7b35a0635392fa61fd21a923be2a957910f43152
[fw/openocd] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by Uwe Bonnes                                      *
3  *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
4  *                                                                         *
5  *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
6  *   tarek.bouchkati@gmail.com                                             *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
20  ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/align.h>
28 #include <helper/binarybuffer.h>
29 #include <helper/bits.h>
30 #include <target/algorithm.h>
31 #include <target/arm_adi_v5.h>
32 #include <target/cortex_m.h>
33 #include "stm32l4x.h"
34
35 /* STM32L4xxx series for reference.
36  *
37  * RM0351 (STM32L4x5/STM32L4x6)
38  * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
39  *
40  * RM0394 (STM32L43x/44x/45x/46x)
41  * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
42  *
43  * RM0432 (STM32L4R/4Sxx)
44  * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
45  *
46  * STM32L476RG Datasheet (for erase timing)
47  * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
48  *
49  * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
50  * an option byte is available to map all sectors to the first bank.
51  * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
52  * handlers do!
53  *
54  * RM0394 devices have a single bank only.
55  *
56  * RM0432 devices have single and dual bank operating modes.
57  *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
58  *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
59  * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
60  *
61  * Bank mode is controlled by two different bits in option bytes register.
62  *  - for STM32L4R/Sxx
63  *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
64  *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
65  *  - for STM32L4P5/Q5x
66  *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
67  *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
68  */
69
70 /* STM32WBxxx series for reference.
71  *
72  * RM0434 (STM32WB55/WB35x)
73  * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
74  *
75  * RM0471 (STM32WB50/WB30x)
76  * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
77  *
78  * RM0473 (STM32WB15x)
79  * http://www.st.com/resource/en/reference_manual/dm00649196.pdf
80  *
81  * RM0478 (STM32WB10x)
82  * http://www.st.com/resource/en/reference_manual/dm00689203.pdf
83  */
84
85 /* STM32WLxxx series for reference.
86  *
87  * RM0461 (STM32WLEx)
88  * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
89  *
90  * RM0453 (STM32WL5x)
91  * http://www.st.com/resource/en/reference_manual/dm00451556.pdf
92  */
93
94 /* STM32G0xxx series for reference.
95  *
96  * RM0444 (STM32G0x1)
97  * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
98  *
99  * RM0454 (STM32G0x0)
100  * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
101  */
102
103 /* STM32G4xxx series for reference.
104  *
105  * RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
106  * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
107  *
108  * Cat. 2 devices have single bank only, page size is 2kByte.
109  *
110  * Cat. 3 devices have single and dual bank operating modes,
111  * Page size is 2kByte (dual mode) or 4kByte (single mode).
112  *
113  * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
114  * Both banks are treated as a single OpenOCD bank.
115  *
116  * Cat. 4 devices have single bank only, page size is 2kByte.
117  */
118
119 /* STM32L5xxx series for reference.
120  *
121  * RM0428 (STM32L552xx/STM32L562xx)
122  * http://www.st.com/resource/en/reference_manual/dm00346336.pdf
123  */
124
125 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
126
127 #define FLASH_ERASE_TIMEOUT 250
128 #define FLASH_WRITE_TIMEOUT 50
129
130
131 /* relevant STM32L4 flags ****************************************************/
132 #define F_NONE              0
133 /* this flag indicates if the device flash is with dual bank architecture */
134 #define F_HAS_DUAL_BANK     BIT(0)
135 /* this flags is used for dual bank devices only, it indicates if the
136  * 4 WRPxx are usable if the device is configured in single-bank mode */
137 #define F_USE_ALL_WRPXX     BIT(1)
138 /* this flag indicates if the device embeds a TrustZone security feature */
139 #define F_HAS_TZ            BIT(2)
140 /* this flag indicates if the device has the same flash registers as STM32L5 */
141 #define F_HAS_L5_FLASH_REGS BIT(3)
142 /* this flag indicates that programming should be done in quad-word
143  * the default programming word size is double-word */
144 #define F_QUAD_WORD_PROG    BIT(4)
145 /* end of STM32L4 flags ******************************************************/
146
147
148 enum stm32l4_flash_reg_index {
149         STM32_FLASH_ACR_INDEX,
150         STM32_FLASH_KEYR_INDEX,
151         STM32_FLASH_OPTKEYR_INDEX,
152         STM32_FLASH_SR_INDEX,
153         STM32_FLASH_CR_INDEX,
154         /* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
155          * so it uses the C2CR for flash operations and CR for checking locks and locking */
156         STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
157         STM32_FLASH_OPTR_INDEX,
158         STM32_FLASH_WRP1AR_INDEX,
159         STM32_FLASH_WRP1BR_INDEX,
160         STM32_FLASH_WRP2AR_INDEX,
161         STM32_FLASH_WRP2BR_INDEX,
162         STM32_FLASH_REG_INDEX_NUM,
163 };
164
165 enum stm32l4_rdp {
166         RDP_LEVEL_0   = 0xAA,
167         RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
168         RDP_LEVEL_1   = 0x00,
169         RDP_LEVEL_2   = 0xCC
170 };
171
172 static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
173         [STM32_FLASH_ACR_INDEX]      = 0x000,
174         [STM32_FLASH_KEYR_INDEX]     = 0x008,
175         [STM32_FLASH_OPTKEYR_INDEX]  = 0x00C,
176         [STM32_FLASH_SR_INDEX]       = 0x010,
177         [STM32_FLASH_CR_INDEX]       = 0x014,
178         [STM32_FLASH_OPTR_INDEX]     = 0x020,
179         [STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
180         [STM32_FLASH_WRP1BR_INDEX]   = 0x030,
181         [STM32_FLASH_WRP2AR_INDEX]   = 0x04C,
182         [STM32_FLASH_WRP2BR_INDEX]   = 0x050,
183 };
184
185 static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
186         [STM32_FLASH_ACR_INDEX]      = 0x000,
187         [STM32_FLASH_KEYR_INDEX]     = 0x008,
188         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
189         [STM32_FLASH_SR_INDEX]       = 0x060,
190         [STM32_FLASH_CR_INDEX]       = 0x064,
191         [STM32_FLASH_CR_WLK_INDEX]   = 0x014,
192         [STM32_FLASH_OPTR_INDEX]     = 0x020,
193         [STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
194         [STM32_FLASH_WRP1BR_INDEX]   = 0x030,
195 };
196
197 static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
198         [STM32_FLASH_ACR_INDEX]      = 0x000,
199         [STM32_FLASH_KEYR_INDEX]     = 0x008, /* NSKEYR */
200         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
201         [STM32_FLASH_SR_INDEX]       = 0x020, /* NSSR */
202         [STM32_FLASH_CR_INDEX]       = 0x028, /* NSCR */
203         [STM32_FLASH_OPTR_INDEX]     = 0x040,
204         [STM32_FLASH_WRP1AR_INDEX]   = 0x058,
205         [STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
206         [STM32_FLASH_WRP2AR_INDEX]   = 0x068,
207         [STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
208 };
209
210 static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
211         [STM32_FLASH_ACR_INDEX]      = 0x000,
212         [STM32_FLASH_KEYR_INDEX]     = 0x00C, /* SECKEYR */
213         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
214         [STM32_FLASH_SR_INDEX]       = 0x024, /* SECSR */
215         [STM32_FLASH_CR_INDEX]       = 0x02C, /* SECCR */
216         [STM32_FLASH_OPTR_INDEX]     = 0x040,
217         [STM32_FLASH_WRP1AR_INDEX]   = 0x058,
218         [STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
219         [STM32_FLASH_WRP2AR_INDEX]   = 0x068,
220         [STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
221 };
222
223 struct stm32l4_rev {
224         const uint16_t rev;
225         const char *str;
226 };
227
228 struct stm32l4_part_info {
229         uint16_t id;
230         const char *device_str;
231         const struct stm32l4_rev *revs;
232         const size_t num_revs;
233         const uint16_t max_flash_size_kb;
234         const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
235         const uint32_t flash_regs_base;
236         const uint32_t fsize_addr;
237         const uint32_t otp_base;
238         const uint32_t otp_size;
239 };
240
241 struct stm32l4_flash_bank {
242         bool probed;
243         uint32_t idcode;
244         unsigned int bank1_sectors;
245         bool dual_bank_mode;
246         int hole_sectors;
247         uint32_t user_bank_size;
248         uint32_t data_width;
249         uint32_t cr_bker_mask;
250         uint32_t sr_bsy_mask;
251         uint32_t wrpxxr_mask;
252         const struct stm32l4_part_info *part_info;
253         uint32_t flash_regs_base;
254         const uint32_t *flash_regs;
255         bool otp_enabled;
256         enum stm32l4_rdp rdp;
257         bool tzen;
258         uint32_t optr;
259 };
260
261 enum stm32_bank_id {
262         STM32_BANK1,
263         STM32_BANK2,
264         STM32_ALL_BANKS
265 };
266
267 struct stm32l4_wrp {
268         enum stm32l4_flash_reg_index reg_idx;
269         uint32_t value;
270         bool used;
271         int first;
272         int last;
273         int offset;
274 };
275
276 /* human readable list of families this drivers supports (sorted alphabetically) */
277 static const char *device_families = "STM32G0/G4/L4/L4+/L5/U5/WB/WL";
278
279 static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
280         { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
281 };
282
283 static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
284         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
285 };
286
287 static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
288         { 0x1000, "A" },
289 };
290
291 static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
292         { 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
293 };
294
295 static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
296         { 0x1000, "A" }, { 0x2000, "B" },
297 };
298
299 static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
300         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
301 };
302
303 static const struct stm32l4_rev stm32l41_L42xx_revs[] = {
304         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
305 };
306
307 static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
308         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
309 };
310
311 static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
312         { 0x1000, "A" },
313 };
314
315 static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
316         { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
317 };
318
319 static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
320         { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
321 };
322
323 static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
324         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
325 };
326
327 static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
328         { 0x1001, "Z" },
329 };
330
331 static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
332         { 0x1000, "A" }, { 0x2000, "B" },
333 };
334
335 static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
336         { 0x1000, "A" },
337 };
338
339 static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
340         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
341 };
342
343 static const struct stm32l4_rev stm32wb1xx_revs[] = {
344         { 0x1000, "A" }, { 0x2000, "B" },
345 };
346
347 static const struct stm32l4_rev stm32wb5xx_revs[] = {
348         { 0x2001, "2.1" },
349 };
350
351 static const struct stm32l4_rev stm32wb3xx_revs[] = {
352         { 0x1000, "A" },
353 };
354
355 static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
356         { 0x1000, "1.0" },
357 };
358
359 static const struct stm32l4_part_info stm32l4_parts[] = {
360         {
361           .id                    = DEVID_STM32L47_L48XX,
362           .revs                  = stm32l47_l48xx_revs,
363           .num_revs              = ARRAY_SIZE(stm32l47_l48xx_revs),
364           .device_str            = "STM32L47/L48xx",
365           .max_flash_size_kb     = 1024,
366           .flags                 = F_HAS_DUAL_BANK,
367           .flash_regs_base       = 0x40022000,
368           .fsize_addr            = 0x1FFF75E0,
369           .otp_base              = 0x1FFF7000,
370           .otp_size              = 1024,
371         },
372         {
373           .id                    = DEVID_STM32L43_L44XX,
374           .revs                  = stm32l43_l44xx_revs,
375           .num_revs              = ARRAY_SIZE(stm32l43_l44xx_revs),
376           .device_str            = "STM32L43/L44xx",
377           .max_flash_size_kb     = 256,
378           .flags                 = F_NONE,
379           .flash_regs_base       = 0x40022000,
380           .fsize_addr            = 0x1FFF75E0,
381           .otp_base              = 0x1FFF7000,
382           .otp_size              = 1024,
383         },
384         {
385           .id                    = DEVID_STM32G05_G06XX,
386           .revs                  = stm32g05_g06xx_revs,
387           .num_revs              = ARRAY_SIZE(stm32g05_g06xx_revs),
388           .device_str            = "STM32G05/G06xx",
389           .max_flash_size_kb     = 64,
390           .flags                 = F_NONE,
391           .flash_regs_base       = 0x40022000,
392           .fsize_addr            = 0x1FFF75E0,
393           .otp_base              = 0x1FFF7000,
394           .otp_size              = 1024,
395         },
396         {
397           .id                    = DEVID_STM32G07_G08XX,
398           .revs                  = stm32_g07_g08xx_revs,
399           .num_revs              = ARRAY_SIZE(stm32_g07_g08xx_revs),
400           .device_str            = "STM32G07/G08xx",
401           .max_flash_size_kb     = 128,
402           .flags                 = F_NONE,
403           .flash_regs_base       = 0x40022000,
404           .fsize_addr            = 0x1FFF75E0,
405           .otp_base              = 0x1FFF7000,
406           .otp_size              = 1024,
407         },
408         {
409           .id                    = DEVID_STM32L49_L4AXX,
410           .revs                  = stm32l49_l4axx_revs,
411           .num_revs              = ARRAY_SIZE(stm32l49_l4axx_revs),
412           .device_str            = "STM32L49/L4Axx",
413           .max_flash_size_kb     = 1024,
414           .flags                 = F_HAS_DUAL_BANK,
415           .flash_regs_base       = 0x40022000,
416           .fsize_addr            = 0x1FFF75E0,
417           .otp_base              = 0x1FFF7000,
418           .otp_size              = 1024,
419         },
420         {
421           .id                    = DEVID_STM32L45_L46XX,
422           .revs                  = stm32l45_l46xx_revs,
423           .num_revs              = ARRAY_SIZE(stm32l45_l46xx_revs),
424           .device_str            = "STM32L45/L46xx",
425           .max_flash_size_kb     = 512,
426           .flags                 = F_NONE,
427           .flash_regs_base       = 0x40022000,
428           .fsize_addr            = 0x1FFF75E0,
429           .otp_base              = 0x1FFF7000,
430           .otp_size              = 1024,
431         },
432         {
433           .id                    = DEVID_STM32L41_L42XX,
434           .revs                  = stm32l41_L42xx_revs,
435           .num_revs              = ARRAY_SIZE(stm32l41_L42xx_revs),
436           .device_str            = "STM32L41/L42xx",
437           .max_flash_size_kb     = 128,
438           .flags                 = F_NONE,
439           .flash_regs_base       = 0x40022000,
440           .fsize_addr            = 0x1FFF75E0,
441           .otp_base              = 0x1FFF7000,
442           .otp_size              = 1024,
443         },
444         {
445           .id                    = DEVID_STM32G03_G04XX,
446           .revs                  = stm32g03_g04xx_revs,
447           .num_revs              = ARRAY_SIZE(stm32g03_g04xx_revs),
448           .device_str            = "STM32G03x/G04xx",
449           .max_flash_size_kb     = 64,
450           .flags                 = F_NONE,
451           .flash_regs_base       = 0x40022000,
452           .fsize_addr            = 0x1FFF75E0,
453           .otp_base              = 0x1FFF7000,
454           .otp_size              = 1024,
455         },
456         {
457           .id                    = DEVID_STM32G0B_G0CXX,
458           .revs                  = stm32g0b_g0cxx_revs,
459           .num_revs              = ARRAY_SIZE(stm32g0b_g0cxx_revs),
460           .device_str            = "STM32G0B/G0Cx",
461           .max_flash_size_kb     = 512,
462           .flags                 = F_HAS_DUAL_BANK,
463           .flash_regs_base       = 0x40022000,
464           .fsize_addr            = 0x1FFF75E0,
465           .otp_base              = 0x1FFF7000,
466           .otp_size              = 1024,
467         },
468         {
469           .id                    = DEVID_STM32G43_G44XX,
470           .revs                  = stm32g43_g44xx_revs,
471           .num_revs              = ARRAY_SIZE(stm32g43_g44xx_revs),
472           .device_str            = "STM32G43/G44xx",
473           .max_flash_size_kb     = 128,
474           .flags                 = F_NONE,
475           .flash_regs_base       = 0x40022000,
476           .fsize_addr            = 0x1FFF75E0,
477           .otp_base              = 0x1FFF7000,
478           .otp_size              = 1024,
479         },
480         {
481           .id                    = DEVID_STM32G47_G48XX,
482           .revs                  = stm32g47_g48xx_revs,
483           .num_revs              = ARRAY_SIZE(stm32g47_g48xx_revs),
484           .device_str            = "STM32G47/G48xx",
485           .max_flash_size_kb     = 512,
486           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
487           .flash_regs_base       = 0x40022000,
488           .fsize_addr            = 0x1FFF75E0,
489           .otp_base              = 0x1FFF7000,
490           .otp_size              = 1024,
491         },
492         {
493           .id                    = DEVID_STM32L4R_L4SXX,
494           .revs                  = stm32l4r_l4sxx_revs,
495           .num_revs              = ARRAY_SIZE(stm32l4r_l4sxx_revs),
496           .device_str            = "STM32L4R/L4Sxx",
497           .max_flash_size_kb     = 2048,
498           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
499           .flash_regs_base       = 0x40022000,
500           .fsize_addr            = 0x1FFF75E0,
501           .otp_base              = 0x1FFF7000,
502           .otp_size              = 1024,
503         },
504         {
505           .id                    = DEVID_STM32L4P_L4QXX,
506           .revs                  = stm32l4p_l4qxx_revs,
507           .num_revs              = ARRAY_SIZE(stm32l4p_l4qxx_revs),
508           .device_str            = "STM32L4P/L4Qxx",
509           .max_flash_size_kb     = 1024,
510           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
511           .flash_regs_base       = 0x40022000,
512           .fsize_addr            = 0x1FFF75E0,
513           .otp_base              = 0x1FFF7000,
514           .otp_size              = 1024,
515         },
516         {
517           .id                    = DEVID_STM32L55_L56XX,
518           .revs                  = stm32l55_l56xx_revs,
519           .num_revs              = ARRAY_SIZE(stm32l55_l56xx_revs),
520           .device_str            = "STM32L55/L56xx",
521           .max_flash_size_kb     = 512,
522           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
523           .flash_regs_base       = 0x40022000,
524           .fsize_addr            = 0x0BFA05E0,
525           .otp_base              = 0x0BFA0000,
526           .otp_size              = 512,
527         },
528         {
529           .id                    = DEVID_STM32G49_G4AXX,
530           .revs                  = stm32g49_g4axx_revs,
531           .num_revs              = ARRAY_SIZE(stm32g49_g4axx_revs),
532           .device_str            = "STM32G49/G4Axx",
533           .max_flash_size_kb     = 512,
534           .flags                 = F_NONE,
535           .flash_regs_base       = 0x40022000,
536           .fsize_addr            = 0x1FFF75E0,
537           .otp_base              = 0x1FFF7000,
538           .otp_size              = 1024,
539         },
540         {
541           .id                    = DEVID_STM32U57_U58XX,
542           .revs                  = stm32u57_u58xx_revs,
543           .num_revs              = ARRAY_SIZE(stm32u57_u58xx_revs),
544           .device_str            = "STM32U57/U58xx",
545           .max_flash_size_kb     = 2048,
546           .flags                 = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
547           .flash_regs_base       = 0x40022000,
548           .fsize_addr            = 0x0BFA07A0,
549           .otp_base              = 0x0BFA0000,
550           .otp_size              = 512,
551         },
552         {
553           .id                    = DEVID_STM32WB1XX,
554           .revs                  = stm32wb1xx_revs,
555           .num_revs              = ARRAY_SIZE(stm32wb1xx_revs),
556           .device_str            = "STM32WB1x",
557           .max_flash_size_kb     = 320,
558           .flags                 = F_NONE,
559           .flash_regs_base       = 0x58004000,
560           .fsize_addr            = 0x1FFF75E0,
561           .otp_base              = 0x1FFF7000,
562           .otp_size              = 1024,
563         },
564         {
565           .id                    = DEVID_STM32WB5XX,
566           .revs                  = stm32wb5xx_revs,
567           .num_revs              = ARRAY_SIZE(stm32wb5xx_revs),
568           .device_str            = "STM32WB5x",
569           .max_flash_size_kb     = 1024,
570           .flags                 = F_NONE,
571           .flash_regs_base       = 0x58004000,
572           .fsize_addr            = 0x1FFF75E0,
573           .otp_base              = 0x1FFF7000,
574           .otp_size              = 1024,
575         },
576         {
577           .id                    = DEVID_STM32WB3XX,
578           .revs                  = stm32wb3xx_revs,
579           .num_revs              = ARRAY_SIZE(stm32wb3xx_revs),
580           .device_str            = "STM32WB3x",
581           .max_flash_size_kb     = 512,
582           .flags                 = F_NONE,
583           .flash_regs_base       = 0x58004000,
584           .fsize_addr            = 0x1FFF75E0,
585           .otp_base              = 0x1FFF7000,
586           .otp_size              = 1024,
587         },
588         {
589           .id                    = DEVID_STM32WLE_WL5XX,
590           .revs                  = stm32wle_wl5xx_revs,
591           .num_revs              = ARRAY_SIZE(stm32wle_wl5xx_revs),
592           .device_str            = "STM32WLE/WL5x",
593           .max_flash_size_kb     = 256,
594           .flags                 = F_NONE,
595           .flash_regs_base       = 0x58004000,
596           .fsize_addr            = 0x1FFF75E0,
597           .otp_base              = 0x1FFF7000,
598           .otp_size              = 1024,
599         },
600 };
601
602 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
603 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
604 {
605         struct stm32l4_flash_bank *stm32l4_info;
606
607         if (CMD_ARGC < 6)
608                 return ERROR_COMMAND_SYNTAX_ERROR;
609
610         /* fix-up bank base address: 0 is used for normal flash memory */
611         if (bank->base == 0)
612                 bank->base = STM32_FLASH_BANK_BASE;
613
614         stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
615         if (!stm32l4_info)
616                 return ERROR_FAIL; /* Checkme: What better error to use?*/
617         bank->driver_priv = stm32l4_info;
618
619         stm32l4_info->probed = false;
620         stm32l4_info->otp_enabled = false;
621         stm32l4_info->user_bank_size = bank->size;
622
623         return ERROR_OK;
624 }
625
626 /* bitmap helper extension */
627 struct range {
628         unsigned int start;
629         unsigned int end;
630 };
631
632 static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
633                 struct range *ranges, unsigned int *ranges_count) {
634         *ranges_count = 0;
635         bool last_bit = 0, cur_bit;
636         for (unsigned int i = 0; i < nbits; i++) {
637                 cur_bit = test_bit(i, bitmap);
638
639                 if (cur_bit && !last_bit) {
640                         (*ranges_count)++;
641                         ranges[*ranges_count - 1].start = i;
642                         ranges[*ranges_count - 1].end = i;
643                 } else if (cur_bit && last_bit) {
644                         /* update (increment) the end this range */
645                         ranges[*ranges_count - 1].end = i;
646                 }
647
648                 last_bit = cur_bit;
649         }
650 }
651
652 static inline int range_print_one(struct range *range, char *str)
653 {
654         if (range->start == range->end)
655                 return sprintf(str, "[%d]", range->start);
656
657         return sprintf(str, "[%d,%d]", range->start, range->end);
658 }
659
660 static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
661 {
662         /* each range will be printed like the following: [start,end]
663          * start and end, both are unsigned int, an unsigned int takes 10 characters max
664          * plus 3 characters for '[', ',' and ']'
665          * thus means each range can take maximum 23 character
666          * after each range we add a ' ' as separator and finally we need the '\0'
667          * if the ranges_count is zero we reserve one char for '\0' to return an empty string */
668         char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
669         char *ptr = str;
670
671         for (unsigned int i = 0; i < ranges_count; i++) {
672                 ptr += range_print_one(&(ranges[i]), ptr);
673
674                 if (i < ranges_count - 1)
675                         *(ptr++) = ' ';
676         }
677
678         return str;
679 }
680
681 /* end of bitmap helper extension */
682
683 static inline bool stm32l4_is_otp(struct flash_bank *bank)
684 {
685         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
686         return bank->base == stm32l4_info->part_info->otp_base;
687 }
688
689 static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
690 {
691         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
692
693         if (!stm32l4_is_otp(bank))
694                 return ERROR_FAIL;
695
696         char *op_str = enable ? "enabled" : "disabled";
697
698         LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
699                         bank->bank_number,
700                         stm32l4_info->otp_enabled == enable ? "already " : "",
701                         op_str);
702
703         stm32l4_info->otp_enabled = enable;
704
705         return ERROR_OK;
706 }
707
708 static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
709 {
710         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
711         return stm32l4_info->otp_enabled;
712 }
713
714 static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
715 {
716         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
717
718         bool tzen = false;
719
720         if (stm32l4_info->part_info->flags & F_HAS_TZ)
721                 tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
722
723         uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
724
725         /* for devices without TrustZone:
726          *   RDP level 0 and 2 values are to 0xAA and 0xCC
727          *   Any other value corresponds to RDP level 1
728          * for devices with TrusZone:
729          *   RDP level 0 and 2 values are 0xAA and 0xCC
730          *   RDP level 0.5 value is 0x55 only if TZEN = 1
731          *   Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
732          */
733
734         if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
735                 if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
736                         rdp = RDP_LEVEL_1;
737         }
738
739         stm32l4_info->tzen = tzen;
740         stm32l4_info->rdp = rdp;
741 }
742
743 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
744 {
745         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
746         return stm32l4_info->flash_regs_base + reg_offset;
747 }
748
749 static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
750         enum stm32l4_flash_reg_index reg_index)
751 {
752         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
753         return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
754 }
755
756 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
757 {
758         return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
759 }
760
761 static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
762         enum stm32l4_flash_reg_index reg_index, uint32_t *value)
763 {
764         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
765         return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
766 }
767
768 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
769 {
770         return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
771 }
772
773 static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
774         enum stm32l4_flash_reg_index reg_index, uint32_t value)
775 {
776         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
777         return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
778 }
779
780 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
781 {
782         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
783         uint32_t status;
784         int retval = ERROR_OK;
785
786         /* wait for busy to clear */
787         for (;;) {
788                 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
789                 if (retval != ERROR_OK)
790                         return retval;
791                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
792                 if ((status & stm32l4_info->sr_bsy_mask) == 0)
793                         break;
794                 if (timeout-- <= 0) {
795                         LOG_ERROR("timed out waiting for flash");
796                         return ERROR_FAIL;
797                 }
798                 alive_sleep(1);
799         }
800
801         if (status & FLASH_WRPERR) {
802                 LOG_ERROR("stm32x device protected");
803                 retval = ERROR_FAIL;
804         }
805
806         /* Clear but report errors */
807         if (status & FLASH_ERROR) {
808                 if (retval == ERROR_OK)
809                         retval = ERROR_FAIL;
810                 /* If this operation fails, we ignore it and report the original
811                  * retval
812                  */
813                 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
814         }
815
816         return retval;
817 }
818
819 /** set all FLASH_SECBB registers to the same value */
820 static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
821 {
822         /* This function should be used only with device with TrustZone, do just a security check */
823         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
824         assert(stm32l4_info->part_info->flags & F_HAS_TZ);
825
826         /* based on RM0438 Rev6 for STM32L5x devices:
827          * to modify a page block-based security attribution, it is recommended to
828          *  1- check that no flash operation is ongoing on the related page
829          *  2- add ISB instruction after modifying the page security attribute in SECBBxRy
830          *     this step is not need in case of JTAG direct access
831          */
832         int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
833         if (retval != ERROR_OK)
834                 return retval;
835
836         /* write SECBBxRy registers */
837         LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
838
839         const uint8_t secbb_regs[] = {
840                         FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
841                         FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4)  /* bank 2 SECBB register offsets */
842         };
843
844
845         unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
846
847         /* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
848          * then consider only the first half of secbb_regs
849          */
850         if (!stm32l4_info->dual_bank_mode)
851                 num_secbb_regs /= 2;
852
853         for (unsigned int i = 0; i < num_secbb_regs; i++) {
854                 retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
855                 if (retval != ERROR_OK)
856                         return retval;
857         }
858
859         return ERROR_OK;
860 }
861
862 static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
863 {
864         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
865         return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
866                 STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
867 }
868
869 static int stm32l4_unlock_reg(struct flash_bank *bank)
870 {
871         const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
872         uint32_t ctrl;
873
874         /* first check if not already unlocked
875          * otherwise writing on STM32_FLASH_KEYR will fail
876          */
877         int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
878         if (retval != ERROR_OK)
879                 return retval;
880
881         if ((ctrl & FLASH_LOCK) == 0)
882                 return ERROR_OK;
883
884         /* unlock flash registers */
885         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
886         if (retval != ERROR_OK)
887                 return retval;
888
889         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
890         if (retval != ERROR_OK)
891                 return retval;
892
893         retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
894         if (retval != ERROR_OK)
895                 return retval;
896
897         if (ctrl & FLASH_LOCK) {
898                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
899                 return ERROR_TARGET_FAILURE;
900         }
901
902         return ERROR_OK;
903 }
904
905 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
906 {
907         const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
908         uint32_t ctrl;
909
910         int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
911         if (retval != ERROR_OK)
912                 return retval;
913
914         if ((ctrl & FLASH_OPTLOCK) == 0)
915                 return ERROR_OK;
916
917         /* unlock option registers */
918         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
919         if (retval != ERROR_OK)
920                 return retval;
921
922         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
923         if (retval != ERROR_OK)
924                 return retval;
925
926         retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
927         if (retval != ERROR_OK)
928                 return retval;
929
930         if (ctrl & FLASH_OPTLOCK) {
931                 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
932                 return ERROR_TARGET_FAILURE;
933         }
934
935         return ERROR_OK;
936 }
937
938 static int stm32l4_perform_obl_launch(struct flash_bank *bank)
939 {
940         int retval, retval2;
941
942         retval = stm32l4_unlock_reg(bank);
943         if (retval != ERROR_OK)
944                 goto err_lock;
945
946         retval = stm32l4_unlock_option_reg(bank);
947         if (retval != ERROR_OK)
948                 goto err_lock;
949
950         /* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
951          * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
952          * "Note: If the read protection is set while the debugger is still
953          * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
954          */
955
956         /* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
957         /* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
958          * then just ignore the returned value */
959         stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
960
961         /* Need to re-probe after change */
962         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
963         stm32l4_info->probed = false;
964
965 err_lock:
966         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
967                         FLASH_LOCK | FLASH_OPTLOCK);
968
969         if (retval != ERROR_OK)
970                 return retval;
971
972         return retval2;
973 }
974
975 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
976         uint32_t value, uint32_t mask)
977 {
978         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
979         uint32_t optiondata;
980         int retval, retval2;
981
982         retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
983         if (retval != ERROR_OK)
984                 return retval;
985
986         /* for STM32L5 and similar devices, use always non-secure
987          * registers for option bytes programming */
988         const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
989         if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
990                 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
991
992         retval = stm32l4_unlock_reg(bank);
993         if (retval != ERROR_OK)
994                 goto err_lock;
995
996         retval = stm32l4_unlock_option_reg(bank);
997         if (retval != ERROR_OK)
998                 goto err_lock;
999
1000         optiondata = (optiondata & ~mask) | (value & mask);
1001
1002         retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
1003         if (retval != ERROR_OK)
1004                 goto err_lock;
1005
1006         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
1007         if (retval != ERROR_OK)
1008                 goto err_lock;
1009
1010         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1011
1012 err_lock:
1013         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
1014                         FLASH_LOCK | FLASH_OPTLOCK);
1015         stm32l4_info->flash_regs = saved_flash_regs;
1016
1017         if (retval != ERROR_OK)
1018                 return retval;
1019
1020         return retval2;
1021 }
1022
1023 static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
1024                 enum stm32l4_flash_reg_index reg_idx, int offset)
1025 {
1026         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1027         int ret;
1028
1029         wrpxy->reg_idx = reg_idx;
1030         wrpxy->offset = offset;
1031
1032         ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
1033         if (ret != ERROR_OK)
1034                 return ret;
1035
1036         wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1037         wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1038         wrpxy->used = wrpxy->first <= wrpxy->last;
1039
1040         return ERROR_OK;
1041 }
1042
1043 static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
1044                 struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
1045 {
1046         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1047         int ret;
1048
1049         *n_wrp = 0;
1050
1051         /* for single bank devices there is 2 WRP regions.
1052          * for dual bank devices there is 2 WRP regions per bank,
1053          *   if configured as single bank only 2 WRP are usable
1054          *   except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
1055          * note: this should be revised, if a device will have the SWAP banks option
1056          */
1057
1058         int wrp2y_sectors_offset = -1; /* -1 : unused */
1059
1060         /* if bank_id is BANK1 or ALL_BANKS */
1061         if (dev_bank_id != STM32_BANK2) {
1062                 /* get FLASH_WRP1AR */
1063                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
1064                 if (ret != ERROR_OK)
1065                         return ret;
1066
1067                 /* get WRP1BR */
1068                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
1069                 if (ret != ERROR_OK)
1070                         return ret;
1071
1072                 /* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
1073                 if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
1074                         wrp2y_sectors_offset = 0;
1075         }
1076
1077         /* if bank_id is BANK2 or ALL_BANKS */
1078         if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
1079                 wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
1080
1081         if (wrp2y_sectors_offset > -1) {
1082                 /* get WRP2AR */
1083                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
1084                 if (ret != ERROR_OK)
1085                         return ret;
1086
1087                 /* get WRP2BR */
1088                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
1089                 if (ret != ERROR_OK)
1090                         return ret;
1091         }
1092
1093         return ERROR_OK;
1094 }
1095
1096 static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
1097 {
1098         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1099
1100         int wrp_start = wrpxy->first - wrpxy->offset;
1101         int wrp_end = wrpxy->last - wrpxy->offset;
1102
1103         uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
1104
1105         return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
1106 }
1107
1108 static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
1109 {
1110         int ret;
1111
1112         for (unsigned int i = 0; i < n_wrp; i++) {
1113                 ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
1114                 if (ret != ERROR_OK)
1115                         return ret;
1116         }
1117
1118         return ERROR_OK;
1119 }
1120
1121 static int stm32l4_protect_check(struct flash_bank *bank)
1122 {
1123         unsigned int n_wrp;
1124         struct stm32l4_wrp wrpxy[4];
1125
1126         int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
1127         if (ret != ERROR_OK)
1128                 return ret;
1129
1130         /* initialize all sectors as unprotected */
1131         for (unsigned int i = 0; i < bank->num_sectors; i++)
1132                 bank->sectors[i].is_protected = 0;
1133
1134         /* now check WRPxy and mark the protected sectors */
1135         for (unsigned int i = 0; i < n_wrp; i++) {
1136                 if (wrpxy[i].used) {
1137                         for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
1138                                 bank->sectors[s].is_protected = 1;
1139                 }
1140         }
1141
1142         return ERROR_OK;
1143 }
1144
1145 static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
1146                 unsigned int last)
1147 {
1148         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1149         int retval, retval2;
1150
1151         assert((first <= last) && (last < bank->num_sectors));
1152
1153         if (stm32l4_is_otp(bank)) {
1154                 LOG_ERROR("cannot erase OTP memory");
1155                 return ERROR_FLASH_OPER_UNSUPPORTED;
1156         }
1157
1158         if (bank->target->state != TARGET_HALTED) {
1159                 LOG_ERROR("Target not halted");
1160                 return ERROR_TARGET_NOT_HALTED;
1161         }
1162
1163         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1164                 /* set all FLASH pages as secure */
1165                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1166                 if (retval != ERROR_OK) {
1167                         /* restore all FLASH pages as non-secure */
1168                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1169                         return retval;
1170                 }
1171         }
1172
1173         retval = stm32l4_unlock_reg(bank);
1174         if (retval != ERROR_OK)
1175                 goto err_lock;
1176
1177         /*
1178         Sector Erase
1179         To erase a sector, follow the procedure below:
1180         1. Check that no Flash memory operation is ongoing by
1181            checking the BSY bit in the FLASH_SR register
1182         2. Set the PER bit and select the page and bank
1183            you wish to erase in the FLASH_CR register
1184         3. Set the STRT bit in the FLASH_CR register
1185         4. Wait for the BSY bit to be cleared
1186          */
1187
1188         for (unsigned int i = first; i <= last; i++) {
1189                 uint32_t erase_flags;
1190                 erase_flags = FLASH_PER | FLASH_STRT;
1191
1192                 if (i >= stm32l4_info->bank1_sectors) {
1193                         uint8_t snb;
1194                         snb = i - stm32l4_info->bank1_sectors;
1195                         erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
1196                 } else
1197                         erase_flags |= i << FLASH_PAGE_SHIFT;
1198                 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
1199                 if (retval != ERROR_OK)
1200                         break;
1201
1202                 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1203                 if (retval != ERROR_OK)
1204                         break;
1205         }
1206
1207 err_lock:
1208         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1209
1210         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1211                 /* restore all FLASH pages as non-secure */
1212                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1213                 if (retval3 != ERROR_OK)
1214                         return retval3;
1215         }
1216
1217         if (retval != ERROR_OK)
1218                 return retval;
1219
1220         return retval2;
1221 }
1222
1223 static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
1224 {
1225         struct target *target = bank->target;
1226         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1227         int ret = ERROR_OK;
1228         unsigned int i;
1229
1230         if (stm32l4_is_otp(bank)) {
1231                 LOG_ERROR("cannot protect/unprotect OTP memory");
1232                 return ERROR_FLASH_OPER_UNSUPPORTED;
1233         }
1234
1235         if (target->state != TARGET_HALTED) {
1236                 LOG_ERROR("Target not halted");
1237                 return ERROR_TARGET_NOT_HALTED;
1238         }
1239
1240         /* the requested sectors could be located into bank1 and/or bank2 */
1241         bool use_bank2 = false;
1242         if (last >= stm32l4_info->bank1_sectors) {
1243                 if (first < stm32l4_info->bank1_sectors) {
1244                         /* the requested sectors for (un)protection are shared between
1245                          * bank 1 and 2, then split the operation */
1246
1247                         /*  1- deal with bank 1 sectors */
1248                         LOG_DEBUG("The requested sectors for %s are shared between bank 1 and 2",
1249                                         set ? "protection" : "unprotection");
1250                         ret = stm32l4_protect(bank, set, first, stm32l4_info->bank1_sectors - 1);
1251                         if (ret != ERROR_OK)
1252                                 return ret;
1253
1254                         /*  2- then continue with bank 2 sectors */
1255                         first = stm32l4_info->bank1_sectors;
1256                 }
1257
1258                 use_bank2 = true;
1259         }
1260
1261         /* refresh the sectors' protection */
1262         ret = stm32l4_protect_check(bank);
1263         if (ret != ERROR_OK)
1264                 return ret;
1265
1266         /* check if the desired protection is already configured */
1267         for (i = first; i <= last; i++) {
1268                 if (bank->sectors[i].is_protected != set)
1269                         break;
1270                 else if (i == last) {
1271                         LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
1272                         return ERROR_OK;
1273                 }
1274         }
1275
1276         /* all sectors from first to last (or part of them) could have different
1277          * protection other than the requested */
1278         unsigned int n_wrp;
1279         struct stm32l4_wrp wrpxy[4];
1280
1281         ret = stm32l4_get_all_wrpxy(bank, use_bank2 ? STM32_BANK2 : STM32_BANK1, wrpxy, &n_wrp);
1282         if (ret != ERROR_OK)
1283                 return ret;
1284
1285         /* use bitmap and range helpers to optimize the WRP usage */
1286         DECLARE_BITMAP(pages, bank->num_sectors);
1287         bitmap_zero(pages, bank->num_sectors);
1288
1289         for (i = 0; i < n_wrp; i++) {
1290                 if (wrpxy[i].used) {
1291                         for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
1292                                 set_bit(p, pages);
1293                 }
1294         }
1295
1296         /* we have at most 'n_wrp' WRP areas
1297          * add one range if the user is trying to protect a fifth range */
1298         struct range ranges[n_wrp + 1];
1299         unsigned int ranges_count = 0;
1300
1301         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1302
1303         /* pretty-print the currently protected ranges */
1304         if (ranges_count > 0) {
1305                 char *ranges_str = range_print_alloc(ranges, ranges_count);
1306                 LOG_DEBUG("current protected areas: %s", ranges_str);
1307                 free(ranges_str);
1308         } else
1309                 LOG_DEBUG("current protected areas: none");
1310
1311         if (set) { /* flash protect */
1312                 for (i = first; i <= last; i++)
1313                         set_bit(i, pages);
1314         } else { /* flash unprotect */
1315                 for (i = first; i <= last; i++)
1316                         clear_bit(i, pages);
1317         }
1318
1319         /* check the ranges_count after the user request */
1320         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1321
1322         /* pretty-print the requested areas for protection */
1323         if (ranges_count > 0) {
1324                 char *ranges_str = range_print_alloc(ranges, ranges_count);
1325                 LOG_DEBUG("requested areas for protection: %s", ranges_str);
1326                 free(ranges_str);
1327         } else
1328                 LOG_DEBUG("requested areas for protection: none");
1329
1330         if (ranges_count > n_wrp) {
1331                 LOG_ERROR("cannot set the requested protection "
1332                                 "(only %u write protection areas are available)" , n_wrp);
1333                 return ERROR_FAIL;
1334         }
1335
1336         /* re-init all WRPxy as disabled (first > last)*/
1337         for (i = 0; i < n_wrp; i++) {
1338                 wrpxy[i].first = wrpxy[i].offset + 1;
1339                 wrpxy[i].last = wrpxy[i].offset;
1340         }
1341
1342         /* then configure WRPxy areas */
1343         for (i = 0; i < ranges_count; i++) {
1344                 wrpxy[i].first = ranges[i].start;
1345                 wrpxy[i].last = ranges[i].end;
1346         }
1347
1348         /* finally write WRPxy registers */
1349         return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
1350 }
1351
1352 /* count is the size divided by stm32l4_info->data_width */
1353 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
1354         uint32_t offset, uint32_t count)
1355 {
1356         struct target *target = bank->target;
1357         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1358         struct working_area *write_algorithm;
1359         struct working_area *source;
1360         uint32_t address = bank->base + offset;
1361         struct reg_param reg_params[5];
1362         struct armv7m_algorithm armv7m_info;
1363         int retval = ERROR_OK;
1364
1365         static const uint8_t stm32l4_flash_write_code[] = {
1366 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
1367         };
1368
1369         if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
1370                         &write_algorithm) != ERROR_OK) {
1371                 LOG_WARNING("no working area available, can't do block memory writes");
1372                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1373         }
1374
1375         retval = target_write_buffer(target, write_algorithm->address,
1376                         sizeof(stm32l4_flash_write_code),
1377                         stm32l4_flash_write_code);
1378         if (retval != ERROR_OK) {
1379                 target_free_working_area(target, write_algorithm);
1380                 return retval;
1381         }
1382
1383         /* data_width should be multiple of double-word */
1384         assert(stm32l4_info->data_width % 8 == 0);
1385         const size_t extra_size = sizeof(struct stm32l4_work_area);
1386         uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
1387         /* buffer_size should be multiple of stm32l4_info->data_width */
1388         buffer_size &= ~(stm32l4_info->data_width - 1);
1389
1390         if (buffer_size < 256) {
1391                 LOG_WARNING("large enough working area not available, can't do block memory writes");
1392                 target_free_working_area(target, write_algorithm);
1393                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1394         } else if (buffer_size > 16384) {
1395                 /* probably won't benefit from more than 16k ... */
1396                 buffer_size = 16384;
1397         }
1398
1399         if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
1400                 LOG_ERROR("allocating working area failed");
1401                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1402         }
1403
1404         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1405         armv7m_info.core_mode = ARM_MODE_THREAD;
1406
1407         /* contrib/loaders/flash/stm32/stm32l4x.c:write() arguments */
1408         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* stm32l4_work_area ptr , status (out) */
1409         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer end */
1410         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* target address */
1411         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* count (of stm32l4_info->data_width) */
1412
1413         buf_set_u32(reg_params[0].value, 0, 32, source->address);
1414         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
1415         buf_set_u32(reg_params[2].value, 0, 32, address);
1416         buf_set_u32(reg_params[3].value, 0, 32, count);
1417
1418         /* write algo stack pointer */
1419         init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT);
1420         buf_set_u32(reg_params[4].value, 0, 32, source->address +
1421                         offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);
1422
1423         struct stm32l4_loader_params loader_extra_params;
1424
1425         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
1426                         stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
1427         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
1428                         stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
1429         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
1430                         stm32l4_info->data_width);
1431         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
1432                         stm32l4_info->sr_bsy_mask);
1433
1434         retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
1435                         (uint8_t *) &loader_extra_params);
1436         if (retval != ERROR_OK)
1437                 return retval;
1438
1439         retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
1440                         0, NULL,
1441                         ARRAY_SIZE(reg_params), reg_params,
1442                         source->address + offsetof(struct stm32l4_work_area, fifo),
1443                         source->size - offsetof(struct stm32l4_work_area, fifo),
1444                         write_algorithm->address, 0,
1445                         &armv7m_info);
1446
1447         if (retval == ERROR_FLASH_OPERATION_FAILED) {
1448                 LOG_ERROR("error executing stm32l4 flash write algorithm");
1449
1450                 uint32_t error;
1451                 stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
1452                 error &= FLASH_ERROR;
1453
1454                 if (error & FLASH_WRPERR)
1455                         LOG_ERROR("flash memory write protected");
1456
1457                 if (error != 0) {
1458                         LOG_ERROR("flash write failed = %08" PRIx32, error);
1459                         /* Clear but report errors */
1460                         stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
1461                         retval = ERROR_FAIL;
1462                 }
1463         }
1464
1465         target_free_working_area(target, source);
1466         target_free_working_area(target, write_algorithm);
1467
1468         destroy_reg_param(&reg_params[0]);
1469         destroy_reg_param(&reg_params[1]);
1470         destroy_reg_param(&reg_params[2]);
1471         destroy_reg_param(&reg_params[3]);
1472         destroy_reg_param(&reg_params[4]);
1473
1474         return retval;
1475 }
1476
1477 /* count is the size divided by stm32l4_info->data_width */
1478 static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
1479                                 uint32_t offset, uint32_t count)
1480 {
1481         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1482         struct target *target = bank->target;
1483         uint32_t address = bank->base + offset;
1484         int retval = ERROR_OK;
1485
1486         /* wait for BSY bit */
1487         retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1488         if (retval != ERROR_OK)
1489                 return retval;
1490
1491         /* set PG in FLASH_CR */
1492         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
1493         if (retval != ERROR_OK)
1494                 return retval;
1495
1496
1497         /* write directly to flash memory */
1498         const uint8_t *src = buffer;
1499         const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
1500         while (count--) {
1501                 retval = target_write_memory(target, address, 4, data_width_in_words, src);
1502                 if (retval != ERROR_OK)
1503                         return retval;
1504
1505                 /* wait for BSY bit */
1506                 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1507                 if (retval != ERROR_OK)
1508                         return retval;
1509
1510                 src += stm32l4_info->data_width;
1511                 address += stm32l4_info->data_width;
1512         }
1513
1514         /* reset PG in FLASH_CR */
1515         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
1516         if (retval != ERROR_OK)
1517                 return retval;
1518
1519         return retval;
1520 }
1521
1522 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
1523         uint32_t offset, uint32_t count)
1524 {
1525         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1526         int retval = ERROR_OK, retval2;
1527
1528         if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
1529                 LOG_ERROR("OTP memory is disabled for write commands");
1530                 return ERROR_FAIL;
1531         }
1532
1533         if (bank->target->state != TARGET_HALTED) {
1534                 LOG_ERROR("Target not halted");
1535                 return ERROR_TARGET_NOT_HALTED;
1536         }
1537
1538         /* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
1539         assert(stm32l4_info->data_width % 8 == 0);
1540
1541         /* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
1542          * The flash infrastructure ensures it, do just a security check */
1543         assert(offset % stm32l4_info->data_width == 0);
1544         assert(count % stm32l4_info->data_width == 0);
1545
1546         /* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
1547          * data to be written does not go into a gap:
1548          * suppose buffer is fully contained in bank from sector 0 to sector
1549          * num->sectors - 1 and sectors are ordered according to offset
1550          */
1551         struct flash_sector *head = &bank->sectors[0];
1552         struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
1553
1554         while ((head < tail) && (offset >= (head + 1)->offset)) {
1555                 /* buffer does not intersect head nor gap behind head */
1556                 head++;
1557         }
1558
1559         while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
1560                 /* buffer does not intersect tail nor gap before tail */
1561                 --tail;
1562         }
1563
1564         LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
1565                 offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
1566
1567         /* Now check that there is no gap from head to tail, this should work
1568          * even for multiple or non-symmetric gaps
1569          */
1570         while (head < tail) {
1571                 if (head->offset + head->size != (head + 1)->offset) {
1572                         LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
1573                                 bank->base + head->offset + head->size,
1574                                 bank->base + (head + 1)->offset - 1);
1575                         retval = ERROR_FLASH_DST_OUT_OF_BANK;
1576                 }
1577                 head++;
1578         }
1579
1580         if (retval != ERROR_OK)
1581                 return retval;
1582
1583         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1584                 /* set all FLASH pages as secure */
1585                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1586                 if (retval != ERROR_OK) {
1587                         /* restore all FLASH pages as non-secure */
1588                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1589                         return retval;
1590                 }
1591         }
1592
1593         retval = stm32l4_unlock_reg(bank);
1594         if (retval != ERROR_OK)
1595                 goto err_lock;
1596
1597
1598         /* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
1599          * the debug is possible only in non-secure state.
1600          * Thus means the flashloader will run in non-secure mode,
1601          * and the workarea need to be in non-secure RAM */
1602         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
1603                 LOG_WARNING("RDP = 0x55, the work-area should be in non-secure RAM (check SAU partitioning)");
1604
1605         /* first try to write using the loader, for better performance */
1606         retval = stm32l4_write_block(bank, buffer, offset,
1607                         count / stm32l4_info->data_width);
1608
1609         /* if resources are not available write without a loader */
1610         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1611                 LOG_WARNING("falling back to programming without a flash loader (slower)");
1612                 retval = stm32l4_write_block_without_loader(bank, buffer, offset,
1613                                 count / stm32l4_info->data_width);
1614         }
1615
1616 err_lock:
1617         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1618
1619         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1620                 /* restore all FLASH pages as non-secure */
1621                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1622                 if (retval3 != ERROR_OK)
1623                         return retval3;
1624         }
1625
1626         if (retval != ERROR_OK) {
1627                 LOG_ERROR("block write failed");
1628                 return retval;
1629         }
1630         return retval2;
1631 }
1632
1633 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
1634 {
1635         int retval = ERROR_OK;
1636         struct target *target = bank->target;
1637
1638         /* try reading possible IDCODE registers, in the following order */
1639         uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
1640
1641         for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
1642                 retval = target_read_u32(target, dbgmcu_idcode[i], id);
1643                 if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
1644                         return ERROR_OK;
1645         }
1646
1647         /* Workaround for STM32WL5x devices:
1648          * DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
1649          * to solve this read the UID64 (IEEE 64-bit unique device ID register) */
1650
1651         struct armv7m_common *armv7m = target_to_armv7m_safe(target);
1652         if (!armv7m) {
1653                 LOG_ERROR("Flash requires Cortex-M target");
1654                 return ERROR_TARGET_INVALID;
1655         }
1656
1657         /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1658          * Using HLA adapters armv7m.debug_ap is null, and checking ap_num triggers a segfault */
1659         if (cortex_m_get_partno_safe(target) == CORTEX_M0P_PARTNO &&
1660                         armv7m->debug_ap && armv7m->debug_ap->ap_num == 1) {
1661                 uint32_t uid64_ids;
1662
1663                 /* UID64 is contains
1664                  *  - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
1665                  *  - Bits 31:08 : STID (company ID) = 0x0080E1
1666                  *  - Bits 07:00 : DEVID (device ID) = 0x15
1667                  *
1668                  *  read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
1669                  */
1670                 retval = target_read_u32(target, UID64_IDS, &uid64_ids);
1671                 if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
1672                         /* force the DEV_ID to DEVID_STM32WLE_WL5XX and the REV_ID to unknown */
1673                         *id = DEVID_STM32WLE_WL5XX;
1674                         return ERROR_OK;
1675                 }
1676         }
1677
1678         LOG_ERROR("can't get the device id");
1679         return (retval == ERROR_OK) ? ERROR_FAIL : retval;
1680 }
1681
1682 static const char *get_stm32l4_rev_str(struct flash_bank *bank)
1683 {
1684         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1685         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
1686         assert(part_info);
1687
1688         const uint16_t rev_id = stm32l4_info->idcode >> 16;
1689         for (unsigned int i = 0; i < part_info->num_revs; i++) {
1690                 if (rev_id == part_info->revs[i].rev)
1691                         return part_info->revs[i].str;
1692         }
1693         return "'unknown'";
1694 }
1695
1696 static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
1697 {
1698         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1699         assert(stm32l4_info->part_info);
1700         return stm32l4_is_otp(bank) ? "OTP" :
1701                         stm32l4_info->dual_bank_mode ? "Flash dual" :
1702                         "Flash single";
1703 }
1704
1705 static int stm32l4_probe(struct flash_bank *bank)
1706 {
1707         struct target *target = bank->target;
1708         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1709         const struct stm32l4_part_info *part_info;
1710         uint16_t flash_size_kb = 0xffff;
1711
1712         if (!target_was_examined(target)) {
1713                 LOG_ERROR("Target not examined yet");
1714                 return ERROR_TARGET_NOT_EXAMINED;
1715         }
1716
1717         struct armv7m_common *armv7m = target_to_armv7m_safe(target);
1718         if (!armv7m) {
1719                 LOG_ERROR("Flash requires Cortex-M target");
1720                 return ERROR_TARGET_INVALID;
1721         }
1722
1723         stm32l4_info->probed = false;
1724
1725         /* read stm32 device id registers */
1726         int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
1727         if (retval != ERROR_OK)
1728                 return retval;
1729
1730         const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
1731
1732         for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
1733                 if (device_id == stm32l4_parts[n].id) {
1734                         stm32l4_info->part_info = &stm32l4_parts[n];
1735                         break;
1736                 }
1737         }
1738
1739         if (!stm32l4_info->part_info) {
1740                 LOG_WARNING("Cannot identify target as an %s family device.", device_families);
1741                 return ERROR_FAIL;
1742         }
1743
1744         part_info = stm32l4_info->part_info;
1745         const char *rev_str = get_stm32l4_rev_str(bank);
1746         const uint16_t rev_id = stm32l4_info->idcode >> 16;
1747
1748         LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
1749                         stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
1750
1751         stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
1752         stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
1753         stm32l4_info->cr_bker_mask = FLASH_BKER;
1754         stm32l4_info->sr_bsy_mask = FLASH_BSY;
1755
1756         /* Set flash write alignment boundaries.
1757          * Ask the flash infrastructure to ensure required alignment */
1758         bank->write_start_alignment = bank->write_end_alignment = stm32l4_info->data_width;
1759
1760         /* Initialize the flash registers layout */
1761         if (part_info->flags & F_HAS_L5_FLASH_REGS)
1762                 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
1763         else
1764                 stm32l4_info->flash_regs = stm32l4_flash_regs;
1765
1766         /* read flash option register */
1767         retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
1768         if (retval != ERROR_OK)
1769                 return retval;
1770
1771         stm32l4_sync_rdp_tzen(bank);
1772
1773         /* for devices with TrustZone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
1774         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1775                 if (part_info->flags & F_HAS_L5_FLASH_REGS) {
1776                         stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
1777                         stm32l4_info->flash_regs = stm32l5_s_flash_regs;
1778                 } else {
1779                         LOG_ERROR("BUG: device supported incomplete");
1780                         return ERROR_NOT_IMPLEMENTED;
1781                 }
1782         }
1783
1784         if (part_info->flags & F_HAS_TZ)
1785                 LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
1786                                 stm32l4_info->tzen,
1787                                 stm32l4_info->tzen ? "enabled" : "disabled");
1788
1789         LOG_INFO("RDP level %s (0x%02X)",
1790                         stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
1791                         stm32l4_info->rdp);
1792
1793         if (stm32l4_is_otp(bank)) {
1794                 bank->size = part_info->otp_size;
1795
1796                 LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
1797
1798                 /* OTP memory is considered as one sector */
1799                 free(bank->sectors);
1800                 bank->num_sectors = 1;
1801                 bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
1802
1803                 if (!bank->sectors) {
1804                         LOG_ERROR("failed to allocate bank sectors");
1805                         return ERROR_FAIL;
1806                 }
1807
1808                 stm32l4_info->probed = true;
1809                 return ERROR_OK;
1810         } else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
1811                 LOG_ERROR("invalid bank base address");
1812                 return ERROR_FAIL;
1813         }
1814
1815         /* get flash size from target. */
1816         retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
1817
1818         /* failed reading flash size or flash size invalid (early silicon),
1819          * default to max target family */
1820         if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
1821                         || flash_size_kb > part_info->max_flash_size_kb) {
1822                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1823                         part_info->max_flash_size_kb);
1824                 flash_size_kb = part_info->max_flash_size_kb;
1825         }
1826
1827         /* if the user sets the size manually then ignore the probed value
1828          * this allows us to work around devices that have a invalid flash size register value */
1829         if (stm32l4_info->user_bank_size) {
1830                 LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
1831                 flash_size_kb = stm32l4_info->user_bank_size / 1024;
1832         }
1833
1834         LOG_INFO("flash size = %dkbytes", flash_size_kb);
1835
1836         /* did we assign a flash size? */
1837         assert((flash_size_kb != 0xffff) && flash_size_kb);
1838
1839         const bool is_max_flash_size = flash_size_kb == stm32l4_info->part_info->max_flash_size_kb;
1840
1841         stm32l4_info->bank1_sectors = 0;
1842         stm32l4_info->hole_sectors = 0;
1843
1844         int num_pages = 0;
1845         int page_size_kb = 0;
1846
1847         stm32l4_info->dual_bank_mode = false;
1848
1849         switch (device_id) {
1850         case DEVID_STM32L47_L48XX:
1851         case DEVID_STM32L49_L4AXX:
1852                 /* if flash size is max (1M) the device is always dual bank
1853                  * STM32L47/L48xx: has variants with 512K
1854                  * STM32L49/L4Axx: has variants with 512 and 256
1855                  * for these variants:
1856                  *   if DUAL_BANK = 0 -> single bank
1857                  *   else -> dual bank without gap
1858                  * note: the page size is invariant
1859                  */
1860                 page_size_kb = 2;
1861                 num_pages = flash_size_kb / page_size_kb;
1862                 stm32l4_info->bank1_sectors = num_pages;
1863
1864                 /* check DUAL_BANK option bit if the flash is less than 1M */
1865                 if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) {
1866                         stm32l4_info->dual_bank_mode = true;
1867                         stm32l4_info->bank1_sectors = num_pages / 2;
1868                 }
1869                 break;
1870         case DEVID_STM32L43_L44XX:
1871         case DEVID_STM32G05_G06XX:
1872         case DEVID_STM32G07_G08XX:
1873         case DEVID_STM32L45_L46XX:
1874         case DEVID_STM32L41_L42XX:
1875         case DEVID_STM32G03_G04XX:
1876         case DEVID_STM32G43_G44XX:
1877         case DEVID_STM32G49_G4AXX:
1878         case DEVID_STM32WB1XX:
1879                 /* single bank flash */
1880                 page_size_kb = 2;
1881                 num_pages = flash_size_kb / page_size_kb;
1882                 stm32l4_info->bank1_sectors = num_pages;
1883                 break;
1884         case DEVID_STM32G0B_G0CXX:
1885                 /* single/dual bank depending on DUAL_BANK option bit */
1886                 page_size_kb = 2;
1887                 num_pages = flash_size_kb / page_size_kb;
1888                 stm32l4_info->bank1_sectors = num_pages;
1889                 stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
1890
1891                 /* check DUAL_BANK bit */
1892                 if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) {
1893                         stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
1894                         stm32l4_info->dual_bank_mode = true;
1895                         stm32l4_info->bank1_sectors = num_pages / 2;
1896                 }
1897                 break;
1898         case DEVID_STM32G47_G48XX:
1899                 /* STM32G47/8 can be single/dual bank:
1900                  *   if DUAL_BANK = 0 -> single bank
1901                  *   else -> dual bank WITH gap
1902                  */
1903                 page_size_kb = 4;
1904                 num_pages = flash_size_kb / page_size_kb;
1905                 stm32l4_info->bank1_sectors = num_pages;
1906                 if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) {
1907                         stm32l4_info->dual_bank_mode = true;
1908                         page_size_kb = 2;
1909                         num_pages = flash_size_kb / page_size_kb;
1910                         stm32l4_info->bank1_sectors = num_pages / 2;
1911
1912                         /* for devices with trimmed flash, there is a gap between both banks */
1913                         stm32l4_info->hole_sectors =
1914                                 (part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
1915                 }
1916                 break;
1917         case DEVID_STM32L4R_L4SXX:
1918         case DEVID_STM32L4P_L4QXX:
1919                 /* STM32L4R/S can be single/dual bank:
1920                  *   if size = 2M check DBANK bit
1921                  *   if size = 1M check DB1M bit
1922                  * STM32L4P/Q can be single/dual bank
1923                  *   if size = 1M check DBANK bit
1924                  *   if size = 512K check DB512K bit (same as DB1M bit)
1925                  */
1926                 page_size_kb = 8;
1927                 num_pages = flash_size_kb / page_size_kb;
1928                 stm32l4_info->bank1_sectors = num_pages;
1929                 if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) ||
1930                         (!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) {
1931                         stm32l4_info->dual_bank_mode = true;
1932                         page_size_kb = 4;
1933                         num_pages = flash_size_kb / page_size_kb;
1934                         stm32l4_info->bank1_sectors = num_pages / 2;
1935                 }
1936                 break;
1937         case DEVID_STM32L55_L56XX:
1938                 /* STM32L55/L56xx can be single/dual bank:
1939                  *   if size = 512K check DBANK bit
1940                  *   if size = 256K check DB256K bit
1941                  *
1942                  * default page size is 4kb, if DBANK = 1, the page size is 2kb.
1943                  */
1944
1945                 page_size_kb = (stm32l4_info->optr & FLASH_L5_DBANK) ? 2 : 4;
1946                 num_pages = flash_size_kb / page_size_kb;
1947                 stm32l4_info->bank1_sectors = num_pages;
1948
1949                 if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) ||
1950                         (!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) {
1951                         stm32l4_info->dual_bank_mode = true;
1952                         stm32l4_info->bank1_sectors = num_pages / 2;
1953                 }
1954                 break;
1955         case DEVID_STM32U57_U58XX:
1956                 /* if flash size is max (2M) the device is always dual bank
1957                  * otherwise check DUALBANK
1958                  */
1959                 page_size_kb = 8;
1960                 num_pages = flash_size_kb / page_size_kb;
1961                 stm32l4_info->bank1_sectors = num_pages;
1962                 if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) {
1963                         stm32l4_info->dual_bank_mode = true;
1964                         stm32l4_info->bank1_sectors = num_pages / 2;
1965                 }
1966                 break;
1967         case DEVID_STM32WB5XX:
1968         case DEVID_STM32WB3XX:
1969                 /* single bank flash */
1970                 page_size_kb = 4;
1971                 num_pages = flash_size_kb / page_size_kb;
1972                 stm32l4_info->bank1_sectors = num_pages;
1973                 break;
1974         case DEVID_STM32WLE_WL5XX:
1975                 /* single bank flash */
1976                 page_size_kb = 2;
1977                 num_pages = flash_size_kb / page_size_kb;
1978                 stm32l4_info->bank1_sectors = num_pages;
1979
1980                 /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1981                  * Using HLA adapters armv7m->debug_ap is null, and checking ap_num triggers a segfault */
1982                 if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
1983                         stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
1984                 break;
1985         default:
1986                 LOG_ERROR("unsupported device");
1987                 return ERROR_FAIL;
1988         }
1989
1990         LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
1991
1992         const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
1993
1994         if (gap_size_kb != 0) {
1995                 LOG_INFO("gap detected from 0x%08x to 0x%08x",
1996                         STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
1997                                 * page_size_kb * 1024,
1998                         STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
1999                                 * page_size_kb + gap_size_kb) * 1024 - 1);
2000         }
2001
2002         /* number of significant bits in WRPxxR differs per device,
2003          * always right adjusted, on some devices non-implemented
2004          * bits read as '0', on others as '1' ...
2005          * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
2006          */
2007
2008         /* use *max_flash_size* instead of actual size as the trimmed versions
2009          * certainly use the same number of bits
2010          */
2011         uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
2012
2013         /* in dual bank mode number of pages is doubled, but extra bit is bank selection */
2014         stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
2015         assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
2016         LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
2017
2018         free(bank->sectors);
2019
2020         bank->size = (flash_size_kb + gap_size_kb) * 1024;
2021         bank->num_sectors = num_pages;
2022         bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
2023         if (!bank->sectors) {
2024                 LOG_ERROR("failed to allocate bank sectors");
2025                 return ERROR_FAIL;
2026         }
2027
2028         for (unsigned int i = 0; i < bank->num_sectors; i++) {
2029                 bank->sectors[i].offset = i * page_size_kb * 1024;
2030                 /* in dual bank configuration, if there is a gap between banks
2031                  * we fix up the sector offset to consider this gap */
2032                 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
2033                         bank->sectors[i].offset += gap_size_kb * 1024;
2034                 bank->sectors[i].size = page_size_kb * 1024;
2035                 bank->sectors[i].is_erased = -1;
2036                 bank->sectors[i].is_protected = 1;
2037         }
2038
2039         stm32l4_info->probed = true;
2040         return ERROR_OK;
2041 }
2042
2043 static int stm32l4_auto_probe(struct flash_bank *bank)
2044 {
2045         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2046         if (stm32l4_info->probed) {
2047                 uint32_t optr_cur;
2048
2049                 /* save flash_regs_base */
2050                 uint32_t saved_flash_regs_base = stm32l4_info->flash_regs_base;
2051
2052                 /* for devices with TrustZone, use NS flash registers to read OPTR */
2053                 if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
2054                         stm32l4_info->flash_regs_base &= ~STM32L5_REGS_SEC_OFFSET;
2055
2056                 /* read flash option register and re-probe if optr value is changed */
2057                 int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
2058
2059                 /* restore saved flash_regs_base */
2060                 stm32l4_info->flash_regs_base = saved_flash_regs_base;
2061
2062                 if (retval != ERROR_OK)
2063                         return retval;
2064
2065                 if (stm32l4_info->optr == optr_cur)
2066                         return ERROR_OK;
2067         }
2068
2069         return stm32l4_probe(bank);
2070 }
2071
2072 static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
2073 {
2074         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2075         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
2076
2077         if (part_info) {
2078                 const uint16_t rev_id = stm32l4_info->idcode >> 16;
2079                 command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
2080                                 get_stm32l4_rev_str(bank), rev_id);
2081                 if (stm32l4_info->probed)
2082                         command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
2083         } else {
2084                 command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
2085         }
2086
2087         return ERROR_OK;
2088 }
2089
2090 static int stm32l4_mass_erase(struct flash_bank *bank)
2091 {
2092         int retval, retval2;
2093         struct target *target = bank->target;
2094         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2095
2096         if (stm32l4_is_otp(bank)) {
2097                 LOG_ERROR("cannot erase OTP memory");
2098                 return ERROR_FLASH_OPER_UNSUPPORTED;
2099         }
2100
2101         uint32_t action = FLASH_MER1;
2102
2103         if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
2104                 action |= FLASH_MER2;
2105
2106         if (target->state != TARGET_HALTED) {
2107                 LOG_ERROR("Target not halted");
2108                 return ERROR_TARGET_NOT_HALTED;
2109         }
2110
2111         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2112                 /* set all FLASH pages as secure */
2113                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
2114                 if (retval != ERROR_OK) {
2115                         /* restore all FLASH pages as non-secure */
2116                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
2117                         return retval;
2118                 }
2119         }
2120
2121         retval = stm32l4_unlock_reg(bank);
2122         if (retval != ERROR_OK)
2123                 goto err_lock;
2124
2125         /* mass erase flash memory */
2126         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
2127         if (retval != ERROR_OK)
2128                 goto err_lock;
2129
2130         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
2131         if (retval != ERROR_OK)
2132                 goto err_lock;
2133
2134         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
2135         if (retval != ERROR_OK)
2136                 goto err_lock;
2137
2138         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
2139
2140 err_lock:
2141         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
2142
2143         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2144                 /* restore all FLASH pages as non-secure */
2145                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
2146                 if (retval3 != ERROR_OK)
2147                         return retval3;
2148         }
2149
2150         if (retval != ERROR_OK)
2151                 return retval;
2152
2153         return retval2;
2154 }
2155
2156 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
2157 {
2158         if (CMD_ARGC < 1) {
2159                 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
2160                 return ERROR_COMMAND_SYNTAX_ERROR;
2161         }
2162
2163         struct flash_bank *bank;
2164         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2165         if (retval != ERROR_OK)
2166                 return retval;
2167
2168         retval = stm32l4_mass_erase(bank);
2169         if (retval == ERROR_OK)
2170                 command_print(CMD, "stm32l4x mass erase complete");
2171         else
2172                 command_print(CMD, "stm32l4x mass erase failed");
2173
2174         return retval;
2175 }
2176
2177 COMMAND_HANDLER(stm32l4_handle_option_read_command)
2178 {
2179         if (CMD_ARGC < 2) {
2180                 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
2181                 return ERROR_COMMAND_SYNTAX_ERROR;
2182         }
2183
2184         struct flash_bank *bank;
2185         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2186         if (retval != ERROR_OK)
2187                 return retval;
2188
2189         uint32_t reg_offset, reg_addr;
2190         uint32_t value = 0;
2191
2192         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2193         reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
2194
2195         retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
2196         if (retval != ERROR_OK)
2197                 return retval;
2198
2199         command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
2200
2201         return retval;
2202 }
2203
2204 COMMAND_HANDLER(stm32l4_handle_option_write_command)
2205 {
2206         if (CMD_ARGC < 3) {
2207                 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209         }
2210
2211         struct flash_bank *bank;
2212         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2213         if (retval != ERROR_OK)
2214                 return retval;
2215
2216         uint32_t reg_offset;
2217         uint32_t value = 0;
2218         uint32_t mask = 0xFFFFFFFF;
2219
2220         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2221         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2222
2223         if (CMD_ARGC > 3)
2224                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
2225
2226         command_print(CMD, "%s Option written.\n"
2227                                 "INFO: a reset or power cycle is required "
2228                                 "for the new settings to take effect.", bank->driver->name);
2229
2230         retval = stm32l4_write_option(bank, reg_offset, value, mask);
2231         return retval;
2232 }
2233
2234 COMMAND_HANDLER(stm32l4_handle_trustzone_command)
2235 {
2236         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2237                 return ERROR_COMMAND_SYNTAX_ERROR;
2238
2239         struct flash_bank *bank;
2240         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2241         if (retval != ERROR_OK)
2242                 return retval;
2243
2244         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2245         if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
2246                 LOG_ERROR("This device does not have a TrustZone");
2247                 return ERROR_FAIL;
2248         }
2249
2250         retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
2251         if (retval != ERROR_OK)
2252                 return retval;
2253
2254         stm32l4_sync_rdp_tzen(bank);
2255
2256         if (CMD_ARGC == 1) {
2257                 /* only display the TZEN value */
2258                 LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
2259                 return ERROR_OK;
2260         }
2261
2262         bool new_tzen;
2263         COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
2264
2265         if (new_tzen == stm32l4_info->tzen) {
2266                 LOG_INFO("The requested TZEN is already programmed");
2267                 return ERROR_OK;
2268         }
2269
2270         if (new_tzen) {
2271                 if (stm32l4_info->rdp != RDP_LEVEL_0) {
2272                         LOG_ERROR("TZEN can be set only when RDP level is 0");
2273                         return ERROR_FAIL;
2274                 }
2275                 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2276                                 FLASH_TZEN, FLASH_TZEN);
2277         } else {
2278                 /* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
2279                  * changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
2280                 if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
2281                         LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
2282                         return ERROR_FAIL;
2283                 }
2284
2285                 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2286                                 RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
2287         }
2288
2289         if (retval != ERROR_OK)
2290                 return retval;
2291
2292         return stm32l4_perform_obl_launch(bank);
2293 }
2294
2295 COMMAND_HANDLER(stm32l4_handle_option_load_command)
2296 {
2297         if (CMD_ARGC != 1)
2298                 return ERROR_COMMAND_SYNTAX_ERROR;
2299
2300         struct flash_bank *bank;
2301         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2302         if (retval != ERROR_OK)
2303                 return retval;
2304
2305         retval = stm32l4_perform_obl_launch(bank);
2306         if (retval != ERROR_OK) {
2307                 command_print(CMD, "stm32l4x option load failed");
2308                 return retval;
2309         }
2310
2311
2312         command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
2313
2314         return ERROR_OK;
2315 }
2316
2317 COMMAND_HANDLER(stm32l4_handle_lock_command)
2318 {
2319         struct target *target = NULL;
2320
2321         if (CMD_ARGC < 1)
2322                 return ERROR_COMMAND_SYNTAX_ERROR;
2323
2324         struct flash_bank *bank;
2325         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2326         if (retval != ERROR_OK)
2327                 return retval;
2328
2329         if (stm32l4_is_otp(bank)) {
2330                 LOG_ERROR("cannot lock/unlock OTP memory");
2331                 return ERROR_FLASH_OPER_UNSUPPORTED;
2332         }
2333
2334         target = bank->target;
2335
2336         if (target->state != TARGET_HALTED) {
2337                 LOG_ERROR("Target not halted");
2338                 return ERROR_TARGET_NOT_HALTED;
2339         }
2340
2341         /* set readout protection level 1 by erasing the RDP option byte */
2342         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2343         if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2344                         RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
2345                 command_print(CMD, "%s failed to lock device", bank->driver->name);
2346                 return ERROR_OK;
2347         }
2348
2349         return ERROR_OK;
2350 }
2351
2352 COMMAND_HANDLER(stm32l4_handle_unlock_command)
2353 {
2354         struct target *target = NULL;
2355
2356         if (CMD_ARGC < 1)
2357                 return ERROR_COMMAND_SYNTAX_ERROR;
2358
2359         struct flash_bank *bank;
2360         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2361         if (retval != ERROR_OK)
2362                 return retval;
2363
2364         if (stm32l4_is_otp(bank)) {
2365                 LOG_ERROR("cannot lock/unlock OTP memory");
2366                 return ERROR_FLASH_OPER_UNSUPPORTED;
2367         }
2368
2369         target = bank->target;
2370
2371         if (target->state != TARGET_HALTED) {
2372                 LOG_ERROR("Target not halted");
2373                 return ERROR_TARGET_NOT_HALTED;
2374         }
2375
2376         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2377         if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2378                         RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
2379                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
2380                 return ERROR_OK;
2381         }
2382
2383         return ERROR_OK;
2384 }
2385
2386 COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
2387 {
2388         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2389                 return ERROR_COMMAND_SYNTAX_ERROR;
2390
2391         struct flash_bank *bank;
2392         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2393         if (retval != ERROR_OK)
2394                 return retval;
2395
2396         if (stm32l4_is_otp(bank)) {
2397                 LOG_ERROR("OTP memory does not have write protection areas");
2398                 return ERROR_FLASH_OPER_UNSUPPORTED;
2399         }
2400
2401         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2402         enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
2403         if (CMD_ARGC == 2) {
2404                 if (strcmp(CMD_ARGV[1], "bank1") == 0)
2405                         dev_bank_id = STM32_BANK1;
2406                 else if (strcmp(CMD_ARGV[1], "bank2") == 0)
2407                         dev_bank_id = STM32_BANK2;
2408                 else
2409                         return ERROR_COMMAND_ARGUMENT_INVALID;
2410         }
2411
2412         if (dev_bank_id == STM32_BANK2) {
2413                 if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
2414                         LOG_ERROR("this device has no second bank");
2415                         return ERROR_FAIL;
2416                 } else if (!stm32l4_info->dual_bank_mode) {
2417                         LOG_ERROR("this device is configured in single bank mode");
2418                         return ERROR_FAIL;
2419                 }
2420         }
2421
2422         int ret;
2423         unsigned int n_wrp, i;
2424         struct stm32l4_wrp wrpxy[4];
2425
2426         ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
2427         if (ret != ERROR_OK)
2428                 return ret;
2429
2430         /* use bitmap and range helpers to better describe protected areas */
2431         DECLARE_BITMAP(pages, bank->num_sectors);
2432         bitmap_zero(pages, bank->num_sectors);
2433
2434         for (i = 0; i < n_wrp; i++) {
2435                 if (wrpxy[i].used) {
2436                         for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
2437                                 set_bit(p, pages);
2438                 }
2439         }
2440
2441         /* we have at most 'n_wrp' WRP areas */
2442         struct range ranges[n_wrp];
2443         unsigned int ranges_count = 0;
2444
2445         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
2446
2447         if (ranges_count > 0) {
2448                 /* pretty-print the protected ranges */
2449                 char *ranges_str = range_print_alloc(ranges, ranges_count);
2450                 command_print(CMD, "protected areas: %s", ranges_str);
2451                 free(ranges_str);
2452         } else
2453                 command_print(CMD, "no protected areas");
2454
2455         return ERROR_OK;
2456 }
2457
2458 COMMAND_HANDLER(stm32l4_handle_otp_command)
2459 {
2460         if (CMD_ARGC < 2)
2461                 return ERROR_COMMAND_SYNTAX_ERROR;
2462
2463         struct flash_bank *bank;
2464         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2465         if (retval != ERROR_OK)
2466                 return retval;
2467
2468         if (!stm32l4_is_otp(bank)) {
2469                 command_print(CMD, "the specified bank is not an OTP memory");
2470                 return ERROR_FAIL;
2471         }
2472         if (strcmp(CMD_ARGV[1], "enable") == 0)
2473                 stm32l4_otp_enable(bank, true);
2474         else if (strcmp(CMD_ARGV[1], "disable") == 0)
2475                 stm32l4_otp_enable(bank, false);
2476         else if (strcmp(CMD_ARGV[1], "show") == 0)
2477                 command_print(CMD, "OTP memory bank #%d is %s for write commands.",
2478                                 bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
2479         else
2480                 return ERROR_COMMAND_SYNTAX_ERROR;
2481
2482         return ERROR_OK;
2483 }
2484
2485 static const struct command_registration stm32l4_exec_command_handlers[] = {
2486         {
2487                 .name = "lock",
2488                 .handler = stm32l4_handle_lock_command,
2489                 .mode = COMMAND_EXEC,
2490                 .usage = "bank_id",
2491                 .help = "Lock entire flash device.",
2492         },
2493         {
2494                 .name = "unlock",
2495                 .handler = stm32l4_handle_unlock_command,
2496                 .mode = COMMAND_EXEC,
2497                 .usage = "bank_id",
2498                 .help = "Unlock entire protected flash device.",
2499         },
2500         {
2501                 .name = "mass_erase",
2502                 .handler = stm32l4_handle_mass_erase_command,
2503                 .mode = COMMAND_EXEC,
2504                 .usage = "bank_id",
2505                 .help = "Erase entire flash device.",
2506         },
2507         {
2508                 .name = "option_read",
2509                 .handler = stm32l4_handle_option_read_command,
2510                 .mode = COMMAND_EXEC,
2511                 .usage = "bank_id reg_offset",
2512                 .help = "Read & Display device option bytes.",
2513         },
2514         {
2515                 .name = "option_write",
2516                 .handler = stm32l4_handle_option_write_command,
2517                 .mode = COMMAND_EXEC,
2518                 .usage = "bank_id reg_offset value mask",
2519                 .help = "Write device option bit fields with provided value.",
2520         },
2521         {
2522                 .name = "trustzone",
2523                 .handler = stm32l4_handle_trustzone_command,
2524                 .mode = COMMAND_EXEC,
2525                 .usage = "<bank_id> [enable|disable]",
2526                 .help = "Configure TrustZone security",
2527         },
2528         {
2529                 .name = "wrp_info",
2530                 .handler = stm32l4_handle_wrp_info_command,
2531                 .mode = COMMAND_EXEC,
2532                 .usage = "bank_id [bank1|bank2]",
2533                 .help = "list the protected areas using WRP",
2534         },
2535         {
2536                 .name = "option_load",
2537                 .handler = stm32l4_handle_option_load_command,
2538                 .mode = COMMAND_EXEC,
2539                 .usage = "bank_id",
2540                 .help = "Force re-load of device options (will cause device reset).",
2541         },
2542         {
2543                 .name = "otp",
2544                 .handler = stm32l4_handle_otp_command,
2545                 .mode = COMMAND_EXEC,
2546                 .usage = "<bank_id> <enable|disable|show>",
2547                 .help = "OTP (One Time Programmable) memory write enable/disable",
2548         },
2549         COMMAND_REGISTRATION_DONE
2550 };
2551
2552 static const struct command_registration stm32l4_command_handlers[] = {
2553         {
2554                 .name = "stm32l4x",
2555                 .mode = COMMAND_ANY,
2556                 .help = "stm32l4x flash command group",
2557                 .usage = "",
2558                 .chain = stm32l4_exec_command_handlers,
2559         },
2560         COMMAND_REGISTRATION_DONE
2561 };
2562
2563 const struct flash_driver stm32l4x_flash = {
2564         .name = "stm32l4x",
2565         .commands = stm32l4_command_handlers,
2566         .flash_bank_command = stm32l4_flash_bank_command,
2567         .erase = stm32l4_erase,
2568         .protect = stm32l4_protect,
2569         .write = stm32l4_write,
2570         .read = default_flash_read,
2571         .probe = stm32l4_probe,
2572         .auto_probe = stm32l4_auto_probe,
2573         .erase_check = default_flash_blank_check,
2574         .protect_check = stm32l4_protect_check,
2575         .info = get_stm32l4_info,
2576         .free_driver_priv = default_flash_free_driver_priv,
2577 };