e5100a0159bcba06b3e9053db54231c32ccc08db
[fw/openocd] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by Uwe Bonnes                                      *
3  *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
4  *                                                                         *
5  *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
6  *   tarek.bouchkati@gmail.com                                             *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
20  ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/align.h>
28 #include <helper/binarybuffer.h>
29 #include <helper/bits.h>
30 #include <target/algorithm.h>
31 #include <target/arm_adi_v5.h>
32 #include <target/cortex_m.h>
33 #include "stm32l4x.h"
34
35 /* STM32L4xxx series for reference.
36  *
37  * RM0351 (STM32L4x5/STM32L4x6)
38  * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
39  *
40  * RM0394 (STM32L43x/44x/45x/46x)
41  * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
42  *
43  * RM0432 (STM32L4R/4Sxx)
44  * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
45  *
46  * STM32L476RG Datasheet (for erase timing)
47  * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
48  *
49  * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
50  * an option byte is available to map all sectors to the first bank.
51  * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
52  * handlers do!
53  *
54  * RM0394 devices have a single bank only.
55  *
56  * RM0432 devices have single and dual bank operating modes.
57  *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
58  *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
59  * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
60  *
61  * Bank mode is controlled by two different bits in option bytes register.
62  *  - for STM32L4R/Sxx
63  *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
64  *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
65  *  - for STM32L4P5/Q5x
66  *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
67  *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
68  */
69
70 /* STM32WBxxx series for reference.
71  *
72  * RM0434 (STM32WB55/WB35x)
73  * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
74  *
75  * RM0471 (STM32WB50/WB30x)
76  * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
77  *
78  * RM0473 (STM32WB15x)
79  * http://www.st.com/resource/en/reference_manual/dm00649196.pdf
80  *
81  * RM0478 (STM32WB10x)
82  * http://www.st.com/resource/en/reference_manual/dm00689203.pdf
83  */
84
85 /* STM32WLxxx series for reference.
86  *
87  * RM0461 (STM32WLEx)
88  * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
89  *
90  * RM0453 (STM32WL5x)
91  * http://www.st.com/resource/en/reference_manual/dm00451556.pdf
92  */
93
94 /* STM32G0xxx series for reference.
95  *
96  * RM0444 (STM32G0x1)
97  * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
98  *
99  * RM0454 (STM32G0x0)
100  * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
101  */
102
103 /* STM32G4xxx series for reference.
104  *
105  * RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
106  * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
107  *
108  * Cat. 2 devices have single bank only, page size is 2kByte.
109  *
110  * Cat. 3 devices have single and dual bank operating modes,
111  * Page size is 2kByte (dual mode) or 4kByte (single mode).
112  *
113  * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
114  * Both banks are treated as a single OpenOCD bank.
115  *
116  * Cat. 4 devices have single bank only, page size is 2kByte.
117  */
118
119 /* STM32L5xxx series for reference.
120  *
121  * RM0428 (STM32L552xx/STM32L562xx)
122  * http://www.st.com/resource/en/reference_manual/dm00346336.pdf
123  */
124
125 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
126
127 #define FLASH_ERASE_TIMEOUT 250
128 #define FLASH_WRITE_TIMEOUT 50
129
130
131 /* relevant STM32L4 flags ****************************************************/
132 #define F_NONE              0
133 /* this flag indicates if the device flash is with dual bank architecture */
134 #define F_HAS_DUAL_BANK     BIT(0)
135 /* this flags is used for dual bank devices only, it indicates if the
136  * 4 WRPxx are usable if the device is configured in single-bank mode */
137 #define F_USE_ALL_WRPXX     BIT(1)
138 /* this flag indicates if the device embeds a TrustZone security feature */
139 #define F_HAS_TZ            BIT(2)
140 /* this flag indicates if the device has the same flash registers as STM32L5 */
141 #define F_HAS_L5_FLASH_REGS BIT(3)
142 /* this flag indicates that programming should be done in quad-word
143  * the default programming word size is double-word */
144 #define F_QUAD_WORD_PROG    BIT(4)
145 /* end of STM32L4 flags ******************************************************/
146
147
148 enum stm32l4_flash_reg_index {
149         STM32_FLASH_ACR_INDEX,
150         STM32_FLASH_KEYR_INDEX,
151         STM32_FLASH_OPTKEYR_INDEX,
152         STM32_FLASH_SR_INDEX,
153         STM32_FLASH_CR_INDEX,
154         /* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
155          * so it uses the C2CR for flash operations and CR for checking locks and locking */
156         STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
157         STM32_FLASH_OPTR_INDEX,
158         STM32_FLASH_WRP1AR_INDEX,
159         STM32_FLASH_WRP1BR_INDEX,
160         STM32_FLASH_WRP2AR_INDEX,
161         STM32_FLASH_WRP2BR_INDEX,
162         STM32_FLASH_REG_INDEX_NUM,
163 };
164
165 enum stm32l4_rdp {
166         RDP_LEVEL_0   = 0xAA,
167         RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
168         RDP_LEVEL_1   = 0x00,
169         RDP_LEVEL_2   = 0xCC
170 };
171
172 static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
173         [STM32_FLASH_ACR_INDEX]      = 0x000,
174         [STM32_FLASH_KEYR_INDEX]     = 0x008,
175         [STM32_FLASH_OPTKEYR_INDEX]  = 0x00C,
176         [STM32_FLASH_SR_INDEX]       = 0x010,
177         [STM32_FLASH_CR_INDEX]       = 0x014,
178         [STM32_FLASH_OPTR_INDEX]     = 0x020,
179         [STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
180         [STM32_FLASH_WRP1BR_INDEX]   = 0x030,
181         [STM32_FLASH_WRP2AR_INDEX]   = 0x04C,
182         [STM32_FLASH_WRP2BR_INDEX]   = 0x050,
183 };
184
185 static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
186         [STM32_FLASH_ACR_INDEX]      = 0x000,
187         [STM32_FLASH_KEYR_INDEX]     = 0x008,
188         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
189         [STM32_FLASH_SR_INDEX]       = 0x060,
190         [STM32_FLASH_CR_INDEX]       = 0x064,
191         [STM32_FLASH_CR_WLK_INDEX]   = 0x014,
192         [STM32_FLASH_OPTR_INDEX]     = 0x020,
193         [STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
194         [STM32_FLASH_WRP1BR_INDEX]   = 0x030,
195 };
196
197 static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
198         [STM32_FLASH_ACR_INDEX]      = 0x000,
199         [STM32_FLASH_KEYR_INDEX]     = 0x008, /* NSKEYR */
200         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
201         [STM32_FLASH_SR_INDEX]       = 0x020, /* NSSR */
202         [STM32_FLASH_CR_INDEX]       = 0x028, /* NSCR */
203         [STM32_FLASH_OPTR_INDEX]     = 0x040,
204         [STM32_FLASH_WRP1AR_INDEX]   = 0x058,
205         [STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
206         [STM32_FLASH_WRP2AR_INDEX]   = 0x068,
207         [STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
208 };
209
210 static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
211         [STM32_FLASH_ACR_INDEX]      = 0x000,
212         [STM32_FLASH_KEYR_INDEX]     = 0x00C, /* SECKEYR */
213         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
214         [STM32_FLASH_SR_INDEX]       = 0x024, /* SECSR */
215         [STM32_FLASH_CR_INDEX]       = 0x02C, /* SECCR */
216         [STM32_FLASH_OPTR_INDEX]     = 0x040,
217         [STM32_FLASH_WRP1AR_INDEX]   = 0x058,
218         [STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
219         [STM32_FLASH_WRP2AR_INDEX]   = 0x068,
220         [STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
221 };
222
223 struct stm32l4_rev {
224         const uint16_t rev;
225         const char *str;
226 };
227
228 struct stm32l4_part_info {
229         uint16_t id;
230         const char *device_str;
231         const struct stm32l4_rev *revs;
232         const size_t num_revs;
233         const uint16_t max_flash_size_kb;
234         const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
235         const uint32_t flash_regs_base;
236         const uint32_t fsize_addr;
237         const uint32_t otp_base;
238         const uint32_t otp_size;
239 };
240
241 struct stm32l4_flash_bank {
242         bool probed;
243         uint32_t idcode;
244         unsigned int bank1_sectors;
245         bool dual_bank_mode;
246         int hole_sectors;
247         uint32_t user_bank_size;
248         uint32_t data_width;
249         uint32_t cr_bker_mask;
250         uint32_t sr_bsy_mask;
251         uint32_t wrpxxr_mask;
252         const struct stm32l4_part_info *part_info;
253         uint32_t flash_regs_base;
254         const uint32_t *flash_regs;
255         bool otp_enabled;
256         enum stm32l4_rdp rdp;
257         bool tzen;
258         uint32_t optr;
259 };
260
261 enum stm32_bank_id {
262         STM32_BANK1,
263         STM32_BANK2,
264         STM32_ALL_BANKS
265 };
266
267 struct stm32l4_wrp {
268         enum stm32l4_flash_reg_index reg_idx;
269         uint32_t value;
270         bool used;
271         int first;
272         int last;
273         int offset;
274 };
275
276 /* human readable list of families this drivers supports (sorted alphabetically) */
277 static const char *device_families = "STM32G0/G4/L4/L4+/L5/U5/WB/WL";
278
279 static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
280         { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
281 };
282
283 static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
284         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
285 };
286
287 static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
288         { 0x1000, "A" },
289 };
290
291 static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
292         { 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
293 };
294
295 static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
296         { 0x1000, "A" }, { 0x2000, "B" },
297 };
298
299 static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
300         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
301 };
302
303 static const struct stm32l4_rev stm32l41_L42xx_revs[] = {
304         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
305 };
306
307 static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
308         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
309 };
310
311 static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
312         { 0x1000, "A" },
313 };
314
315 static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
316         { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
317 };
318
319 static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
320         { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
321 };
322
323 static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
324         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
325 };
326
327 static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
328         { 0x1001, "Z" },
329 };
330
331 static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
332         { 0x1000, "A" }, { 0x2000, "B" },
333 };
334
335 static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
336         { 0x1000, "A" },
337 };
338
339 static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
340         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
341 };
342
343 static const struct stm32l4_rev stm32wb1xx_revs[] = {
344         { 0x1000, "A" }, { 0x2000, "B" },
345 };
346
347 static const struct stm32l4_rev stm32wb5xx_revs[] = {
348         { 0x2001, "2.1" },
349 };
350
351 static const struct stm32l4_rev stm32wb3xx_revs[] = {
352         { 0x1000, "A" },
353 };
354
355 static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
356         { 0x1000, "1.0" },
357 };
358
359 static const struct stm32l4_part_info stm32l4_parts[] = {
360         {
361           .id                    = DEVID_STM32L47_L48XX,
362           .revs                  = stm32l47_l48xx_revs,
363           .num_revs              = ARRAY_SIZE(stm32l47_l48xx_revs),
364           .device_str            = "STM32L47/L48xx",
365           .max_flash_size_kb     = 1024,
366           .flags                 = F_HAS_DUAL_BANK,
367           .flash_regs_base       = 0x40022000,
368           .fsize_addr            = 0x1FFF75E0,
369           .otp_base              = 0x1FFF7000,
370           .otp_size              = 1024,
371         },
372         {
373           .id                    = DEVID_STM32L43_L44XX,
374           .revs                  = stm32l43_l44xx_revs,
375           .num_revs              = ARRAY_SIZE(stm32l43_l44xx_revs),
376           .device_str            = "STM32L43/L44xx",
377           .max_flash_size_kb     = 256,
378           .flags                 = F_NONE,
379           .flash_regs_base       = 0x40022000,
380           .fsize_addr            = 0x1FFF75E0,
381           .otp_base              = 0x1FFF7000,
382           .otp_size              = 1024,
383         },
384         {
385           .id                    = DEVID_STM32G05_G06XX,
386           .revs                  = stm32g05_g06xx_revs,
387           .num_revs              = ARRAY_SIZE(stm32g05_g06xx_revs),
388           .device_str            = "STM32G05/G06xx",
389           .max_flash_size_kb     = 64,
390           .flags                 = F_NONE,
391           .flash_regs_base       = 0x40022000,
392           .fsize_addr            = 0x1FFF75E0,
393           .otp_base              = 0x1FFF7000,
394           .otp_size              = 1024,
395         },
396         {
397           .id                    = DEVID_STM32G07_G08XX,
398           .revs                  = stm32_g07_g08xx_revs,
399           .num_revs              = ARRAY_SIZE(stm32_g07_g08xx_revs),
400           .device_str            = "STM32G07/G08xx",
401           .max_flash_size_kb     = 128,
402           .flags                 = F_NONE,
403           .flash_regs_base       = 0x40022000,
404           .fsize_addr            = 0x1FFF75E0,
405           .otp_base              = 0x1FFF7000,
406           .otp_size              = 1024,
407         },
408         {
409           .id                    = DEVID_STM32L49_L4AXX,
410           .revs                  = stm32l49_l4axx_revs,
411           .num_revs              = ARRAY_SIZE(stm32l49_l4axx_revs),
412           .device_str            = "STM32L49/L4Axx",
413           .max_flash_size_kb     = 1024,
414           .flags                 = F_HAS_DUAL_BANK,
415           .flash_regs_base       = 0x40022000,
416           .fsize_addr            = 0x1FFF75E0,
417           .otp_base              = 0x1FFF7000,
418           .otp_size              = 1024,
419         },
420         {
421           .id                    = DEVID_STM32L45_L46XX,
422           .revs                  = stm32l45_l46xx_revs,
423           .num_revs              = ARRAY_SIZE(stm32l45_l46xx_revs),
424           .device_str            = "STM32L45/L46xx",
425           .max_flash_size_kb     = 512,
426           .flags                 = F_NONE,
427           .flash_regs_base       = 0x40022000,
428           .fsize_addr            = 0x1FFF75E0,
429           .otp_base              = 0x1FFF7000,
430           .otp_size              = 1024,
431         },
432         {
433           .id                    = DEVID_STM32L41_L42XX,
434           .revs                  = stm32l41_L42xx_revs,
435           .num_revs              = ARRAY_SIZE(stm32l41_L42xx_revs),
436           .device_str            = "STM32L41/L42xx",
437           .max_flash_size_kb     = 128,
438           .flags                 = F_NONE,
439           .flash_regs_base       = 0x40022000,
440           .fsize_addr            = 0x1FFF75E0,
441           .otp_base              = 0x1FFF7000,
442           .otp_size              = 1024,
443         },
444         {
445           .id                    = DEVID_STM32G03_G04XX,
446           .revs                  = stm32g03_g04xx_revs,
447           .num_revs              = ARRAY_SIZE(stm32g03_g04xx_revs),
448           .device_str            = "STM32G03x/G04xx",
449           .max_flash_size_kb     = 64,
450           .flags                 = F_NONE,
451           .flash_regs_base       = 0x40022000,
452           .fsize_addr            = 0x1FFF75E0,
453           .otp_base              = 0x1FFF7000,
454           .otp_size              = 1024,
455         },
456         {
457           .id                    = DEVID_STM32G0B_G0CXX,
458           .revs                  = stm32g0b_g0cxx_revs,
459           .num_revs              = ARRAY_SIZE(stm32g0b_g0cxx_revs),
460           .device_str            = "STM32G0B/G0Cx",
461           .max_flash_size_kb     = 512,
462           .flags                 = F_HAS_DUAL_BANK,
463           .flash_regs_base       = 0x40022000,
464           .fsize_addr            = 0x1FFF75E0,
465           .otp_base              = 0x1FFF7000,
466           .otp_size              = 1024,
467         },
468         {
469           .id                    = DEVID_STM32G43_G44XX,
470           .revs                  = stm32g43_g44xx_revs,
471           .num_revs              = ARRAY_SIZE(stm32g43_g44xx_revs),
472           .device_str            = "STM32G43/G44xx",
473           .max_flash_size_kb     = 128,
474           .flags                 = F_NONE,
475           .flash_regs_base       = 0x40022000,
476           .fsize_addr            = 0x1FFF75E0,
477           .otp_base              = 0x1FFF7000,
478           .otp_size              = 1024,
479         },
480         {
481           .id                    = DEVID_STM32G47_G48XX,
482           .revs                  = stm32g47_g48xx_revs,
483           .num_revs              = ARRAY_SIZE(stm32g47_g48xx_revs),
484           .device_str            = "STM32G47/G48xx",
485           .max_flash_size_kb     = 512,
486           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
487           .flash_regs_base       = 0x40022000,
488           .fsize_addr            = 0x1FFF75E0,
489           .otp_base              = 0x1FFF7000,
490           .otp_size              = 1024,
491         },
492         {
493           .id                    = DEVID_STM32L4R_L4SXX,
494           .revs                  = stm32l4r_l4sxx_revs,
495           .num_revs              = ARRAY_SIZE(stm32l4r_l4sxx_revs),
496           .device_str            = "STM32L4R/L4Sxx",
497           .max_flash_size_kb     = 2048,
498           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
499           .flash_regs_base       = 0x40022000,
500           .fsize_addr            = 0x1FFF75E0,
501           .otp_base              = 0x1FFF7000,
502           .otp_size              = 1024,
503         },
504         {
505           .id                    = DEVID_STM32L4P_L4QXX,
506           .revs                  = stm32l4p_l4qxx_revs,
507           .num_revs              = ARRAY_SIZE(stm32l4p_l4qxx_revs),
508           .device_str            = "STM32L4P/L4Qxx",
509           .max_flash_size_kb     = 1024,
510           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
511           .flash_regs_base       = 0x40022000,
512           .fsize_addr            = 0x1FFF75E0,
513           .otp_base              = 0x1FFF7000,
514           .otp_size              = 1024,
515         },
516         {
517           .id                    = DEVID_STM32L55_L56XX,
518           .revs                  = stm32l55_l56xx_revs,
519           .num_revs              = ARRAY_SIZE(stm32l55_l56xx_revs),
520           .device_str            = "STM32L55/L56xx",
521           .max_flash_size_kb     = 512,
522           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
523           .flash_regs_base       = 0x40022000,
524           .fsize_addr            = 0x0BFA05E0,
525           .otp_base              = 0x0BFA0000,
526           .otp_size              = 512,
527         },
528         {
529           .id                    = DEVID_STM32G49_G4AXX,
530           .revs                  = stm32g49_g4axx_revs,
531           .num_revs              = ARRAY_SIZE(stm32g49_g4axx_revs),
532           .device_str            = "STM32G49/G4Axx",
533           .max_flash_size_kb     = 512,
534           .flags                 = F_NONE,
535           .flash_regs_base       = 0x40022000,
536           .fsize_addr            = 0x1FFF75E0,
537           .otp_base              = 0x1FFF7000,
538           .otp_size              = 1024,
539         },
540         {
541           .id                    = DEVID_STM32U57_U58XX,
542           .revs                  = stm32u57_u58xx_revs,
543           .num_revs              = ARRAY_SIZE(stm32u57_u58xx_revs),
544           .device_str            = "STM32U57/U58xx",
545           .max_flash_size_kb     = 2048,
546           .flags                 = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
547           .flash_regs_base       = 0x40022000,
548           .fsize_addr            = 0x0BFA07A0,
549           .otp_base              = 0x0BFA0000,
550           .otp_size              = 512,
551         },
552         {
553           .id                    = DEVID_STM32WB1XX,
554           .revs                  = stm32wb1xx_revs,
555           .num_revs              = ARRAY_SIZE(stm32wb1xx_revs),
556           .device_str            = "STM32WB1x",
557           .max_flash_size_kb     = 320,
558           .flags                 = F_NONE,
559           .flash_regs_base       = 0x58004000,
560           .fsize_addr            = 0x1FFF75E0,
561           .otp_base              = 0x1FFF7000,
562           .otp_size              = 1024,
563         },
564         {
565           .id                    = DEVID_STM32WB5XX,
566           .revs                  = stm32wb5xx_revs,
567           .num_revs              = ARRAY_SIZE(stm32wb5xx_revs),
568           .device_str            = "STM32WB5x",
569           .max_flash_size_kb     = 1024,
570           .flags                 = F_NONE,
571           .flash_regs_base       = 0x58004000,
572           .fsize_addr            = 0x1FFF75E0,
573           .otp_base              = 0x1FFF7000,
574           .otp_size              = 1024,
575         },
576         {
577           .id                    = DEVID_STM32WB3XX,
578           .revs                  = stm32wb3xx_revs,
579           .num_revs              = ARRAY_SIZE(stm32wb3xx_revs),
580           .device_str            = "STM32WB3x",
581           .max_flash_size_kb     = 512,
582           .flags                 = F_NONE,
583           .flash_regs_base       = 0x58004000,
584           .fsize_addr            = 0x1FFF75E0,
585           .otp_base              = 0x1FFF7000,
586           .otp_size              = 1024,
587         },
588         {
589           .id                    = DEVID_STM32WLE_WL5XX,
590           .revs                  = stm32wle_wl5xx_revs,
591           .num_revs              = ARRAY_SIZE(stm32wle_wl5xx_revs),
592           .device_str            = "STM32WLE/WL5x",
593           .max_flash_size_kb     = 256,
594           .flags                 = F_NONE,
595           .flash_regs_base       = 0x58004000,
596           .fsize_addr            = 0x1FFF75E0,
597           .otp_base              = 0x1FFF7000,
598           .otp_size              = 1024,
599         },
600 };
601
602 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
603 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
604 {
605         struct stm32l4_flash_bank *stm32l4_info;
606
607         if (CMD_ARGC < 6)
608                 return ERROR_COMMAND_SYNTAX_ERROR;
609
610         /* fix-up bank base address: 0 is used for normal flash memory */
611         if (bank->base == 0)
612                 bank->base = STM32_FLASH_BANK_BASE;
613
614         stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
615         if (!stm32l4_info)
616                 return ERROR_FAIL; /* Checkme: What better error to use?*/
617         bank->driver_priv = stm32l4_info;
618
619         stm32l4_info->probed = false;
620         stm32l4_info->otp_enabled = false;
621         stm32l4_info->user_bank_size = bank->size;
622
623         return ERROR_OK;
624 }
625
626 /* bitmap helper extension */
627 struct range {
628         unsigned int start;
629         unsigned int end;
630 };
631
632 static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
633                 struct range *ranges, unsigned int *ranges_count) {
634         *ranges_count = 0;
635         bool last_bit = 0, cur_bit;
636         for (unsigned int i = 0; i < nbits; i++) {
637                 cur_bit = test_bit(i, bitmap);
638
639                 if (cur_bit && !last_bit) {
640                         (*ranges_count)++;
641                         ranges[*ranges_count - 1].start = i;
642                         ranges[*ranges_count - 1].end = i;
643                 } else if (cur_bit && last_bit) {
644                         /* update (increment) the end this range */
645                         ranges[*ranges_count - 1].end = i;
646                 }
647
648                 last_bit = cur_bit;
649         }
650 }
651
652 static inline int range_print_one(struct range *range, char *str)
653 {
654         if (range->start == range->end)
655                 return sprintf(str, "[%d]", range->start);
656
657         return sprintf(str, "[%d,%d]", range->start, range->end);
658 }
659
660 static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
661 {
662         /* each range will be printed like the following: [start,end]
663          * start and end, both are unsigned int, an unsigned int takes 10 characters max
664          * plus 3 characters for '[', ',' and ']'
665          * thus means each range can take maximum 23 character
666          * after each range we add a ' ' as separator and finally we need the '\0'
667          * if the ranges_count is zero we reserve one char for '\0' to return an empty string */
668         char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
669         char *ptr = str;
670
671         for (unsigned int i = 0; i < ranges_count; i++) {
672                 ptr += range_print_one(&(ranges[i]), ptr);
673
674                 if (i < ranges_count - 1)
675                         *(ptr++) = ' ';
676         }
677
678         return str;
679 }
680
681 /* end of bitmap helper extension */
682
683 static inline bool stm32l4_is_otp(struct flash_bank *bank)
684 {
685         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
686         return bank->base == stm32l4_info->part_info->otp_base;
687 }
688
689 static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
690 {
691         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
692
693         if (!stm32l4_is_otp(bank))
694                 return ERROR_FAIL;
695
696         char *op_str = enable ? "enabled" : "disabled";
697
698         LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
699                         bank->bank_number,
700                         stm32l4_info->otp_enabled == enable ? "already " : "",
701                         op_str);
702
703         stm32l4_info->otp_enabled = enable;
704
705         return ERROR_OK;
706 }
707
708 static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
709 {
710         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
711         return stm32l4_info->otp_enabled;
712 }
713
714 static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
715 {
716         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
717
718         bool tzen = false;
719
720         if (stm32l4_info->part_info->flags & F_HAS_TZ)
721                 tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
722
723         uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
724
725         /* for devices without TrustZone:
726          *   RDP level 0 and 2 values are to 0xAA and 0xCC
727          *   Any other value corresponds to RDP level 1
728          * for devices with TrusZone:
729          *   RDP level 0 and 2 values are 0xAA and 0xCC
730          *   RDP level 0.5 value is 0x55 only if TZEN = 1
731          *   Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
732          */
733
734         if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
735                 if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
736                         rdp = RDP_LEVEL_1;
737         }
738
739         stm32l4_info->tzen = tzen;
740         stm32l4_info->rdp = rdp;
741 }
742
743 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
744 {
745         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
746         return stm32l4_info->flash_regs_base + reg_offset;
747 }
748
749 static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
750         enum stm32l4_flash_reg_index reg_index)
751 {
752         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
753         return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
754 }
755
756 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
757 {
758         return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
759 }
760
761 static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
762         enum stm32l4_flash_reg_index reg_index, uint32_t *value)
763 {
764         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
765         return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
766 }
767
768 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
769 {
770         return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
771 }
772
773 static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
774         enum stm32l4_flash_reg_index reg_index, uint32_t value)
775 {
776         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
777         return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
778 }
779
780 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
781 {
782         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
783         uint32_t status;
784         int retval = ERROR_OK;
785
786         /* wait for busy to clear */
787         for (;;) {
788                 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
789                 if (retval != ERROR_OK)
790                         return retval;
791                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
792                 if ((status & stm32l4_info->sr_bsy_mask) == 0)
793                         break;
794                 if (timeout-- <= 0) {
795                         LOG_ERROR("timed out waiting for flash");
796                         return ERROR_FAIL;
797                 }
798                 alive_sleep(1);
799         }
800
801         if (status & FLASH_WRPERR) {
802                 LOG_ERROR("stm32x device protected");
803                 retval = ERROR_FAIL;
804         }
805
806         /* Clear but report errors */
807         if (status & FLASH_ERROR) {
808                 if (retval == ERROR_OK)
809                         retval = ERROR_FAIL;
810                 /* If this operation fails, we ignore it and report the original
811                  * retval
812                  */
813                 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
814         }
815
816         return retval;
817 }
818
819 /** set all FLASH_SECBB registers to the same value */
820 static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
821 {
822         /* This function should be used only with device with TrustZone, do just a security check */
823         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
824         assert(stm32l4_info->part_info->flags & F_HAS_TZ);
825
826         /* based on RM0438 Rev6 for STM32L5x devices:
827          * to modify a page block-based security attribution, it is recommended to
828          *  1- check that no flash operation is ongoing on the related page
829          *  2- add ISB instruction after modifying the page security attribute in SECBBxRy
830          *     this step is not need in case of JTAG direct access
831          */
832         int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
833         if (retval != ERROR_OK)
834                 return retval;
835
836         /* write SECBBxRy registers */
837         LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
838
839         const uint8_t secbb_regs[] = {
840                         FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
841                         FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4)  /* bank 2 SECBB register offsets */
842         };
843
844
845         unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
846
847         /* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
848          * then consider only the first half of secbb_regs
849          */
850         if (!stm32l4_info->dual_bank_mode)
851                 num_secbb_regs /= 2;
852
853         for (unsigned int i = 0; i < num_secbb_regs; i++) {
854                 retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
855                 if (retval != ERROR_OK)
856                         return retval;
857         }
858
859         return ERROR_OK;
860 }
861
862 static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
863 {
864         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
865         return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
866                 STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
867 }
868
869 static int stm32l4_unlock_reg(struct flash_bank *bank)
870 {
871         const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
872         uint32_t ctrl;
873
874         /* first check if not already unlocked
875          * otherwise writing on STM32_FLASH_KEYR will fail
876          */
877         int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
878         if (retval != ERROR_OK)
879                 return retval;
880
881         if ((ctrl & FLASH_LOCK) == 0)
882                 return ERROR_OK;
883
884         /* unlock flash registers */
885         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
886         if (retval != ERROR_OK)
887                 return retval;
888
889         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
890         if (retval != ERROR_OK)
891                 return retval;
892
893         retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
894         if (retval != ERROR_OK)
895                 return retval;
896
897         if (ctrl & FLASH_LOCK) {
898                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
899                 return ERROR_TARGET_FAILURE;
900         }
901
902         return ERROR_OK;
903 }
904
905 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
906 {
907         const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
908         uint32_t ctrl;
909
910         int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
911         if (retval != ERROR_OK)
912                 return retval;
913
914         if ((ctrl & FLASH_OPTLOCK) == 0)
915                 return ERROR_OK;
916
917         /* unlock option registers */
918         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
919         if (retval != ERROR_OK)
920                 return retval;
921
922         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
923         if (retval != ERROR_OK)
924                 return retval;
925
926         retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
927         if (retval != ERROR_OK)
928                 return retval;
929
930         if (ctrl & FLASH_OPTLOCK) {
931                 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
932                 return ERROR_TARGET_FAILURE;
933         }
934
935         return ERROR_OK;
936 }
937
938 static int stm32l4_perform_obl_launch(struct flash_bank *bank)
939 {
940         int retval, retval2;
941
942         retval = stm32l4_unlock_reg(bank);
943         if (retval != ERROR_OK)
944                 goto err_lock;
945
946         retval = stm32l4_unlock_option_reg(bank);
947         if (retval != ERROR_OK)
948                 goto err_lock;
949
950         /* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
951          * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
952          * "Note: If the read protection is set while the debugger is still
953          * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
954          */
955
956         /* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
957         /* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
958          * then just ignore the returned value */
959         stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
960
961         /* Need to re-probe after change */
962         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
963         stm32l4_info->probed = false;
964
965 err_lock:
966         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
967                         FLASH_LOCK | FLASH_OPTLOCK);
968
969         if (retval != ERROR_OK)
970                 return retval;
971
972         return retval2;
973 }
974
975 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
976         uint32_t value, uint32_t mask)
977 {
978         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
979         uint32_t optiondata;
980         int retval, retval2;
981
982         retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
983         if (retval != ERROR_OK)
984                 return retval;
985
986         /* for STM32L5 and similar devices, use always non-secure
987          * registers for option bytes programming */
988         const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
989         if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
990                 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
991
992         retval = stm32l4_unlock_reg(bank);
993         if (retval != ERROR_OK)
994                 goto err_lock;
995
996         retval = stm32l4_unlock_option_reg(bank);
997         if (retval != ERROR_OK)
998                 goto err_lock;
999
1000         optiondata = (optiondata & ~mask) | (value & mask);
1001
1002         retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
1003         if (retval != ERROR_OK)
1004                 goto err_lock;
1005
1006         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
1007         if (retval != ERROR_OK)
1008                 goto err_lock;
1009
1010         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1011
1012 err_lock:
1013         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
1014                         FLASH_LOCK | FLASH_OPTLOCK);
1015         stm32l4_info->flash_regs = saved_flash_regs;
1016
1017         if (retval != ERROR_OK)
1018                 return retval;
1019
1020         return retval2;
1021 }
1022
1023 static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
1024                 enum stm32l4_flash_reg_index reg_idx, int offset)
1025 {
1026         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1027         int ret;
1028
1029         wrpxy->reg_idx = reg_idx;
1030         wrpxy->offset = offset;
1031
1032         ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
1033         if (ret != ERROR_OK)
1034                 return ret;
1035
1036         wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1037         wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1038         wrpxy->used = wrpxy->first <= wrpxy->last;
1039
1040         return ERROR_OK;
1041 }
1042
1043 static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
1044                 struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
1045 {
1046         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1047         int ret;
1048
1049         *n_wrp = 0;
1050
1051         /* for single bank devices there is 2 WRP regions.
1052          * for dual bank devices there is 2 WRP regions per bank,
1053          *   if configured as single bank only 2 WRP are usable
1054          *   except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
1055          * note: this should be revised, if a device will have the SWAP banks option
1056          */
1057
1058         int wrp2y_sectors_offset = -1; /* -1 : unused */
1059
1060         /* if bank_id is BANK1 or ALL_BANKS */
1061         if (dev_bank_id != STM32_BANK2) {
1062                 /* get FLASH_WRP1AR */
1063                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
1064                 if (ret != ERROR_OK)
1065                         return ret;
1066
1067                 /* get WRP1BR */
1068                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
1069                 if (ret != ERROR_OK)
1070                         return ret;
1071
1072                 /* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
1073                 if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
1074                         wrp2y_sectors_offset = 0;
1075         }
1076
1077         /* if bank_id is BANK2 or ALL_BANKS */
1078         if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
1079                 wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
1080
1081         if (wrp2y_sectors_offset > -1) {
1082                 /* get WRP2AR */
1083                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
1084                 if (ret != ERROR_OK)
1085                         return ret;
1086
1087                 /* get WRP2BR */
1088                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
1089                 if (ret != ERROR_OK)
1090                         return ret;
1091         }
1092
1093         return ERROR_OK;
1094 }
1095
1096 static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
1097 {
1098         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1099
1100         int wrp_start = wrpxy->first - wrpxy->offset;
1101         int wrp_end = wrpxy->last - wrpxy->offset;
1102
1103         uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
1104
1105         return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
1106 }
1107
1108 static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
1109 {
1110         int ret;
1111
1112         for (unsigned int i = 0; i < n_wrp; i++) {
1113                 ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
1114                 if (ret != ERROR_OK)
1115                         return ret;
1116         }
1117
1118         return ERROR_OK;
1119 }
1120
1121 static int stm32l4_protect_check(struct flash_bank *bank)
1122 {
1123         unsigned int n_wrp;
1124         struct stm32l4_wrp wrpxy[4];
1125
1126         int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
1127         if (ret != ERROR_OK)
1128                 return ret;
1129
1130         /* initialize all sectors as unprotected */
1131         for (unsigned int i = 0; i < bank->num_sectors; i++)
1132                 bank->sectors[i].is_protected = 0;
1133
1134         /* now check WRPxy and mark the protected sectors */
1135         for (unsigned int i = 0; i < n_wrp; i++) {
1136                 if (wrpxy[i].used) {
1137                         for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
1138                                 bank->sectors[s].is_protected = 1;
1139                 }
1140         }
1141
1142         return ERROR_OK;
1143 }
1144
1145 static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
1146                 unsigned int last)
1147 {
1148         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1149         int retval, retval2;
1150
1151         assert((first <= last) && (last < bank->num_sectors));
1152
1153         if (stm32l4_is_otp(bank)) {
1154                 LOG_ERROR("cannot erase OTP memory");
1155                 return ERROR_FLASH_OPER_UNSUPPORTED;
1156         }
1157
1158         if (bank->target->state != TARGET_HALTED) {
1159                 LOG_ERROR("Target not halted");
1160                 return ERROR_TARGET_NOT_HALTED;
1161         }
1162
1163         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1164                 /* set all FLASH pages as secure */
1165                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1166                 if (retval != ERROR_OK) {
1167                         /* restore all FLASH pages as non-secure */
1168                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1169                         return retval;
1170                 }
1171         }
1172
1173         retval = stm32l4_unlock_reg(bank);
1174         if (retval != ERROR_OK)
1175                 goto err_lock;
1176
1177         /*
1178         Sector Erase
1179         To erase a sector, follow the procedure below:
1180         1. Check that no Flash memory operation is ongoing by
1181            checking the BSY bit in the FLASH_SR register
1182         2. Set the PER bit and select the page and bank
1183            you wish to erase in the FLASH_CR register
1184         3. Set the STRT bit in the FLASH_CR register
1185         4. Wait for the BSY bit to be cleared
1186          */
1187
1188         for (unsigned int i = first; i <= last; i++) {
1189                 uint32_t erase_flags;
1190                 erase_flags = FLASH_PER | FLASH_STRT;
1191
1192                 if (i >= stm32l4_info->bank1_sectors) {
1193                         uint8_t snb;
1194                         snb = i - stm32l4_info->bank1_sectors;
1195                         erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
1196                 } else
1197                         erase_flags |= i << FLASH_PAGE_SHIFT;
1198                 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
1199                 if (retval != ERROR_OK)
1200                         break;
1201
1202                 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1203                 if (retval != ERROR_OK)
1204                         break;
1205         }
1206
1207 err_lock:
1208         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1209
1210         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1211                 /* restore all FLASH pages as non-secure */
1212                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1213                 if (retval3 != ERROR_OK)
1214                         return retval3;
1215         }
1216
1217         if (retval != ERROR_OK)
1218                 return retval;
1219
1220         return retval2;
1221 }
1222
1223 static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
1224 {
1225         struct target *target = bank->target;
1226         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1227         int ret = ERROR_OK;
1228         unsigned int i;
1229
1230         if (stm32l4_is_otp(bank)) {
1231                 LOG_ERROR("cannot protect/unprotect OTP memory");
1232                 return ERROR_FLASH_OPER_UNSUPPORTED;
1233         }
1234
1235         if (target->state != TARGET_HALTED) {
1236                 LOG_ERROR("Target not halted");
1237                 return ERROR_TARGET_NOT_HALTED;
1238         }
1239
1240         /* the requested sectors could be located into bank1 and/or bank2 */
1241         bool use_bank2 = false;
1242         if (last >= stm32l4_info->bank1_sectors) {
1243                 if (first < stm32l4_info->bank1_sectors) {
1244                         /* the requested sectors for (un)protection are shared between
1245                          * bank 1 and 2, then split the operation */
1246
1247                         /*  1- deal with bank 1 sectors */
1248                         LOG_DEBUG("The requested sectors for %s are shared between bank 1 and 2",
1249                                         set ? "protection" : "unprotection");
1250                         ret = stm32l4_protect(bank, set, first, stm32l4_info->bank1_sectors - 1);
1251                         if (ret != ERROR_OK)
1252                                 return ret;
1253
1254                         /*  2- then continue with bank 2 sectors */
1255                         first = stm32l4_info->bank1_sectors;
1256                 }
1257
1258                 use_bank2 = true;
1259         }
1260
1261         /* refresh the sectors' protection */
1262         ret = stm32l4_protect_check(bank);
1263         if (ret != ERROR_OK)
1264                 return ret;
1265
1266         /* check if the desired protection is already configured */
1267         for (i = first; i <= last; i++) {
1268                 if (bank->sectors[i].is_protected != set)
1269                         break;
1270                 else if (i == last) {
1271                         LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
1272                         return ERROR_OK;
1273                 }
1274         }
1275
1276         /* all sectors from first to last (or part of them) could have different
1277          * protection other than the requested */
1278         unsigned int n_wrp;
1279         struct stm32l4_wrp wrpxy[4];
1280
1281         ret = stm32l4_get_all_wrpxy(bank, use_bank2 ? STM32_BANK2 : STM32_BANK1, wrpxy, &n_wrp);
1282         if (ret != ERROR_OK)
1283                 return ret;
1284
1285         /* use bitmap and range helpers to optimize the WRP usage */
1286         DECLARE_BITMAP(pages, bank->num_sectors);
1287         bitmap_zero(pages, bank->num_sectors);
1288
1289         for (i = 0; i < n_wrp; i++) {
1290                 if (wrpxy[i].used) {
1291                         for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
1292                                 set_bit(p, pages);
1293                 }
1294         }
1295
1296         /* we have at most 'n_wrp' WRP areas
1297          * add one range if the user is trying to protect a fifth range */
1298         struct range ranges[n_wrp + 1];
1299         unsigned int ranges_count = 0;
1300
1301         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1302
1303         /* pretty-print the currently protected ranges */
1304         if (ranges_count > 0) {
1305                 char *ranges_str = range_print_alloc(ranges, ranges_count);
1306                 LOG_DEBUG("current protected areas: %s", ranges_str);
1307                 free(ranges_str);
1308         } else
1309                 LOG_DEBUG("current protected areas: none");
1310
1311         if (set) { /* flash protect */
1312                 for (i = first; i <= last; i++)
1313                         set_bit(i, pages);
1314         } else { /* flash unprotect */
1315                 for (i = first; i <= last; i++)
1316                         clear_bit(i, pages);
1317         }
1318
1319         /* check the ranges_count after the user request */
1320         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1321
1322         /* pretty-print the requested areas for protection */
1323         if (ranges_count > 0) {
1324                 char *ranges_str = range_print_alloc(ranges, ranges_count);
1325                 LOG_DEBUG("requested areas for protection: %s", ranges_str);
1326                 free(ranges_str);
1327         } else
1328                 LOG_DEBUG("requested areas for protection: none");
1329
1330         if (ranges_count > n_wrp) {
1331                 LOG_ERROR("cannot set the requested protection "
1332                                 "(only %u write protection areas are available)" , n_wrp);
1333                 return ERROR_FAIL;
1334         }
1335
1336         /* re-init all WRPxy as disabled (first > last)*/
1337         for (i = 0; i < n_wrp; i++) {
1338                 wrpxy[i].first = wrpxy[i].offset + 1;
1339                 wrpxy[i].last = wrpxy[i].offset;
1340         }
1341
1342         /* then configure WRPxy areas */
1343         for (i = 0; i < ranges_count; i++) {
1344                 wrpxy[i].first = ranges[i].start;
1345                 wrpxy[i].last = ranges[i].end;
1346         }
1347
1348         /* finally write WRPxy registers */
1349         return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
1350 }
1351
1352 /* count is the size divided by stm32l4_info->data_width */
1353 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
1354         uint32_t offset, uint32_t count)
1355 {
1356         struct target *target = bank->target;
1357         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1358         struct working_area *write_algorithm;
1359         struct working_area *source;
1360         uint32_t address = bank->base + offset;
1361         struct reg_param reg_params[5];
1362         struct armv7m_algorithm armv7m_info;
1363         int retval = ERROR_OK;
1364
1365         static const uint8_t stm32l4_flash_write_code[] = {
1366 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
1367         };
1368
1369         if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
1370                         &write_algorithm) != ERROR_OK) {
1371                 LOG_WARNING("no working area available, can't do block memory writes");
1372                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1373         }
1374
1375         retval = target_write_buffer(target, write_algorithm->address,
1376                         sizeof(stm32l4_flash_write_code),
1377                         stm32l4_flash_write_code);
1378         if (retval != ERROR_OK) {
1379                 target_free_working_area(target, write_algorithm);
1380                 return retval;
1381         }
1382
1383         /* data_width should be multiple of double-word */
1384         assert(stm32l4_info->data_width % 8 == 0);
1385         const size_t extra_size = sizeof(struct stm32l4_work_area);
1386         uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
1387         /* buffer_size should be multiple of stm32l4_info->data_width */
1388         buffer_size &= ~(stm32l4_info->data_width - 1);
1389
1390         if (buffer_size < 256) {
1391                 LOG_WARNING("large enough working area not available, can't do block memory writes");
1392                 target_free_working_area(target, write_algorithm);
1393                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1394         } else if (buffer_size > 16384) {
1395                 /* probably won't benefit from more than 16k ... */
1396                 buffer_size = 16384;
1397         }
1398
1399         if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
1400                 LOG_ERROR("allocating working area failed");
1401                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1402         }
1403
1404         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1405         armv7m_info.core_mode = ARM_MODE_THREAD;
1406
1407         /* contrib/loaders/flash/stm32/stm32l4x.c:write() arguments */
1408         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* stm32l4_work_area ptr , status (out) */
1409         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer end */
1410         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* target address */
1411         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* count (of stm32l4_info->data_width) */
1412
1413         buf_set_u32(reg_params[0].value, 0, 32, source->address);
1414         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
1415         buf_set_u32(reg_params[2].value, 0, 32, address);
1416         buf_set_u32(reg_params[3].value, 0, 32, count);
1417
1418         /* write algo stack pointer */
1419         init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT);
1420         buf_set_u32(reg_params[4].value, 0, 32, source->address +
1421                         offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);
1422
1423         struct stm32l4_loader_params loader_extra_params;
1424
1425         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
1426                         stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
1427         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
1428                         stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
1429         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
1430                         stm32l4_info->data_width);
1431         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
1432                         stm32l4_info->sr_bsy_mask);
1433
1434         retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
1435                         (uint8_t *) &loader_extra_params);
1436         if (retval != ERROR_OK)
1437                 return retval;
1438
1439         retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
1440                         0, NULL,
1441                         ARRAY_SIZE(reg_params), reg_params,
1442                         source->address + offsetof(struct stm32l4_work_area, fifo),
1443                         source->size - offsetof(struct stm32l4_work_area, fifo),
1444                         write_algorithm->address, 0,
1445                         &armv7m_info);
1446
1447         if (retval == ERROR_FLASH_OPERATION_FAILED) {
1448                 LOG_ERROR("error executing stm32l4 flash write algorithm");
1449
1450                 uint32_t error;
1451                 stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
1452                 error &= FLASH_ERROR;
1453
1454                 if (error & FLASH_WRPERR)
1455                         LOG_ERROR("flash memory write protected");
1456
1457                 if (error != 0) {
1458                         LOG_ERROR("flash write failed = %08" PRIx32, error);
1459                         /* Clear but report errors */
1460                         stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
1461                         retval = ERROR_FAIL;
1462                 }
1463         }
1464
1465         target_free_working_area(target, source);
1466         target_free_working_area(target, write_algorithm);
1467
1468         destroy_reg_param(&reg_params[0]);
1469         destroy_reg_param(&reg_params[1]);
1470         destroy_reg_param(&reg_params[2]);
1471         destroy_reg_param(&reg_params[3]);
1472         destroy_reg_param(&reg_params[4]);
1473
1474         return retval;
1475 }
1476
1477 /* count is the size divided by stm32l4_info->data_width */
1478 static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
1479                                 uint32_t offset, uint32_t count)
1480 {
1481         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1482         struct target *target = bank->target;
1483         uint32_t address = bank->base + offset;
1484         int retval = ERROR_OK;
1485
1486         /* wait for BSY bit */
1487         retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1488         if (retval != ERROR_OK)
1489                 return retval;
1490
1491         /* set PG in FLASH_CR */
1492         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
1493         if (retval != ERROR_OK)
1494                 return retval;
1495
1496
1497         /* write directly to flash memory */
1498         const uint8_t *src = buffer;
1499         const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
1500         while (count--) {
1501                 retval = target_write_memory(target, address, 4, data_width_in_words, src);
1502                 if (retval != ERROR_OK)
1503                         return retval;
1504
1505                 /* wait for BSY bit */
1506                 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1507                 if (retval != ERROR_OK)
1508                         return retval;
1509
1510                 src += stm32l4_info->data_width;
1511                 address += stm32l4_info->data_width;
1512         }
1513
1514         /* reset PG in FLASH_CR */
1515         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
1516         if (retval != ERROR_OK)
1517                 return retval;
1518
1519         return retval;
1520 }
1521
1522 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
1523         uint32_t offset, uint32_t count)
1524 {
1525         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1526         int retval = ERROR_OK, retval2;
1527
1528         if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
1529                 LOG_ERROR("OTP memory is disabled for write commands");
1530                 return ERROR_FAIL;
1531         }
1532
1533         if (bank->target->state != TARGET_HALTED) {
1534                 LOG_ERROR("Target not halted");
1535                 return ERROR_TARGET_NOT_HALTED;
1536         }
1537
1538         /* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
1539         assert(stm32l4_info->data_width % 8 == 0);
1540
1541         /* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
1542          * The flash infrastructure ensures it, do just a security check */
1543         assert(offset % stm32l4_info->data_width == 0);
1544         assert(count % stm32l4_info->data_width == 0);
1545
1546         /* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
1547          * data to be written does not go into a gap:
1548          * suppose buffer is fully contained in bank from sector 0 to sector
1549          * num->sectors - 1 and sectors are ordered according to offset
1550          */
1551         struct flash_sector *head = &bank->sectors[0];
1552         struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
1553
1554         while ((head < tail) && (offset >= (head + 1)->offset)) {
1555                 /* buffer does not intersect head nor gap behind head */
1556                 head++;
1557         }
1558
1559         while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
1560                 /* buffer does not intersect tail nor gap before tail */
1561                 --tail;
1562         }
1563
1564         LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
1565                 offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
1566
1567         /* Now check that there is no gap from head to tail, this should work
1568          * even for multiple or non-symmetric gaps
1569          */
1570         while (head < tail) {
1571                 if (head->offset + head->size != (head + 1)->offset) {
1572                         LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
1573                                 bank->base + head->offset + head->size,
1574                                 bank->base + (head + 1)->offset - 1);
1575                         retval = ERROR_FLASH_DST_OUT_OF_BANK;
1576                 }
1577                 head++;
1578         }
1579
1580         if (retval != ERROR_OK)
1581                 return retval;
1582
1583         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1584                 /* set all FLASH pages as secure */
1585                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1586                 if (retval != ERROR_OK) {
1587                         /* restore all FLASH pages as non-secure */
1588                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1589                         return retval;
1590                 }
1591         }
1592
1593         retval = stm32l4_unlock_reg(bank);
1594         if (retval != ERROR_OK)
1595                 goto err_lock;
1596
1597
1598         /* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
1599          * the debug is possible only in non-secure state.
1600          * Thus means the flashloader will run in non-secure mode,
1601          * and the workarea need to be in non-secure RAM */
1602         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
1603                 LOG_WARNING("RDP = 0x55, the work-area should be in non-secure RAM (check SAU partitioning)");
1604
1605         /* first try to write using the loader, for better performance */
1606         retval = stm32l4_write_block(bank, buffer, offset,
1607                         count / stm32l4_info->data_width);
1608
1609         /* if resources are not available write without a loader */
1610         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1611                 LOG_WARNING("falling back to programming without a flash loader (slower)");
1612                 retval = stm32l4_write_block_without_loader(bank, buffer, offset,
1613                                 count / stm32l4_info->data_width);
1614         }
1615
1616 err_lock:
1617         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1618
1619         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1620                 /* restore all FLASH pages as non-secure */
1621                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1622                 if (retval3 != ERROR_OK)
1623                         return retval3;
1624         }
1625
1626         if (retval != ERROR_OK) {
1627                 LOG_ERROR("block write failed");
1628                 return retval;
1629         }
1630         return retval2;
1631 }
1632
1633 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
1634 {
1635         int retval;
1636
1637         /* try reading possible IDCODE registers, in the following order */
1638         uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
1639
1640         for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
1641                 retval = target_read_u32(bank->target, dbgmcu_idcode[i], id);
1642                 if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
1643                         return ERROR_OK;
1644         }
1645
1646         /* Workaround for STM32WL5x devices:
1647          * DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
1648          * to solve this read the UID64 (IEEE 64-bit unique device ID register) */
1649
1650         struct cortex_m_common *cortex_m = target_to_cm(bank->target);
1651
1652         /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1653          * Using HLA adapters armv7m.debug_ap is null, and checking ap_num triggers a segfault */
1654         if (cortex_m->core_info->partno == CORTEX_M0P_PARTNO &&
1655                         cortex_m->armv7m.debug_ap && cortex_m->armv7m.debug_ap->ap_num == 1) {
1656                 uint32_t uid64_ids;
1657
1658                 /* UID64 is contains
1659                  *  - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
1660                  *  - Bits 31:08 : STID (company ID) = 0x0080E1
1661                  *  - Bits 07:00 : DEVID (device ID) = 0x15
1662                  *
1663                  *  read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
1664                  */
1665                 retval = target_read_u32(bank->target, UID64_IDS, &uid64_ids);
1666                 if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
1667                         /* force the DEV_ID to DEVID_STM32WLE_WL5XX and the REV_ID to unknown */
1668                         *id = DEVID_STM32WLE_WL5XX;
1669                         return ERROR_OK;
1670                 }
1671         }
1672
1673         LOG_ERROR("can't get the device id");
1674         return (retval == ERROR_OK) ? ERROR_FAIL : retval;
1675 }
1676
1677 static const char *get_stm32l4_rev_str(struct flash_bank *bank)
1678 {
1679         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1680         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
1681         assert(part_info);
1682
1683         const uint16_t rev_id = stm32l4_info->idcode >> 16;
1684         for (unsigned int i = 0; i < part_info->num_revs; i++) {
1685                 if (rev_id == part_info->revs[i].rev)
1686                         return part_info->revs[i].str;
1687         }
1688         return "'unknown'";
1689 }
1690
1691 static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
1692 {
1693         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1694         assert(stm32l4_info->part_info);
1695         return stm32l4_is_otp(bank) ? "OTP" :
1696                         stm32l4_info->dual_bank_mode ? "Flash dual" :
1697                         "Flash single";
1698 }
1699
1700 static int stm32l4_probe(struct flash_bank *bank)
1701 {
1702         struct target *target = bank->target;
1703         struct armv7m_common *armv7m = target_to_armv7m(target);
1704         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1705         const struct stm32l4_part_info *part_info;
1706         uint16_t flash_size_kb = 0xffff;
1707
1708         stm32l4_info->probed = false;
1709
1710         /* read stm32 device id registers */
1711         int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
1712         if (retval != ERROR_OK)
1713                 return retval;
1714
1715         const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
1716
1717         for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
1718                 if (device_id == stm32l4_parts[n].id) {
1719                         stm32l4_info->part_info = &stm32l4_parts[n];
1720                         break;
1721                 }
1722         }
1723
1724         if (!stm32l4_info->part_info) {
1725                 LOG_WARNING("Cannot identify target as an %s family device.", device_families);
1726                 return ERROR_FAIL;
1727         }
1728
1729         part_info = stm32l4_info->part_info;
1730         const char *rev_str = get_stm32l4_rev_str(bank);
1731         const uint16_t rev_id = stm32l4_info->idcode >> 16;
1732
1733         LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
1734                         stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
1735
1736         stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
1737         stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
1738         stm32l4_info->cr_bker_mask = FLASH_BKER;
1739         stm32l4_info->sr_bsy_mask = FLASH_BSY;
1740
1741         /* Set flash write alignment boundaries.
1742          * Ask the flash infrastructure to ensure required alignment */
1743         bank->write_start_alignment = bank->write_end_alignment = stm32l4_info->data_width;
1744
1745         /* initialise the flash registers layout */
1746         if (part_info->flags & F_HAS_L5_FLASH_REGS)
1747                 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
1748         else
1749                 stm32l4_info->flash_regs = stm32l4_flash_regs;
1750
1751         /* read flash option register */
1752         retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
1753         if (retval != ERROR_OK)
1754                 return retval;
1755
1756         stm32l4_sync_rdp_tzen(bank);
1757
1758         /* for devices with trustzone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
1759         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1760                 if (part_info->flags & F_HAS_L5_FLASH_REGS) {
1761                         stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
1762                         stm32l4_info->flash_regs = stm32l5_s_flash_regs;
1763                 } else {
1764                         LOG_ERROR("BUG: device supported incomplete");
1765                         return ERROR_NOT_IMPLEMENTED;
1766                 }
1767         }
1768
1769         if (part_info->flags & F_HAS_TZ)
1770                 LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
1771                                 stm32l4_info->tzen,
1772                                 stm32l4_info->tzen ? "enabled" : "disabled");
1773
1774         LOG_INFO("RDP level %s (0x%02X)",
1775                         stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
1776                         stm32l4_info->rdp);
1777
1778         if (stm32l4_is_otp(bank)) {
1779                 bank->size = part_info->otp_size;
1780
1781                 LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
1782
1783                 /* OTP memory is considered as one sector */
1784                 free(bank->sectors);
1785                 bank->num_sectors = 1;
1786                 bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
1787
1788                 if (!bank->sectors) {
1789                         LOG_ERROR("failed to allocate bank sectors");
1790                         return ERROR_FAIL;
1791                 }
1792
1793                 stm32l4_info->probed = true;
1794                 return ERROR_OK;
1795         } else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
1796                 LOG_ERROR("invalid bank base address");
1797                 return ERROR_FAIL;
1798         }
1799
1800         /* get flash size from target. */
1801         retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
1802
1803         /* failed reading flash size or flash size invalid (early silicon),
1804          * default to max target family */
1805         if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
1806                         || flash_size_kb > part_info->max_flash_size_kb) {
1807                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1808                         part_info->max_flash_size_kb);
1809                 flash_size_kb = part_info->max_flash_size_kb;
1810         }
1811
1812         /* if the user sets the size manually then ignore the probed value
1813          * this allows us to work around devices that have a invalid flash size register value */
1814         if (stm32l4_info->user_bank_size) {
1815                 LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
1816                 flash_size_kb = stm32l4_info->user_bank_size / 1024;
1817         }
1818
1819         LOG_INFO("flash size = %dkbytes", flash_size_kb);
1820
1821         /* did we assign a flash size? */
1822         assert((flash_size_kb != 0xffff) && flash_size_kb);
1823
1824         const bool is_max_flash_size = flash_size_kb == stm32l4_info->part_info->max_flash_size_kb;
1825
1826         stm32l4_info->bank1_sectors = 0;
1827         stm32l4_info->hole_sectors = 0;
1828
1829         int num_pages = 0;
1830         int page_size_kb = 0;
1831
1832         stm32l4_info->dual_bank_mode = false;
1833
1834         switch (device_id) {
1835         case DEVID_STM32L47_L48XX:
1836         case DEVID_STM32L49_L4AXX:
1837                 /* if flash size is max (1M) the device is always dual bank
1838                  * STM32L47/L48xx: has variants with 512K
1839                  * STM32L49/L4Axx: has variants with 512 and 256
1840                  * for these variants:
1841                  *   if DUAL_BANK = 0 -> single bank
1842                  *   else -> dual bank without gap
1843                  * note: the page size is invariant
1844                  */
1845                 page_size_kb = 2;
1846                 num_pages = flash_size_kb / page_size_kb;
1847                 stm32l4_info->bank1_sectors = num_pages;
1848
1849                 /* check DUAL_BANK option bit if the flash is less than 1M */
1850                 if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) {
1851                         stm32l4_info->dual_bank_mode = true;
1852                         stm32l4_info->bank1_sectors = num_pages / 2;
1853                 }
1854                 break;
1855         case DEVID_STM32L43_L44XX:
1856         case DEVID_STM32G05_G06XX:
1857         case DEVID_STM32G07_G08XX:
1858         case DEVID_STM32L45_L46XX:
1859         case DEVID_STM32L41_L42XX:
1860         case DEVID_STM32G03_G04XX:
1861         case DEVID_STM32G43_G44XX:
1862         case DEVID_STM32G49_G4AXX:
1863         case DEVID_STM32WB1XX:
1864                 /* single bank flash */
1865                 page_size_kb = 2;
1866                 num_pages = flash_size_kb / page_size_kb;
1867                 stm32l4_info->bank1_sectors = num_pages;
1868                 break;
1869         case DEVID_STM32G0B_G0CXX:
1870                 /* single/dual bank depending on DUAL_BANK option bit */
1871                 page_size_kb = 2;
1872                 num_pages = flash_size_kb / page_size_kb;
1873                 stm32l4_info->bank1_sectors = num_pages;
1874                 stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
1875
1876                 /* check DUAL_BANK bit */
1877                 if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) {
1878                         stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
1879                         stm32l4_info->dual_bank_mode = true;
1880                         stm32l4_info->bank1_sectors = num_pages / 2;
1881                 }
1882                 break;
1883         case DEVID_STM32G47_G48XX:
1884                 /* STM32G47/8 can be single/dual bank:
1885                  *   if DUAL_BANK = 0 -> single bank
1886                  *   else -> dual bank WITH gap
1887                  */
1888                 page_size_kb = 4;
1889                 num_pages = flash_size_kb / page_size_kb;
1890                 stm32l4_info->bank1_sectors = num_pages;
1891                 if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) {
1892                         stm32l4_info->dual_bank_mode = true;
1893                         page_size_kb = 2;
1894                         num_pages = flash_size_kb / page_size_kb;
1895                         stm32l4_info->bank1_sectors = num_pages / 2;
1896
1897                         /* for devices with trimmed flash, there is a gap between both banks */
1898                         stm32l4_info->hole_sectors =
1899                                 (part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
1900                 }
1901                 break;
1902         case DEVID_STM32L4R_L4SXX:
1903         case DEVID_STM32L4P_L4QXX:
1904                 /* STM32L4R/S can be single/dual bank:
1905                  *   if size = 2M check DBANK bit
1906                  *   if size = 1M check DB1M bit
1907                  * STM32L4P/Q can be single/dual bank
1908                  *   if size = 1M check DBANK bit
1909                  *   if size = 512K check DB512K bit (same as DB1M bit)
1910                  */
1911                 page_size_kb = 8;
1912                 num_pages = flash_size_kb / page_size_kb;
1913                 stm32l4_info->bank1_sectors = num_pages;
1914                 if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) ||
1915                         (!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) {
1916                         stm32l4_info->dual_bank_mode = true;
1917                         page_size_kb = 4;
1918                         num_pages = flash_size_kb / page_size_kb;
1919                         stm32l4_info->bank1_sectors = num_pages / 2;
1920                 }
1921                 break;
1922         case DEVID_STM32L55_L56XX:
1923                 /* STM32L55/L56xx can be single/dual bank:
1924                  *   if size = 512K check DBANK bit
1925                  *   if size = 256K check DB256K bit
1926                  *
1927                  * default page size is 4kb, if DBANK = 1, the page size is 2kb.
1928                  */
1929
1930                 page_size_kb = (stm32l4_info->optr & FLASH_L5_DBANK) ? 2 : 4;
1931                 num_pages = flash_size_kb / page_size_kb;
1932                 stm32l4_info->bank1_sectors = num_pages;
1933
1934                 if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) ||
1935                         (!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) {
1936                         stm32l4_info->dual_bank_mode = true;
1937                         stm32l4_info->bank1_sectors = num_pages / 2;
1938                 }
1939                 break;
1940         case DEVID_STM32U57_U58XX:
1941                 /* if flash size is max (2M) the device is always dual bank
1942                  * otherwise check DUALBANK
1943                  */
1944                 page_size_kb = 8;
1945                 num_pages = flash_size_kb / page_size_kb;
1946                 stm32l4_info->bank1_sectors = num_pages;
1947                 if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) {
1948                         stm32l4_info->dual_bank_mode = true;
1949                         stm32l4_info->bank1_sectors = num_pages / 2;
1950                 }
1951                 break;
1952         case DEVID_STM32WB5XX:
1953         case DEVID_STM32WB3XX:
1954                 /* single bank flash */
1955                 page_size_kb = 4;
1956                 num_pages = flash_size_kb / page_size_kb;
1957                 stm32l4_info->bank1_sectors = num_pages;
1958                 break;
1959         case DEVID_STM32WLE_WL5XX:
1960                 /* single bank flash */
1961                 page_size_kb = 2;
1962                 num_pages = flash_size_kb / page_size_kb;
1963                 stm32l4_info->bank1_sectors = num_pages;
1964
1965                 /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1966                  * Using HLA adapters armv7m->debug_ap is null, and checking ap_num triggers a segfault */
1967                 if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
1968                         stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
1969                 break;
1970         default:
1971                 LOG_ERROR("unsupported device");
1972                 return ERROR_FAIL;
1973         }
1974
1975         LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
1976
1977         const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
1978
1979         if (gap_size_kb != 0) {
1980                 LOG_INFO("gap detected from 0x%08x to 0x%08x",
1981                         STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
1982                                 * page_size_kb * 1024,
1983                         STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
1984                                 * page_size_kb + gap_size_kb) * 1024 - 1);
1985         }
1986
1987         /* number of significant bits in WRPxxR differs per device,
1988          * always right adjusted, on some devices non-implemented
1989          * bits read as '0', on others as '1' ...
1990          * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
1991          */
1992
1993         /* use *max_flash_size* instead of actual size as the trimmed versions
1994          * certainly use the same number of bits
1995          */
1996         uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
1997
1998         /* in dual bank mode number of pages is doubled, but extra bit is bank selection */
1999         stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
2000         assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
2001         LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
2002
2003         free(bank->sectors);
2004
2005         bank->size = (flash_size_kb + gap_size_kb) * 1024;
2006         bank->num_sectors = num_pages;
2007         bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
2008         if (!bank->sectors) {
2009                 LOG_ERROR("failed to allocate bank sectors");
2010                 return ERROR_FAIL;
2011         }
2012
2013         for (unsigned int i = 0; i < bank->num_sectors; i++) {
2014                 bank->sectors[i].offset = i * page_size_kb * 1024;
2015                 /* in dual bank configuration, if there is a gap between banks
2016                  * we fix up the sector offset to consider this gap */
2017                 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
2018                         bank->sectors[i].offset += gap_size_kb * 1024;
2019                 bank->sectors[i].size = page_size_kb * 1024;
2020                 bank->sectors[i].is_erased = -1;
2021                 bank->sectors[i].is_protected = 1;
2022         }
2023
2024         stm32l4_info->probed = true;
2025         return ERROR_OK;
2026 }
2027
2028 static int stm32l4_auto_probe(struct flash_bank *bank)
2029 {
2030         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2031         if (stm32l4_info->probed) {
2032                 uint32_t optr_cur;
2033
2034                 /* read flash option register and re-probe if optr value is changed */
2035                 int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
2036                 if (retval != ERROR_OK)
2037                         return retval;
2038
2039                 if (stm32l4_info->optr == optr_cur)
2040                         return ERROR_OK;
2041         }
2042
2043         return stm32l4_probe(bank);
2044 }
2045
2046 static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
2047 {
2048         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2049         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
2050
2051         if (part_info) {
2052                 const uint16_t rev_id = stm32l4_info->idcode >> 16;
2053                 command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
2054                                 get_stm32l4_rev_str(bank), rev_id);
2055                 if (stm32l4_info->probed)
2056                         command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
2057         } else {
2058                 command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
2059         }
2060
2061         return ERROR_OK;
2062 }
2063
2064 static int stm32l4_mass_erase(struct flash_bank *bank)
2065 {
2066         int retval, retval2;
2067         struct target *target = bank->target;
2068         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2069
2070         if (stm32l4_is_otp(bank)) {
2071                 LOG_ERROR("cannot erase OTP memory");
2072                 return ERROR_FLASH_OPER_UNSUPPORTED;
2073         }
2074
2075         uint32_t action = FLASH_MER1;
2076
2077         if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
2078                 action |= FLASH_MER2;
2079
2080         if (target->state != TARGET_HALTED) {
2081                 LOG_ERROR("Target not halted");
2082                 return ERROR_TARGET_NOT_HALTED;
2083         }
2084
2085         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2086                 /* set all FLASH pages as secure */
2087                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
2088                 if (retval != ERROR_OK) {
2089                         /* restore all FLASH pages as non-secure */
2090                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
2091                         return retval;
2092                 }
2093         }
2094
2095         retval = stm32l4_unlock_reg(bank);
2096         if (retval != ERROR_OK)
2097                 goto err_lock;
2098
2099         /* mass erase flash memory */
2100         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
2101         if (retval != ERROR_OK)
2102                 goto err_lock;
2103
2104         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
2105         if (retval != ERROR_OK)
2106                 goto err_lock;
2107
2108         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
2109         if (retval != ERROR_OK)
2110                 goto err_lock;
2111
2112         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
2113
2114 err_lock:
2115         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
2116
2117         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2118                 /* restore all FLASH pages as non-secure */
2119                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
2120                 if (retval3 != ERROR_OK)
2121                         return retval3;
2122         }
2123
2124         if (retval != ERROR_OK)
2125                 return retval;
2126
2127         return retval2;
2128 }
2129
2130 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
2131 {
2132         if (CMD_ARGC < 1) {
2133                 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
2134                 return ERROR_COMMAND_SYNTAX_ERROR;
2135         }
2136
2137         struct flash_bank *bank;
2138         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2139         if (retval != ERROR_OK)
2140                 return retval;
2141
2142         retval = stm32l4_mass_erase(bank);
2143         if (retval == ERROR_OK)
2144                 command_print(CMD, "stm32l4x mass erase complete");
2145         else
2146                 command_print(CMD, "stm32l4x mass erase failed");
2147
2148         return retval;
2149 }
2150
2151 COMMAND_HANDLER(stm32l4_handle_option_read_command)
2152 {
2153         if (CMD_ARGC < 2) {
2154                 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
2155                 return ERROR_COMMAND_SYNTAX_ERROR;
2156         }
2157
2158         struct flash_bank *bank;
2159         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2160         if (retval != ERROR_OK)
2161                 return retval;
2162
2163         uint32_t reg_offset, reg_addr;
2164         uint32_t value = 0;
2165
2166         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2167         reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
2168
2169         retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
2170         if (retval != ERROR_OK)
2171                 return retval;
2172
2173         command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
2174
2175         return retval;
2176 }
2177
2178 COMMAND_HANDLER(stm32l4_handle_option_write_command)
2179 {
2180         if (CMD_ARGC < 3) {
2181                 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
2182                 return ERROR_COMMAND_SYNTAX_ERROR;
2183         }
2184
2185         struct flash_bank *bank;
2186         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2187         if (retval != ERROR_OK)
2188                 return retval;
2189
2190         uint32_t reg_offset;
2191         uint32_t value = 0;
2192         uint32_t mask = 0xFFFFFFFF;
2193
2194         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2195         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2196
2197         if (CMD_ARGC > 3)
2198                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
2199
2200         command_print(CMD, "%s Option written.\n"
2201                                 "INFO: a reset or power cycle is required "
2202                                 "for the new settings to take effect.", bank->driver->name);
2203
2204         retval = stm32l4_write_option(bank, reg_offset, value, mask);
2205         return retval;
2206 }
2207
2208 COMMAND_HANDLER(stm32l4_handle_trustzone_command)
2209 {
2210         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2211                 return ERROR_COMMAND_SYNTAX_ERROR;
2212
2213         struct flash_bank *bank;
2214         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2215         if (retval != ERROR_OK)
2216                 return retval;
2217
2218         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2219         if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
2220                 LOG_ERROR("This device does not have a TrustZone");
2221                 return ERROR_FAIL;
2222         }
2223
2224         retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
2225         if (retval != ERROR_OK)
2226                 return retval;
2227
2228         stm32l4_sync_rdp_tzen(bank);
2229
2230         if (CMD_ARGC == 1) {
2231                 /* only display the TZEN value */
2232                 LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
2233                 return ERROR_OK;
2234         }
2235
2236         bool new_tzen;
2237         COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
2238
2239         if (new_tzen == stm32l4_info->tzen) {
2240                 LOG_INFO("The requested TZEN is already programmed");
2241                 return ERROR_OK;
2242         }
2243
2244         if (new_tzen) {
2245                 if (stm32l4_info->rdp != RDP_LEVEL_0) {
2246                         LOG_ERROR("TZEN can be set only when RDP level is 0");
2247                         return ERROR_FAIL;
2248                 }
2249                 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2250                                 FLASH_TZEN, FLASH_TZEN);
2251         } else {
2252                 /* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
2253                  * changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
2254                 if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
2255                         LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
2256                         return ERROR_FAIL;
2257                 }
2258
2259                 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2260                                 RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
2261         }
2262
2263         if (retval != ERROR_OK)
2264                 return retval;
2265
2266         return stm32l4_perform_obl_launch(bank);
2267 }
2268
2269 COMMAND_HANDLER(stm32l4_handle_option_load_command)
2270 {
2271         if (CMD_ARGC != 1)
2272                 return ERROR_COMMAND_SYNTAX_ERROR;
2273
2274         struct flash_bank *bank;
2275         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2276         if (retval != ERROR_OK)
2277                 return retval;
2278
2279         retval = stm32l4_perform_obl_launch(bank);
2280         if (retval != ERROR_OK) {
2281                 command_print(CMD, "stm32l4x option load failed");
2282                 return retval;
2283         }
2284
2285
2286         command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
2287
2288         return ERROR_OK;
2289 }
2290
2291 COMMAND_HANDLER(stm32l4_handle_lock_command)
2292 {
2293         struct target *target = NULL;
2294
2295         if (CMD_ARGC < 1)
2296                 return ERROR_COMMAND_SYNTAX_ERROR;
2297
2298         struct flash_bank *bank;
2299         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2300         if (retval != ERROR_OK)
2301                 return retval;
2302
2303         if (stm32l4_is_otp(bank)) {
2304                 LOG_ERROR("cannot lock/unlock OTP memory");
2305                 return ERROR_FLASH_OPER_UNSUPPORTED;
2306         }
2307
2308         target = bank->target;
2309
2310         if (target->state != TARGET_HALTED) {
2311                 LOG_ERROR("Target not halted");
2312                 return ERROR_TARGET_NOT_HALTED;
2313         }
2314
2315         /* set readout protection level 1 by erasing the RDP option byte */
2316         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2317         if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2318                         RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
2319                 command_print(CMD, "%s failed to lock device", bank->driver->name);
2320                 return ERROR_OK;
2321         }
2322
2323         return ERROR_OK;
2324 }
2325
2326 COMMAND_HANDLER(stm32l4_handle_unlock_command)
2327 {
2328         struct target *target = NULL;
2329
2330         if (CMD_ARGC < 1)
2331                 return ERROR_COMMAND_SYNTAX_ERROR;
2332
2333         struct flash_bank *bank;
2334         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2335         if (retval != ERROR_OK)
2336                 return retval;
2337
2338         if (stm32l4_is_otp(bank)) {
2339                 LOG_ERROR("cannot lock/unlock OTP memory");
2340                 return ERROR_FLASH_OPER_UNSUPPORTED;
2341         }
2342
2343         target = bank->target;
2344
2345         if (target->state != TARGET_HALTED) {
2346                 LOG_ERROR("Target not halted");
2347                 return ERROR_TARGET_NOT_HALTED;
2348         }
2349
2350         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2351         if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2352                         RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
2353                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
2354                 return ERROR_OK;
2355         }
2356
2357         return ERROR_OK;
2358 }
2359
2360 COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
2361 {
2362         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2363                 return ERROR_COMMAND_SYNTAX_ERROR;
2364
2365         struct flash_bank *bank;
2366         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2367         if (retval != ERROR_OK)
2368                 return retval;
2369
2370         if (stm32l4_is_otp(bank)) {
2371                 LOG_ERROR("OTP memory does not have write protection areas");
2372                 return ERROR_FLASH_OPER_UNSUPPORTED;
2373         }
2374
2375         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2376         enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
2377         if (CMD_ARGC == 2) {
2378                 if (strcmp(CMD_ARGV[1], "bank1") == 0)
2379                         dev_bank_id = STM32_BANK1;
2380                 else if (strcmp(CMD_ARGV[1], "bank2") == 0)
2381                         dev_bank_id = STM32_BANK2;
2382                 else
2383                         return ERROR_COMMAND_ARGUMENT_INVALID;
2384         }
2385
2386         if (dev_bank_id == STM32_BANK2) {
2387                 if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
2388                         LOG_ERROR("this device has no second bank");
2389                         return ERROR_FAIL;
2390                 } else if (!stm32l4_info->dual_bank_mode) {
2391                         LOG_ERROR("this device is configured in single bank mode");
2392                         return ERROR_FAIL;
2393                 }
2394         }
2395
2396         int ret;
2397         unsigned int n_wrp, i;
2398         struct stm32l4_wrp wrpxy[4];
2399
2400         ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
2401         if (ret != ERROR_OK)
2402                 return ret;
2403
2404         /* use bitmap and range helpers to better describe protected areas */
2405         DECLARE_BITMAP(pages, bank->num_sectors);
2406         bitmap_zero(pages, bank->num_sectors);
2407
2408         for (i = 0; i < n_wrp; i++) {
2409                 if (wrpxy[i].used) {
2410                         for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
2411                                 set_bit(p, pages);
2412                 }
2413         }
2414
2415         /* we have at most 'n_wrp' WRP areas */
2416         struct range ranges[n_wrp];
2417         unsigned int ranges_count = 0;
2418
2419         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
2420
2421         if (ranges_count > 0) {
2422                 /* pretty-print the protected ranges */
2423                 char *ranges_str = range_print_alloc(ranges, ranges_count);
2424                 command_print(CMD, "protected areas: %s", ranges_str);
2425                 free(ranges_str);
2426         } else
2427                 command_print(CMD, "no protected areas");
2428
2429         return ERROR_OK;
2430 }
2431
2432 COMMAND_HANDLER(stm32l4_handle_otp_command)
2433 {
2434         if (CMD_ARGC < 2)
2435                 return ERROR_COMMAND_SYNTAX_ERROR;
2436
2437         struct flash_bank *bank;
2438         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2439         if (retval != ERROR_OK)
2440                 return retval;
2441
2442         if (!stm32l4_is_otp(bank)) {
2443                 command_print(CMD, "the specified bank is not an OTP memory");
2444                 return ERROR_FAIL;
2445         }
2446         if (strcmp(CMD_ARGV[1], "enable") == 0)
2447                 stm32l4_otp_enable(bank, true);
2448         else if (strcmp(CMD_ARGV[1], "disable") == 0)
2449                 stm32l4_otp_enable(bank, false);
2450         else if (strcmp(CMD_ARGV[1], "show") == 0)
2451                 command_print(CMD, "OTP memory bank #%d is %s for write commands.",
2452                                 bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
2453         else
2454                 return ERROR_COMMAND_SYNTAX_ERROR;
2455
2456         return ERROR_OK;
2457 }
2458
2459 static const struct command_registration stm32l4_exec_command_handlers[] = {
2460         {
2461                 .name = "lock",
2462                 .handler = stm32l4_handle_lock_command,
2463                 .mode = COMMAND_EXEC,
2464                 .usage = "bank_id",
2465                 .help = "Lock entire flash device.",
2466         },
2467         {
2468                 .name = "unlock",
2469                 .handler = stm32l4_handle_unlock_command,
2470                 .mode = COMMAND_EXEC,
2471                 .usage = "bank_id",
2472                 .help = "Unlock entire protected flash device.",
2473         },
2474         {
2475                 .name = "mass_erase",
2476                 .handler = stm32l4_handle_mass_erase_command,
2477                 .mode = COMMAND_EXEC,
2478                 .usage = "bank_id",
2479                 .help = "Erase entire flash device.",
2480         },
2481         {
2482                 .name = "option_read",
2483                 .handler = stm32l4_handle_option_read_command,
2484                 .mode = COMMAND_EXEC,
2485                 .usage = "bank_id reg_offset",
2486                 .help = "Read & Display device option bytes.",
2487         },
2488         {
2489                 .name = "option_write",
2490                 .handler = stm32l4_handle_option_write_command,
2491                 .mode = COMMAND_EXEC,
2492                 .usage = "bank_id reg_offset value mask",
2493                 .help = "Write device option bit fields with provided value.",
2494         },
2495         {
2496                 .name = "trustzone",
2497                 .handler = stm32l4_handle_trustzone_command,
2498                 .mode = COMMAND_EXEC,
2499                 .usage = "<bank_id> [enable|disable]",
2500                 .help = "Configure TrustZone security",
2501         },
2502         {
2503                 .name = "wrp_info",
2504                 .handler = stm32l4_handle_wrp_info_command,
2505                 .mode = COMMAND_EXEC,
2506                 .usage = "bank_id [bank1|bank2]",
2507                 .help = "list the protected areas using WRP",
2508         },
2509         {
2510                 .name = "option_load",
2511                 .handler = stm32l4_handle_option_load_command,
2512                 .mode = COMMAND_EXEC,
2513                 .usage = "bank_id",
2514                 .help = "Force re-load of device options (will cause device reset).",
2515         },
2516         {
2517                 .name = "otp",
2518                 .handler = stm32l4_handle_otp_command,
2519                 .mode = COMMAND_EXEC,
2520                 .usage = "<bank_id> <enable|disable|show>",
2521                 .help = "OTP (One Time Programmable) memory write enable/disable",
2522         },
2523         COMMAND_REGISTRATION_DONE
2524 };
2525
2526 static const struct command_registration stm32l4_command_handlers[] = {
2527         {
2528                 .name = "stm32l4x",
2529                 .mode = COMMAND_ANY,
2530                 .help = "stm32l4x flash command group",
2531                 .usage = "",
2532                 .chain = stm32l4_exec_command_handlers,
2533         },
2534         COMMAND_REGISTRATION_DONE
2535 };
2536
2537 const struct flash_driver stm32l4x_flash = {
2538         .name = "stm32l4x",
2539         .commands = stm32l4_command_handlers,
2540         .flash_bank_command = stm32l4_flash_bank_command,
2541         .erase = stm32l4_erase,
2542         .protect = stm32l4_protect,
2543         .write = stm32l4_write,
2544         .read = default_flash_read,
2545         .probe = stm32l4_probe,
2546         .auto_probe = stm32l4_auto_probe,
2547         .erase_check = default_flash_blank_check,
2548         .protect_check = stm32l4_protect_check,
2549         .info = get_stm32l4_info,
2550         .free_driver_priv = default_flash_free_driver_priv,
2551 };