1b54193c2fe818e65514325dcc334899d59ff89b
[fw/openocd] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by Uwe Bonnes                                      *
3  *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
4  *                                                                         *
5  *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
6  *   tarek.bouchkati@gmail.com                                             *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
20  ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/binarybuffer.h>
28 #include <target/algorithm.h>
29 #include <target/armv7m.h>
30 #include "bits.h"
31
32 /* STM32L4xxx series for reference.
33  *
34  * RM0351 (STM32L4x5/STM32L4x6)
35  * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
36  *
37  * RM0394 (STM32L43x/44x/45x/46x)
38  * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
39  *
40  * RM0432 (STM32L4R/4Sxx)
41  * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
42  *
43  * STM32L476RG Datasheet (for erase timing)
44  * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
45  *
46  * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
47  * an option byte is available to map all sectors to the first bank.
48  * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
49  * handlers do!
50  *
51  * RM0394 devices have a single bank only.
52  *
53  * RM0432 devices have single and dual bank operating modes.
54  *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
55  *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
56  * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
57  *
58  * Bank mode is controlled by two different bits in option bytes register.
59  *  - for STM32L4R/Sxx
60  *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
61  *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
62  *  - for STM32L4P5/Q5x
63  *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
64  *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
65  *
66  */
67
68 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
69
70 #define FLASH_ERASE_TIMEOUT 250
71
72 /* Flash registers offsets */
73 #define STM32_FLASH_ACR     0x00
74 #define STM32_FLASH_KEYR    0x08
75 #define STM32_FLASH_OPTKEYR 0x0c
76 #define STM32_FLASH_SR      0x10
77 #define STM32_FLASH_CR      0x14
78 #define STM32_FLASH_OPTR    0x20
79 #define STM32_FLASH_WRP1AR  0x2c
80 #define STM32_FLASH_WRP1BR  0x30
81 #define STM32_FLASH_WRP2AR  0x4c
82 #define STM32_FLASH_WRP2BR  0x50
83
84 /* FLASH_CR register bits */
85 #define FLASH_PG        (1 << 0)
86 #define FLASH_PER       (1 << 1)
87 #define FLASH_MER1      (1 << 2)
88 #define FLASH_PAGE_SHIFT      3
89 #define FLASH_CR_BKER   (1 << 11)
90 #define FLASH_MER2      (1 << 15)
91 #define FLASH_STRT      (1 << 16)
92 #define FLASH_OPTSTRT   (1 << 17)
93 #define FLASH_EOPIE     (1 << 24)
94 #define FLASH_ERRIE     (1 << 25)
95 #define FLASH_OBLLAUNCH (1 << 27)
96 #define FLASH_OPTLOCK   (1 << 30)
97 #define FLASH_LOCK      (1 << 31)
98
99 /* FLASH_SR register bits */
100 #define FLASH_BSY      (1 << 16)
101 /* Fast programming not used => related errors not used*/
102 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
103 #define FLASH_SIZERR   (1 << 6) /* Size error */
104 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
105 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
106 #define FLASH_PROGERR  (1 << 3) /* Programming error */
107 #define FLASH_OPERR    (1 << 1) /* Operation error */
108 #define FLASH_EOP      (1 << 0) /* End of operation */
109 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
110
111 /* register unlock keys */
112 #define KEY1           0x45670123
113 #define KEY2           0xCDEF89AB
114
115 /* option register unlock key */
116 #define OPTKEY1        0x08192A3B
117 #define OPTKEY2        0x4C5D6E7F
118
119 #define RDP_LEVEL_0        0xAA
120 #define RDP_LEVEL_1        0xBB
121 #define RDP_LEVEL_2        0xCC
122
123
124 /* other registers */
125 #define DBGMCU_IDCODE   0xE0042000
126
127
128 struct stm32l4_rev {
129         const uint16_t rev;
130         const char *str;
131 };
132
133 struct stm32l4_part_info {
134         uint16_t id;
135         const char *device_str;
136         const struct stm32l4_rev *revs;
137         const size_t num_revs;
138         const uint16_t max_flash_size_kb;
139         const bool has_dual_bank;
140         const uint32_t flash_regs_base;
141         const uint32_t fsize_addr;
142 };
143
144 struct stm32l4_flash_bank {
145         int probed;
146         uint32_t idcode;
147         int bank1_sectors;
148         bool dual_bank_mode;
149         int hole_sectors;
150         const struct stm32l4_part_info *part_info;
151 };
152
153 static const struct stm32l4_rev stm32_415_revs[] = {
154         { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
155 };
156
157 static const struct stm32l4_rev stm32_435_revs[] = {
158         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
159 };
160
161 static const struct stm32l4_rev stm32_461_revs[] = {
162         { 0x1000, "A" }, { 0x2000, "B" },
163 };
164
165 static const struct stm32l4_rev stm32_462_revs[] = {
166                 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
167 };
168
169 static const struct stm32l4_rev stm32_464_revs[] = {
170         { 0x1000, "A" },
171 };
172
173 static const struct stm32l4_rev stm32_470_revs[] = {
174         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
175 };
176
177 static const struct stm32l4_rev stm32_471_revs[] = {
178         { 0x1000, "1" },
179 };
180
181 static const struct stm32l4_rev stm32_495_revs[] = {
182         { 0x2001, "2.1" },
183 };
184
185 static const struct stm32l4_part_info stm32l4_parts[] = {
186         {
187           .id                    = 0x415,
188           .revs                  = stm32_415_revs,
189           .num_revs              = ARRAY_SIZE(stm32_415_revs),
190           .device_str            = "STM32L47/L48xx",
191           .max_flash_size_kb     = 1024,
192           .has_dual_bank         = true,
193           .flash_regs_base       = 0x40022000,
194           .fsize_addr            = 0x1FFF75E0,
195         },
196         {
197           .id                    = 0x435,
198           .revs                  = stm32_435_revs,
199           .num_revs              = ARRAY_SIZE(stm32_435_revs),
200           .device_str            = "STM32L43/L44xx",
201           .max_flash_size_kb     = 256,
202           .has_dual_bank         = false,
203           .flash_regs_base       = 0x40022000,
204           .fsize_addr            = 0x1FFF75E0,
205         },
206         {
207           .id                    = 0x461,
208           .revs                  = stm32_461_revs,
209           .num_revs              = ARRAY_SIZE(stm32_461_revs),
210           .device_str            = "STM32L49/L4Axx",
211           .max_flash_size_kb     = 1024,
212           .has_dual_bank         = true,
213           .flash_regs_base       = 0x40022000,
214           .fsize_addr            = 0x1FFF75E0,
215         },
216         {
217           .id                    = 0x462,
218           .revs                  = stm32_462_revs,
219           .num_revs              = ARRAY_SIZE(stm32_462_revs),
220           .device_str            = "STM32L45/L46xx",
221           .max_flash_size_kb     = 512,
222           .has_dual_bank         = false,
223           .flash_regs_base       = 0x40022000,
224           .fsize_addr            = 0x1FFF75E0,
225         },
226         {
227           .id                    = 0x464,
228           .revs                  = stm32_464_revs,
229           .num_revs              = ARRAY_SIZE(stm32_464_revs),
230           .device_str            = "STM32L41/L42xx",
231           .max_flash_size_kb     = 128,
232           .has_dual_bank         = false,
233           .flash_regs_base       = 0x40022000,
234           .fsize_addr            = 0x1FFF75E0,
235         },
236         {
237           .id                    = 0x470,
238           .revs                  = stm32_470_revs,
239           .num_revs              = ARRAY_SIZE(stm32_470_revs),
240           .device_str            = "STM32L4R/L4Sxx",
241           .max_flash_size_kb     = 2048,
242           .has_dual_bank         = true,
243           .flash_regs_base       = 0x40022000,
244           .fsize_addr            = 0x1FFF75E0,
245         },
246         {
247           .id                    = 0x471,
248           .revs                  = stm32_471_revs,
249           .num_revs              = ARRAY_SIZE(stm32_471_revs),
250           .device_str            = "STM32L4P5/L4Q5x",
251           .max_flash_size_kb     = 1024,
252           .has_dual_bank         = true,
253           .flash_regs_base       = 0x40022000,
254           .fsize_addr            = 0x1FFF75E0,
255         },
256         {
257           .id                    = 0x495,
258           .revs                  = stm32_495_revs,
259           .num_revs              = ARRAY_SIZE(stm32_495_revs),
260           .device_str            = "STM32WB5x",
261           .max_flash_size_kb     = 1024,
262           .has_dual_bank         = false,
263           .flash_regs_base       = 0x58004000,
264           .fsize_addr            = 0x1FFF75E0,
265         },
266 };
267
268 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
269 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
270 {
271         struct stm32l4_flash_bank *stm32l4_info;
272
273         if (CMD_ARGC < 6)
274                 return ERROR_COMMAND_SYNTAX_ERROR;
275
276         stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
277         if (!stm32l4_info)
278                 return ERROR_FAIL; /* Checkme: What better error to use?*/
279         bank->driver_priv = stm32l4_info;
280
281         /* The flash write must be aligned to a double word (8-bytes) boundary.
282          * Ask the flash infrastructure to ensure required alignment */
283         bank->write_start_alignment = bank->write_end_alignment = 8;
284
285         stm32l4_info->probed = 0;
286
287         return ERROR_OK;
288 }
289
290 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
291 {
292         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
293         return stm32l4_info->part_info->flash_regs_base + reg_offset;
294 }
295
296 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
297 {
298         return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
299 }
300
301 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
302 {
303         return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
304 }
305
306 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
307 {
308         uint32_t status;
309         int retval = ERROR_OK;
310
311         /* wait for busy to clear */
312         for (;;) {
313                 retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status);
314                 if (retval != ERROR_OK)
315                         return retval;
316                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
317                 if ((status & FLASH_BSY) == 0)
318                         break;
319                 if (timeout-- <= 0) {
320                         LOG_ERROR("timed out waiting for flash");
321                         return ERROR_FAIL;
322                 }
323                 alive_sleep(1);
324         }
325
326
327         if (status & FLASH_WRPERR) {
328                 LOG_ERROR("stm32x device protected");
329                 retval = ERROR_FAIL;
330         }
331
332         /* Clear but report errors */
333         if (status & FLASH_ERROR) {
334                 if (retval == ERROR_OK)
335                         retval = ERROR_FAIL;
336                 /* If this operation fails, we ignore it and report the original
337                  * retval
338                  */
339                 stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR);
340         }
341
342         return retval;
343 }
344
345 static int stm32l4_unlock_reg(struct flash_bank *bank)
346 {
347         uint32_t ctrl;
348
349         /* first check if not already unlocked
350          * otherwise writing on STM32_FLASH_KEYR will fail
351          */
352         int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
353         if (retval != ERROR_OK)
354                 return retval;
355
356         if ((ctrl & FLASH_LOCK) == 0)
357                 return ERROR_OK;
358
359         /* unlock flash registers */
360         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2);
365         if (retval != ERROR_OK)
366                 return retval;
367
368         retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
369         if (retval != ERROR_OK)
370                 return retval;
371
372         if (ctrl & FLASH_LOCK) {
373                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
374                 return ERROR_TARGET_FAILURE;
375         }
376
377         return ERROR_OK;
378 }
379
380 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
381 {
382         uint32_t ctrl;
383
384         int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
385         if (retval != ERROR_OK)
386                 return retval;
387
388         if ((ctrl & FLASH_OPTLOCK) == 0)
389                 return ERROR_OK;
390
391         /* unlock option registers */
392         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1);
393         if (retval != ERROR_OK)
394                 return retval;
395
396         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2);
397         if (retval != ERROR_OK)
398                 return retval;
399
400         retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
401         if (retval != ERROR_OK)
402                 return retval;
403
404         if (ctrl & FLASH_OPTLOCK) {
405                 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
406                 return ERROR_TARGET_FAILURE;
407         }
408
409         return ERROR_OK;
410 }
411
412 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
413 {
414         uint32_t optiondata;
415
416         int retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
417         if (retval != ERROR_OK)
418                 return retval;
419
420         retval = stm32l4_unlock_reg(bank);
421         if (retval != ERROR_OK)
422                 return retval;
423
424         retval = stm32l4_unlock_option_reg(bank);
425         if (retval != ERROR_OK)
426                 return retval;
427
428         optiondata = (optiondata & ~mask) | (value & mask);
429
430         retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
431         if (retval != ERROR_OK)
432                 return retval;
433
434         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
435         if (retval != ERROR_OK)
436                 return retval;
437
438         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
439         if (retval != ERROR_OK)
440                 return retval;
441
442         return retval;
443 }
444
445 static int stm32l4_protect_check(struct flash_bank *bank)
446 {
447         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
448
449         uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
450         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
451         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
452         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
453         stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
454
455         const uint8_t wrp1a_start = wrp1ar & 0xFF;
456         const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
457         const uint8_t wrp1b_start = wrp1br & 0xFF;
458         const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF;
459         const uint8_t wrp2a_start = wrp2ar & 0xFF;
460         const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF;
461         const uint8_t wrp2b_start = wrp2br & 0xFF;
462         const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
463
464         for (int i = 0; i < bank->num_sectors; i++) {
465                 if (i < stm32l4_info->bank1_sectors) {
466                         if (((i >= wrp1a_start) &&
467                                  (i <= wrp1a_end)) ||
468                                 ((i >= wrp1b_start) &&
469                                  (i <= wrp1b_end)))
470                                 bank->sectors[i].is_protected = 1;
471                         else
472                                 bank->sectors[i].is_protected = 0;
473                 } else {
474                         uint8_t snb;
475                         snb = i - stm32l4_info->bank1_sectors;
476                         if (((snb >= wrp2a_start) &&
477                                  (snb <= wrp2a_end)) ||
478                                 ((snb >= wrp2b_start) &&
479                                  (snb <= wrp2b_end)))
480                                 bank->sectors[i].is_protected = 1;
481                         else
482                                 bank->sectors[i].is_protected = 0;
483                 }
484         }
485         return ERROR_OK;
486 }
487
488 static int stm32l4_erase(struct flash_bank *bank, int first, int last)
489 {
490         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
491         int i;
492         int retval;
493
494         assert(first < bank->num_sectors);
495         assert(last < bank->num_sectors);
496
497         if (bank->target->state != TARGET_HALTED) {
498                 LOG_ERROR("Target not halted");
499                 return ERROR_TARGET_NOT_HALTED;
500         }
501
502         retval = stm32l4_unlock_reg(bank);
503         if (retval != ERROR_OK)
504                 return retval;
505
506         /*
507         Sector Erase
508         To erase a sector, follow the procedure below:
509         1. Check that no Flash memory operation is ongoing by
510        checking the BSY bit in the FLASH_SR register
511         2. Set the PER bit and select the page and bank
512            you wish to erase in the FLASH_CR register
513         3. Set the STRT bit in the FLASH_CR register
514         4. Wait for the BSY bit to be cleared
515          */
516
517         for (i = first; i <= last; i++) {
518                 uint32_t erase_flags;
519                 erase_flags = FLASH_PER | FLASH_STRT;
520
521                 if (i >= stm32l4_info->bank1_sectors) {
522                         uint8_t snb;
523                         snb = i - stm32l4_info->bank1_sectors;
524                         erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
525                 } else
526                         erase_flags |= i << FLASH_PAGE_SHIFT;
527                 retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
528                 if (retval != ERROR_OK)
529                         return retval;
530
531                 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
532                 if (retval != ERROR_OK)
533                         return retval;
534
535                 bank->sectors[i].is_erased = 1;
536         }
537
538         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
539         if (retval != ERROR_OK)
540                 return retval;
541
542         return ERROR_OK;
543 }
544
545 static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
546 {
547         struct target *target = bank->target;
548         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
549
550         if (target->state != TARGET_HALTED) {
551                 LOG_ERROR("Target not halted");
552                 return ERROR_TARGET_NOT_HALTED;
553         }
554
555         int ret = ERROR_OK;
556         /* Bank 2 */
557         uint32_t reg_value = 0xFF; /* Default to bank un-protected */
558         if (last >= stm32l4_info->bank1_sectors) {
559                 if (set == 1) {
560                         uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
561                         reg_value = ((last & 0xFF) << 16) | begin;
562                 }
563
564                 ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff);
565         }
566         /* Bank 1 */
567         reg_value = 0xFF; /* Default to bank un-protected */
568         if (first < stm32l4_info->bank1_sectors) {
569                 if (set == 1) {
570                         uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
571                         reg_value = (end << 16) | (first & 0xFF);
572                 }
573
574                 ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff);
575         }
576
577         return ret;
578 }
579
580 /* Count is in halfwords */
581 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
582                 uint32_t offset, uint32_t count)
583 {
584         struct target *target = bank->target;
585         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
586         uint32_t buffer_size = 16384;
587         struct working_area *write_algorithm;
588         struct working_area *source;
589         uint32_t address = bank->base + offset;
590         struct reg_param reg_params[5];
591         struct armv7m_algorithm armv7m_info;
592         int retval = ERROR_OK;
593
594         static const uint8_t stm32l4_flash_write_code[] = {
595 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
596         };
597
598         if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
599                         &write_algorithm) != ERROR_OK) {
600                 LOG_WARNING("no working area available, can't do block memory writes");
601                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
602         }
603
604         retval = target_write_buffer(target, write_algorithm->address,
605                         sizeof(stm32l4_flash_write_code),
606                         stm32l4_flash_write_code);
607         if (retval != ERROR_OK) {
608                 target_free_working_area(target, write_algorithm);
609                 return retval;
610         }
611
612         /* memory buffer */
613         while (target_alloc_working_area_try(target, buffer_size, &source) !=
614                    ERROR_OK) {
615                 buffer_size /= 2;
616                 if (buffer_size <= 256) {
617                         /* we already allocated the writing code, but failed to get a
618                          * buffer, free the algorithm */
619                         target_free_working_area(target, write_algorithm);
620
621                         LOG_WARNING("large enough working area not available, can't do block memory writes");
622                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
623                 }
624         }
625
626         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
627         armv7m_info.core_mode = ARM_MODE_THREAD;
628
629         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
630         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer end */
631         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* target address */
632         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* count (double word-64bit) */
633         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);    /* flash base */
634
635         buf_set_u32(reg_params[0].value, 0, 32, source->address);
636         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
637         buf_set_u32(reg_params[2].value, 0, 32, address);
638         buf_set_u32(reg_params[3].value, 0, 32, count / 4);
639         buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base);
640
641         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
642                         0, NULL,
643                         5, reg_params,
644                         source->address, source->size,
645                         write_algorithm->address, 0,
646                         &armv7m_info);
647
648         if (retval == ERROR_FLASH_OPERATION_FAILED) {
649                 LOG_ERROR("error executing stm32l4 flash write algorithm");
650
651                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
652
653                 if (error & FLASH_WRPERR)
654                         LOG_ERROR("flash memory write protected");
655
656                 if (error != 0) {
657                         LOG_ERROR("flash write failed = %08" PRIx32, error);
658                         /* Clear but report errors */
659                         stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error);
660                         retval = ERROR_FAIL;
661                 }
662         }
663
664         target_free_working_area(target, source);
665         target_free_working_area(target, write_algorithm);
666
667         destroy_reg_param(&reg_params[0]);
668         destroy_reg_param(&reg_params[1]);
669         destroy_reg_param(&reg_params[2]);
670         destroy_reg_param(&reg_params[3]);
671         destroy_reg_param(&reg_params[4]);
672
673         return retval;
674 }
675
676 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
677                 uint32_t offset, uint32_t count)
678 {
679         int retval;
680
681         if (bank->target->state != TARGET_HALTED) {
682                 LOG_ERROR("Target not halted");
683                 return ERROR_TARGET_NOT_HALTED;
684         }
685
686         /* The flash write must be aligned to a double word (8-bytes) boundary.
687          * The flash infrastructure ensures it, do just a security check */
688         assert(offset % 8 == 0);
689         assert(count % 8 == 0);
690
691         retval = stm32l4_unlock_reg(bank);
692         if (retval != ERROR_OK)
693                 return retval;
694
695         retval = stm32l4_write_block(bank, buffer, offset, count / 2);
696         if (retval != ERROR_OK) {
697                 LOG_WARNING("block write failed");
698                 return retval;
699         }
700
701         LOG_WARNING("block write succeeded");
702         return stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
703 }
704
705 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
706 {
707         int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id);
708         if (retval != ERROR_OK)
709                 return retval;
710
711         return retval;
712 }
713
714 static int stm32l4_probe(struct flash_bank *bank)
715 {
716         struct target *target = bank->target;
717         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
718         const struct stm32l4_part_info *part_info;
719         int i;
720         uint16_t flash_size_in_kb = 0xffff;
721         uint32_t device_id;
722         uint32_t options;
723
724         stm32l4_info->probed = 0;
725
726         /* read stm32 device id register */
727         int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
728         if (retval != ERROR_OK)
729                 return retval;
730
731         device_id = stm32l4_info->idcode & 0xFFF;
732
733         for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
734                 if (device_id == stm32l4_parts[n].id)
735                         stm32l4_info->part_info = &stm32l4_parts[n];
736         }
737
738         if (!stm32l4_info->part_info) {
739                 LOG_WARNING("Cannot identify target as an STM32 L4 or WB family device.");
740                 return ERROR_FAIL;
741         }
742
743         part_info = stm32l4_info->part_info;
744
745         char device_info[1024];
746         retval = bank->driver->info(bank, device_info, sizeof(device_info));
747         if (retval != ERROR_OK)
748                 return retval;
749
750         LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
751
752         /* get flash size from target. */
753         retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb);
754
755         /* failed reading flash size or flash size invalid (early silicon),
756          * default to max target family */
757         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0
758                         || flash_size_in_kb > part_info->max_flash_size_kb) {
759                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
760                         part_info->max_flash_size_kb);
761                 flash_size_in_kb = part_info->max_flash_size_kb;
762         }
763
764         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
765
766         /* did we assign a flash size? */
767         assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
768
769         /* read flash option register */
770         retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
771         if (retval != ERROR_OK)
772                 return retval;
773
774         stm32l4_info->bank1_sectors = 0;
775         stm32l4_info->hole_sectors = 0;
776
777         int num_pages = 0;
778         int page_size = 0;
779
780         stm32l4_info->dual_bank_mode = false;
781
782         switch (device_id) {
783         case 0x415:
784         case 0x461:
785                 /* if flash size is max (1M) the device is always dual bank
786                  * 0x415: has variants with 512K
787                  * 0x461: has variants with 512 and 256
788                  * for these variants:
789                  *   if DUAL_BANK = 0 -> single bank
790                  *   else -> dual bank without gap
791                  * note: the page size is invariant
792                  */
793                 page_size = 2048;
794                 num_pages = flash_size_in_kb / 2;
795                 stm32l4_info->bank1_sectors = num_pages;
796
797                 /* check DUAL_BANK bit[21] if the flash is less than 1M */
798                 if (flash_size_in_kb == 1024 || (options & BIT(21))) {
799                         stm32l4_info->dual_bank_mode = true;
800                         stm32l4_info->bank1_sectors = num_pages / 2;
801                 }
802                 break;
803         case 0x435:
804         case 0x462:
805         case 0x464:
806                 /* single bank flash */
807                 page_size = 2048;
808                 num_pages = flash_size_in_kb / 2;
809                 stm32l4_info->bank1_sectors = num_pages;
810                 break;
811         case 0x470:
812         case 0x471:
813                 /* STM32L4R/S can be single/dual bank:
814                  *   if size = 2M check DBANK bit(22)
815                  *   if size = 1M check DB1M bit(21)
816                  * STM32L4P/Q can be single/dual bank
817                  *   if size = 1M check DBANK bit(22)
818                  *   if size = 512K check DB512K bit(21)
819                  * in single bank configuration the page size is 8K
820                  * else (dual bank) the page size is 4K without gap between banks
821                  */
822                 page_size = 8192;
823                 num_pages = flash_size_in_kb / 8;
824                 stm32l4_info->bank1_sectors = num_pages;
825                 const bool use_dbank_bit = flash_size_in_kb == part_info->max_flash_size_kb;
826                 if ((use_dbank_bit && (options & BIT(22))) ||
827                         (!use_dbank_bit && (options & BIT(21)))) {
828                         stm32l4_info->dual_bank_mode = true;
829                         page_size = 4096;
830                         num_pages = flash_size_in_kb / 4;
831                         stm32l4_info->bank1_sectors = num_pages / 2;
832                 }
833                 break;
834         case 0x495:
835                 /* single bank flash */
836                 page_size = 4096;
837                 num_pages = flash_size_in_kb / 4;
838                 stm32l4_info->bank1_sectors = num_pages;
839                 break;
840         default:
841                 LOG_ERROR("unsupported device");
842                 return ERROR_FAIL;
843         }
844
845         LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
846
847         const int gap_size = stm32l4_info->hole_sectors * page_size;
848
849         if (stm32l4_info->dual_bank_mode & gap_size) {
850                 LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32,
851                                 0x8000000 + stm32l4_info->bank1_sectors * page_size,
852                                 0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size);
853         }
854
855         if (bank->sectors) {
856                 free(bank->sectors);
857                 bank->sectors = NULL;
858         }
859
860         bank->size = flash_size_in_kb * 1024 + gap_size;
861         bank->base = 0x08000000;
862         bank->num_sectors = num_pages;
863         bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
864         if (bank->sectors == NULL) {
865                 LOG_ERROR("failed to allocate bank sectors");
866                 return ERROR_FAIL;
867         }
868
869         for (i = 0; i < bank->num_sectors; i++) {
870                 bank->sectors[i].offset = i * page_size;
871                 /* in dual bank configuration, if there is a gap between banks
872                  * we fix up the sector offset to consider this gap */
873                 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
874                         bank->sectors[i].offset += gap_size;
875                 bank->sectors[i].size = page_size;
876                 bank->sectors[i].is_erased = -1;
877                 bank->sectors[i].is_protected = 1;
878         }
879
880         stm32l4_info->probed = 1;
881         return ERROR_OK;
882 }
883
884 static int stm32l4_auto_probe(struct flash_bank *bank)
885 {
886         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
887         if (stm32l4_info->probed)
888                 return ERROR_OK;
889
890         return stm32l4_probe(bank);
891 }
892
893 static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
894 {
895         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
896         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
897
898         if (part_info) {
899                 const char *rev_str = NULL;
900                 uint16_t rev_id = stm32l4_info->idcode >> 16;
901                 for (unsigned int i = 0; i < part_info->num_revs; i++) {
902                         if (rev_id == part_info->revs[i].rev) {
903                                 rev_str = part_info->revs[i].str;
904
905                                 if (rev_str != NULL) {
906                                         snprintf(buf, buf_size, "%s - Rev: %s",
907                                                         part_info->device_str, rev_str);
908                                         return ERROR_OK;
909                                 }
910                         }
911                 }
912
913                 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)",
914                                 part_info->device_str, rev_id);
915                 return ERROR_OK;
916         } else {
917                 snprintf(buf, buf_size, "Cannot identify target as an STM32 L4 or WB device");
918                 return ERROR_FAIL;
919         }
920
921         return ERROR_OK;
922 }
923
924 static int stm32l4_mass_erase(struct flash_bank *bank)
925 {
926         int retval;
927         struct target *target = bank->target;
928         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
929
930         uint32_t action = FLASH_MER1;
931
932         if (stm32l4_info->part_info->has_dual_bank)
933                 action |= FLASH_MER2;
934
935         if (target->state != TARGET_HALTED) {
936                 LOG_ERROR("Target not halted");
937                 return ERROR_TARGET_NOT_HALTED;
938         }
939
940         retval = stm32l4_unlock_reg(bank);
941         if (retval != ERROR_OK)
942                 return retval;
943
944         /* mass erase flash memory */
945         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
946         if (retval != ERROR_OK)
947                 return retval;
948
949         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
950         if (retval != ERROR_OK)
951                 return retval;
952         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
953         if (retval != ERROR_OK)
954                 return retval;
955
956         retval = stm32l4_wait_status_busy(bank,  FLASH_ERASE_TIMEOUT);
957         if (retval != ERROR_OK)
958                 return retval;
959
960         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
961         if (retval != ERROR_OK)
962                 return retval;
963
964         return ERROR_OK;
965 }
966
967 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
968 {
969         int i;
970
971         if (CMD_ARGC < 1) {
972                 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
973                 return ERROR_COMMAND_SYNTAX_ERROR;
974         }
975
976         struct flash_bank *bank;
977         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
978         if (ERROR_OK != retval)
979                 return retval;
980
981         retval = stm32l4_mass_erase(bank);
982         if (retval == ERROR_OK) {
983                 /* set all sectors as erased */
984                 for (i = 0; i < bank->num_sectors; i++)
985                         bank->sectors[i].is_erased = 1;
986
987                 command_print(CMD, "stm32l4x mass erase complete");
988         } else {
989                 command_print(CMD, "stm32l4x mass erase failed");
990         }
991
992         return retval;
993 }
994
995 COMMAND_HANDLER(stm32l4_handle_option_read_command)
996 {
997         if (CMD_ARGC < 2) {
998                 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
999                 return ERROR_COMMAND_SYNTAX_ERROR;
1000         }
1001
1002         struct flash_bank *bank;
1003         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1004         if (ERROR_OK != retval)
1005                 return retval;
1006
1007         uint32_t reg_offset, reg_addr;
1008         uint32_t value = 0;
1009
1010         reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
1011         reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
1012
1013         retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
1014         if (ERROR_OK != retval)
1015                 return retval;
1016
1017         command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
1018
1019         return retval;
1020 }
1021
1022 COMMAND_HANDLER(stm32l4_handle_option_write_command)
1023 {
1024         if (CMD_ARGC < 3) {
1025                 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
1026                 return ERROR_COMMAND_SYNTAX_ERROR;
1027         }
1028
1029         struct flash_bank *bank;
1030         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1031         if (ERROR_OK != retval)
1032                 return retval;
1033
1034         uint32_t reg_offset;
1035         uint32_t value = 0;
1036         uint32_t mask = 0xFFFFFFFF;
1037
1038         reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
1039         value = strtoul(CMD_ARGV[2], NULL, 16);
1040         if (CMD_ARGC > 3)
1041                 mask = strtoul(CMD_ARGV[3], NULL, 16);
1042
1043         command_print(CMD, "%s Option written.\n"
1044                                 "INFO: a reset or power cycle is required "
1045                                 "for the new settings to take effect.", bank->driver->name);
1046
1047         retval = stm32l4_write_option(bank, reg_offset, value, mask);
1048         return retval;
1049 }
1050
1051 COMMAND_HANDLER(stm32l4_handle_option_load_command)
1052 {
1053         if (CMD_ARGC < 1)
1054                 return ERROR_COMMAND_SYNTAX_ERROR;
1055
1056         struct flash_bank *bank;
1057         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1058         if (ERROR_OK != retval)
1059                 return retval;
1060
1061         retval = stm32l4_unlock_reg(bank);
1062         if (ERROR_OK != retval)
1063                 return retval;
1064
1065         retval = stm32l4_unlock_option_reg(bank);
1066         if (ERROR_OK != retval)
1067                 return retval;
1068
1069         /* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
1070         retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH);
1071
1072         command_print(CMD, "stm32l4x option load (POR) completed.");
1073         return retval;
1074 }
1075
1076 COMMAND_HANDLER(stm32l4_handle_lock_command)
1077 {
1078         struct target *target = NULL;
1079
1080         if (CMD_ARGC < 1)
1081                 return ERROR_COMMAND_SYNTAX_ERROR;
1082
1083         struct flash_bank *bank;
1084         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1085         if (ERROR_OK != retval)
1086                 return retval;
1087
1088         target = bank->target;
1089
1090         if (target->state != TARGET_HALTED) {
1091                 LOG_ERROR("Target not halted");
1092                 return ERROR_TARGET_NOT_HALTED;
1093         }
1094
1095         /* set readout protection level 1 by erasing the RDP option byte */
1096         if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) {
1097                 command_print(CMD, "%s failed to lock device", bank->driver->name);
1098                 return ERROR_OK;
1099         }
1100
1101         return ERROR_OK;
1102 }
1103
1104 COMMAND_HANDLER(stm32l4_handle_unlock_command)
1105 {
1106         struct target *target = NULL;
1107
1108         if (CMD_ARGC < 1)
1109                 return ERROR_COMMAND_SYNTAX_ERROR;
1110
1111         struct flash_bank *bank;
1112         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1113         if (ERROR_OK != retval)
1114                 return retval;
1115
1116         target = bank->target;
1117
1118         if (target->state != TARGET_HALTED) {
1119                 LOG_ERROR("Target not halted");
1120                 return ERROR_TARGET_NOT_HALTED;
1121         }
1122
1123         if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
1124                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1125                 return ERROR_OK;
1126         }
1127
1128         return ERROR_OK;
1129 }
1130
1131 static const struct command_registration stm32l4_exec_command_handlers[] = {
1132         {
1133                 .name = "lock",
1134                 .handler = stm32l4_handle_lock_command,
1135                 .mode = COMMAND_EXEC,
1136                 .usage = "bank_id",
1137                 .help = "Lock entire flash device.",
1138         },
1139         {
1140                 .name = "unlock",
1141                 .handler = stm32l4_handle_unlock_command,
1142                 .mode = COMMAND_EXEC,
1143                 .usage = "bank_id",
1144                 .help = "Unlock entire protected flash device.",
1145         },
1146         {
1147                 .name = "mass_erase",
1148                 .handler = stm32l4_handle_mass_erase_command,
1149                 .mode = COMMAND_EXEC,
1150                 .usage = "bank_id",
1151                 .help = "Erase entire flash device.",
1152         },
1153         {
1154                 .name = "option_read",
1155                 .handler = stm32l4_handle_option_read_command,
1156                 .mode = COMMAND_EXEC,
1157                 .usage = "bank_id reg_offset",
1158                 .help = "Read & Display device option bytes.",
1159         },
1160         {
1161                 .name = "option_write",
1162                 .handler = stm32l4_handle_option_write_command,
1163                 .mode = COMMAND_EXEC,
1164                 .usage = "bank_id reg_offset value mask",
1165                 .help = "Write device option bit fields with provided value.",
1166         },
1167         {
1168                 .name = "option_load",
1169                 .handler = stm32l4_handle_option_load_command,
1170                 .mode = COMMAND_EXEC,
1171                 .usage = "bank_id",
1172                 .help = "Force re-load of device options (will cause device reset).",
1173         },
1174         COMMAND_REGISTRATION_DONE
1175 };
1176
1177 static const struct command_registration stm32l4_command_handlers[] = {
1178         {
1179                 .name = "stm32l4x",
1180                 .mode = COMMAND_ANY,
1181                 .help = "stm32l4x flash command group",
1182                 .usage = "",
1183                 .chain = stm32l4_exec_command_handlers,
1184         },
1185         COMMAND_REGISTRATION_DONE
1186 };
1187
1188 const struct flash_driver stm32l4x_flash = {
1189         .name = "stm32l4x",
1190         .commands = stm32l4_command_handlers,
1191         .flash_bank_command = stm32l4_flash_bank_command,
1192         .erase = stm32l4_erase,
1193         .protect = stm32l4_protect,
1194         .write = stm32l4_write,
1195         .read = default_flash_read,
1196         .probe = stm32l4_probe,
1197         .auto_probe = stm32l4_auto_probe,
1198         .erase_check = default_flash_blank_check,
1199         .protect_check = stm32l4_protect_check,
1200         .info = get_stm32l4_info,
1201         .free_driver_priv = default_flash_free_driver_priv,
1202 };