3d1537756074466676a9bd6fde6e4cd0d32ddae5
[fw/openocd] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by Uwe Bonnes                                      *
3  *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
4  *                                                                         *
5  *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
6  *   tarek.bouchkati@gmail.com                                             *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
20  ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/binarybuffer.h>
28 #include <target/algorithm.h>
29 #include <target/armv7m.h>
30 #include "bits.h"
31
32 /* STM32L4xxx series for reference.
33  *
34  * RM0351 (STM32L4x5/STM32L4x6)
35  * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
36  *
37  * RM0394 (STM32L43x/44x/45x/46x)
38  * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
39  *
40  * RM0432 (STM32L4R/4Sxx)
41  * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
42  *
43  * STM32L476RG Datasheet (for erase timing)
44  * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
45  *
46  * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
47  * an option byte is available to map all sectors to the first bank.
48  * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
49  * handlers do!
50  *
51  * RM0394 devices have a single bank only.
52  *
53  * RM0432 devices have single and dual bank operating modes.
54  *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
55  *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
56  * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
57  *
58  * Bank mode is controlled by two different bits in option bytes register.
59  *  - for STM32L4R/Sxx
60  *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
61  *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
62  *  - for STM32L4P5/Q5x
63  *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
64  *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
65  *
66  */
67
68 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
69
70 #define FLASH_ERASE_TIMEOUT 250
71
72 /* Flash registers offsets */
73 #define STM32_FLASH_ACR     0x00
74 #define STM32_FLASH_KEYR    0x08
75 #define STM32_FLASH_OPTKEYR 0x0c
76 #define STM32_FLASH_SR      0x10
77 #define STM32_FLASH_CR      0x14
78 #define STM32_FLASH_OPTR    0x20
79 #define STM32_FLASH_WRP1AR  0x2c
80 #define STM32_FLASH_WRP1BR  0x30
81 #define STM32_FLASH_WRP2AR  0x4c
82 #define STM32_FLASH_WRP2BR  0x50
83
84 /* FLASH_CR register bits */
85 #define FLASH_PG        (1 << 0)
86 #define FLASH_PER       (1 << 1)
87 #define FLASH_MER1      (1 << 2)
88 #define FLASH_PAGE_SHIFT      3
89 #define FLASH_CR_BKER   (1 << 11)
90 #define FLASH_MER2      (1 << 15)
91 #define FLASH_STRT      (1 << 16)
92 #define FLASH_OPTSTRT   (1 << 17)
93 #define FLASH_EOPIE     (1 << 24)
94 #define FLASH_ERRIE     (1 << 25)
95 #define FLASH_OBLLAUNCH (1 << 27)
96 #define FLASH_OPTLOCK   (1 << 30)
97 #define FLASH_LOCK      (1 << 31)
98
99 /* FLASH_SR register bits */
100 #define FLASH_BSY      (1 << 16)
101 /* Fast programming not used => related errors not used*/
102 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
103 #define FLASH_SIZERR   (1 << 6) /* Size error */
104 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
105 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
106 #define FLASH_PROGERR  (1 << 3) /* Programming error */
107 #define FLASH_OPERR    (1 << 1) /* Operation error */
108 #define FLASH_EOP      (1 << 0) /* End of operation */
109 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
110
111 /* register unlock keys */
112 #define KEY1           0x45670123
113 #define KEY2           0xCDEF89AB
114
115 /* option register unlock key */
116 #define OPTKEY1        0x08192A3B
117 #define OPTKEY2        0x4C5D6E7F
118
119 #define RDP_LEVEL_0        0xAA
120 #define RDP_LEVEL_1        0xBB
121 #define RDP_LEVEL_2        0xCC
122
123
124 /* other registers */
125 #define DBGMCU_IDCODE   0xE0042000
126
127
128 struct stm32l4_rev {
129         const uint16_t rev;
130         const char *str;
131 };
132
133 struct stm32l4_part_info {
134         uint16_t id;
135         const char *device_str;
136         const struct stm32l4_rev *revs;
137         const size_t num_revs;
138         const uint16_t max_flash_size_kb;
139         const bool has_dual_bank;
140         const uint32_t flash_regs_base;
141         const uint32_t fsize_addr;
142 };
143
144 struct stm32l4_flash_bank {
145         int probed;
146         uint32_t idcode;
147         int bank1_sectors;
148         bool dual_bank_mode;
149         int hole_sectors;
150         const struct stm32l4_part_info *part_info;
151 };
152
153 static const struct stm32l4_rev stm32_415_revs[] = {
154         { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
155 };
156
157 static const struct stm32l4_rev stm32_435_revs[] = {
158         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
159 };
160
161 static const struct stm32l4_rev stm32_461_revs[] = {
162         { 0x1000, "A" }, { 0x2000, "B" },
163 };
164
165 static const struct stm32l4_rev stm32_462_revs[] = {
166                 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
167 };
168
169 static const struct stm32l4_rev stm32_464_revs[] = {
170         { 0x1000, "A" },
171 };
172
173 static const struct stm32l4_rev stm32_470_revs[] = {
174         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
175 };
176
177 static const struct stm32l4_rev stm32_471_revs[] = {
178         { 0x1000, "1" },
179 };
180
181 static const struct stm32l4_rev stm32_495_revs[] = {
182         { 0x2001, "2.1" },
183 };
184
185 static const struct stm32l4_part_info stm32l4_parts[] = {
186         {
187           .id                    = 0x415,
188           .revs                  = stm32_415_revs,
189           .num_revs              = ARRAY_SIZE(stm32_415_revs),
190           .device_str            = "STM32L47/L48xx",
191           .max_flash_size_kb     = 1024,
192           .has_dual_bank         = true,
193           .flash_regs_base       = 0x40022000,
194           .fsize_addr            = 0x1FFF75E0,
195         },
196         {
197           .id                    = 0x435,
198           .revs                  = stm32_435_revs,
199           .num_revs              = ARRAY_SIZE(stm32_435_revs),
200           .device_str            = "STM32L43/L44xx",
201           .max_flash_size_kb     = 256,
202           .has_dual_bank         = false,
203           .flash_regs_base       = 0x40022000,
204           .fsize_addr            = 0x1FFF75E0,
205         },
206         {
207           .id                    = 0x461,
208           .revs                  = stm32_461_revs,
209           .num_revs              = ARRAY_SIZE(stm32_461_revs),
210           .device_str            = "STM32L49/L4Axx",
211           .max_flash_size_kb     = 1024,
212           .has_dual_bank         = true,
213           .flash_regs_base       = 0x40022000,
214           .fsize_addr            = 0x1FFF75E0,
215         },
216         {
217           .id                    = 0x462,
218           .revs                  = stm32_462_revs,
219           .num_revs              = ARRAY_SIZE(stm32_462_revs),
220           .device_str            = "STM32L45/L46xx",
221           .max_flash_size_kb     = 512,
222           .has_dual_bank         = false,
223           .flash_regs_base       = 0x40022000,
224           .fsize_addr            = 0x1FFF75E0,
225         },
226         {
227           .id                    = 0x464,
228           .revs                  = stm32_464_revs,
229           .num_revs              = ARRAY_SIZE(stm32_464_revs),
230           .device_str            = "STM32L41/L42xx",
231           .max_flash_size_kb     = 128,
232           .has_dual_bank         = false,
233           .flash_regs_base       = 0x40022000,
234           .fsize_addr            = 0x1FFF75E0,
235         },
236         {
237           .id                    = 0x470,
238           .revs                  = stm32_470_revs,
239           .num_revs              = ARRAY_SIZE(stm32_470_revs),
240           .device_str            = "STM32L4R/L4Sxx",
241           .max_flash_size_kb     = 2048,
242           .has_dual_bank         = true,
243           .flash_regs_base       = 0x40022000,
244           .fsize_addr            = 0x1FFF75E0,
245         },
246         {
247           .id                    = 0x471,
248           .revs                  = stm32_471_revs,
249           .num_revs              = ARRAY_SIZE(stm32_471_revs),
250           .device_str            = "STM32L4P5/L4Q5x",
251           .max_flash_size_kb     = 1024,
252           .has_dual_bank         = true,
253           .flash_regs_base       = 0x40022000,
254           .fsize_addr            = 0x1FFF75E0,
255         },
256         {
257           .id                    = 0x495,
258           .revs                  = stm32_495_revs,
259           .num_revs              = ARRAY_SIZE(stm32_495_revs),
260           .device_str            = "STM32WB5x",
261           .max_flash_size_kb     = 1024,
262           .has_dual_bank         = false,
263           .flash_regs_base       = 0x58004000,
264           .fsize_addr            = 0x1FFF75E0,
265         },
266 };
267
268 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
269 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
270 {
271         struct stm32l4_flash_bank *stm32l4_info;
272
273         if (CMD_ARGC < 6)
274                 return ERROR_COMMAND_SYNTAX_ERROR;
275
276         stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
277         if (!stm32l4_info)
278                 return ERROR_FAIL; /* Checkme: What better error to use?*/
279         bank->driver_priv = stm32l4_info;
280
281         stm32l4_info->probed = 0;
282
283         return ERROR_OK;
284 }
285
286 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
287 {
288         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
289         return stm32l4_info->part_info->flash_regs_base + reg_offset;
290 }
291
292 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
293 {
294         return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
295 }
296
297 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
298 {
299         return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
300 }
301
302 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
303 {
304         uint32_t status;
305         int retval = ERROR_OK;
306
307         /* wait for busy to clear */
308         for (;;) {
309                 retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status);
310                 if (retval != ERROR_OK)
311                         return retval;
312                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
313                 if ((status & FLASH_BSY) == 0)
314                         break;
315                 if (timeout-- <= 0) {
316                         LOG_ERROR("timed out waiting for flash");
317                         return ERROR_FAIL;
318                 }
319                 alive_sleep(1);
320         }
321
322
323         if (status & FLASH_WRPERR) {
324                 LOG_ERROR("stm32x device protected");
325                 retval = ERROR_FAIL;
326         }
327
328         /* Clear but report errors */
329         if (status & FLASH_ERROR) {
330                 if (retval == ERROR_OK)
331                         retval = ERROR_FAIL;
332                 /* If this operation fails, we ignore it and report the original
333                  * retval
334                  */
335                 stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR);
336         }
337
338         return retval;
339 }
340
341 static int stm32l4_unlock_reg(struct flash_bank *bank)
342 {
343         uint32_t ctrl;
344
345         /* first check if not already unlocked
346          * otherwise writing on STM32_FLASH_KEYR will fail
347          */
348         int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
349         if (retval != ERROR_OK)
350                 return retval;
351
352         if ((ctrl & FLASH_LOCK) == 0)
353                 return ERROR_OK;
354
355         /* unlock flash registers */
356         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1);
357         if (retval != ERROR_OK)
358                 return retval;
359
360         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
365         if (retval != ERROR_OK)
366                 return retval;
367
368         if (ctrl & FLASH_LOCK) {
369                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
370                 return ERROR_TARGET_FAILURE;
371         }
372
373         return ERROR_OK;
374 }
375
376 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
377 {
378         uint32_t ctrl;
379
380         int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
381         if (retval != ERROR_OK)
382                 return retval;
383
384         if ((ctrl & FLASH_OPTLOCK) == 0)
385                 return ERROR_OK;
386
387         /* unlock option registers */
388         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1);
389         if (retval != ERROR_OK)
390                 return retval;
391
392         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2);
393         if (retval != ERROR_OK)
394                 return retval;
395
396         retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
397         if (retval != ERROR_OK)
398                 return retval;
399
400         if (ctrl & FLASH_OPTLOCK) {
401                 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
402                 return ERROR_TARGET_FAILURE;
403         }
404
405         return ERROR_OK;
406 }
407
408 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
409 {
410         uint32_t optiondata;
411
412         int retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
413         if (retval != ERROR_OK)
414                 return retval;
415
416         retval = stm32l4_unlock_reg(bank);
417         if (retval != ERROR_OK)
418                 return retval;
419
420         retval = stm32l4_unlock_option_reg(bank);
421         if (retval != ERROR_OK)
422                 return retval;
423
424         optiondata = (optiondata & ~mask) | (value & mask);
425
426         retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
427         if (retval != ERROR_OK)
428                 return retval;
429
430         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
431         if (retval != ERROR_OK)
432                 return retval;
433
434         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
435         if (retval != ERROR_OK)
436                 return retval;
437
438         return retval;
439 }
440
441 static int stm32l4_protect_check(struct flash_bank *bank)
442 {
443         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
444
445         uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
446         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
447         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
448         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
449         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
450
451         const uint8_t wrp1a_start = wrp1ar & 0xFF;
452         const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
453         const uint8_t wrp1b_start = wrp1br & 0xFF;
454         const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF;
455         const uint8_t wrp2a_start = wrp2ar & 0xFF;
456         const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF;
457         const uint8_t wrp2b_start = wrp2br & 0xFF;
458         const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
459
460         for (int i = 0; i < bank->num_sectors; i++) {
461                 if (i < stm32l4_info->bank1_sectors) {
462                         if (((i >= wrp1a_start) &&
463                                  (i <= wrp1a_end)) ||
464                                 ((i >= wrp1b_start) &&
465                                  (i <= wrp1b_end)))
466                                 bank->sectors[i].is_protected = 1;
467                         else
468                                 bank->sectors[i].is_protected = 0;
469                 } else {
470                         uint8_t snb;
471                         snb = i - stm32l4_info->bank1_sectors;
472                         if (((snb >= wrp2a_start) &&
473                                  (snb <= wrp2a_end)) ||
474                                 ((snb >= wrp2b_start) &&
475                                  (snb <= wrp2b_end)))
476                                 bank->sectors[i].is_protected = 1;
477                         else
478                                 bank->sectors[i].is_protected = 0;
479                 }
480         }
481         return ERROR_OK;
482 }
483
484 static int stm32l4_erase(struct flash_bank *bank, int first, int last)
485 {
486         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
487         int i;
488         int retval;
489
490         assert(first < bank->num_sectors);
491         assert(last < bank->num_sectors);
492
493         if (bank->target->state != TARGET_HALTED) {
494                 LOG_ERROR("Target not halted");
495                 return ERROR_TARGET_NOT_HALTED;
496         }
497
498         retval = stm32l4_unlock_reg(bank);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         /*
503         Sector Erase
504         To erase a sector, follow the procedure below:
505         1. Check that no Flash memory operation is ongoing by
506        checking the BSY bit in the FLASH_SR register
507         2. Set the PER bit and select the page and bank
508            you wish to erase in the FLASH_CR register
509         3. Set the STRT bit in the FLASH_CR register
510         4. Wait for the BSY bit to be cleared
511          */
512
513         for (i = first; i <= last; i++) {
514                 uint32_t erase_flags;
515                 erase_flags = FLASH_PER | FLASH_STRT;
516
517                 if (i >= stm32l4_info->bank1_sectors) {
518                         uint8_t snb;
519                         snb = i - stm32l4_info->bank1_sectors;
520                         erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
521                 } else
522                         erase_flags |= i << FLASH_PAGE_SHIFT;
523                 retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
524                 if (retval != ERROR_OK)
525                         return retval;
526
527                 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
528                 if (retval != ERROR_OK)
529                         return retval;
530
531                 bank->sectors[i].is_erased = 1;
532         }
533
534         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
535         if (retval != ERROR_OK)
536                 return retval;
537
538         return ERROR_OK;
539 }
540
541 static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
542 {
543         struct target *target = bank->target;
544         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
545
546         if (target->state != TARGET_HALTED) {
547                 LOG_ERROR("Target not halted");
548                 return ERROR_TARGET_NOT_HALTED;
549         }
550
551         int ret = ERROR_OK;
552         /* Bank 2 */
553         uint32_t reg_value = 0xFF; /* Default to bank un-protected */
554         if (last >= stm32l4_info->bank1_sectors) {
555                 if (set == 1) {
556                         uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
557                         reg_value = ((last & 0xFF) << 16) | begin;
558                 }
559
560                 ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff);
561         }
562         /* Bank 1 */
563         reg_value = 0xFF; /* Default to bank un-protected */
564         if (first < stm32l4_info->bank1_sectors) {
565                 if (set == 1) {
566                         uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
567                         reg_value = (end << 16) | (first & 0xFF);
568                 }
569
570                 ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff);
571         }
572
573         return ret;
574 }
575
576 /* Count is in halfwords */
577 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
578                 uint32_t offset, uint32_t count)
579 {
580         struct target *target = bank->target;
581         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
582         uint32_t buffer_size = 16384;
583         struct working_area *write_algorithm;
584         struct working_area *source;
585         uint32_t address = bank->base + offset;
586         struct reg_param reg_params[5];
587         struct armv7m_algorithm armv7m_info;
588         int retval = ERROR_OK;
589
590         static const uint8_t stm32l4_flash_write_code[] = {
591 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
592         };
593
594         if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
595                         &write_algorithm) != ERROR_OK) {
596                 LOG_WARNING("no working area available, can't do block memory writes");
597                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
598         }
599
600         retval = target_write_buffer(target, write_algorithm->address,
601                         sizeof(stm32l4_flash_write_code),
602                         stm32l4_flash_write_code);
603         if (retval != ERROR_OK) {
604                 target_free_working_area(target, write_algorithm);
605                 return retval;
606         }
607
608         /* memory buffer */
609         while (target_alloc_working_area_try(target, buffer_size, &source) !=
610                    ERROR_OK) {
611                 buffer_size /= 2;
612                 if (buffer_size <= 256) {
613                         /* we already allocated the writing code, but failed to get a
614                          * buffer, free the algorithm */
615                         target_free_working_area(target, write_algorithm);
616
617                         LOG_WARNING("large enough working area not available, can't do block memory writes");
618                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
619                 }
620         }
621
622         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
623         armv7m_info.core_mode = ARM_MODE_THREAD;
624
625         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
626         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer end */
627         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* target address */
628         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* count (double word-64bit) */
629         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);    /* flash base */
630
631         buf_set_u32(reg_params[0].value, 0, 32, source->address);
632         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
633         buf_set_u32(reg_params[2].value, 0, 32, address);
634         buf_set_u32(reg_params[3].value, 0, 32, count / 4);
635         buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base);
636
637         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
638                         0, NULL,
639                         5, reg_params,
640                         source->address, source->size,
641                         write_algorithm->address, 0,
642                         &armv7m_info);
643
644         if (retval == ERROR_FLASH_OPERATION_FAILED) {
645                 LOG_ERROR("error executing stm32l4 flash write algorithm");
646
647                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
648
649                 if (error & FLASH_WRPERR)
650                         LOG_ERROR("flash memory write protected");
651
652                 if (error != 0) {
653                         LOG_ERROR("flash write failed = %08" PRIx32, error);
654                         /* Clear but report errors */
655                         stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error);
656                         retval = ERROR_FAIL;
657                 }
658         }
659
660         target_free_working_area(target, source);
661         target_free_working_area(target, write_algorithm);
662
663         destroy_reg_param(&reg_params[0]);
664         destroy_reg_param(&reg_params[1]);
665         destroy_reg_param(&reg_params[2]);
666         destroy_reg_param(&reg_params[3]);
667         destroy_reg_param(&reg_params[4]);
668
669         return retval;
670 }
671
672 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
673                 uint32_t offset, uint32_t count)
674 {
675         int retval;
676
677         if (bank->target->state != TARGET_HALTED) {
678                 LOG_ERROR("Target not halted");
679                 return ERROR_TARGET_NOT_HALTED;
680         }
681
682         if (offset & 0x7) {
683                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment",
684                                         offset);
685                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
686         }
687
688         if (count & 0x7) {
689                 LOG_WARNING("Padding %d bytes to keep 8-byte write size",
690                                         count & 7);
691                 count = (count + 7) & ~7;
692                 /* This pads the write chunk with random bytes by overrunning the
693                  * write buffer. Padding with the erased pattern 0xff is purely
694                  * cosmetical, as 8-byte flash words are ECC secured and the first
695                  * write will program the ECC bits. A second write would need
696                  * to reprogramm these ECC bits.
697                  * But this can only be done after erase!
698                  */
699         }
700
701         retval = stm32l4_unlock_reg(bank);
702         if (retval != ERROR_OK)
703                 return retval;
704
705         /* Only full double words (8-byte) can be programmed*/
706         retval = stm32l4_write_block(bank, buffer, offset, count / 2);
707         if (retval != ERROR_OK) {
708                 LOG_WARNING("block write failed");
709                 return retval;
710         }
711
712         LOG_WARNING("block write succeeded");
713         return stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
714 }
715
716 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
717 {
718         int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id);
719         if (retval != ERROR_OK)
720                 return retval;
721
722         return retval;
723 }
724
725 static int stm32l4_probe(struct flash_bank *bank)
726 {
727         struct target *target = bank->target;
728         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
729         const struct stm32l4_part_info *part_info;
730         int i;
731         uint16_t flash_size_in_kb = 0xffff;
732         uint32_t device_id;
733         uint32_t options;
734
735         stm32l4_info->probed = 0;
736
737         /* read stm32 device id register */
738         int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
739         if (retval != ERROR_OK)
740                 return retval;
741
742         device_id = stm32l4_info->idcode & 0xFFF;
743
744         for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
745                 if (device_id == stm32l4_parts[n].id)
746                         stm32l4_info->part_info = &stm32l4_parts[n];
747         }
748
749         if (!stm32l4_info->part_info) {
750                 LOG_WARNING("Cannot identify target as an STM32 L4 or WB family device.");
751                 return ERROR_FAIL;
752         }
753
754         part_info = stm32l4_info->part_info;
755
756         char device_info[1024];
757         retval = bank->driver->info(bank, device_info, sizeof(device_info));
758         if (retval != ERROR_OK)
759                 return retval;
760
761         LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
762
763         /* get flash size from target. */
764         retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb);
765
766         /* failed reading flash size or flash size invalid (early silicon),
767          * default to max target family */
768         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0
769                         || flash_size_in_kb > part_info->max_flash_size_kb) {
770                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
771                         part_info->max_flash_size_kb);
772                 flash_size_in_kb = part_info->max_flash_size_kb;
773         }
774
775         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
776
777         /* did we assign a flash size? */
778         assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
779
780         /* read flash option register */
781         retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
782         if (retval != ERROR_OK)
783                 return retval;
784
785         stm32l4_info->bank1_sectors = 0;
786         stm32l4_info->hole_sectors = 0;
787
788         int num_pages = 0;
789         int page_size = 0;
790
791         stm32l4_info->dual_bank_mode = false;
792
793         switch (device_id) {
794         case 0x415:
795         case 0x461:
796                 /* if flash size is max (1M) the device is always dual bank
797                  * 0x415: has variants with 512K
798                  * 0x461: has variants with 512 and 256
799                  * for these variants:
800                  *   if DUAL_BANK = 0 -> single bank
801                  *   else -> dual bank without gap
802                  * note: the page size is invariant
803                  */
804                 page_size = 2048;
805                 num_pages = flash_size_in_kb / 2;
806                 stm32l4_info->bank1_sectors = num_pages;
807
808                 /* check DUAL_BANK bit[21] if the flash is less than 1M */
809                 if (flash_size_in_kb == 1024 || (options & BIT(21))) {
810                         stm32l4_info->dual_bank_mode = true;
811                         stm32l4_info->bank1_sectors = num_pages / 2;
812                 }
813                 break;
814         case 0x435:
815         case 0x462:
816         case 0x464:
817                 /* single bank flash */
818                 page_size = 2048;
819                 num_pages = flash_size_in_kb / 2;
820                 stm32l4_info->bank1_sectors = num_pages;
821                 break;
822         case 0x470:
823         case 0x471:
824                 /* STM32L4R/S can be single/dual bank:
825                  *   if size = 2M check DBANK bit(22)
826                  *   if size = 1M check DB1M bit(21)
827                  * STM32L4P/Q can be single/dual bank
828                  *   if size = 1M check DBANK bit(22)
829                  *   if size = 512K check DB512K bit(21)
830                  * in single bank configuration the page size is 8K
831                  * else (dual bank) the page size is 4K without gap between banks
832                  */
833                 page_size = 8192;
834                 num_pages = flash_size_in_kb / 8;
835                 stm32l4_info->bank1_sectors = num_pages;
836                 const bool use_dbank_bit = flash_size_in_kb == part_info->max_flash_size_kb;
837                 if ((use_dbank_bit && (options & BIT(22))) ||
838                         (!use_dbank_bit && (options & BIT(21)))) {
839                         stm32l4_info->dual_bank_mode = true;
840                         page_size = 4096;
841                         num_pages = flash_size_in_kb / 4;
842                         stm32l4_info->bank1_sectors = num_pages / 2;
843                 }
844                 break;
845         case 0x495:
846                 /* single bank flash */
847                 page_size = 4096;
848                 num_pages = flash_size_in_kb / 4;
849                 stm32l4_info->bank1_sectors = num_pages;
850                 break;
851         default:
852                 LOG_ERROR("unsupported device");
853                 return ERROR_FAIL;
854         }
855
856         LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
857
858         const int gap_size = stm32l4_info->hole_sectors * page_size;
859
860         if (stm32l4_info->dual_bank_mode & gap_size) {
861                 LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32,
862                                 0x8000000 + stm32l4_info->bank1_sectors * page_size,
863                                 0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size);
864         }
865
866         if (bank->sectors) {
867                 free(bank->sectors);
868                 bank->sectors = NULL;
869         }
870
871         bank->size = flash_size_in_kb * 1024 + gap_size;
872         bank->base = 0x08000000;
873         bank->num_sectors = num_pages;
874         bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
875         if (bank->sectors == NULL) {
876                 LOG_ERROR("failed to allocate bank sectors");
877                 return ERROR_FAIL;
878         }
879
880         for (i = 0; i < bank->num_sectors; i++) {
881                 bank->sectors[i].offset = i * page_size;
882                 /* in dual bank configuration, if there is a gap between banks
883                  * we fix up the sector offset to consider this gap */
884                 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
885                         bank->sectors[i].offset += gap_size;
886                 bank->sectors[i].size = page_size;
887                 bank->sectors[i].is_erased = -1;
888                 bank->sectors[i].is_protected = 1;
889         }
890
891         stm32l4_info->probed = 1;
892         return ERROR_OK;
893 }
894
895 static int stm32l4_auto_probe(struct flash_bank *bank)
896 {
897         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
898         if (stm32l4_info->probed)
899                 return ERROR_OK;
900
901         return stm32l4_probe(bank);
902 }
903
904 static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
905 {
906         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
907         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
908
909         if (part_info) {
910                 const char *rev_str = NULL;
911                 uint16_t rev_id = stm32l4_info->idcode >> 16;
912                 for (unsigned int i = 0; i < part_info->num_revs; i++) {
913                         if (rev_id == part_info->revs[i].rev) {
914                                 rev_str = part_info->revs[i].str;
915
916                                 if (rev_str != NULL) {
917                                         snprintf(buf, buf_size, "%s - Rev: %s",
918                                                         part_info->device_str, rev_str);
919                                         return ERROR_OK;
920                                 }
921                         }
922                 }
923
924                 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)",
925                                 part_info->device_str, rev_id);
926                 return ERROR_OK;
927         } else {
928                 snprintf(buf, buf_size, "Cannot identify target as an STM32 L4 or WB device");
929                 return ERROR_FAIL;
930         }
931
932         return ERROR_OK;
933 }
934
935 static int stm32l4_mass_erase(struct flash_bank *bank)
936 {
937         int retval;
938         struct target *target = bank->target;
939         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
940
941         uint32_t action = FLASH_MER1;
942
943         if (stm32l4_info->part_info->has_dual_bank)
944                 action |= FLASH_MER2;
945
946         if (target->state != TARGET_HALTED) {
947                 LOG_ERROR("Target not halted");
948                 return ERROR_TARGET_NOT_HALTED;
949         }
950
951         retval = stm32l4_unlock_reg(bank);
952         if (retval != ERROR_OK)
953                 return retval;
954
955         /* mass erase flash memory */
956         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
957         if (retval != ERROR_OK)
958                 return retval;
959
960         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
961         if (retval != ERROR_OK)
962                 return retval;
963         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
964         if (retval != ERROR_OK)
965                 return retval;
966
967         retval = stm32l4_wait_status_busy(bank,  FLASH_ERASE_TIMEOUT);
968         if (retval != ERROR_OK)
969                 return retval;
970
971         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
972         if (retval != ERROR_OK)
973                 return retval;
974
975         return ERROR_OK;
976 }
977
978 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
979 {
980         int i;
981
982         if (CMD_ARGC < 1) {
983                 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
984                 return ERROR_COMMAND_SYNTAX_ERROR;
985         }
986
987         struct flash_bank *bank;
988         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
989         if (ERROR_OK != retval)
990                 return retval;
991
992         retval = stm32l4_mass_erase(bank);
993         if (retval == ERROR_OK) {
994                 /* set all sectors as erased */
995                 for (i = 0; i < bank->num_sectors; i++)
996                         bank->sectors[i].is_erased = 1;
997
998                 command_print(CMD, "stm32l4x mass erase complete");
999         } else {
1000                 command_print(CMD, "stm32l4x mass erase failed");
1001         }
1002
1003         return retval;
1004 }
1005
1006 COMMAND_HANDLER(stm32l4_handle_option_read_command)
1007 {
1008         if (CMD_ARGC < 2) {
1009                 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
1010                 return ERROR_COMMAND_SYNTAX_ERROR;
1011         }
1012
1013         struct flash_bank *bank;
1014         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1015         if (ERROR_OK != retval)
1016                 return retval;
1017
1018         uint32_t reg_offset, reg_addr;
1019         uint32_t value = 0;
1020
1021         reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
1022         reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
1023
1024         retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
1025         if (ERROR_OK != retval)
1026                 return retval;
1027
1028         command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
1029
1030         return retval;
1031 }
1032
1033 COMMAND_HANDLER(stm32l4_handle_option_write_command)
1034 {
1035         if (CMD_ARGC < 3) {
1036                 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
1037                 return ERROR_COMMAND_SYNTAX_ERROR;
1038         }
1039
1040         struct flash_bank *bank;
1041         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1042         if (ERROR_OK != retval)
1043                 return retval;
1044
1045         uint32_t reg_offset;
1046         uint32_t value = 0;
1047         uint32_t mask = 0xFFFFFFFF;
1048
1049         reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
1050         value = strtoul(CMD_ARGV[2], NULL, 16);
1051         if (CMD_ARGC > 3)
1052                 mask = strtoul(CMD_ARGV[3], NULL, 16);
1053
1054         command_print(CMD, "%s Option written.\n"
1055                                 "INFO: a reset or power cycle is required "
1056                                 "for the new settings to take effect.", bank->driver->name);
1057
1058         retval = stm32l4_write_option(bank, reg_offset, value, mask);
1059         return retval;
1060 }
1061
1062 COMMAND_HANDLER(stm32l4_handle_option_load_command)
1063 {
1064         if (CMD_ARGC < 1)
1065                 return ERROR_COMMAND_SYNTAX_ERROR;
1066
1067         struct flash_bank *bank;
1068         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1069         if (ERROR_OK != retval)
1070                 return retval;
1071
1072         retval = stm32l4_unlock_reg(bank);
1073         if (ERROR_OK != retval)
1074                 return retval;
1075
1076         retval = stm32l4_unlock_option_reg(bank);
1077         if (ERROR_OK != retval)
1078                 return retval;
1079
1080         /* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
1081         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH);
1082
1083         command_print(CMD, "stm32l4x option load (POR) completed.");
1084         return retval;
1085 }
1086
1087 COMMAND_HANDLER(stm32l4_handle_lock_command)
1088 {
1089         struct target *target = NULL;
1090
1091         if (CMD_ARGC < 1)
1092                 return ERROR_COMMAND_SYNTAX_ERROR;
1093
1094         struct flash_bank *bank;
1095         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1096         if (ERROR_OK != retval)
1097                 return retval;
1098
1099         target = bank->target;
1100
1101         if (target->state != TARGET_HALTED) {
1102                 LOG_ERROR("Target not halted");
1103                 return ERROR_TARGET_NOT_HALTED;
1104         }
1105
1106         /* set readout protection level 1 by erasing the RDP option byte */
1107         if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) {
1108                 command_print(CMD, "%s failed to lock device", bank->driver->name);
1109                 return ERROR_OK;
1110         }
1111
1112         return ERROR_OK;
1113 }
1114
1115 COMMAND_HANDLER(stm32l4_handle_unlock_command)
1116 {
1117         struct target *target = NULL;
1118
1119         if (CMD_ARGC < 1)
1120                 return ERROR_COMMAND_SYNTAX_ERROR;
1121
1122         struct flash_bank *bank;
1123         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1124         if (ERROR_OK != retval)
1125                 return retval;
1126
1127         target = bank->target;
1128
1129         if (target->state != TARGET_HALTED) {
1130                 LOG_ERROR("Target not halted");
1131                 return ERROR_TARGET_NOT_HALTED;
1132         }
1133
1134         if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
1135                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1136                 return ERROR_OK;
1137         }
1138
1139         return ERROR_OK;
1140 }
1141
1142 static const struct command_registration stm32l4_exec_command_handlers[] = {
1143         {
1144                 .name = "lock",
1145                 .handler = stm32l4_handle_lock_command,
1146                 .mode = COMMAND_EXEC,
1147                 .usage = "bank_id",
1148                 .help = "Lock entire flash device.",
1149         },
1150         {
1151                 .name = "unlock",
1152                 .handler = stm32l4_handle_unlock_command,
1153                 .mode = COMMAND_EXEC,
1154                 .usage = "bank_id",
1155                 .help = "Unlock entire protected flash device.",
1156         },
1157         {
1158                 .name = "mass_erase",
1159                 .handler = stm32l4_handle_mass_erase_command,
1160                 .mode = COMMAND_EXEC,
1161                 .usage = "bank_id",
1162                 .help = "Erase entire flash device.",
1163         },
1164         {
1165                 .name = "option_read",
1166                 .handler = stm32l4_handle_option_read_command,
1167                 .mode = COMMAND_EXEC,
1168                 .usage = "bank_id reg_offset",
1169                 .help = "Read & Display device option bytes.",
1170         },
1171         {
1172                 .name = "option_write",
1173                 .handler = stm32l4_handle_option_write_command,
1174                 .mode = COMMAND_EXEC,
1175                 .usage = "bank_id reg_offset value mask",
1176                 .help = "Write device option bit fields with provided value.",
1177         },
1178         {
1179                 .name = "option_load",
1180                 .handler = stm32l4_handle_option_load_command,
1181                 .mode = COMMAND_EXEC,
1182                 .usage = "bank_id",
1183                 .help = "Force re-load of device options (will cause device reset).",
1184         },
1185         COMMAND_REGISTRATION_DONE
1186 };
1187
1188 static const struct command_registration stm32l4_command_handlers[] = {
1189         {
1190                 .name = "stm32l4x",
1191                 .mode = COMMAND_ANY,
1192                 .help = "stm32l4x flash command group",
1193                 .usage = "",
1194                 .chain = stm32l4_exec_command_handlers,
1195         },
1196         COMMAND_REGISTRATION_DONE
1197 };
1198
1199 const struct flash_driver stm32l4x_flash = {
1200         .name = "stm32l4x",
1201         .commands = stm32l4_command_handlers,
1202         .flash_bank_command = stm32l4_flash_bank_command,
1203         .erase = stm32l4_erase,
1204         .protect = stm32l4_protect,
1205         .write = stm32l4_write,
1206         .read = default_flash_read,
1207         .probe = stm32l4_probe,
1208         .auto_probe = stm32l4_auto_probe,
1209         .erase_check = default_flash_blank_check,
1210         .protect_check = stm32l4_protect_check,
1211         .info = get_stm32l4_info,
1212         .free_driver_priv = default_flash_free_driver_priv,
1213 };