flash/nor: Use proper data types in driver API
[fw/openocd] / src / flash / nor / xmc4xxx.c
1 /**************************************************************************
2 *   Copyright (C) 2015 Jeff Ciesielski <jeffciesielski@gmail.com>         *
3 *                                                                         *
4 *   This program is free software; you can redistribute it and/or modify  *
5 *   it under the terms of the GNU General Public License as published by  *
6 *   the Free Software Foundation; either version 2 of the License, or     *
7 *   (at your option) any later version.                                   *
8 *                                                                         *
9 *   This program is distributed in the hope that it will be useful,       *
10 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12 *   GNU General Public License for more details.                          *
13 *                                                                         *
14 *   You should have received a copy of the GNU General Public License     *
15 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
16 ***************************************************************************/
17
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif
21
22 #include "imp.h"
23 #include <helper/binarybuffer.h>
24 #include <target/algorithm.h>
25 #include <target/armv7m.h>
26
27 /* Maximum number of sectors */
28 #define MAX_XMC_SECTORS 12
29
30 /* System control unit registers */
31 #define SCU_REG_BASE 0x50004000
32
33 #define SCU_ID_CHIP 0x04
34
35 /* Base of the non-cached flash memory */
36 #define PFLASH_BASE     0x0C000000
37
38 /* User configuration block offsets */
39 #define UCB0_BASE       0x00000000
40 #define UCB1_BASE       0x00000400
41 #define UCB2_BASE       0x00000800
42
43 /* Flash register base */
44 #define FLASH_REG_BASE 0x58000000
45
46 /* PMU ID Registers */
47 #define FLASH_REG_PMU_ID        (FLASH_REG_BASE | 0x0508)
48
49 /* PMU Fields */
50 #define PMU_MOD_REV_MASK        0xFF
51 #define PMU_MOD_TYPE_MASK       0xFF00
52 #define PMU_MOD_NO_MASK         0xFFFF0000
53
54 /* Prefetch Config */
55 #define FLASH_REG_PREF_PCON     (FLASH_REG_BASE | 0x4000)
56
57 /* Prefetch Fields */
58 #define PCON_IBYP       (1 << 0)
59 #define PCON_IINV       (1 << 1)
60
61 /* Flash ID Register */
62 #define FLASH_REG_FLASH0_ID     (FLASH_REG_BASE | 0x2008)
63
64 /* Flash Status Register */
65 #define FLASH_REG_FLASH0_FSR    (FLASH_REG_BASE | 0x2010)
66
67 #define FSR_PBUSY       (0)
68 #define FSR_FABUSY      (1)
69 #define FSR_PROG        (4)
70 #define FSR_ERASE       (5)
71 #define FSR_PFPAGE      (6)
72 #define FSR_PFOPER      (8)
73 #define FSR_SQER        (10)
74 #define FSR_PROER       (11)
75 #define FSR_PFSBER      (12)
76 #define FSR_PFDBER      (14)
77 #define FSR_PROIN       (16)
78 #define FSR_RPROIN      (18)
79 #define FSR_RPRODIS     (19)
80 #define FSR_WPROIN0     (21)
81 #define FSR_WPROIN1     (22)
82 #define FSR_WPROIN2     (23)
83 #define FSR_WPRODIS0    (25)
84 #define FSR_WPRODIS1    (26)
85 #define FSR_SLM         (28)
86 #define FSR_VER         (31)
87
88 #define FSR_PBUSY_MASK          (0x01 << FSR_PBUSY)
89 #define FSR_FABUSY_MASK         (0x01 << FSR_FABUSY)
90 #define FSR_PROG_MASK           (0x01 << FSR_PROG)
91 #define FSR_ERASE_MASK          (0x01 << FSR_ERASE)
92 #define FSR_PFPAGE_MASK         (0x01 << FSR_PFPAGE)
93 #define FSR_PFOPER_MASK         (0x01 << FSR_PFOPER)
94 #define FSR_SQER_MASK           (0x01 << FSR_SQER)
95 #define FSR_PROER_MASK          (0x01 << FSR_PROER)
96 #define FSR_PFSBER_MASK         (0x01 << FSR_PFSBER)
97 #define FSR_PFDBER_MASK         (0x01 << FSR_PFDBER)
98 #define FSR_PROIN_MASK          (0x01 << FSR_PROIN)
99 #define FSR_RPROIN_MASK         (0x01 << FSR_RPROIN)
100 #define FSR_RPRODIS_MASK        (0x01 << FSR_RPRODIS)
101 #define FSR_WPROIN0_MASK        (0x01 << FSR_WPROIN0)
102 #define FSR_WPROIN1_MASK        (0x01 << FSR_WPROIN1)
103 #define FSR_WPROIN2_MASK        (0x01 << FSR_WPROIN2)
104 #define FSR_WPRODIS0_MASK       (0x01 << FSR_WPRODIS0)
105 #define FSR_WPRODIS1_MASK       (0x01 << FSR_WPRODIS1)
106 #define FSR_SLM_MASK            (0x01 << FSR_SLM)
107 #define FSR_VER_MASK            (0x01 << FSR_VER)
108
109 /* Flash Config Register */
110 #define FLASH_REG_FLASH0_FCON   (FLASH_REG_BASE | 0x2014)
111
112 #define FCON_WSPFLASH           (0)
113 #define FCON_WSECPF             (4)
114 #define FCON_IDLE               (13)
115 #define FCON_ESLDIS             (14)
116 #define FCON_SLEEP              (15)
117 #define FCON_RPA                (16)
118 #define FCON_DCF                (17)
119 #define FCON_DDF                (18)
120 #define FCON_VOPERM             (24)
121 #define FCON_SQERM              (25)
122 #define FCON_PROERM             (26)
123 #define FCON_PFSBERM            (27)
124 #define FCON_PFDBERM            (29)
125 #define FCON_EOBM               (31)
126
127 #define FCON_WSPFLASH_MASK      (0x0f << FCON_WSPFLASH)
128 #define FCON_WSECPF_MASK        (0x01 << FCON_WSECPF)
129 #define FCON_IDLE_MASK          (0x01 << FCON_IDLE)
130 #define FCON_ESLDIS_MASK        (0x01 << FCON_ESLDIS)
131 #define FCON_SLEEP_MASK         (0x01 << FCON_SLEEP)
132 #define FCON_RPA_MASK           (0x01 << FCON_RPA)
133 #define FCON_DCF_MASK           (0x01 << FCON_DCF)
134 #define FCON_DDF_MASK           (0x01 << FCON_DDF)
135 #define FCON_VOPERM_MASK        (0x01 << FCON_VOPERM)
136 #define FCON_SQERM_MASK         (0x01 << FCON_SQERM)
137 #define FCON_PROERM_MASK        (0x01 << FCON_PROERM)
138 #define FCON_PFSBERM_MASK       (0x01 << FCON_PFSBERM)
139 #define FCON_PFDBERM_MASK       (0x01 << FCON_PFDBERM)
140 #define FCON_EOBM_MASK          (0x01 << FCON_EOBM)
141
142 /* Flash Margin Control Register */
143 #define FLASH_REG_FLASH0_MARP   (FLASH_REG_BASE | 0x2018)
144
145 #define MARP_MARGIN             (0)
146 #define MARP_TRAPDIS            (15)
147
148 #define MARP_MARGIN_MASK        (0x0f << MARP_MARGIN)
149 #define MARP_TRAPDIS_MASK       (0x01 << MARP_TRAPDIS)
150
151 /* Flash Protection Registers */
152 #define FLASH_REG_FLASH0_PROCON0        (FLASH_REG_BASE | 0x2020)
153 #define FLASH_REG_FLASH0_PROCON1        (FLASH_REG_BASE | 0x2024)
154 #define FLASH_REG_FLASH0_PROCON2        (FLASH_REG_BASE | 0x2028)
155
156 #define PROCON_S0L             (0)
157 #define PROCON_S1L             (1)
158 #define PROCON_S2L             (2)
159 #define PROCON_S3L             (3)
160 #define PROCON_S4L             (4)
161 #define PROCON_S5L             (5)
162 #define PROCON_S6L             (6)
163 #define PROCON_S7L             (7)
164 #define PROCON_S8L             (8)
165 #define PROCON_S9L             (9)
166 #define PROCON_S10_S11L        (10)
167 #define PROCON_RPRO            (15)
168
169 #define PROCON_S0L_MASK        (0x01 << PROCON_S0L)
170 #define PROCON_S1L_MASK        (0x01 << PROCON_S1L)
171 #define PROCON_S2L_MASK        (0x01 << PROCON_S2L)
172 #define PROCON_S3L_MASK        (0x01 << PROCON_S3L)
173 #define PROCON_S4L_MASK        (0x01 << PROCON_S4L)
174 #define PROCON_S5L_MASK        (0x01 << PROCON_S5L)
175 #define PROCON_S6L_MASK        (0x01 << PROCON_S6L)
176 #define PROCON_S7L_MASK        (0x01 << PROCON_S7L)
177 #define PROCON_S8L_MASK        (0x01 << PROCON_S8L)
178 #define PROCON_S9L_MASK        (0x01 << PROCON_S9L)
179 #define PROCON_S10_S11L_MASK   (0x01 << PROCON_S10_S11L)
180 #define PROCON_RPRO_MASK       (0x01 << PROCON_RPRO)
181
182 #define FLASH_PROTECT_CONFIRMATION_CODE 0x8AFE15C3
183
184 /* Flash controller configuration values */
185 #define FLASH_ID_XMC4500        0xA2
186 #define FLASH_ID_XMC4300_XMC4700_4800   0x92
187 #define FLASH_ID_XMC4100_4200   0x9C
188 #define FLASH_ID_XMC4400        0x9F
189
190 /* Timeouts */
191 #define FLASH_OP_TIMEOUT 5000
192
193 /* Flash commands (write/erase/protect) are performed using special
194  * command sequences that are written to magic addresses in the flash controller */
195 /* Command sequence addresses.  See reference manual, section 8: Flash Command Sequences */
196 #define FLASH_CMD_ERASE_1 0x0C005554
197 #define FLASH_CMD_ERASE_2 0x0C00AAA8
198 #define FLASH_CMD_ERASE_3 FLASH_CMD_ERASE_1
199 #define FLASH_CMD_ERASE_4 FLASH_CMD_ERASE_1
200 #define FLASH_CMD_ERASE_5 FLASH_CMD_ERASE_2
201 /* ERASE_6 is the sector base address */
202
203 #define FLASH_CMD_CLEAR_STATUS FLASH_CMD_ERASE_1
204
205 #define FLASH_CMD_ENTER_PAGEMODE FLASH_CMD_ERASE_1
206
207 #define FLASH_CMD_LOAD_PAGE_1 0x0C0055F0
208 #define FLASH_CMD_LOAD_PAGE_2 0x0C0055F4
209
210 #define FLASH_CMD_WRITE_PAGE_1 FLASH_CMD_ERASE_1
211 #define FLASH_CMD_WRITE_PAGE_2 FLASH_CMD_ERASE_2
212 #define FLASH_CMD_WRITE_PAGE_3 FLASH_CMD_ERASE_1
213 /* WRITE_PAGE_4 is the page base address */
214
215 #define FLASH_CMD_TEMP_UNPROT_1 FLASH_CMD_ERASE_1
216 #define FLASH_CMD_TEMP_UNPROT_2 FLASH_CMD_ERASE_2
217 #define FLASH_CMD_TEMP_UNPROT_3 0x0C00553C
218 #define FLASH_CMD_TEMP_UNPROT_4 FLASH_CMD_ERASE_2
219 #define FLASH_CMD_TEMP_UNPROT_5 FLASH_CMD_ERASE_2
220 #define FLASH_CMD_TEMP_UNPROT_6 0x0C005558
221
222 struct xmc4xxx_flash_bank {
223         bool probed;
224
225         /* We need the flash controller ID to choose the sector layout */
226         uint32_t fcon_id;
227
228         /* Passwords used for protection operations */
229         uint32_t pw1;
230         uint32_t pw2;
231         bool pw_set;
232
233         /* Protection flags */
234         bool read_protected;
235
236         bool write_prot_otp[MAX_XMC_SECTORS];
237 };
238
239 struct xmc4xxx_command_seq {
240         uint32_t address;
241         uint32_t magic;
242 };
243
244 /* Sector capacities.  See section 8 of xmc4x00_rm */
245 static const unsigned int sector_capacity_8[8] = {
246         16, 16, 16, 16, 16, 16, 16, 128
247 };
248
249 static const unsigned int sector_capacity_9[9] = {
250         16, 16, 16, 16, 16, 16, 16, 128, 256
251 };
252
253 static const unsigned int sector_capacity_12[12] = {
254         16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256
255 };
256
257 static const unsigned int sector_capacity_16[16] = {
258         16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256, 256, 256, 256, 256
259 };
260
261 static int xmc4xxx_write_command_sequence(struct flash_bank *bank,
262                                          struct xmc4xxx_command_seq *seq,
263                                          int seq_len)
264 {
265         int res = ERROR_OK;
266
267         for (int i = 0; i < seq_len; i++) {
268                 res = target_write_u32(bank->target, seq[i].address,
269                                        seq[i].magic);
270                 if (res != ERROR_OK)
271                         return res;
272         }
273
274         return ERROR_OK;
275 }
276
277 static int xmc4xxx_load_bank_layout(struct flash_bank *bank)
278 {
279         const unsigned int *capacity = NULL;
280
281         /* At this point, we know which flash controller ID we're
282          * talking to and simply need to fill out the bank structure accordingly */
283         LOG_DEBUG("%u sectors", bank->num_sectors);
284
285         switch (bank->num_sectors) {
286         case 8:
287                 capacity = sector_capacity_8;
288                 break;
289         case 9:
290                 capacity = sector_capacity_9;
291                 break;
292         case 12:
293                 capacity = sector_capacity_12;
294                 break;
295         case 16:
296                 capacity = sector_capacity_16;
297                 break;
298         default:
299                 LOG_ERROR("Unexpected number of sectors, %u\n",
300                           bank->num_sectors);
301                 return ERROR_FAIL;
302         }
303
304         /* This looks like a bank that we understand, now we know the
305          * corresponding sector capacities and we can add those up into the
306          * bank size. */
307         uint32_t total_offset = 0;
308         bank->sectors = calloc(bank->num_sectors,
309                                sizeof(struct flash_sector));
310         for (unsigned int i = 0; i < bank->num_sectors; i++) {
311                 bank->sectors[i].size = capacity[i] * 1024;
312                 bank->sectors[i].offset = total_offset;
313                 bank->sectors[i].is_erased = -1;
314                 bank->sectors[i].is_protected = -1;
315
316                 bank->size += bank->sectors[i].size;
317                 LOG_DEBUG("\t%d: %uk", i, capacity[i]);
318                 total_offset += bank->sectors[i].size;
319         }
320
321         /* This part doesn't follow the typical standard of 0xff
322          * being the erased value.*/
323         bank->default_padded_value = bank->erased_value = 0x00;
324
325         return ERROR_OK;
326 }
327
328 static int xmc4xxx_probe(struct flash_bank *bank)
329 {
330         int res;
331         uint32_t devid, config;
332         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
333         uint8_t flash_id;
334
335         if (fb->probed)
336                 return ERROR_OK;
337
338         /* It's not possible for the DAP to access the OTP locations needed for
339          * probing the part info and Flash geometry so we require that the target
340          * be halted before proceeding. */
341         if (bank->target->state != TARGET_HALTED) {
342                 LOG_WARNING("Cannot communicate... target not halted.");
343                 return ERROR_TARGET_NOT_HALTED;
344         }
345
346         /* The SCU registers contain the ID of the chip */
347         res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &devid);
348         if (res != ERROR_OK) {
349                 LOG_ERROR("Cannot read device identification register.");
350                 return res;
351         }
352
353         /* Make sure this is a XMC4000 family device */
354         if ((devid & 0xF0000) != 0x40000 && devid != 0) {
355                 LOG_ERROR("Platform ID doesn't match XMC4xxx: 0x%08" PRIx32, devid);
356                 return ERROR_FAIL;
357         }
358
359         LOG_DEBUG("Found XMC4xxx with devid: 0x%08" PRIx32, devid);
360
361         /* Now sanity-check the Flash controller itself. */
362         res = target_read_u32(bank->target, FLASH_REG_FLASH0_ID,
363                         &config);
364         if (res != ERROR_OK) {
365                 LOG_ERROR("Cannot read Flash bank configuration.");
366                 return res;
367         }
368         flash_id = (config & 0xff0000) >> 16;
369
370         /* The Flash configuration register is our only means of
371          * determining the sector layout. We need to make sure that
372          * we understand the type of controller we're dealing with */
373         switch (flash_id) {
374         case FLASH_ID_XMC4100_4200:
375                 bank->num_sectors = 8;
376                 LOG_DEBUG("XMC4xxx: XMC4100/4200 detected.");
377                 break;
378         case FLASH_ID_XMC4400:
379                 bank->num_sectors = 9;
380                 LOG_DEBUG("XMC4xxx: XMC4400 detected.");
381                 break;
382         case FLASH_ID_XMC4500:
383                 bank->num_sectors = 12;
384                 LOG_DEBUG("XMC4xxx: XMC4500 detected.");
385                 break;
386         case FLASH_ID_XMC4300_XMC4700_4800:
387                 bank->num_sectors = 16;
388                 LOG_DEBUG("XMC4xxx: XMC4700/4800 detected.");
389                 break;
390         default:
391                 LOG_ERROR("XMC4xxx: Unexpected flash ID. got %02" PRIx8,
392                           flash_id);
393                 return ERROR_FAIL;
394         }
395
396         /* Retrieve information about the particular bank we're probing and fill in
397          * the bank structure accordingly. */
398         res = xmc4xxx_load_bank_layout(bank);
399         if (res == ERROR_OK) {
400                 /* We're done */
401                 fb->probed = true;
402         } else {
403                 LOG_ERROR("Unable to load bank information.");
404                 return ERROR_FAIL;
405         }
406
407         return ERROR_OK;
408 }
409
410 static int xmc4xxx_get_sector_start_addr(struct flash_bank *bank,
411                 unsigned int sector, uint32_t *ret_addr)
412 {
413         /* Make sure we understand this sector */
414         if (sector > bank->num_sectors)
415                 return ERROR_FAIL;
416
417         *ret_addr = bank->base + bank->sectors[sector].offset;
418
419         return ERROR_OK;
420
421 }
422
423 static int xmc4xxx_clear_flash_status(struct flash_bank *bank)
424 {
425         int res;
426         /* TODO: Do we need to check for sequence error? */
427         LOG_INFO("Clearing flash status");
428         res = target_write_u32(bank->target, FLASH_CMD_CLEAR_STATUS,
429                                0xF5);
430         if (res != ERROR_OK) {
431                 LOG_ERROR("Unable to write erase command sequence");
432                 return res;
433         }
434
435         return ERROR_OK;
436 }
437
438 static int xmc4xxx_get_flash_status(struct flash_bank *bank, uint32_t *status)
439 {
440         int res;
441
442         res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, status);
443
444         if (res != ERROR_OK)
445                 LOG_ERROR("Cannot read flash status register.");
446
447         return res;
448 }
449
450 static int xmc4xxx_wait_status_busy(struct flash_bank *bank, int timeout)
451 {
452         int res;
453         uint32_t status;
454
455         res = xmc4xxx_get_flash_status(bank, &status);
456         if (res != ERROR_OK)
457                 return res;
458
459         /* While the flash controller is busy, wait */
460         while (status & FSR_PBUSY_MASK) {
461                 res = xmc4xxx_get_flash_status(bank, &status);
462                 if (res != ERROR_OK)
463                         return res;
464
465                 if (timeout-- <= 0) {
466                         LOG_ERROR("Timed out waiting for flash");
467                         return ERROR_FAIL;
468                 }
469                 alive_sleep(1);
470                 keep_alive();
471         }
472
473         if (status & FSR_PROER_MASK) {
474                 LOG_ERROR("XMC4xxx flash protected");
475                 res = ERROR_FAIL;
476         }
477
478         return res;
479 }
480
481 static int xmc4xxx_erase_sector(struct flash_bank *bank, uint32_t address,
482                                 bool user_config)
483 {
484         int res;
485         uint32_t status;
486
487         /* See reference manual table 8.4: Command Sequences for Flash Control */
488         struct xmc4xxx_command_seq erase_cmd_seq[6] = {
489                 {FLASH_CMD_ERASE_1, 0xAA},
490                 {FLASH_CMD_ERASE_2, 0x55},
491                 {FLASH_CMD_ERASE_3, 0x80},
492                 {FLASH_CMD_ERASE_4, 0xAA},
493                 {FLASH_CMD_ERASE_5, 0x55},
494                 {0xFF,              0xFF} /* Needs filled in */
495         };
496
497         /* We need to fill in the base address of the sector we'll be
498          * erasing, as well as the magic code that determines whether
499          * this is a standard flash sector or a user configuration block */
500
501         erase_cmd_seq[5].address = address;
502         if (user_config) {
503                 /* Removing flash protection requires the addition of
504                  * the base address */
505                 erase_cmd_seq[5].address += bank->base;
506                 erase_cmd_seq[5].magic = 0xC0;
507         } else {
508                 erase_cmd_seq[5].magic = 0x30;
509         }
510
511         res = xmc4xxx_write_command_sequence(bank, erase_cmd_seq,
512                                              ARRAY_SIZE(erase_cmd_seq));
513         if (res != ERROR_OK)
514                 return res;
515
516         /* Read the flash status register */
517         res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, &status);
518         if (res != ERROR_OK) {
519                 LOG_ERROR("Cannot read flash status register.");
520                 return res;
521         }
522
523         /* Check for a sequence error */
524         if (status & FSR_SQER_MASK) {
525                 LOG_ERROR("Error with flash erase sequence");
526                 return ERROR_FAIL;
527         }
528
529         /* Make sure a flash erase was triggered */
530         if (!(status & FSR_ERASE_MASK)) {
531                 LOG_ERROR("Flash failed to erase");
532                 return ERROR_FAIL;
533         }
534
535         /* Now we must wait for the erase operation to end */
536         res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
537
538         return res;
539 }
540
541 static int xmc4xxx_erase(struct flash_bank *bank, unsigned int first,
542                 unsigned int last)
543 {
544         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
545         int res;
546
547         if (bank->target->state != TARGET_HALTED) {
548                 LOG_ERROR("Unable to erase, target is not halted");
549                 return ERROR_TARGET_NOT_HALTED;
550         }
551
552         if (!fb->probed) {
553                 res = xmc4xxx_probe(bank);
554                 if (res != ERROR_OK)
555                         return res;
556         }
557
558         uint32_t tmp_addr;
559         /* Loop through the sectors and erase each one */
560         for (unsigned int i = first; i <= last; i++) {
561                 res = xmc4xxx_get_sector_start_addr(bank, i, &tmp_addr);
562                 if (res != ERROR_OK) {
563                         LOG_ERROR("Invalid sector %u", i);
564                         return res;
565                 }
566
567                 LOG_DEBUG("Erasing sector %u @ 0x%08"PRIx32, i, tmp_addr);
568
569                 res = xmc4xxx_erase_sector(bank, tmp_addr, false);
570                 if (res != ERROR_OK) {
571                         LOG_ERROR("Unable to write erase command sequence");
572                         goto clear_status_and_exit;
573                 }
574
575                 /* Now we must wait for the erase operation to end */
576                 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
577
578                 if (res != ERROR_OK)
579                         goto clear_status_and_exit;
580
581                 bank->sectors[i].is_erased = 1;
582         }
583
584 clear_status_and_exit:
585         res = xmc4xxx_clear_flash_status(bank);
586         return res;
587
588 }
589
590 static int xmc4xxx_enter_page_mode(struct flash_bank *bank)
591 {
592         int res;
593         uint32_t status;
594
595         res = target_write_u32(bank->target, FLASH_CMD_ENTER_PAGEMODE, 0x50);
596         if (res != ERROR_OK) {
597                 LOG_ERROR("Unable to write enter page mode command");
598                 return ERROR_FAIL;
599         }
600
601         res = xmc4xxx_get_flash_status(bank, &status);
602
603         if (res != ERROR_OK)
604                 return res;
605
606         /* Make sure we're in page mode */
607         if (!(status & FSR_PFPAGE_MASK)) {
608                 LOG_ERROR("Unable to enter page mode");
609                 return ERROR_FAIL;
610         }
611
612         /* Make sure we didn't encounter a sequence error */
613         if (status & FSR_SQER_MASK) {
614                 LOG_ERROR("Sequence error while entering page mode");
615                 return ERROR_FAIL;
616         }
617
618         return res;
619 }
620
621 static int xmc4xxx_write_page(struct flash_bank *bank, const uint8_t *pg_buf,
622                               uint32_t offset, bool user_config)
623 {
624         int res;
625         uint32_t status;
626
627         /* Base of the flash write command */
628         struct xmc4xxx_command_seq write_cmd_seq[4] = {
629                 {FLASH_CMD_WRITE_PAGE_1, 0xAA},
630                 {FLASH_CMD_WRITE_PAGE_2, 0x55},
631                 {FLASH_CMD_WRITE_PAGE_3, 0xFF}, /* Needs filled in */
632                 {0xFF,                   0xFF}  /* Needs filled in */
633         };
634
635         /* The command sequence differs depending on whether this is
636          * being written to standard flash or the user configuration
637          * area */
638         if (user_config)
639                 write_cmd_seq[2].magic = 0xC0;
640         else
641                 write_cmd_seq[2].magic = 0xA0;
642
643         /* Finally, we need to add the address that this page will be
644          * written to */
645         write_cmd_seq[3].address = bank->base + offset;
646         write_cmd_seq[3].magic = 0xAA;
647
648
649         /* Flash pages are written 256 bytes at a time.  For each 256
650          * byte chunk, we need to:
651          * 1. Enter page mode. This activates the flash write buffer
652          * 2. Load the page buffer with data (2x 32 bit words at a time)
653          * 3. Burn the page buffer into its intended location
654          * If the starting offset is not on a 256 byte boundary, we
655          * will need to pad the beginning of the write buffer
656          * accordingly. Likewise, if the last page does not fill the
657          * buffer, we should pad it to avoid leftover data from being
658          * written to flash
659          */
660         res = xmc4xxx_enter_page_mode(bank);
661         if (res != ERROR_OK)
662                 return res;
663
664         /* Copy the data into the page buffer*/
665         for (int i = 0; i < 256; i += 8) {
666                 uint32_t w_lo = target_buffer_get_u32(bank->target, &pg_buf[i]);
667                 uint32_t w_hi = target_buffer_get_u32(bank->target, &pg_buf[i + 4]);
668                 LOG_DEBUG("WLO: %08"PRIx32, w_lo);
669                 LOG_DEBUG("WHI: %08"PRIx32, w_hi);
670
671                 /* Data is loaded 2x 32 bit words at a time */
672                 res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_1, w_lo);
673                 if (res != ERROR_OK)
674                         return res;
675
676                 res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_2, w_hi);
677                 if (res != ERROR_OK)
678                         return res;
679
680                 /* Check for an error */
681                 res = xmc4xxx_get_flash_status(bank, &status);
682                 if (res != ERROR_OK)
683                         return res;
684
685                 if (status & FSR_SQER_MASK) {
686                         LOG_ERROR("Error loading page buffer");
687                         return ERROR_FAIL;
688                 }
689         }
690
691         /* The page buffer is now full, time to commit it to flash */
692
693         res = xmc4xxx_write_command_sequence(bank, write_cmd_seq, ARRAY_SIZE(write_cmd_seq));
694         if (res != ERROR_OK) {
695                 LOG_ERROR("Unable to enter write command sequence");
696                 return res;
697         }
698
699         /* Read the flash status register */
700         res = xmc4xxx_get_flash_status(bank, &status);
701         if (res != ERROR_OK)
702                 return res;
703
704         /* Check for a sequence error */
705         if (status & FSR_SQER_MASK) {
706                 LOG_ERROR("Error with flash write sequence");
707                 return ERROR_FAIL;
708         }
709
710         /* Make sure a flash write was triggered */
711         if (!(status & FSR_PROG_MASK)) {
712                 LOG_ERROR("Failed to write flash page");
713                 return ERROR_FAIL;
714         }
715
716         /* Wait for the write operation to end */
717         res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
718         if (res != ERROR_OK)
719                 return res;
720
721         /* TODO: Verify that page was written without error */
722         return res;
723 }
724
725 static int xmc4xxx_write(struct flash_bank *bank, const uint8_t *buffer,
726                          uint32_t offset, uint32_t count)
727 {
728         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
729         int res = ERROR_OK;
730
731         if (bank->target->state != TARGET_HALTED) {
732                 LOG_ERROR("Unable to erase, target is not halted");
733                 return ERROR_TARGET_NOT_HALTED;
734         }
735
736         if (!fb->probed) {
737                 res = xmc4xxx_probe(bank);
738                 if (res != ERROR_OK)
739                         return res;
740         }
741
742         /* Make sure we won't run off the end of the flash bank */
743         if ((offset + count) > (bank->size)) {
744                 LOG_ERROR("Attempting to write past the end of flash");
745                 return ERROR_FAIL;
746         }
747
748
749         /* Attempt to write the passed in buffer to flash */
750         /* Pages are written 256 bytes at a time, we need to handle
751          * scenarios where padding is required at the beginning and
752          * end of a page */
753         while (count) {
754                 /* page working area */
755                 uint8_t tmp_buf[256] = {0};
756
757                 /* Amount of data we'll be writing to this page */
758                 int remaining;
759                 int end_pad;
760
761                 remaining = MIN(count, sizeof(tmp_buf));
762                 end_pad   = sizeof(tmp_buf) - remaining;
763
764                 /* Make sure we're starting on a page boundary */
765                 int start_pad = offset % 256;
766                 if (start_pad) {
767                         LOG_INFO("Write does not start on a 256 byte boundary. "
768                                  "Padding by %d bytes", start_pad);
769                         memset(tmp_buf, 0xff, start_pad);
770                         /* Subtract the amount of start offset from
771                          * the amount of data we'll need to write */
772                         remaining -= start_pad;
773                 }
774
775                 /* Remove the amount we'll be writing from the total count */
776                 count -= remaining;
777
778                 /* Now copy in the remaining data */
779                 memcpy(&tmp_buf[start_pad], buffer, remaining);
780
781                 if (end_pad) {
782                         LOG_INFO("Padding end of page @" TARGET_ADDR_FMT " by %d bytes",
783                                  bank->base + offset, end_pad);
784                         memset(&tmp_buf[256 - end_pad], 0xff, end_pad);
785                 }
786
787                 /* Now commit this page to flash, if there was start
788                  * padding, we should subtract that from the target offset */
789                 res = xmc4xxx_write_page(bank, tmp_buf, (offset - start_pad), false);
790                 if (res != ERROR_OK) {
791                         LOG_ERROR("Unable to write flash page");
792                         goto abort_write_and_exit;
793                 }
794
795                 /* Advance the buffer pointer */
796                 buffer += remaining;
797
798                 /* Advance the offset */
799                 offset += remaining;
800         }
801
802 abort_write_and_exit:
803         xmc4xxx_clear_flash_status(bank);
804         return res;
805
806 }
807
808 static int xmc4xxx_get_info_command(struct flash_bank *bank, char *buf, int buf_size)
809 {
810         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
811         uint32_t scu_idcode;
812
813         if (bank->target->state != TARGET_HALTED) {
814                 LOG_WARNING("Cannot communicate... target not halted.");
815                 return ERROR_TARGET_NOT_HALTED;
816         }
817
818         /* The SCU registers contain the ID of the chip */
819         int res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &scu_idcode);
820         if (res != ERROR_OK) {
821                 LOG_ERROR("Cannot read device identification register.");
822                 return res;
823         }
824
825         uint16_t dev_id = (scu_idcode & 0xfff0) >> 4;
826         uint16_t rev_id = scu_idcode & 0xf;
827         const char *dev_str;
828         const char *rev_str = NULL;
829
830         switch (dev_id) {
831         case 0x100:
832                 dev_str = "XMC4100";
833
834                 switch (rev_id) {
835                 case 0x1:
836                         rev_str = "AA";
837                         break;
838                 case 0x2:
839                         rev_str = "AB";
840                         break;
841                 }
842                 break;
843         case 0x200:
844                 dev_str = "XMC4200";
845
846                 switch (rev_id) {
847                 case 0x1:
848                         rev_str = "AA";
849                         break;
850                 case 0x2:
851                         rev_str = "AB";
852                         break;
853                 }
854                 break;
855         case 0x300:
856                 dev_str = "XMC4300";
857
858                 switch (rev_id) {
859                 case 0x1:
860                         rev_str = "AA";
861                 }
862                 break;
863         case 0x400:
864                 dev_str = "XMC4400";
865
866                 switch (rev_id) {
867                 case 0x1:
868                         rev_str = "AA";
869                         break;
870                 case 0x2:
871                         rev_str = "AB";
872                         break;
873                 }
874                 break;
875         case 0:
876                 /* XMC4500 EES AA13 with date codes before GE212
877                  * had zero SCU_IDCHIP
878                  */
879                 dev_str = "XMC4500 EES";
880                 rev_str = "AA13";
881                 break;
882         case 0x500:
883                 dev_str = "XMC4500";
884
885                 switch (rev_id) {
886                 case 0x2:
887                         rev_str = "AA";
888                         break;
889                 case 0x3:
890                         rev_str = "AB";
891                         break;
892                 case 0x4:
893                         rev_str = "AC";
894                         break;
895                 }
896                 break;
897         case 0x700:
898                 dev_str = "XMC4700";
899
900                 switch (rev_id) {
901                 case 0x1:
902                         rev_str = "EES-AA";
903                         break;
904                 }
905                 break;
906         case 0x800:
907                 dev_str = "XMC4800";
908
909                 switch (rev_id) {
910                 case 0x1:
911                         rev_str = "EES-AA";
912                         break;
913                 }
914                 break;
915
916         default:
917                 snprintf(buf, buf_size,
918                          "Cannot identify target as an XMC4xxx. SCU_ID: %"PRIx32"\n",
919                          scu_idcode);
920                 return ERROR_OK;
921         }
922
923         /* String to declare protection data held in the private driver */
924         char prot_str[512] = {0};
925         if (fb->read_protected)
926                 snprintf(prot_str, sizeof(prot_str), "\nFlash is read protected");
927
928         bool otp_enabled = false;
929         for (unsigned int i = 0; i < bank->num_sectors; i++)
930                 if (fb->write_prot_otp[i])
931                         otp_enabled = true;
932
933         /* If OTP Write protection is enabled (User 2), list each
934          * sector that has it enabled */
935         char otp_str[14];
936         if (otp_enabled) {
937                 strcat(prot_str, "\nOTP Protection is enabled for sectors:\n");
938                 for (unsigned int i = 0; i < bank->num_sectors; i++) {
939                         if (fb->write_prot_otp[i]) {
940                                 snprintf(otp_str, sizeof(otp_str), "- %d\n", i);
941                                 strncat(prot_str, otp_str, sizeof(prot_str) - strlen(prot_str) - 1);
942                         }
943                 }
944         }
945
946         if (rev_str != NULL)
947                 snprintf(buf, buf_size, "%s - Rev: %s%s",
948                          dev_str, rev_str, prot_str);
949         else
950                 snprintf(buf, buf_size, "%s - Rev: unknown (0x%01x)%s",
951                          dev_str, rev_id, prot_str);
952
953         return ERROR_OK;
954 }
955
956 static int xmc4xxx_temp_unprotect(struct flash_bank *bank, int user_level)
957 {
958         struct xmc4xxx_flash_bank *fb;
959         int res = ERROR_OK;
960         uint32_t status = 0;
961
962         struct xmc4xxx_command_seq temp_unprot_seq[6] = {
963                 {FLASH_CMD_TEMP_UNPROT_1, 0xAA},
964                 {FLASH_CMD_TEMP_UNPROT_2, 0x55},
965                 {FLASH_CMD_TEMP_UNPROT_3, 0xFF}, /* Needs filled in */
966                 {FLASH_CMD_TEMP_UNPROT_4, 0xFF}, /* Needs filled in */
967                 {FLASH_CMD_TEMP_UNPROT_5, 0xFF}, /* Needs filled in */
968                 {FLASH_CMD_TEMP_UNPROT_6, 0x05}
969         };
970
971         if (user_level < 0 || user_level > 2) {
972                 LOG_ERROR("Invalid user level, must be 0-2");
973                 return ERROR_FAIL;
974         }
975
976         fb = bank->driver_priv;
977
978         /* Fill in the user level and passwords */
979         temp_unprot_seq[2].magic = user_level;
980         temp_unprot_seq[3].magic = fb->pw1;
981         temp_unprot_seq[4].magic = fb->pw2;
982
983         res = xmc4xxx_write_command_sequence(bank, temp_unprot_seq,
984                                              ARRAY_SIZE(temp_unprot_seq));
985         if (res != ERROR_OK) {
986                 LOG_ERROR("Unable to write temp unprotect sequence");
987                 return res;
988         }
989
990         res = xmc4xxx_get_flash_status(bank, &status);
991         if (res != ERROR_OK)
992                 return res;
993
994         if (status & FSR_WPRODIS0) {
995                 LOG_INFO("Flash is temporarily unprotected");
996         } else {
997                 LOG_INFO("Unable to disable flash protection");
998                 res = ERROR_FAIL;
999         }
1000
1001
1002         return res;
1003 }
1004
1005 static int xmc4xxx_flash_unprotect(struct flash_bank *bank, int32_t level)
1006 {
1007         uint32_t addr;
1008         int res;
1009
1010         switch (level) {
1011         case 0:
1012                 addr = UCB0_BASE;
1013                 break;
1014         case 1:
1015                 addr = UCB1_BASE;
1016                 break;
1017         default:
1018                 LOG_ERROR("Invalid user level. Must be 0-1");
1019                 return ERROR_FAIL;
1020         }
1021
1022         res = xmc4xxx_erase_sector(bank, addr, true);
1023
1024         if (res != ERROR_OK)
1025                 LOG_ERROR("Error erasing user configuration block");
1026
1027         return res;
1028 }
1029
1030 /* Reference: "XMC4500 Flash Protection.pptx" app note */
1031 static int xmc4xxx_flash_protect(struct flash_bank *bank, int level, bool read_protect,
1032                 unsigned int first, unsigned int last)
1033 {
1034         /* User configuration block buffers */
1035         uint8_t ucp0_buf[8 * sizeof(uint32_t)] = {0};
1036         uint32_t ucb_base = 0;
1037         uint32_t procon = 0;
1038         int res = ERROR_OK;
1039         uint32_t status = 0;
1040         bool proin = false;
1041
1042         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1043
1044         /* Read protect only works for user 0, make sure we don't try
1045          * to do something silly */
1046         if (level != 0 && read_protect) {
1047                 LOG_ERROR("Read protection is for user level 0 only!");
1048                 return ERROR_FAIL;
1049         }
1050
1051         /* Check to see if protection is already installed for the
1052          * specified user level.  If it is, the user configuration
1053          * block will need to be erased before we can continue */
1054
1055         /* Grab the flash status register*/
1056         res = xmc4xxx_get_flash_status(bank, &status);
1057         if (res != ERROR_OK)
1058                 return res;
1059
1060         switch (level) {
1061         case 0:
1062                 if ((status & FSR_RPROIN_MASK) || (status & FSR_WPROIN0_MASK))
1063                         proin = true;
1064                 break;
1065         case 1:
1066                 if (status & FSR_WPROIN1_MASK)
1067                         proin = true;
1068                 break;
1069         case 2:
1070                 if (status & FSR_WPROIN2_MASK)
1071                         proin = true;
1072                 break;
1073         }
1074
1075         if (proin) {
1076                 LOG_ERROR("Flash protection is installed for user %d"
1077                           " and must be removed before continuing", level);
1078                 return ERROR_FAIL;
1079         }
1080
1081         /* If this device has 12 flash sectors, protection for
1082          * sectors 10 & 11 are handled jointly. If we are trying to
1083          * write all sectors, we should decrement
1084          * last to ensure we don't write to a register bit that
1085          * doesn't exist*/
1086         if ((bank->num_sectors == 12) && (last == 12))
1087                 last--;
1088
1089         /*  We need to fill out the procon register representation
1090          *   that we will be writing to the device */
1091         for (unsigned int i = first; i <= last; i++)
1092                 procon |= 1 << i;
1093
1094         /* If read protection is requested, set the appropriate bit
1095          * (we checked that this is allowed above) */
1096         if (read_protect)
1097                 procon |= PROCON_RPRO_MASK;
1098
1099         LOG_DEBUG("Setting flash protection with procon:");
1100         LOG_DEBUG("PROCON: %"PRIx32, procon);
1101
1102         /* First we need to copy in the procon register to the buffer
1103          * we're going to attempt to write.  This is written twice */
1104         target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], procon);
1105         target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], procon);
1106
1107         /* Now we must copy in both flash passwords.  As with the
1108          * procon data, this must be written twice (4 total words
1109          * worth of data) */
1110         target_buffer_set_u32(bank->target, &ucp0_buf[4 * 4], fb->pw1);
1111         target_buffer_set_u32(bank->target, &ucp0_buf[5 * 4], fb->pw2);
1112         target_buffer_set_u32(bank->target, &ucp0_buf[6 * 4], fb->pw1);
1113         target_buffer_set_u32(bank->target, &ucp0_buf[7 * 4], fb->pw2);
1114
1115         /* Finally, (if requested) we copy in the confirmation
1116          * code so that the protection is permanent and will
1117          * require a password to undo. */
1118         target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
1119         target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
1120
1121         /* Now that the data is copied into place, we must write
1122          * these pages into flash */
1123
1124         /* The user configuration block base depends on what level of
1125          * protection we're trying to install, select the proper one */
1126         switch (level) {
1127         case 0:
1128                 ucb_base = UCB0_BASE;
1129                 break;
1130         case 1:
1131                 ucb_base = UCB1_BASE;
1132                 break;
1133         case 2:
1134                 ucb_base = UCB2_BASE;
1135                 break;
1136         }
1137
1138         /* Write the user config pages */
1139         res = xmc4xxx_write_page(bank, ucp0_buf, ucb_base, true);
1140         if (res != ERROR_OK) {
1141                 LOG_ERROR("Error writing user configuration block 0");
1142                 return res;
1143         }
1144
1145         return ERROR_OK;
1146 }
1147
1148 static int xmc4xxx_protect(struct flash_bank *bank, int set, unsigned int first,
1149                 unsigned int last)
1150 {
1151         int ret;
1152         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1153
1154         /* Check for flash passwords */
1155         if (!fb->pw_set) {
1156                 LOG_ERROR("Flash passwords not set, use xmc4xxx flash_password to set them");
1157                 return ERROR_FAIL;
1158         }
1159
1160         /* We want to clear flash protection temporarily*/
1161         if (set == 0) {
1162                 LOG_WARNING("Flash protection will be temporarily disabled"
1163                             " for all pages (User 0 only)!");
1164                 ret = xmc4xxx_temp_unprotect(bank, 0);
1165                 return ret;
1166         }
1167
1168         /* Install write protection for user 0 on the specified pages */
1169         ret = xmc4xxx_flash_protect(bank, 0, false, first, last);
1170
1171         return ret;
1172 }
1173
1174 static int xmc4xxx_protect_check(struct flash_bank *bank)
1175 {
1176         int ret;
1177         uint32_t protection[3] = {0};
1178         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1179
1180         ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON0, &protection[0]);
1181         if (ret != ERROR_OK) {
1182                 LOG_ERROR("Unable to read flash User0 protection register");
1183                 return ret;
1184         }
1185
1186         ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON1, &protection[1]);
1187         if (ret != ERROR_OK) {
1188                 LOG_ERROR("Unable to read flash User1 protection register");
1189                 return ret;
1190         }
1191
1192         ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON2, &protection[2]);
1193         if (ret != ERROR_OK) {
1194                 LOG_ERROR("Unable to read flash User2 protection register");
1195                 return ret;
1196         }
1197
1198         unsigned int sectors = bank->num_sectors;
1199
1200         /* On devices with 12 sectors, sectors 10 & 11 are ptected
1201          * together instead of individually */
1202         if (sectors == 12)
1203                 sectors--;
1204
1205         /* Clear the protection status */
1206         for (unsigned int i = 0; i < bank->num_sectors; i++) {
1207                 bank->sectors[i].is_protected = 0;
1208                 fb->write_prot_otp[i] = false;
1209         }
1210         fb->read_protected = false;
1211
1212         /* The xmc4xxx series supports 3 levels of user protection
1213          * (User0, User1 (low priority), and User 2(OTP), we need to
1214          * check all 3 */
1215         for (unsigned int i = 0; i < ARRAY_SIZE(protection); i++) {
1216
1217                 /* Check for write protection on every available
1218                 *  sector */
1219                 for (unsigned int j = 0; j < sectors; j++) {
1220                         int set = (protection[i] & (1 << j)) ? 1 : 0;
1221                         bank->sectors[j].is_protected |= set;
1222
1223                         /* Handle sector 11 */
1224                         if (j == 10)
1225                                 bank->sectors[j + 1].is_protected |= set;
1226
1227                         /* User 2 indicates this protection is
1228                          * permanent, make note in the private driver structure */
1229                         if (i == 2 && set) {
1230                                 fb->write_prot_otp[j] = true;
1231
1232                                 /* Handle sector 11 */
1233                                 if (j == 10)
1234                                         fb->write_prot_otp[j + 1] = true;
1235                         }
1236
1237                 }
1238         }
1239
1240         /* XMC4xxx also supports read proptection, make a note
1241          * in the private driver structure */
1242         if (protection[0] & PROCON_RPRO_MASK)
1243                 fb->read_protected = true;
1244
1245         return ERROR_OK;
1246 }
1247
1248 FLASH_BANK_COMMAND_HANDLER(xmc4xxx_flash_bank_command)
1249 {
1250         bank->driver_priv = malloc(sizeof(struct xmc4xxx_flash_bank));
1251
1252         if (!bank->driver_priv)
1253                 return ERROR_FLASH_OPERATION_FAILED;
1254
1255         (void)memset(bank->driver_priv, 0, sizeof(struct xmc4xxx_flash_bank));
1256
1257         return ERROR_OK;
1258 }
1259
1260 COMMAND_HANDLER(xmc4xxx_handle_flash_password_command)
1261 {
1262         int res;
1263         struct flash_bank *bank;
1264
1265         if (CMD_ARGC < 3)
1266                 return ERROR_COMMAND_SYNTAX_ERROR;
1267
1268         res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1269         if (res != ERROR_OK)
1270                 return res;
1271
1272         struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1273
1274         errno = 0;
1275
1276         /* We skip over the flash bank */
1277         fb->pw1 = strtol(CMD_ARGV[1], NULL, 16);
1278
1279         if (errno)
1280                 return ERROR_COMMAND_SYNTAX_ERROR;
1281
1282         fb->pw2 = strtol(CMD_ARGV[2], NULL, 16);
1283
1284         if (errno)
1285                 return ERROR_COMMAND_SYNTAX_ERROR;
1286
1287         fb->pw_set = true;
1288
1289         command_print(CMD, "XMC4xxx flash passwords set to:\n");
1290         command_print(CMD, "-0x%08"PRIx32"\n", fb->pw1);
1291         command_print(CMD, "-0x%08"PRIx32"\n", fb->pw2);
1292         return ERROR_OK;
1293 }
1294
1295 COMMAND_HANDLER(xmc4xxx_handle_flash_unprotect_command)
1296 {
1297         struct flash_bank *bank;
1298         int res;
1299         int32_t level;
1300
1301         if (CMD_ARGC < 2)
1302                 return ERROR_COMMAND_SYNTAX_ERROR;
1303
1304         res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1305         if (res != ERROR_OK)
1306                 return res;
1307
1308         COMMAND_PARSE_NUMBER(s32, CMD_ARGV[1], level);
1309
1310         res = xmc4xxx_flash_unprotect(bank, level);
1311
1312         return res;
1313 }
1314
1315 static const struct command_registration xmc4xxx_exec_command_handlers[] = {
1316         {
1317                 .name = "flash_password",
1318                 .handler = xmc4xxx_handle_flash_password_command,
1319                 .mode = COMMAND_EXEC,
1320                 .usage = "bank_id password1 password2",
1321                 .help = "Set the flash passwords used for protect operations. "
1322                 "Passwords should be in standard hex form (0x00000000). "
1323                 "(You must call this before any other protect commands) "
1324                 "NOTE: The xmc4xxx's UCB area only allows for FOUR cycles. "
1325                 "Please use protection carefully!",
1326         },
1327         {
1328                 .name = "flash_unprotect",
1329                 .handler = xmc4xxx_handle_flash_unprotect_command,
1330                 .mode = COMMAND_EXEC,
1331                 .usage = "bank_id user_level[0-1]",
1332                 .help = "Permanently Removes flash protection (read and write) "
1333                 "for the specified user level",
1334         },
1335         COMMAND_REGISTRATION_DONE
1336 };
1337
1338 static const struct command_registration xmc4xxx_command_handlers[] = {
1339         {
1340                 .name = "xmc4xxx",
1341                 .mode = COMMAND_ANY,
1342                 .help = "xmc4xxx flash command group",
1343                 .usage = "",
1344                 .chain = xmc4xxx_exec_command_handlers,
1345         },
1346         COMMAND_REGISTRATION_DONE
1347 };
1348
1349 const struct flash_driver xmc4xxx_flash = {
1350         .name = "xmc4xxx",
1351         .commands = xmc4xxx_command_handlers,
1352         .flash_bank_command = xmc4xxx_flash_bank_command,
1353         .erase = xmc4xxx_erase,
1354         .write = xmc4xxx_write,
1355         .read = default_flash_read,
1356         .probe = xmc4xxx_probe,
1357         .auto_probe = xmc4xxx_probe,
1358         .erase_check = default_flash_blank_check,
1359         .info = xmc4xxx_get_info_command,
1360         .protect_check = xmc4xxx_protect_check,
1361         .protect = xmc4xxx_protect,
1362         .free_driver_priv = default_flash_free_driver_priv,
1363 };