free_payload_in_start == true) {
624                         free(current->payload_in_start);
625                         current->payload_in_start = NULL;
626                         current->payload_in = NULL;
627                 }
628
629                 /* Free queue element */
630                 free(current);
631
632                 /* Proceed with next element */
633                 current = next;
634         }
635
636         device->commands_in_queue = 0;
637         device->queue_start = NULL;
638         device->queue_end = NULL;
639 }
640
641 /**
642  * Add a command to the OpenULINK command queue.
643  *
644  * @param device pointer to struct ulink identifying ULINK driver instance.
645  * @param ulink_cmd pointer to command that shall be appended to the OpenULINK
646  *  command queue.
647  * @return on success: ERROR_OK
648  * @return on failure: ERROR_FAIL
649  */
650 static int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd)
651 {
652         int newsize_out, newsize_in;
653         int ret = ERROR_OK;
654
655         newsize_out = ulink_get_queue_size(device, PAYLOAD_DIRECTION_OUT) + 1
656                 + ulink_cmd->payload_out_size;
657
658         newsize_in = ulink_get_queue_size(device, PAYLOAD_DIRECTION_IN)
659                 + ulink_cmd->payload_in_size;
660
661         /* Check if the current command can be appended to the queue */
662         if ((newsize_out > 64) || (newsize_in > 64)) {
663                 /* New command does not fit. Execute all commands in queue before starting
664                  * new queue with the current command as first entry. */
665                 ret = ulink_execute_queued_commands(device, USB_TIMEOUT);
666
667                 if (ret == ERROR_OK)
668                         ret = ulink_post_process_queue(device);
669
670                 if (ret == ERROR_OK)
671                         ulink_clear_queue(device);
672         }
673
674         if (!device->queue_start) {
675                 /* Queue was empty */
676                 device->commands_in_queue = 1;
677
678                 device->queue_start = ulink_cmd;
679                 device->queue_end = ulink_cmd;
680         } else {
681                 /* There are already commands in the queue */
682                 device->commands_in_queue++;
683
684                 device->queue_end->next = ulink_cmd;
685                 device->queue_end = ulink_cmd;
686         }
687
688         if (ret != ERROR_OK)
689                 ulink_clear_queue(device);
690
691         return ret;
692 }
693
694 /**
695  * Sends all queued OpenULINK commands to the ULINK for execution.
696  *
697  * @param device pointer to struct ulink identifying ULINK driver instance.
698  * @param timeout
699  * @return on success: ERROR_OK
700  * @return on failure: ERROR_FAIL
701  */
702 static int ulink_execute_queued_commands(struct ulink *device, int timeout)
703 {
704         struct ulink_cmd *current;
705         int ret, i, index_out, index_in, count_out, count_in, transferred;
706         uint8_t buffer[64];
707
708         if (LOG_LEVEL_IS(LOG_LVL_DEBUG_IO))
709                 ulink_print_queue(device);
710
711         index_out = 0;
712         count_out = 0;
713         count_in = 0;
714
715         for (current = device->queue_start; current; current = current->next) {
716                 /* Add command to packet */
717                 buffer[index_out] = current->id;
718                 index_out++;
719                 count_out++;
720
721                 for (i = 0; i < current->payload_out_size; i++)
722                         buffer[index_out + i] = current->payload_out[i];
723                 index_out += current->payload_out_size;
724                 count_in += current->payload_in_size;
725                 count_out += current->payload_out_size;
726         }
727
728         /* Send packet to ULINK */
729         ret = libusb_bulk_transfer(device->usb_device_handle, device->ep_out,
730                         (unsigned char *)buffer, count_out, &transferred, timeout);
731         if (ret != 0)
732                 return ERROR_FAIL;
733         if (transferred != count_out)
734                 return ERROR_FAIL;
735
736         /* Wait for response if commands contain IN payload data */
737         if (count_in > 0) {
738                 ret = libusb_bulk_transfer(device->usb_device_handle, device->ep_in,
739                                 (unsigned char *)buffer, 64, &transferred, timeout);
740                 if (ret != 0)
741                         return ERROR_FAIL;
742                 if (transferred != count_in)
743                         return ERROR_FAIL;
744
745                 /* Write back IN payload data */
746                 index_in = 0;
747                 for (current = device->queue_start; current; current = current->next) {
748                         for (i = 0; i < current->payload_in_size; i++) {
749                                 current->payload_in[i] = buffer[index_in];
750                                 index_in++;
751                         }
752                 }
753         }
754
755         return ERROR_OK;
756 }
757
758 /**
759  * Convert an OpenULINK command ID (\a id) to a human-readable string.
760  *
761  * @param id the OpenULINK command ID.
762  * @return the corresponding human-readable string.
763  */
764 static const char *ulink_cmd_id_string(uint8_t id)
765 {
766         switch (id) {
767         case CMD_SCAN_IN:
768                 return "CMD_SCAN_IN";
769         case CMD_SLOW_SCAN_IN:
770                 return "CMD_SLOW_SCAN_IN";
771         case CMD_SCAN_OUT:
772                 return "CMD_SCAN_OUT";
773         case CMD_SLOW_SCAN_OUT:
774                 return "CMD_SLOW_SCAN_OUT";
775         case CMD_SCAN_IO:
776                 return "CMD_SCAN_IO";
777         case CMD_SLOW_SCAN_IO:
778                 return "CMD_SLOW_SCAN_IO";
779         case CMD_CLOCK_TMS:
780                 return "CMD_CLOCK_TMS";
781         case CMD_SLOW_CLOCK_TMS:
782                 return "CMD_SLOW_CLOCK_TMS";
783         case CMD_CLOCK_TCK:
784                 return "CMD_CLOCK_TCK";
785         case CMD_SLOW_CLOCK_TCK:
786                 return "CMD_SLOW_CLOCK_TCK";
787         case CMD_SLEEP_US:
788                 return "CMD_SLEEP_US";
789         case CMD_SLEEP_MS:
790                 return "CMD_SLEEP_MS";
791         case CMD_GET_SIGNALS:
792                 return "CMD_GET_SIGNALS";
793         case CMD_SET_SIGNALS:
794                 return "CMD_SET_SIGNALS";
795         case CMD_CONFIGURE_TCK_FREQ:
796                 return "CMD_CONFIGURE_TCK_FREQ";
797         case CMD_SET_LEDS:
798                 return "CMD_SET_LEDS";
799         case CMD_TEST:
800                 return "CMD_TEST";
801         default:
802                 return "CMD_UNKNOWN";
803         }
804 }
805
806 /**
807  * Print one OpenULINK command to stdout.
808  *
809  * @param ulink_cmd pointer to OpenULINK command.
810  */
811 static void ulink_print_command(struct ulink_cmd *ulink_cmd)
812 {
813         int i;
814
815         printf("  %-22s | OUT size = %i, bytes = 0x",
816                 ulink_cmd_id_string(ulink_cmd->id), ulink_cmd->payload_out_size);
817
818         for (i = 0; i < ulink_cmd->payload_out_size; i++)
819                 printf("%02X ", ulink_cmd->payload_out[i]);
820         printf("\n                         | IN size  = %i\n",
821                 ulink_cmd->payload_in_size);
822 }
823
824 /**
825  * Print the OpenULINK command queue to stdout.
826  *
827  * @param device pointer to struct ulink identifying ULINK driver instance.
828  */
829 static void ulink_print_queue(struct ulink *device)
830 {
831         struct ulink_cmd *current;
832
833         printf("OpenULINK command queue:\n");
834
835         for (current = device->queue_start; current; current = current->next)
836                 ulink_print_command(current);
837 }
838
839 /**
840  * Perform JTAG scan
841  *
842  * Creates and appends a JTAG scan command to the OpenULINK command queue.
843  * A JTAG scan consists of three steps:
844  * - Move to the desired SHIFT state, depending on scan type (IR/DR scan).
845  * - Shift TDI data into the JTAG chain, optionally reading the TDO pin.
846  * - Move to the desired end state.
847  *
848  * @param device pointer to struct ulink identifying ULINK driver instance.
849  * @param scan_type the type of the scan (IN, OUT, IO (bidirectional)).
850  * @param scan_size_bits number of bits to shift into the JTAG chain.
851  * @param tdi pointer to array containing TDI data.
852  * @param tdo_start pointer to first element of array where TDO data shall be
853  *  stored. See #ulink_cmd for details.
854  * @param tdo pointer to array where TDO data shall be stored
855  * @param tms_count_start number of TMS state transitions to perform BEFORE
856  *  shifting data into the JTAG chain.
857  * @param tms_sequence_start sequence of TMS state transitions that will be
858  *  performed BEFORE shifting data into the JTAG chain.
859  * @param tms_count_end number of TMS state transitions to perform AFTER
860  *  shifting data into the JTAG chain.
861  * @param tms_sequence_end sequence of TMS state transitions that will be
862  *  performed AFTER shifting data into the JTAG chain.
863  * @param origin pointer to OpenOCD command that generated this scan command.
864  * @param postprocess whether this command needs to be post-processed after
865  *  execution.
866  * @return on success: ERROR_OK
867  * @return on failure: ERROR_FAIL
868  */
869 static int ulink_append_scan_cmd(struct ulink *device, enum scan_type scan_type,
870         int scan_size_bits, uint8_t *tdi, uint8_t *tdo_start, uint8_t *tdo,
871         uint8_t tms_count_start, uint8_t tms_sequence_start, uint8_t tms_count_end,
872         uint8_t tms_sequence_end, struct jtag_command *origin, bool postprocess)
873 {
874         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
875         int ret, i, scan_size_bytes;
876         uint8_t bits_last_byte;
877
878         if (!cmd)
879                 return ERROR_FAIL;
880
881         /* Check size of command. USB buffer can hold 64 bytes, 1 byte is command ID,
882          * 5 bytes are setup data -> 58 remaining payload bytes for TDI data */
883         if (scan_size_bits > (58 * 8)) {
884                 LOG_ERROR("BUG: Tried to create CMD_SCAN_IO OpenULINK command with too"
885                         " large payload");
886                 free(cmd);
887                 return ERROR_FAIL;
888         }
889
890         scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
891
892         bits_last_byte = scan_size_bits % 8;
893         if (bits_last_byte == 0)
894                 bits_last_byte = 8;
895
896         /* Allocate out_payload depending on scan type */
897         switch (scan_type) {
898             case SCAN_IN:
899                     if (device->delay_scan_in < 0)
900                             cmd->id = CMD_SCAN_IN;
901                     else
902                             cmd->id = CMD_SLOW_SCAN_IN;
903                     ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
904                     break;
905             case SCAN_OUT:
906                     if (device->delay_scan_out < 0)
907                             cmd->id = CMD_SCAN_OUT;
908                     else
909                             cmd->id = CMD_SLOW_SCAN_OUT;
910                     ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
911                     break;
912             case SCAN_IO:
913                     if (device->delay_scan_io < 0)
914                             cmd->id = CMD_SCAN_IO;
915                     else
916                             cmd->id = CMD_SLOW_SCAN_IO;
917                     ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
918                     break;
919             default:
920                     LOG_ERROR("BUG: ulink_append_scan_cmd() encountered an unknown scan type");
921                     ret = ERROR_FAIL;
922                     break;
923         }
924
925         if (ret != ERROR_OK) {
926                 free(cmd);
927                 return ret;
928         }
929
930         /* Build payload_out that is common to all scan types */
931         cmd->payload_out[0] = scan_size_bytes & 0xFF;
932         cmd->payload_out[1] = bits_last_byte & 0xFF;
933         cmd->payload_out[2] = ((tms_count_start & 0x0F) << 4) | (tms_count_end & 0x0F);
934         cmd->payload_out[3] = tms_sequence_start;
935         cmd->payload_out[4] = tms_sequence_end;
936
937         /* Setup payload_out for types with OUT transfer */
938         if ((scan_type == SCAN_OUT) || (scan_type == SCAN_IO)) {
939                 for (i = 0; i < scan_size_bytes; i++)
940                         cmd->payload_out[i + 5] = tdi[i];
941         }
942
943         /* Setup payload_in pointers for types with IN transfer */
944         if ((scan_type == SCAN_IN) || (scan_type == SCAN_IO)) {
945                 cmd->payload_in_start = tdo_start;
946                 cmd->payload_in = tdo;
947                 cmd->payload_in_size = scan_size_bytes;
948         }
949
950         cmd->needs_postprocessing = postprocess;
951         cmd->cmd_origin = origin;
952
953         /* For scan commands, we free payload_in_start only when the command is
954          * the last in a series of split commands or a stand-alone command */
955         cmd->free_payload_in_start = postprocess;
956
957         return ulink_append_queue(device, cmd);
958 }
959
960 /**
961  * Perform TAP state transitions
962  *
963  * @param device pointer to struct ulink identifying ULINK driver instance.
964  * @param count defines the number of TCK clock cycles generated (up to 8).
965  * @param sequence defines the TMS pin levels for each state transition. The
966  *  Least-Significant Bit is read first.
967  * @return on success: ERROR_OK
968  * @return on failure: ERROR_FAIL
969  */
970 static int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
971         uint8_t sequence)
972 {
973         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
974         int ret;
975
976         if (!cmd)
977                 return ERROR_FAIL;
978
979         if (device->delay_clock_tms < 0)
980                 cmd->id = CMD_CLOCK_TMS;
981         else
982                 cmd->id = CMD_SLOW_CLOCK_TMS;
983
984         /* CMD_CLOCK_TMS has two OUT payload bytes and zero IN payload bytes */
985         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
986         if (ret != ERROR_OK) {
987                 free(cmd);
988                 return ret;
989         }
990
991         cmd->payload_out[0] = count;
992         cmd->payload_out[1] = sequence;
993
994         return ulink_append_queue(device, cmd);
995 }
996
997 /**
998  * Generate a defined amount of TCK clock cycles
999  *
1000  * All other JTAG signals are left unchanged.
1001  *
1002  * @param device pointer to struct ulink identifying ULINK driver instance.
1003  * @param count the number of TCK clock cycles to generate.
1004  * @return on success: ERROR_OK
1005  * @return on failure: ERROR_FAIL
1006  */
1007 static int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count)
1008 {
1009         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1010         int ret;
1011
1012         if (!cmd)
1013                 return ERROR_FAIL;
1014
1015         if (device->delay_clock_tck < 0)
1016                 cmd->id = CMD_CLOCK_TCK;
1017         else
1018                 cmd->id = CMD_SLOW_CLOCK_TCK;
1019
1020         /* CMD_CLOCK_TCK has two OUT payload bytes and zero IN payload bytes */
1021         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1022         if (ret != ERROR_OK) {
1023                 free(cmd);
1024                 return ret;
1025         }
1026
1027         cmd->payload_out[0] = count & 0xff;
1028         cmd->payload_out[1] = (count >> 8) & 0xff;
1029
1030         return ulink_append_queue(device, cmd);
1031 }
1032
1033 /**
1034  * Read JTAG signals.
1035  *
1036  * @param device pointer to struct ulink identifying ULINK driver instance.
1037  * @return on success: ERROR_OK
1038  * @return on failure: ERROR_FAIL
1039  */
1040 static int ulink_append_get_signals_cmd(struct ulink *device)
1041 {
1042         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1043         int ret;
1044
1045         if (!cmd)
1046                 return ERROR_FAIL;
1047
1048         cmd->id = CMD_GET_SIGNALS;
1049         cmd->needs_postprocessing = true;
1050
1051         /* CMD_GET_SIGNALS has two IN payload bytes */
1052         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_IN);
1053
1054         if (ret != ERROR_OK) {
1055                 free(cmd);
1056                 return ret;
1057         }
1058
1059         return ulink_append_queue(device, cmd);
1060 }
1061
1062 /**
1063  * Arbitrarily set JTAG output signals.
1064  *
1065  * @param device pointer to struct ulink identifying ULINK driver instance.
1066  * @param low defines which signals will be de-asserted. Each bit corresponds
1067  *  to a JTAG signal:
1068  *  - SIGNAL_TDI
1069  *  - SIGNAL_TMS
1070  *  - SIGNAL_TCK
1071  *  - SIGNAL_TRST
1072  *  - SIGNAL_BRKIN
1073  *  - SIGNAL_RESET
1074  *  - SIGNAL_OCDSE
1075  * @param high defines which signals will be asserted.
1076  * @return on success: ERROR_OK
1077  * @return on failure: ERROR_FAIL
1078  */
1079 static int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
1080         uint8_t high)
1081 {
1082         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1083         int ret;
1084
1085         if (!cmd)
1086                 return ERROR_FAIL;
1087
1088         cmd->id = CMD_SET_SIGNALS;
1089
1090         /* CMD_SET_SIGNALS has two OUT payload bytes and zero IN payload bytes */
1091         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1092
1093         if (ret != ERROR_OK) {
1094                 free(cmd);
1095                 return ret;
1096         }
1097
1098         cmd->payload_out[0] = low;
1099         cmd->payload_out[1] = high;
1100
1101         return ulink_append_queue(device, cmd);
1102 }
1103
1104 /**
1105  * Sleep for a pre-defined number of microseconds
1106  *
1107  * @param device pointer to struct ulink identifying ULINK driver instance.
1108  * @param us the number microseconds to sleep.
1109  * @return on success: ERROR_OK
1110  * @return on failure: ERROR_FAIL
1111  */
1112 static int ulink_append_sleep_cmd(struct ulink *device, uint32_t us)
1113 {
1114         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1115         int ret;
1116
1117         if (!cmd)
1118                 return ERROR_FAIL;
1119
1120         cmd->id = CMD_SLEEP_US;
1121
1122         /* CMD_SLEEP_US has two OUT payload bytes and zero IN payload bytes */
1123         ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
1124
1125         if (ret != ERROR_OK) {
1126                 free(cmd);
1127                 return ret;
1128         }
1129
1130         cmd->payload_out[0] = us & 0x00ff;
1131         cmd->payload_out[1] = (us >> 8) & 0x00ff;
1132
1133         return ulink_append_queue(device, cmd);
1134 }
1135
1136 /**
1137  * Set TCK delay counters
1138  *
1139  * @param device pointer to struct ulink identifying ULINK driver instance.
1140  * @param delay_scan_in delay count top value in jtag_slow_scan_in() function.
1141  * @param delay_scan_out delay count top value in jtag_slow_scan_out() function.
1142  * @param delay_scan_io delay count top value in jtag_slow_scan_io() function.
1143  * @param delay_tck delay count top value in jtag_clock_tck() function.
1144  * @param delay_tms delay count top value in jtag_slow_clock_tms() function.
1145  * @return on success: ERROR_OK
1146  * @return on failure: ERROR_FAIL
1147  */
1148 static int ulink_append_configure_tck_cmd(struct ulink *device, int delay_scan_in,
1149         int delay_scan_out, int delay_scan_io, int delay_tck, int delay_tms)
1150 {
1151         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1152         int ret;
1153
1154         if (!cmd)
1155                 return ERROR_FAIL;
1156
1157         cmd->id = CMD_CONFIGURE_TCK_FREQ;
1158
1159         /* CMD_CONFIGURE_TCK_FREQ has five OUT payload bytes and zero
1160          * IN payload bytes */
1161         ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
1162         if (ret != ERROR_OK) {
1163                 free(cmd);
1164                 return ret;
1165         }
1166
1167         if (delay_scan_in < 0)
1168                 cmd->payload_out[0] = 0;
1169         else
1170                 cmd->payload_out[0] = (uint8_t)delay_scan_in;
1171
1172         if (delay_scan_out < 0)
1173                 cmd->payload_out[1] = 0;
1174         else
1175                 cmd->payload_out[1] = (uint8_t)delay_scan_out;
1176
1177         if (delay_scan_io < 0)
1178                 cmd->payload_out[2] = 0;
1179         else
1180                 cmd->payload_out[2] = (uint8_t)delay_scan_io;
1181
1182         if (delay_tck < 0)
1183                 cmd->payload_out[3] = 0;
1184         else
1185                 cmd->payload_out[3] = (uint8_t)delay_tck;
1186
1187         if (delay_tms < 0)
1188                 cmd->payload_out[4] = 0;
1189         else
1190                 cmd->payload_out[4] = (uint8_t)delay_tms;
1191
1192         return ulink_append_queue(device, cmd);
1193 }
1194
1195 /**
1196  * Turn on/off ULINK LEDs.
1197  *
1198  * @param device pointer to struct ulink identifying ULINK driver instance.
1199  * @param led_state which LED(s) to turn on or off. The following bits
1200  *  influence the LEDS:
1201  *  - Bit 0: Turn COM LED on
1202  *  - Bit 1: Turn RUN LED on
1203  *  - Bit 2: Turn COM LED off
1204  *  - Bit 3: Turn RUN LED off
1205  *  If both the on-bit and the off-bit for the same LED is set, the LED is
1206  *  turned off.
1207  * @return on success: ERROR_OK
1208  * @return on failure: ERROR_FAIL
1209  */
1210 static int ulink_append_led_cmd(struct ulink *device, uint8_t led_state)
1211 {
1212         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1213         int ret;
1214
1215         if (!cmd)
1216                 return ERROR_FAIL;
1217
1218         cmd->id = CMD_SET_LEDS;
1219
1220         /* CMD_SET_LEDS has one OUT payload byte and zero IN payload bytes */
1221         ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
1222         if (ret != ERROR_OK) {
1223                 free(cmd);
1224                 return ret;
1225         }
1226
1227         cmd->payload_out[0] = led_state;
1228
1229         return ulink_append_queue(device, cmd);
1230 }
1231
1232 /**
1233  * Test command. Used to check if the ULINK device is ready to accept new
1234  * commands.
1235  *
1236  * @param device pointer to struct ulink identifying ULINK driver instance.
1237  * @return on success: ERROR_OK
1238  * @return on failure: ERROR_FAIL
1239  */
1240 static int ulink_append_test_cmd(struct ulink *device)
1241 {
1242         struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
1243         int ret;
1244
1245         if (!cmd)
1246                 return ERROR_FAIL;
1247
1248         cmd->id = CMD_TEST;
1249
1250         /* CMD_TEST has one OUT payload byte and zero IN payload bytes */
1251         ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
1252         if (ret != ERROR_OK) {
1253                 free(cmd);
1254                 return ret;
1255         }
1256
1257         cmd->payload_out[0] = 0xAA;
1258
1259         return ulink_append_queue(device, cmd);
1260 }
1261
1262 /****************** OpenULINK TCK frequency helper functions ******************/
1263
1264 /**
1265  * Calculate delay values for a given TCK frequency.
1266  *
1267  * The OpenULINK firmware uses five different speed values for different
1268  * commands. These speed values are calculated in these functions.
1269  *
1270  * The five different commands which support variable TCK frequency are
1271  * implemented twice in the firmware:
1272  *   1. Maximum possible frequency without any artificial delay
1273  *   2. Variable frequency with artificial linear delay loop
1274  *
1275  * To set the ULINK to maximum frequency, it is only necessary to use the
1276  * corresponding command IDs. To set the ULINK to a lower frequency, the
1277  * delay loop top values have to be calculated first. Then, a
1278  * CMD_CONFIGURE_TCK_FREQ command needs to be sent to the ULINK device.
1279  *
1280  * The delay values are described by linear equations:
1281  *    t = k * x + d
1282  *    (t = period, k = constant, x = delay value, d = constant)
1283  *
1284  * Thus, the delay can be calculated as in the following equation:
1285  *    x = (t - d) / k
1286  *
1287  * The constants in these equations have been determined and validated by
1288  * measuring the frequency resulting from different delay values.
1289  *
1290  * @param type for which command to calculate the delay value.
1291  * @param f TCK frequency for which to calculate the delay value in Hz.
1292  * @param delay where to store resulting delay value.
1293  * @return on success: ERROR_OK
1294  * @return on failure: ERROR_FAIL
1295  */
1296 static int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay)
1297 {
1298         float t, x, x_ceil;
1299
1300         /* Calculate period of requested TCK frequency */
1301         t = 1.0 / (float)(f);
1302
1303         switch (type) {
1304             case DELAY_CLOCK_TCK:
1305                     x = (t - (float)(6E-6)) / (float)(4E-6);
1306                     break;
1307             case DELAY_CLOCK_TMS:
1308                     x = (t - (float)(8.5E-6)) / (float)(4E-6);
1309                     break;
1310             case DELAY_SCAN_IN:
1311                     x = (t - (float)(8.8308E-6)) / (float)(4E-6);
1312                     break;
1313             case DELAY_SCAN_OUT:
1314                     x = (t - (float)(1.0527E-5)) / (float)(4E-6);
1315                     break;
1316             case DELAY_SCAN_IO:
1317                     x = (t - (float)(1.3132E-5)) / (float)(4E-6);
1318                     break;
1319             default:
1320                     return ERROR_FAIL;
1321                     break;
1322         }
1323
1324         /* Check if the delay value is negative. This happens when a frequency is
1325          * requested that is too high for the delay loop implementation. In this
1326          * case, set delay value to zero. */
1327         if (x < 0)
1328                 x = 0;
1329
1330         /* We need to convert the exact delay value to an integer. Therefore, we
1331          * round the exact value UP to ensure that the resulting frequency is NOT
1332          * higher than the requested frequency. */
1333         x_ceil = ceilf(x);
1334
1335         /* Check if the value is within limits */
1336         if (x_ceil > 255)
1337                 return ERROR_FAIL;
1338
1339         *delay = (int)x_ceil;
1340
1341         return ERROR_OK;
1342 }
1343
1344 /**
1345  * Calculate frequency for a given delay value.
1346  *
1347  * Similar to the #ulink_calculate_delay function, this function calculates the
1348  * TCK frequency for a given delay value by using linear equations of the form:
1349  *    t = k * x + d
1350  *    (t = period, k = constant, x = delay value, d = constant)
1351  *
1352  * @param type for which command to calculate the delay value.
1353  * @param delay delay value for which to calculate the resulting TCK frequency.
1354  * @return the resulting TCK frequency
1355  */
1356 static long ulink_calculate_frequency(enum ulink_delay_type type, int delay)
1357 {
1358         float t, f_float;
1359
1360         if (delay > 255)
1361                 return 0;
1362
1363         switch (type) {
1364             case DELAY_CLOCK_TCK:
1365                     if (delay < 0)
1366                             t = (float)(2.666E-6);
1367                     else
1368                             t = (float)(4E-6) * (float)(delay) + (float)(6E-6);
1369                     break;
1370             case DELAY_CLOCK_TMS:
1371                     if (delay < 0)
1372                             t = (float)(5.666E-6);
1373                     else
1374                             t = (float)(4E-6) * (float)(delay) + (float)(8.5E-6);
1375                     break;
1376             case DELAY_SCAN_IN:
1377                     if (delay < 0)
1378                             t = (float)(5.5E-6);
1379                     else
1380                             t = (float)(4E-6) * (float)(delay) + (float)(8.8308E-6);
1381                     break;
1382             case DELAY_SCAN_OUT:
1383                     if (delay < 0)
1384                             t = (float)(7.0E-6);
1385                     else
1386                             t = (float)(4E-6) * (float)(delay) + (float)(1.0527E-5);
1387                     break;
1388             case DELAY_SCAN_IO:
1389                     if (delay < 0)
1390                             t = (float)(9.926E-6);
1391                     else
1392                             t = (float)(4E-6) * (float)(delay) + (float)(1.3132E-5);
1393                     break;
1394             default:
1395                     return 0;
1396         }
1397
1398         f_float = 1.0 / t;
1399         return roundf(f_float);
1400 }
1401
1402 /******************* Interface between OpenULINK and OpenOCD ******************/
1403
1404 /**
1405  * Sets the end state follower (see interface.h) if \a endstate is a stable
1406  * state.
1407  *
1408  * @param endstate the state the end state follower should be set to.
1409  */
1410 static void ulink_set_end_state(tap_state_t endstate)
1411 {
1412         if (tap_is_state_stable(endstate))
1413                 tap_set_end_state(endstate);
1414         else {
1415                 LOG_ERROR("BUG: %s is not a valid end state", tap_state_name(endstate));
1416                 exit(EXIT_FAILURE);
1417         }
1418 }
1419
1420 /**
1421  * Move from the current TAP state to the current TAP end state.
1422  *
1423  * @param device pointer to struct ulink identifying ULINK driver instance.
1424  * @return on success: ERROR_OK
1425  * @return on failure: ERROR_FAIL
1426  */
1427 static int ulink_queue_statemove(struct ulink *device)
1428 {
1429         uint8_t tms_sequence, tms_count;
1430         int ret;
1431
1432         if (tap_get_state() == tap_get_end_state()) {
1433                 /* Do nothing if we are already there */
1434                 return ERROR_OK;
1435         }
1436
1437         tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1438         tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1439
1440         ret = ulink_append_clock_tms_cmd(device, tms_count, tms_sequence);
1441
1442         if (ret == ERROR_OK)
1443                 tap_set_state(tap_get_end_state());
1444
1445         return ret;
1446 }
1447
1448 /**
1449  * Perform a scan operation on a JTAG register.
1450  *
1451  * @param device pointer to struct ulink identifying ULINK driver instance.
1452  * @param cmd pointer to the command that shall be executed.
1453  * @return on success: ERROR_OK
1454  * @return on failure: ERROR_FAIL
1455  */
1456 static int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd)
1457 {
1458         uint32_t scan_size_bits, scan_size_bytes, bits_last_scan;
1459         uint32_t scans_max_payload, bytecount;
1460         uint8_t *tdi_buffer_start = NULL, *tdi_buffer = NULL;
1461         uint8_t *tdo_buffer_start = NULL, *tdo_buffer = NULL;
1462
1463         uint8_t first_tms_count, first_tms_sequence;
1464         uint8_t last_tms_count, last_tms_sequence;
1465
1466         uint8_t tms_count_pause, tms_sequence_pause;
1467         uint8_t tms_count_resume, tms_sequence_resume;
1468
1469         uint8_t tms_count_start, tms_sequence_start;
1470         uint8_t tms_count_end, tms_sequence_end;
1471
1472         enum scan_type type;
1473         int ret;
1474
1475         /* Determine scan size */
1476         scan_size_bits = jtag_scan_size(cmd->cmd.scan);
1477         scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
1478
1479         /* Determine scan type (IN/OUT/IO) */
1480         type = jtag_scan_type(cmd->cmd.scan);
1481
1482         /* Determine number of scan commands with maximum payload */
1483         scans_max_payload = scan_size_bytes / 58;
1484
1485         /* Determine size of last shift command */
1486         bits_last_scan = scan_size_bits - (scans_max_payload * 58 * 8);
1487
1488         /* Allocate TDO buffer if required */
1489         if ((type == SCAN_IN) || (type == SCAN_IO)) {
1490                 tdo_buffer_start = calloc(sizeof(uint8_t), scan_size_bytes);
1491
1492                 if (!tdo_buffer_start)
1493                         return ERROR_FAIL;
1494
1495                 tdo_buffer = tdo_buffer_start;
1496         }
1497
1498         /* Fill TDI buffer if required */
1499         if ((type == SCAN_OUT) || (type == SCAN_IO)) {
1500                 jtag_build_buffer(cmd->cmd.scan, &tdi_buffer_start);
1501                 tdi_buffer = tdi_buffer_start;
1502         }
1503
1504         /* Get TAP state transitions */
1505         if (cmd->cmd.scan->ir_scan) {
1506                 ulink_set_end_state(TAP_IRSHIFT);
1507                 first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1508                 first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1509
1510                 tap_set_state(TAP_IRSHIFT);
1511                 tap_set_end_state(cmd->cmd.scan->end_state);
1512                 last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1513                 last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1514
1515                 /* TAP state transitions for split scans */
1516                 tms_count_pause = tap_get_tms_path_len(TAP_IRSHIFT, TAP_IRPAUSE);
1517                 tms_sequence_pause = tap_get_tms_path(TAP_IRSHIFT, TAP_IRPAUSE);
1518                 tms_count_resume = tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRSHIFT);
1519                 tms_sequence_resume = tap_get_tms_path(TAP_IRPAUSE, TAP_IRSHIFT);
1520         } else {
1521                 ulink_set_end_state(TAP_DRSHIFT);
1522                 first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1523                 first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1524
1525                 tap_set_state(TAP_DRSHIFT);
1526                 tap_set_end_state(cmd->cmd.scan->end_state);
1527                 last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1528                 last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1529
1530                 /* TAP state transitions for split scans */
1531                 tms_count_pause = tap_get_tms_path_len(TAP_DRSHIFT, TAP_DRPAUSE);
1532                 tms_sequence_pause = tap_get_tms_path(TAP_DRSHIFT, TAP_DRPAUSE);
1533                 tms_count_resume = tap_get_tms_path_len(TAP_DRPAUSE, TAP_DRSHIFT);
1534                 tms_sequence_resume = tap_get_tms_path(TAP_DRPAUSE, TAP_DRSHIFT);
1535         }
1536
1537         /* Generate scan commands */
1538         bytecount = scan_size_bytes;
1539         while (bytecount > 0) {
1540                 if (bytecount == scan_size_bytes) {
1541                         /* This is the first scan */
1542                         tms_count_start = first_tms_count;
1543                         tms_sequence_start = first_tms_sequence;
1544                 } else {
1545                         /* Resume from previous scan */
1546                         tms_count_start = tms_count_resume;
1547                         tms_sequence_start = tms_sequence_resume;
1548                 }
1549
1550                 if (bytecount > 58) {   /* Full scan, at least one scan will follow */
1551                         tms_count_end = tms_count_pause;
1552                         tms_sequence_end = tms_sequence_pause;
1553
1554                         ret = ulink_append_scan_cmd(device,
1555                                         type,
1556                                         58 * 8,
1557                                         tdi_buffer,
1558                                         tdo_buffer_start,
1559                                         tdo_buffer,
1560                                         tms_count_start,
1561                                         tms_sequence_start,
1562                                         tms_count_end,
1563                                         tms_sequence_end,
1564                                         cmd,
1565                                         false);
1566
1567                         bytecount -= 58;
1568
1569                         /* Update TDI and TDO buffer pointers */
1570                         if (tdi_buffer_start)
1571                                 tdi_buffer += 58;
1572                         if (tdo_buffer_start)
1573                                 tdo_buffer += 58;
1574                 } else if (bytecount == 58) {   /* Full scan, no further scans */
1575                         tms_count_end = last_tms_count;
1576                         tms_sequence_end = last_tms_sequence;
1577
1578                         ret = ulink_append_scan_cmd(device,
1579                                         type,
1580                                         58 * 8,
1581                                         tdi_buffer,
1582                                         tdo_buffer_start,
1583                                         tdo_buffer,
1584                                         tms_count_start,
1585                                         tms_sequence_start,
1586                                         tms_count_end,
1587                                         tms_sequence_end,
1588                                         cmd,
1589                                         true);
1590
1591                         bytecount = 0;
1592                 } else {/* Scan with less than maximum payload, no further scans */
1593                         tms_count_end = last_tms_count;
1594                         tms_sequence_end = last_tms_sequence;
1595
1596                         ret = ulink_append_scan_cmd(device,
1597                                         type,
1598                                         bits_last_scan,
1599                                         tdi_buffer,
1600                                         tdo_buffer_start,
1601                                         tdo_buffer,
1602                                         tms_count_start,
1603                                         tms_sequence_start,
1604                                         tms_count_end,
1605                                         tms_sequence_end,
1606                                         cmd,
1607                                         true);
1608
1609                         bytecount = 0;
1610                 }
1611
1612                 if (ret != ERROR_OK) {
1613                         free(tdi_buffer_start);
1614                         free(tdo_buffer_start);
1615                         return ret;
1616                 }
1617         }
1618
1619         free(tdi_buffer_start);
1620
1621         /* Set current state to the end state requested by the command */
1622         tap_set_state(cmd->cmd.scan->end_state);
1623
1624         return ERROR_OK;
1625 }
1626
1627 /**
1628  * Move the TAP into the Test Logic Reset state.
1629  *
1630  * @param device pointer to struct ulink identifying ULINK driver instance.
1631  * @param cmd pointer to the command that shall be executed.
1632  * @return on success: ERROR_OK
1633  * @return on failure: ERROR_FAIL
1634  */
1635 static int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd)
1636 {
1637         int ret;
1638
1639         ret = ulink_append_clock_tms_cmd(device, 5, 0xff);
1640
1641         if (ret == ERROR_OK)
1642                 tap_set_state(TAP_RESET);
1643
1644         return ret;
1645 }
1646
1647 /**
1648  * Run Test.
1649  *
1650  * Generate TCK clock cycles while remaining
1651  * in the Run-Test/Idle state.
1652  *
1653  * @param device pointer to struct ulink identifying ULINK driver instance.
1654  * @param cmd pointer to the command that shall be executed.
1655  * @return on success: ERROR_OK
1656  * @return on failure: ERROR_FAIL
1657  */
1658 static int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd)
1659 {
1660         int ret;
1661
1662         /* Only perform statemove if the TAP currently isn't in the TAP_IDLE state */
1663         if (tap_get_state() != TAP_IDLE) {
1664                 ulink_set_end_state(TAP_IDLE);
1665                 ulink_queue_statemove(device);
1666         }
1667
1668         /* Generate the clock cycles */
1669         ret = ulink_append_clock_tck_cmd(device, cmd->cmd.runtest->num_cycles);
1670         if (ret != ERROR_OK)
1671                 return ret;
1672
1673         /* Move to end state specified in command */
1674         if (cmd->cmd.runtest->end_state != tap_get_state()) {
1675                 tap_set_end_state(cmd->cmd.runtest->end_state);
1676                 ulink_queue_statemove(device);
1677         }
1678
1679         return ERROR_OK;
1680 }
1681
1682 /**
1683  * Execute a JTAG_RESET command
1684  *
1685  * @param device
1686  * @param cmd pointer to the command that shall be executed.
1687  * @return on success: ERROR_OK
1688  * @return on failure: ERROR_FAIL
1689  */
1690 static int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd)
1691 {
1692         uint8_t low = 0, high = 0;
1693
1694         if (cmd->cmd.reset->trst) {
1695                 tap_set_state(TAP_RESET);
1696                 high |= SIGNAL_TRST;
1697         } else
1698                 low |= SIGNAL_TRST;
1699
1700         if (cmd->cmd.reset->srst)
1701                 high |= SIGNAL_RESET;
1702         else
1703                 low |= SIGNAL_RESET;
1704
1705         return ulink_append_set_signals_cmd(device, low, high);
1706 }
1707
1708 /**
1709  * Move to one TAP state or several states in succession.
1710  *
1711  * @param device pointer to struct ulink identifying ULINK driver instance.
1712  * @param cmd pointer to the command that shall be executed.
1713  * @return on success: ERROR_OK
1714  * @return on failure: ERROR_FAIL
1715  */
1716 static int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd)
1717 {
1718         int ret, i, num_states, batch_size, state_count;
1719         tap_state_t *path;
1720         uint8_t tms_sequence;
1721
1722         num_states = cmd->cmd.pathmove->num_states;
1723         path = cmd->cmd.pathmove->path;
1724         state_count = 0;
1725
1726         while (num_states > 0) {
1727                 tms_sequence = 0;
1728
1729                 /* Determine batch size */
1730                 if (num_states >= 8)
1731                         batch_size = 8;
1732                 else
1733                         batch_size = num_states;
1734
1735                 for (i = 0; i < batch_size; i++) {
1736                         if (tap_state_transition(tap_get_state(), false) == path[state_count]) {
1737                                 /* Append '0' transition: clear bit 'i' in tms_sequence */
1738                                 buf_set_u32(&tms_sequence, i, 1, 0x0);
1739                         } else if (tap_state_transition(tap_get_state(), true)
1740                                    == path[state_count]) {
1741                                 /* Append '1' transition: set bit 'i' in tms_sequence */
1742                                 buf_set_u32(&tms_sequence, i, 1, 0x1);
1743                         } else {
1744                                 /* Invalid state transition */
1745                                 LOG_ERROR("BUG: %s -> %s isn't a valid TAP state transition",
1746                                         tap_state_name(tap_get_state()),
1747                                         tap_state_name(path[state_count]));
1748                                 return ERROR_FAIL;
1749                         }
1750
1751                         tap_set_state(path[state_count]);
1752                         state_count++;
1753                         num_states--;
1754                 }
1755
1756                 /* Append CLOCK_TMS command to OpenULINK command queue */
1757                 LOG_INFO(
1758                         "pathmove batch: count = %i, sequence = 0x%x", batch_size, tms_sequence);
1759                 ret = ulink_append_clock_tms_cmd(ulink_handle, batch_size, tms_sequence);
1760                 if (ret != ERROR_OK)
1761                         return ret;
1762         }
1763
1764         return ERROR_OK;
1765 }
1766
1767 /**
1768  * Sleep for a specific amount of time.
1769  *
1770  * @param device pointer to struct ulink identifying ULINK driver instance.
1771  * @param cmd pointer to the command that shall be executed.
1772  * @return on success: ERROR_OK
1773  * @return on failure: ERROR_FAIL
1774  */
1775 static int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd)
1776 {
1777         /* IMPORTANT! Due to the time offset in command execution introduced by
1778          * command queueing, this needs to be implemented in the ULINK device */
1779         return ulink_append_sleep_cmd(device, cmd->cmd.sleep->us);
1780 }
1781
1782 /**
1783  * Generate TCK cycles while remaining in a stable state.
1784  *
1785  * @param device pointer to struct ulink identifying ULINK driver instance.
1786  * @param cmd pointer to the command that shall be executed.
1787  */
1788 static int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd)
1789 {
1790         int ret;
1791         unsigned num_cycles;
1792
1793         if (!tap_is_state_stable(tap_get_state())) {
1794                 LOG_ERROR("JTAG_STABLECLOCKS: state not stable");
1795                 return ERROR_FAIL;
1796         }
1797
1798         num_cycles = cmd->cmd.stableclocks->num_cycles;
1799
1800         /* TMS stays either high (Test Logic Reset state) or low (all other states) */
1801         if (tap_get_state() == TAP_RESET)
1802                 ret = ulink_append_set_signals_cmd(device, 0, SIGNAL_TMS);
1803         else
1804                 ret = ulink_append_set_signals_cmd(device, SIGNAL_TMS, 0);
1805
1806         if (ret != ERROR_OK)
1807                 return ret;
1808
1809         while (num_cycles > 0) {
1810                 if (num_cycles > 0xFFFF) {
1811                         /* OpenULINK CMD_CLOCK_TCK can generate up to 0xFFFF (uint16_t) cycles */
1812                         ret = ulink_append_clock_tck_cmd(device, 0xFFFF);
1813                         num_cycles -= 0xFFFF;
1814                 } else {
1815                         ret = ulink_append_clock_tck_cmd(device, num_cycles);
1816                         num_cycles = 0;
1817                 }
1818
1819                 if (ret != ERROR_OK)
1820                         return ret;
1821         }
1822
1823         return ERROR_OK;
1824 }
1825
1826 /**
1827  * Post-process JTAG_SCAN command
1828  *
1829  * @param ulink_cmd pointer to OpenULINK command that shall be processed.
1830  * @return on success: ERROR_OK
1831  * @return on failure: ERROR_FAIL
1832  */
1833 static int ulink_post_process_scan(struct ulink_cmd *ulink_cmd)
1834 {
1835         struct jtag_command *cmd = ulink_cmd->cmd_origin;
1836         int ret;
1837
1838         switch (jtag_scan_type(cmd->cmd.scan)) {
1839             case SCAN_IN:
1840             case SCAN_IO:
1841                     ret = jtag_read_buffer(ulink_cmd->payload_in_start, cmd->cmd.scan);
1842                     break;
1843             case SCAN_OUT:
1844                         /* Nothing to do for OUT scans */
1845                     ret = ERROR_OK;
1846                     break;
1847             default:
1848                     LOG_ERROR("BUG: ulink_post_process_scan() encountered an unknown"
1849                         " JTAG scan type");
1850                     ret = ERROR_FAIL;
1851                     break;
1852         }
1853
1854         return ret;
1855 }
1856
1857 /**
1858  * Perform post-processing of commands after OpenULINK queue has been executed.
1859  *
1860  * @param device pointer to struct ulink identifying ULINK driver instance.
1861  * @return on success: ERROR_OK
1862  * @return on failure: ERROR_FAIL
1863  */
1864 static int ulink_post_process_queue(struct ulink *device)
1865 {
1866         struct ulink_cmd *current;
1867         struct jtag_command *openocd_cmd;
1868         int ret;
1869
1870         current = device->queue_start;
1871
1872         while (current) {
1873                 openocd_cmd = current->cmd_origin;
1874
1875                 /* Check if a corresponding OpenOCD command is stored for this
1876                  * OpenULINK command */
1877                 if ((current->needs_postprocessing == true) && (openocd_cmd)) {
1878                         switch (openocd_cmd->type) {
1879                             case JTAG_SCAN:
1880                                     ret = ulink_post_process_scan(current);
1881                                     break;
1882                             case JTAG_TLR_RESET:
1883                             case JTAG_RUNTEST:
1884                             case JTAG_RESET:
1885                             case JTAG_PATHMOVE:
1886                             case JTAG_SLEEP:
1887                             case JTAG_STABLECLOCKS:
1888                                         /* Nothing to do for these commands */
1889                                     ret = ERROR_OK;
1890                                     break;
1891                             default:
1892                                     ret = ERROR_FAIL;
1893                                     LOG_ERROR("BUG: ulink_post_process_queue() encountered unknown JTAG "
1894                                         "command type");
1895                                     break;
1896                         }
1897
1898                         if (ret != ERROR_OK)
1899                                 return ret;
1900                 }
1901
1902                 current = current->next;
1903         }
1904
1905         return ERROR_OK;
1906 }
1907
1908 /**************************** JTAG driver functions ***************************/
1909
1910 /**
1911  * Executes the JTAG Command Queue.
1912  *
1913  * This is done in three stages: First, all OpenOCD commands are processed into
1914  * queued OpenULINK commands. Next, the OpenULINK command queue is sent to the
1915  * ULINK device and data received from the ULINK device is cached. Finally,
1916  * the post-processing function writes back data to the corresponding OpenOCD
1917  * commands.
1918  *
1919  * @return on success: ERROR_OK
1920  * @return on failure: ERROR_FAIL
1921  */
1922 static int ulink_execute_queue(void)
1923 {
1924         struct jtag_command *cmd = jtag_command_queue;
1925         int ret;
1926
1927         while (cmd) {
1928                 switch (cmd->type) {
1929                     case JTAG_SCAN:
1930                             ret = ulink_queue_scan(ulink_handle, cmd);
1931                             break;
1932                     case JTAG_TLR_RESET:
1933                             ret = ulink_queue_tlr_reset(ulink_handle, cmd);
1934                             break;
1935                     case JTAG_RUNTEST:
1936                             ret = ulink_queue_runtest(ulink_handle, cmd);
1937                             break;
1938                     case JTAG_RESET:
1939                             ret = ulink_queue_reset(ulink_handle, cmd);
1940                             break;
1941                     case JTAG_PATHMOVE:
1942                             ret = ulink_queue_pathmove(ulink_handle, cmd);
1943                             break;
1944                     case JTAG_SLEEP:
1945                             ret = ulink_queue_sleep(ulink_handle, cmd);
1946                             break;
1947                     case JTAG_STABLECLOCKS:
1948                             ret = ulink_queue_stableclocks(ulink_handle, cmd);
1949                             break;
1950                     default:
1951                             ret = ERROR_FAIL;
1952                             LOG_ERROR("BUG: encountered unknown JTAG command type");
1953                             break;
1954                 }
1955
1956                 if (ret != ERROR_OK)
1957                         return ret;
1958
1959                 cmd = cmd->next;
1960         }
1961
1962         if (ulink_handle->commands_in_queue > 0) {
1963                 ret = ulink_execute_queued_commands(ulink_handle, USB_TIMEOUT);
1964                 if (ret != ERROR_OK)
1965                         return ret;
1966
1967                 ret = ulink_post_process_queue(ulink_handle);
1968                 if (ret != ERROR_OK)
1969                         return ret;
1970
1971                 ulink_clear_queue(ulink_handle);
1972         }
1973
1974         return ERROR_OK;
1975 }
1976
1977 /**
1978  * Set the TCK frequency of the ULINK adapter.
1979  *
1980  * @param khz desired JTAG TCK frequency.
1981  * @param jtag_speed where to store corresponding adapter-specific speed value.
1982  * @return on success: ERROR_OK
1983  * @return on failure: ERROR_FAIL
1984  */
1985 static int ulink_khz(int khz, int *jtag_speed)
1986 {
1987         int ret;
1988
1989         if (khz == 0) {
1990                 LOG_ERROR("RCLK not supported");
1991                 return ERROR_FAIL;
1992         }
1993
1994         /* CLOCK_TCK commands are decoupled from others. Therefore, the frequency
1995          * setting can be done independently from all other commands. */
1996         if (khz >= 375)
1997                 ulink_handle->delay_clock_tck = -1;
1998         else {
1999                 ret = ulink_calculate_delay(DELAY_CLOCK_TCK, khz * 1000,
2000                                 &ulink_handle->delay_clock_tck);
2001                 if (ret != ERROR_OK)
2002                         return ret;
2003         }
2004
2005         /* SCAN_{IN,OUT,IO} commands invoke CLOCK_TMS commands. Therefore, if the
2006          * requested frequency goes below the maximum frequency for SLOW_CLOCK_TMS
2007          * commands, all SCAN commands MUST also use the variable frequency
2008          * implementation! */
2009         if (khz >= 176) {
2010                 ulink_handle->delay_clock_tms = -1;
2011                 ulink_handle->delay_scan_in = -1;
2012                 ulink_handle->delay_scan_out = -1;
2013                 ulink_handle->delay_scan_io = -1;
2014         } else {
2015                 ret = ulink_calculate_delay(DELAY_CLOCK_TMS, khz * 1000,
2016                                 &ulink_handle->delay_clock_tms);
2017                 if (ret != ERROR_OK)
2018                         return ret;
2019
2020                 ret = ulink_calculate_delay(DELAY_SCAN_IN, khz * 1000,
2021                                 &ulink_handle->delay_scan_in);
2022                 if (ret != ERROR_OK)
2023                         return ret;
2024
2025                 ret = ulink_calculate_delay(DELAY_SCAN_OUT, khz * 1000,
2026                                 &ulink_handle->delay_scan_out);
2027                 if (ret != ERROR_OK)
2028                         return ret;
2029
2030                 ret = ulink_calculate_delay(DELAY_SCAN_IO, khz * 1000,
2031                                 &ulink_handle->delay_scan_io);
2032                 if (ret != ERROR_OK)
2033                         return ret;
2034         }
2035
2036         LOG_DEBUG_IO("ULINK TCK setup: delay_tck      = %i (%li Hz),",
2037                 ulink_handle->delay_clock_tck,
2038                 ulink_calculate_frequency(DELAY_CLOCK_TCK, ulink_handle->delay_clock_tck));
2039         LOG_DEBUG_IO("                 delay_tms      = %i (%li Hz),",
2040                 ulink_handle->delay_clock_tms,
2041                 ulink_calculate_frequency(DELAY_CLOCK_TMS, ulink_handle->delay_clock_tms));
2042         LOG_DEBUG_IO("                 delay_scan_in  = %i (%li Hz),",
2043                 ulink_handle->delay_scan_in,
2044                 ulink_calculate_frequency(DELAY_SCAN_IN, ulink_handle->delay_scan_in));
2045         LOG_DEBUG_IO("                 delay_scan_out = %i (%li Hz),",
2046                 ulink_handle->delay_scan_out,
2047                 ulink_calculate_frequency(DELAY_SCAN_OUT, ulink_handle->delay_scan_out));
2048         LOG_DEBUG_IO("                 delay_scan_io  = %i (%li Hz),",
2049                 ulink_handle->delay_scan_io,
2050                 ulink_calculate_frequency(DELAY_SCAN_IO, ulink_handle->delay_scan_io));
2051
2052         /* Configure the ULINK device with the new delay values */
2053         ret = ulink_append_configure_tck_cmd(ulink_handle,
2054                         ulink_handle->delay_scan_in,
2055                         ulink_handle->delay_scan_out,
2056                         ulink_handle->delay_scan_io,
2057                         ulink_handle->delay_clock_tck,
2058                         ulink_handle->delay_clock_tms);
2059
2060         if (ret != ERROR_OK)
2061                 return ret;
2062
2063         *jtag_speed = khz;
2064
2065         return ERROR_OK;
2066 }
2067
2068 /**
2069  * Set the TCK frequency of the ULINK adapter.
2070  *
2071  * Because of the way the TCK frequency is set up in the OpenULINK firmware,
2072  * there are five different speed settings. To simplify things, the
2073  * adapter-specific speed setting value is identical to the TCK frequency in
2074  * khz.
2075  *
2076  * @param speed desired adapter-specific speed value.
2077  * @return on success: ERROR_OK
2078  * @return on failure: ERROR_FAIL
2079  */
2080 static int ulink_speed(int speed)
2081 {
2082         int dummy;
2083
2084         return ulink_khz(speed, &dummy);
2085 }
2086
2087 /**
2088  * Convert adapter-specific speed value to corresponding TCK frequency in kHz.
2089  *
2090  * Because of the way the TCK frequency is set up in the OpenULINK firmware,
2091  * there are five different speed settings. To simplify things, the
2092  * adapter-specific speed setting value is identical to the TCK frequency in
2093  * khz.
2094  *
2095  * @param speed adapter-specific speed value.
2096  * @param khz where to store corresponding TCK frequency in kHz.
2097  * @return on success: ERROR_OK
2098  * @return on failure: ERROR_FAIL
2099  */
2100 static int ulink_speed_div(int speed, int *khz)
2101 {
2102         *khz = speed;
2103
2104         return ERROR_OK;
2105 }
2106
2107 /**
2108  * Initiates the firmware download to the ULINK adapter and prepares
2109  * the USB handle.
2110  *
2111  * @return on success: ERROR_OK
2112  * @return on failure: ERROR_FAIL
2113  */
2114 static int ulink_init(void)
2115 {
2116         int ret, transferred;
2117         char str_manufacturer[20];
2118         bool download_firmware = false;
2119         unsigned char *dummy;
2120         uint8_t input_signals, output_signals;
2121
2122         ulink_handle = calloc(1, sizeof(struct ulink));
2123         if (!ulink_handle)
2124                 return ERROR_FAIL;
2125
2126         libusb_init(&ulink_handle->libusb_ctx);
2127
2128         ret = ulink_usb_open(&ulink_handle);
2129         if (ret != ERROR_OK) {
2130                 LOG_ERROR("Could not open ULINK device");
2131                 free(ulink_handle);
2132                 ulink_handle = NULL;
2133                 return ret;
2134         }
2135
2136         /* Get String Descriptor to determine if firmware needs to be loaded */
2137         ret = libusb_get_string_descriptor_ascii(ulink_handle->usb_device_handle, 1, (unsigned char *)str_manufacturer, 20);
2138         if (ret < 0) {
2139                 /* Could not get descriptor -> Unconfigured or original Keil firmware */
2140                 download_firmware = true;
2141         } else {
2142                 /* We got a String Descriptor, check if it is the correct one */
2143                 if (strncmp(str_manufacturer, "OpenULINK", 9) != 0)
2144                         download_firmware = true;
2145         }
2146
2147         if (download_firmware == true) {
2148                 LOG_INFO("Loading OpenULINK firmware. This is reversible by power-cycling"
2149                         " ULINK device.");
2150                 ret = ulink_load_firmware_and_renumerate(&ulink_handle,
2151                                 ULINK_FIRMWARE_FILE, ULINK_RENUMERATION_DELAY);
2152                 if (ret != ERROR_OK) {
2153                         LOG_ERROR("Could not download firmware and re-numerate ULINK");
2154                         free(ulink_handle);
2155                         ulink_handle = NULL;
2156                         return ret;
2157                 }
2158         } else
2159                 LOG_INFO("ULINK device is already running OpenULINK firmware");
2160
2161         /* Get OpenULINK USB IN/OUT endpoints and claim the interface */
2162         ret = jtag_libusb_choose_interface(ulink_handle->usb_device_handle,
2163                 &ulink_handle->ep_in, &ulink_handle->ep_out, -1, -1, -1, -1);
2164         if (ret != ERROR_OK)
2165                 return ret;
2166
2167         /* Initialize OpenULINK command queue */
2168         ulink_clear_queue(ulink_handle);
2169
2170         /* Issue one test command with short timeout */
2171         ret = ulink_append_test_cmd(ulink_handle);
2172         if (ret != ERROR_OK)
2173                 return ret;
2174
2175         ret = ulink_execute_queued_commands(ulink_handle, 200);
2176         if (ret != ERROR_OK) {
2177                 /* Sending test command failed. The ULINK device may be forever waiting for
2178                  * the host to fetch an USB Bulk IN packet (e. g. OpenOCD crashed or was
2179                  * shut down by the user via Ctrl-C. Try to retrieve this Bulk IN packet. */
2180                 dummy = calloc(64, sizeof(uint8_t));
2181
2182                 ret = libusb_bulk_transfer(ulink_handle->usb_device_handle, ulink_handle->ep_in,
2183                                 dummy, 64, &transferred, 200);
2184
2185                 free(dummy);
2186
2187                 if (ret != 0 || transferred == 0) {
2188                         /* Bulk IN transfer failed -> unrecoverable error condition */
2189                         LOG_ERROR("Cannot communicate with ULINK device. Disconnect ULINK from "
2190                                 "the USB port and re-connect, then re-run OpenOCD");
2191                         free(ulink_handle);
2192                         ulink_handle = NULL;
2193                         return ERROR_FAIL;
2194                 }
2195 #ifdef _DEBUG_USB_COMMS_
2196                 else {
2197                         /* Successfully received Bulk IN packet -> continue */
2198                         LOG_INFO("Recovered from lost Bulk IN packet");
2199                 }
2200 #endif
2201         }
2202         ulink_clear_queue(ulink_handle);
2203
2204         ret = ulink_append_get_signals_cmd(ulink_handle);
2205         if (ret == ERROR_OK)
2206                 ret = ulink_execute_queued_commands(ulink_handle, 200);
2207
2208         if (ret == ERROR_OK) {
2209                 /* Post-process the single CMD_GET_SIGNALS command */
2210                 input_signals = ulink_handle->queue_start->payload_in[0];
2211                 output_signals = ulink_handle->queue_start->payload_in[1];
2212
2213                 ulink_print_signal_states(input_signals, output_signals);
2214         }
2215
2216         ulink_clear_queue(ulink_handle);
2217
2218         return ERROR_OK;
2219 }
2220
2221 /**
2222  * Closes the USB handle for the ULINK device.
2223  *
2224  * @return on success: ERROR_OK
2225  * @return on failure: ERROR_FAIL
2226  */
2227 static int ulink_quit(void)
2228 {
2229         int ret;
2230
2231         ret = ulink_usb_close(&ulink_handle);
2232         free(ulink_handle);
2233
2234         return ret;
2235 }
2236
2237 /**
2238  * Set a custom path to ULINK firmware image and force downloading to ULINK.
2239  */
2240 COMMAND_HANDLER(ulink_download_firmware_handler)
2241 {
2242         int ret;
2243
2244         if (CMD_ARGC != 1)
2245                 return ERROR_COMMAND_SYNTAX_ERROR;
2246
2247
2248         LOG_INFO("Downloading ULINK firmware image %s", CMD_ARGV[0]);
2249
2250         /* Download firmware image in CMD_ARGV[0] */
2251         ret = ulink_load_firmware_and_renumerate(&ulink_handle, CMD_ARGV[0],
2252                         ULINK_RENUMERATION_DELAY);
2253
2254         return ret;
2255 }
2256
2257 /*************************** Command Registration **************************/
2258
2259 static const struct command_registration ulink_subcommand_handlers[] = {
2260         {
2261                 .name = "download_firmware",
2262                 .handler = &ulink_download_firmware_handler,
2263                 .mode = COMMAND_EXEC,
2264                 .help = "download firmware image to ULINK device",
2265                 .usage = "path/to/ulink_firmware.hex",
2266         },
2267         COMMAND_REGISTRATION_DONE,
2268 };
2269
2270 static const struct command_registration ulink_command_handlers[] = {
2271         {
2272                 .name = "ulink",
2273                 .mode = COMMAND_ANY,
2274                 .help = "perform ulink management",
2275                 .chain = ulink_subcommand_handlers,
2276                 .usage = "",
2277         },
2278         COMMAND_REGISTRATION_DONE
2279 };
2280
2281 static struct jtag_interface ulink_interface = {
2282         .execute_queue = ulink_execute_queue,
2283 };
2284
2285 struct adapter_driver ulink_adapter_driver = {
2286         .name = "ulink",
2287         .transports = jtag_only,
2288         .commands = ulink_command_handlers,
2289
2290         .init = ulink_init,
2291         .quit = ulink_quit,
2292         .speed = ulink_speed,
2293         .khz = ulink_khz,
2294         .speed_div = ulink_speed_div,
2295
2296         .jtag_ops = &ulink_interface,
2297 };