0182aae6600e601f0fca5bfc53f896d7f6db68ce
[fw/openocd] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by Uwe Bonnes                                      *
3  *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
4  *                                                                         *
5  *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
6  *   tarek.bouchkati@gmail.com                                             *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
20  ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/align.h>
28 #include <helper/binarybuffer.h>
29 #include <target/algorithm.h>
30 #include <target/cortex_m.h>
31 #include "bits.h"
32 #include "stm32l4x.h"
33
34 /* STM32L4xxx series for reference.
35  *
36  * RM0351 (STM32L4x5/STM32L4x6)
37  * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
38  *
39  * RM0394 (STM32L43x/44x/45x/46x)
40  * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
41  *
42  * RM0432 (STM32L4R/4Sxx)
43  * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
44  *
45  * STM32L476RG Datasheet (for erase timing)
46  * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
47  *
48  * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
49  * an option byte is available to map all sectors to the first bank.
50  * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
51  * handlers do!
52  *
53  * RM0394 devices have a single bank only.
54  *
55  * RM0432 devices have single and dual bank operating modes.
56  *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
57  *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
58  * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
59  *
60  * Bank mode is controlled by two different bits in option bytes register.
61  *  - for STM32L4R/Sxx
62  *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
63  *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
64  *  - for STM32L4P5/Q5x
65  *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
66  *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
67  */
68
69 /* STM32WBxxx series for reference.
70  *
71  * RM0434 (STM32WB55/WB35x)
72  * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
73  *
74  * RM0471 (STM32WB50/WB30x)
75  * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
76  *
77  * RM0473 (STM32WB15x)
78  * http://www.st.com/resource/en/reference_manual/dm00649196.pdf
79  *
80  * RM0478 (STM32WB10x)
81  * http://www.st.com/resource/en/reference_manual/dm00689203.pdf
82  */
83
84 /* STM32WLxxx series for reference.
85  *
86  * RM0461 (STM32WLEx)
87  * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
88  *
89  * RM0453 (STM32WL5x)
90  * http://www.st.com/resource/en/reference_manual/dm00451556.pdf
91  */
92
93 /* STM32G0xxx series for reference.
94  *
95  * RM0444 (STM32G0x1)
96  * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
97  *
98  * RM0454 (STM32G0x0)
99  * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
100  */
101
102 /* STM32G4xxx series for reference.
103  *
104  * RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
105  * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
106  *
107  * Cat. 2 devices have single bank only, page size is 2kByte.
108  *
109  * Cat. 3 devices have single and dual bank operating modes,
110  * Page size is 2kByte (dual mode) or 4kByte (single mode).
111  *
112  * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
113  * Both banks are treated as a single OpenOCD bank.
114  *
115  * Cat. 4 devices have single bank only, page size is 2kByte.
116  */
117
118 /* STM32L5xxx series for reference.
119  *
120  * RM0428 (STM32L552xx/STM32L562xx)
121  * http://www.st.com/resource/en/reference_manual/dm00346336.pdf
122  */
123
124 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
125
126 #define FLASH_ERASE_TIMEOUT 250
127 #define FLASH_WRITE_TIMEOUT 50
128
129
130 /* relevant STM32L4 flags ****************************************************/
131 #define F_NONE              0
132 /* this flag indicates if the device flash is with dual bank architecture */
133 #define F_HAS_DUAL_BANK     BIT(0)
134 /* this flags is used for dual bank devices only, it indicates if the
135  * 4 WRPxx are usable if the device is configured in single-bank mode */
136 #define F_USE_ALL_WRPXX     BIT(1)
137 /* this flag indicates if the device embeds a TrustZone security feature */
138 #define F_HAS_TZ            BIT(2)
139 /* this flag indicates if the device has the same flash registers as STM32L5 */
140 #define F_HAS_L5_FLASH_REGS BIT(3)
141 /* this flag indicates that programming should be done in quad-word
142  * the default programming word size is double-word */
143 #define F_QUAD_WORD_PROG    BIT(4)
144 /* end of STM32L4 flags ******************************************************/
145
146
147 enum stm32l4_flash_reg_index {
148         STM32_FLASH_ACR_INDEX,
149         STM32_FLASH_KEYR_INDEX,
150         STM32_FLASH_OPTKEYR_INDEX,
151         STM32_FLASH_SR_INDEX,
152         STM32_FLASH_CR_INDEX,
153         /* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
154          * so it uses the C2CR for flash operations and CR for checking locks and locking */
155         STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
156         STM32_FLASH_OPTR_INDEX,
157         STM32_FLASH_WRP1AR_INDEX,
158         STM32_FLASH_WRP1BR_INDEX,
159         STM32_FLASH_WRP2AR_INDEX,
160         STM32_FLASH_WRP2BR_INDEX,
161         STM32_FLASH_REG_INDEX_NUM,
162 };
163
164 enum stm32l4_rdp {
165         RDP_LEVEL_0   = 0xAA,
166         RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
167         RDP_LEVEL_1   = 0x00,
168         RDP_LEVEL_2   = 0xCC
169 };
170
171 static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
172         [STM32_FLASH_ACR_INDEX]      = 0x000,
173         [STM32_FLASH_KEYR_INDEX]     = 0x008,
174         [STM32_FLASH_OPTKEYR_INDEX]  = 0x00C,
175         [STM32_FLASH_SR_INDEX]       = 0x010,
176         [STM32_FLASH_CR_INDEX]       = 0x014,
177         [STM32_FLASH_OPTR_INDEX]     = 0x020,
178         [STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
179         [STM32_FLASH_WRP1BR_INDEX]   = 0x030,
180         [STM32_FLASH_WRP2AR_INDEX]   = 0x04C,
181         [STM32_FLASH_WRP2BR_INDEX]   = 0x050,
182 };
183
184 static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
185         [STM32_FLASH_ACR_INDEX]      = 0x000,
186         [STM32_FLASH_KEYR_INDEX]     = 0x008,
187         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
188         [STM32_FLASH_SR_INDEX]       = 0x060,
189         [STM32_FLASH_CR_INDEX]       = 0x064,
190         [STM32_FLASH_CR_WLK_INDEX]   = 0x014,
191         [STM32_FLASH_OPTR_INDEX]     = 0x020,
192         [STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
193         [STM32_FLASH_WRP1BR_INDEX]   = 0x030,
194 };
195
196 static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
197         [STM32_FLASH_ACR_INDEX]      = 0x000,
198         [STM32_FLASH_KEYR_INDEX]     = 0x008, /* NSKEYR */
199         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
200         [STM32_FLASH_SR_INDEX]       = 0x020, /* NSSR */
201         [STM32_FLASH_CR_INDEX]       = 0x028, /* NSCR */
202         [STM32_FLASH_OPTR_INDEX]     = 0x040,
203         [STM32_FLASH_WRP1AR_INDEX]   = 0x058,
204         [STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
205         [STM32_FLASH_WRP2AR_INDEX]   = 0x068,
206         [STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
207 };
208
209 static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
210         [STM32_FLASH_ACR_INDEX]      = 0x000,
211         [STM32_FLASH_KEYR_INDEX]     = 0x00C, /* SECKEYR */
212         [STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
213         [STM32_FLASH_SR_INDEX]       = 0x024, /* SECSR */
214         [STM32_FLASH_CR_INDEX]       = 0x02C, /* SECCR */
215         [STM32_FLASH_OPTR_INDEX]     = 0x040,
216         [STM32_FLASH_WRP1AR_INDEX]   = 0x058,
217         [STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
218         [STM32_FLASH_WRP2AR_INDEX]   = 0x068,
219         [STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
220 };
221
222 struct stm32l4_rev {
223         const uint16_t rev;
224         const char *str;
225 };
226
227 struct stm32l4_part_info {
228         uint16_t id;
229         const char *device_str;
230         const struct stm32l4_rev *revs;
231         const size_t num_revs;
232         const uint16_t max_flash_size_kb;
233         const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
234         const uint32_t flash_regs_base;
235         const uint32_t fsize_addr;
236         const uint32_t otp_base;
237         const uint32_t otp_size;
238 };
239
240 struct stm32l4_flash_bank {
241         bool probed;
242         uint32_t idcode;
243         unsigned int bank1_sectors;
244         bool dual_bank_mode;
245         int hole_sectors;
246         uint32_t user_bank_size;
247         uint32_t data_width;
248         uint32_t cr_bker_mask;
249         uint32_t sr_bsy_mask;
250         uint32_t wrpxxr_mask;
251         const struct stm32l4_part_info *part_info;
252         uint32_t flash_regs_base;
253         const uint32_t *flash_regs;
254         bool otp_enabled;
255         bool use_flashloader;
256         enum stm32l4_rdp rdp;
257         bool tzen;
258         uint32_t optr;
259 };
260
261 enum stm32_bank_id {
262         STM32_BANK1,
263         STM32_BANK2,
264         STM32_ALL_BANKS
265 };
266
267 struct stm32l4_wrp {
268         enum stm32l4_flash_reg_index reg_idx;
269         uint32_t value;
270         bool used;
271         int first;
272         int last;
273         int offset;
274 };
275
276 /* human readable list of families this drivers supports (sorted alphabetically) */
277 static const char *device_families = "STM32G0/G4/L4/L4+/L5/U5/WB/WL";
278
279 static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
280         { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
281 };
282
283 static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
284         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
285 };
286
287 static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
288         { 0x1000, "A" },
289 };
290
291 static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
292         { 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
293 };
294
295 static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
296         { 0x1000, "A" }, { 0x2000, "B" },
297 };
298
299 static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
300         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
301 };
302
303 static const struct stm32l4_rev stm32l41_L42xx_revs[] = {
304         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
305 };
306
307 static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
308         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
309 };
310
311 static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
312         { 0x1000, "A" },
313 };
314
315 static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
316         { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
317 };
318
319 static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
320         { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
321 };
322
323 static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
324         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
325 };
326
327 static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
328         { 0x1001, "Z" },
329 };
330
331 static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
332         { 0x1000, "A" }, { 0x2000, "B" },
333 };
334
335 static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
336         { 0x1000, "A" },
337 };
338
339 static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
340         { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
341 };
342
343 static const struct stm32l4_rev stm32wb1xx_revs[] = {
344         { 0x1000, "A" }, { 0x2000, "B" },
345 };
346
347 static const struct stm32l4_rev stm32wb5xx_revs[] = {
348         { 0x2001, "2.1" },
349 };
350
351 static const struct stm32l4_rev stm32wb3xx_revs[] = {
352         { 0x1000, "A" },
353 };
354
355 static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
356         { 0x1000, "1.0" },
357 };
358
359 static const struct stm32l4_part_info stm32l4_parts[] = {
360         {
361           .id                    = DEVID_STM32L47_L48XX,
362           .revs                  = stm32l47_l48xx_revs,
363           .num_revs              = ARRAY_SIZE(stm32l47_l48xx_revs),
364           .device_str            = "STM32L47/L48xx",
365           .max_flash_size_kb     = 1024,
366           .flags                 = F_HAS_DUAL_BANK,
367           .flash_regs_base       = 0x40022000,
368           .fsize_addr            = 0x1FFF75E0,
369           .otp_base              = 0x1FFF7000,
370           .otp_size              = 1024,
371         },
372         {
373           .id                    = DEVID_STM32L43_L44XX,
374           .revs                  = stm32l43_l44xx_revs,
375           .num_revs              = ARRAY_SIZE(stm32l43_l44xx_revs),
376           .device_str            = "STM32L43/L44xx",
377           .max_flash_size_kb     = 256,
378           .flags                 = F_NONE,
379           .flash_regs_base       = 0x40022000,
380           .fsize_addr            = 0x1FFF75E0,
381           .otp_base              = 0x1FFF7000,
382           .otp_size              = 1024,
383         },
384         {
385           .id                    = DEVID_STM32G05_G06XX,
386           .revs                  = stm32g05_g06xx_revs,
387           .num_revs              = ARRAY_SIZE(stm32g05_g06xx_revs),
388           .device_str            = "STM32G05/G06xx",
389           .max_flash_size_kb     = 64,
390           .flags                 = F_NONE,
391           .flash_regs_base       = 0x40022000,
392           .fsize_addr            = 0x1FFF75E0,
393           .otp_base              = 0x1FFF7000,
394           .otp_size              = 1024,
395         },
396         {
397           .id                    = DEVID_STM32G07_G08XX,
398           .revs                  = stm32_g07_g08xx_revs,
399           .num_revs              = ARRAY_SIZE(stm32_g07_g08xx_revs),
400           .device_str            = "STM32G07/G08xx",
401           .max_flash_size_kb     = 128,
402           .flags                 = F_NONE,
403           .flash_regs_base       = 0x40022000,
404           .fsize_addr            = 0x1FFF75E0,
405           .otp_base              = 0x1FFF7000,
406           .otp_size              = 1024,
407         },
408         {
409           .id                    = DEVID_STM32L49_L4AXX,
410           .revs                  = stm32l49_l4axx_revs,
411           .num_revs              = ARRAY_SIZE(stm32l49_l4axx_revs),
412           .device_str            = "STM32L49/L4Axx",
413           .max_flash_size_kb     = 1024,
414           .flags                 = F_HAS_DUAL_BANK,
415           .flash_regs_base       = 0x40022000,
416           .fsize_addr            = 0x1FFF75E0,
417           .otp_base              = 0x1FFF7000,
418           .otp_size              = 1024,
419         },
420         {
421           .id                    = DEVID_STM32L45_L46XX,
422           .revs                  = stm32l45_l46xx_revs,
423           .num_revs              = ARRAY_SIZE(stm32l45_l46xx_revs),
424           .device_str            = "STM32L45/L46xx",
425           .max_flash_size_kb     = 512,
426           .flags                 = F_NONE,
427           .flash_regs_base       = 0x40022000,
428           .fsize_addr            = 0x1FFF75E0,
429           .otp_base              = 0x1FFF7000,
430           .otp_size              = 1024,
431         },
432         {
433           .id                    = DEVID_STM32L41_L42XX,
434           .revs                  = stm32l41_L42xx_revs,
435           .num_revs              = ARRAY_SIZE(stm32l41_L42xx_revs),
436           .device_str            = "STM32L41/L42xx",
437           .max_flash_size_kb     = 128,
438           .flags                 = F_NONE,
439           .flash_regs_base       = 0x40022000,
440           .fsize_addr            = 0x1FFF75E0,
441           .otp_base              = 0x1FFF7000,
442           .otp_size              = 1024,
443         },
444         {
445           .id                    = DEVID_STM32G03_G04XX,
446           .revs                  = stm32g03_g04xx_revs,
447           .num_revs              = ARRAY_SIZE(stm32g03_g04xx_revs),
448           .device_str            = "STM32G03x/G04xx",
449           .max_flash_size_kb     = 64,
450           .flags                 = F_NONE,
451           .flash_regs_base       = 0x40022000,
452           .fsize_addr            = 0x1FFF75E0,
453           .otp_base              = 0x1FFF7000,
454           .otp_size              = 1024,
455         },
456         {
457           .id                    = DEVID_STM32G0B_G0CXX,
458           .revs                  = stm32g0b_g0cxx_revs,
459           .num_revs              = ARRAY_SIZE(stm32g0b_g0cxx_revs),
460           .device_str            = "STM32G0B/G0Cx",
461           .max_flash_size_kb     = 512,
462           .flags                 = F_HAS_DUAL_BANK,
463           .flash_regs_base       = 0x40022000,
464           .fsize_addr            = 0x1FFF75E0,
465           .otp_base              = 0x1FFF7000,
466           .otp_size              = 1024,
467         },
468         {
469           .id                    = DEVID_STM32G43_G44XX,
470           .revs                  = stm32g43_g44xx_revs,
471           .num_revs              = ARRAY_SIZE(stm32g43_g44xx_revs),
472           .device_str            = "STM32G43/G44xx",
473           .max_flash_size_kb     = 128,
474           .flags                 = F_NONE,
475           .flash_regs_base       = 0x40022000,
476           .fsize_addr            = 0x1FFF75E0,
477           .otp_base              = 0x1FFF7000,
478           .otp_size              = 1024,
479         },
480         {
481           .id                    = DEVID_STM32G47_G48XX,
482           .revs                  = stm32g47_g48xx_revs,
483           .num_revs              = ARRAY_SIZE(stm32g47_g48xx_revs),
484           .device_str            = "STM32G47/G48xx",
485           .max_flash_size_kb     = 512,
486           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
487           .flash_regs_base       = 0x40022000,
488           .fsize_addr            = 0x1FFF75E0,
489           .otp_base              = 0x1FFF7000,
490           .otp_size              = 1024,
491         },
492         {
493           .id                    = DEVID_STM32L4R_L4SXX,
494           .revs                  = stm32l4r_l4sxx_revs,
495           .num_revs              = ARRAY_SIZE(stm32l4r_l4sxx_revs),
496           .device_str            = "STM32L4R/L4Sxx",
497           .max_flash_size_kb     = 2048,
498           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
499           .flash_regs_base       = 0x40022000,
500           .fsize_addr            = 0x1FFF75E0,
501           .otp_base              = 0x1FFF7000,
502           .otp_size              = 1024,
503         },
504         {
505           .id                    = DEVID_STM32L4P_L4QXX,
506           .revs                  = stm32l4p_l4qxx_revs,
507           .num_revs              = ARRAY_SIZE(stm32l4p_l4qxx_revs),
508           .device_str            = "STM32L4P/L4Qxx",
509           .max_flash_size_kb     = 1024,
510           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
511           .flash_regs_base       = 0x40022000,
512           .fsize_addr            = 0x1FFF75E0,
513           .otp_base              = 0x1FFF7000,
514           .otp_size              = 1024,
515         },
516         {
517           .id                    = DEVID_STM32L55_L56XX,
518           .revs                  = stm32l55_l56xx_revs,
519           .num_revs              = ARRAY_SIZE(stm32l55_l56xx_revs),
520           .device_str            = "STM32L55/L56xx",
521           .max_flash_size_kb     = 512,
522           .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
523           .flash_regs_base       = 0x40022000,
524           .fsize_addr            = 0x0BFA05E0,
525           .otp_base              = 0x0BFA0000,
526           .otp_size              = 512,
527         },
528         {
529           .id                    = DEVID_STM32G49_G4AXX,
530           .revs                  = stm32g49_g4axx_revs,
531           .num_revs              = ARRAY_SIZE(stm32g49_g4axx_revs),
532           .device_str            = "STM32G49/G4Axx",
533           .max_flash_size_kb     = 512,
534           .flags                 = F_NONE,
535           .flash_regs_base       = 0x40022000,
536           .fsize_addr            = 0x1FFF75E0,
537           .otp_base              = 0x1FFF7000,
538           .otp_size              = 1024,
539         },
540         {
541           .id                    = DEVID_STM32U57_U58XX,
542           .revs                  = stm32u57_u58xx_revs,
543           .num_revs              = ARRAY_SIZE(stm32u57_u58xx_revs),
544           .device_str            = "STM32U57/U58xx",
545           .max_flash_size_kb     = 2048,
546           .flags                 = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
547           .flash_regs_base       = 0x40022000,
548           .fsize_addr            = 0x0BFA07A0,
549           .otp_base              = 0x0BFA0000,
550           .otp_size              = 512,
551         },
552         {
553           .id                    = DEVID_STM32WB1XX,
554           .revs                  = stm32wb1xx_revs,
555           .num_revs              = ARRAY_SIZE(stm32wb1xx_revs),
556           .device_str            = "STM32WB1x",
557           .max_flash_size_kb     = 320,
558           .flags                 = F_NONE,
559           .flash_regs_base       = 0x58004000,
560           .fsize_addr            = 0x1FFF75E0,
561           .otp_base              = 0x1FFF7000,
562           .otp_size              = 1024,
563         },
564         {
565           .id                    = DEVID_STM32WB5XX,
566           .revs                  = stm32wb5xx_revs,
567           .num_revs              = ARRAY_SIZE(stm32wb5xx_revs),
568           .device_str            = "STM32WB5x",
569           .max_flash_size_kb     = 1024,
570           .flags                 = F_NONE,
571           .flash_regs_base       = 0x58004000,
572           .fsize_addr            = 0x1FFF75E0,
573           .otp_base              = 0x1FFF7000,
574           .otp_size              = 1024,
575         },
576         {
577           .id                    = DEVID_STM32WB3XX,
578           .revs                  = stm32wb3xx_revs,
579           .num_revs              = ARRAY_SIZE(stm32wb3xx_revs),
580           .device_str            = "STM32WB3x",
581           .max_flash_size_kb     = 512,
582           .flags                 = F_NONE,
583           .flash_regs_base       = 0x58004000,
584           .fsize_addr            = 0x1FFF75E0,
585           .otp_base              = 0x1FFF7000,
586           .otp_size              = 1024,
587         },
588         {
589           .id                    = DEVID_STM32WLE_WL5XX,
590           .revs                  = stm32wle_wl5xx_revs,
591           .num_revs              = ARRAY_SIZE(stm32wle_wl5xx_revs),
592           .device_str            = "STM32WLE/WL5x",
593           .max_flash_size_kb     = 256,
594           .flags                 = F_NONE,
595           .flash_regs_base       = 0x58004000,
596           .fsize_addr            = 0x1FFF75E0,
597           .otp_base              = 0x1FFF7000,
598           .otp_size              = 1024,
599         },
600 };
601
602 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
603 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
604 {
605         struct stm32l4_flash_bank *stm32l4_info;
606
607         if (CMD_ARGC < 6)
608                 return ERROR_COMMAND_SYNTAX_ERROR;
609
610         /* fix-up bank base address: 0 is used for normal flash memory */
611         if (bank->base == 0)
612                 bank->base = STM32_FLASH_BANK_BASE;
613
614         stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
615         if (!stm32l4_info)
616                 return ERROR_FAIL; /* Checkme: What better error to use?*/
617         bank->driver_priv = stm32l4_info;
618
619         stm32l4_info->probed = false;
620         stm32l4_info->otp_enabled = false;
621         stm32l4_info->user_bank_size = bank->size;
622         stm32l4_info->use_flashloader = true;
623
624         return ERROR_OK;
625 }
626
627 /* bitmap helper extension */
628 struct range {
629         unsigned int start;
630         unsigned int end;
631 };
632
633 static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
634                 struct range *ranges, unsigned int *ranges_count) {
635         *ranges_count = 0;
636         bool last_bit = 0, cur_bit;
637         for (unsigned int i = 0; i < nbits; i++) {
638                 cur_bit = test_bit(i, bitmap);
639
640                 if (cur_bit && !last_bit) {
641                         (*ranges_count)++;
642                         ranges[*ranges_count - 1].start = i;
643                         ranges[*ranges_count - 1].end = i;
644                 } else if (cur_bit && last_bit) {
645                         /* update (increment) the end this range */
646                         ranges[*ranges_count - 1].end = i;
647                 }
648
649                 last_bit = cur_bit;
650         }
651 }
652
653 static inline int range_print_one(struct range *range, char *str)
654 {
655         if (range->start == range->end)
656                 return sprintf(str, "[%d]", range->start);
657
658         return sprintf(str, "[%d,%d]", range->start, range->end);
659 }
660
661 static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
662 {
663         /* each range will be printed like the following: [start,end]
664          * start and end, both are unsigned int, an unsigned int takes 10 characters max
665          * plus 3 characters for '[', ',' and ']'
666          * thus means each range can take maximum 23 character
667          * after each range we add a ' ' as separator and finally we need the '\0'
668          * if the ranges_count is zero we reserve one char for '\0' to return an empty string */
669         char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
670         char *ptr = str;
671
672         for (unsigned int i = 0; i < ranges_count; i++) {
673                 ptr += range_print_one(&(ranges[i]), ptr);
674
675                 if (i < ranges_count - 1)
676                         *(ptr++) = ' ';
677         }
678
679         return str;
680 }
681
682 /* end of bitmap helper extension */
683
684 static inline bool stm32l4_is_otp(struct flash_bank *bank)
685 {
686         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
687         return bank->base == stm32l4_info->part_info->otp_base;
688 }
689
690 static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
691 {
692         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
693
694         if (!stm32l4_is_otp(bank))
695                 return ERROR_FAIL;
696
697         char *op_str = enable ? "enabled" : "disabled";
698
699         LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
700                         bank->bank_number,
701                         stm32l4_info->otp_enabled == enable ? "already " : "",
702                         op_str);
703
704         stm32l4_info->otp_enabled = enable;
705
706         return ERROR_OK;
707 }
708
709 static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
710 {
711         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
712         return stm32l4_info->otp_enabled;
713 }
714
715 static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
716 {
717         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
718
719         bool tzen = false;
720
721         if (stm32l4_info->part_info->flags & F_HAS_TZ)
722                 tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
723
724         uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
725
726         /* for devices without TrustZone:
727          *   RDP level 0 and 2 values are to 0xAA and 0xCC
728          *   Any other value corresponds to RDP level 1
729          * for devices with TrusZone:
730          *   RDP level 0 and 2 values are 0xAA and 0xCC
731          *   RDP level 0.5 value is 0x55 only if TZEN = 1
732          *   Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
733          */
734
735         if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
736                 if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
737                         rdp = RDP_LEVEL_1;
738         }
739
740         stm32l4_info->tzen = tzen;
741         stm32l4_info->rdp = rdp;
742 }
743
744 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
745 {
746         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
747         return stm32l4_info->flash_regs_base + reg_offset;
748 }
749
750 static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
751         enum stm32l4_flash_reg_index reg_index)
752 {
753         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
754         return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
755 }
756
757 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
758 {
759         return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
760 }
761
762 static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
763         enum stm32l4_flash_reg_index reg_index, uint32_t *value)
764 {
765         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
766         return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
767 }
768
769 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
770 {
771         return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
772 }
773
774 static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
775         enum stm32l4_flash_reg_index reg_index, uint32_t value)
776 {
777         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
778         return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
779 }
780
781 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
782 {
783         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
784         uint32_t status;
785         int retval = ERROR_OK;
786
787         /* wait for busy to clear */
788         for (;;) {
789                 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
790                 if (retval != ERROR_OK)
791                         return retval;
792                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
793                 if ((status & stm32l4_info->sr_bsy_mask) == 0)
794                         break;
795                 if (timeout-- <= 0) {
796                         LOG_ERROR("timed out waiting for flash");
797                         return ERROR_FAIL;
798                 }
799                 alive_sleep(1);
800         }
801
802         if (status & FLASH_WRPERR) {
803                 LOG_ERROR("stm32x device protected");
804                 retval = ERROR_FAIL;
805         }
806
807         /* Clear but report errors */
808         if (status & FLASH_ERROR) {
809                 if (retval == ERROR_OK)
810                         retval = ERROR_FAIL;
811                 /* If this operation fails, we ignore it and report the original
812                  * retval
813                  */
814                 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
815         }
816
817         return retval;
818 }
819
820 /** set all FLASH_SECBB registers to the same value */
821 static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
822 {
823         /* This function should be used only with device with TrustZone, do just a security check */
824         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
825         assert(stm32l4_info->part_info->flags & F_HAS_TZ);
826
827         /* based on RM0438 Rev6 for STM32L5x devices:
828          * to modify a page block-based security attribution, it is recommended to
829          *  1- check that no flash operation is ongoing on the related page
830          *  2- add ISB instruction after modifying the page security attribute in SECBBxRy
831          *     this step is not need in case of JTAG direct access
832          */
833         int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
834         if (retval != ERROR_OK)
835                 return retval;
836
837         /* write SECBBxRy registers */
838         LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
839
840         const uint8_t secbb_regs[] = {
841                         FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
842                         FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4)  /* bank 2 SECBB register offsets */
843         };
844
845
846         unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
847
848         /* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
849          * then consider only the first half of secbb_regs
850          */
851         if (!stm32l4_info->dual_bank_mode)
852                 num_secbb_regs /= 2;
853
854         for (unsigned int i = 0; i < num_secbb_regs; i++) {
855                 retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
856                 if (retval != ERROR_OK)
857                         return retval;
858         }
859
860         return ERROR_OK;
861 }
862
863 static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
864 {
865         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
866         return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
867                 STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
868 }
869
870 static int stm32l4_unlock_reg(struct flash_bank *bank)
871 {
872         const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
873         uint32_t ctrl;
874
875         /* first check if not already unlocked
876          * otherwise writing on STM32_FLASH_KEYR will fail
877          */
878         int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
879         if (retval != ERROR_OK)
880                 return retval;
881
882         if ((ctrl & FLASH_LOCK) == 0)
883                 return ERROR_OK;
884
885         /* unlock flash registers */
886         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
887         if (retval != ERROR_OK)
888                 return retval;
889
890         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
891         if (retval != ERROR_OK)
892                 return retval;
893
894         retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
895         if (retval != ERROR_OK)
896                 return retval;
897
898         if (ctrl & FLASH_LOCK) {
899                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
900                 return ERROR_TARGET_FAILURE;
901         }
902
903         return ERROR_OK;
904 }
905
906 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
907 {
908         const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
909         uint32_t ctrl;
910
911         int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         if ((ctrl & FLASH_OPTLOCK) == 0)
916                 return ERROR_OK;
917
918         /* unlock option registers */
919         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
920         if (retval != ERROR_OK)
921                 return retval;
922
923         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
924         if (retval != ERROR_OK)
925                 return retval;
926
927         retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
928         if (retval != ERROR_OK)
929                 return retval;
930
931         if (ctrl & FLASH_OPTLOCK) {
932                 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
933                 return ERROR_TARGET_FAILURE;
934         }
935
936         return ERROR_OK;
937 }
938
939 static int stm32l4_perform_obl_launch(struct flash_bank *bank)
940 {
941         int retval, retval2;
942
943         retval = stm32l4_unlock_reg(bank);
944         if (retval != ERROR_OK)
945                 goto err_lock;
946
947         retval = stm32l4_unlock_option_reg(bank);
948         if (retval != ERROR_OK)
949                 goto err_lock;
950
951         /* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
952          * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
953          * "Note: If the read protection is set while the debugger is still
954          * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
955          */
956
957         /* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
958         /* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
959          * then just ignore the returned value */
960         stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
961
962         /* Need to re-probe after change */
963         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
964         stm32l4_info->probed = false;
965
966 err_lock:
967         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
968                         FLASH_LOCK | FLASH_OPTLOCK);
969
970         if (retval != ERROR_OK)
971                 return retval;
972
973         return retval2;
974 }
975
976 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
977         uint32_t value, uint32_t mask)
978 {
979         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
980         uint32_t optiondata;
981         int retval, retval2;
982
983         retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
984         if (retval != ERROR_OK)
985                 return retval;
986
987         /* for STM32L5 and similar devices, use always non-secure
988          * registers for option bytes programming */
989         const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
990         if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
991                 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
992
993         retval = stm32l4_unlock_reg(bank);
994         if (retval != ERROR_OK)
995                 goto err_lock;
996
997         retval = stm32l4_unlock_option_reg(bank);
998         if (retval != ERROR_OK)
999                 goto err_lock;
1000
1001         optiondata = (optiondata & ~mask) | (value & mask);
1002
1003         retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
1004         if (retval != ERROR_OK)
1005                 goto err_lock;
1006
1007         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
1008         if (retval != ERROR_OK)
1009                 goto err_lock;
1010
1011         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1012
1013 err_lock:
1014         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
1015                         FLASH_LOCK | FLASH_OPTLOCK);
1016         stm32l4_info->flash_regs = saved_flash_regs;
1017
1018         if (retval != ERROR_OK)
1019                 return retval;
1020
1021         return retval2;
1022 }
1023
1024 static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
1025                 enum stm32l4_flash_reg_index reg_idx, int offset)
1026 {
1027         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1028         int ret;
1029
1030         wrpxy->reg_idx = reg_idx;
1031         wrpxy->offset = offset;
1032
1033         ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
1034         if (ret != ERROR_OK)
1035                 return ret;
1036
1037         wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1038         wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1039         wrpxy->used = wrpxy->first <= wrpxy->last;
1040
1041         return ERROR_OK;
1042 }
1043
1044 static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
1045                 struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
1046 {
1047         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1048         int ret;
1049
1050         *n_wrp = 0;
1051
1052         /* for single bank devices there is 2 WRP regions.
1053          * for dual bank devices there is 2 WRP regions per bank,
1054          *   if configured as single bank only 2 WRP are usable
1055          *   except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
1056          * note: this should be revised, if a device will have the SWAP banks option
1057          */
1058
1059         int wrp2y_sectors_offset = -1; /* -1 : unused */
1060
1061         /* if bank_id is BANK1 or ALL_BANKS */
1062         if (dev_bank_id != STM32_BANK2) {
1063                 /* get FLASH_WRP1AR */
1064                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
1065                 if (ret != ERROR_OK)
1066                         return ret;
1067
1068                 /* get WRP1BR */
1069                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
1070                 if (ret != ERROR_OK)
1071                         return ret;
1072
1073                 /* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
1074                 if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
1075                         wrp2y_sectors_offset = 0;
1076         }
1077
1078         /* if bank_id is BANK2 or ALL_BANKS */
1079         if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
1080                 wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
1081
1082         if (wrp2y_sectors_offset > -1) {
1083                 /* get WRP2AR */
1084                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
1085                 if (ret != ERROR_OK)
1086                         return ret;
1087
1088                 /* get WRP2BR */
1089                 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
1090                 if (ret != ERROR_OK)
1091                         return ret;
1092         }
1093
1094         return ERROR_OK;
1095 }
1096
1097 static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
1098 {
1099         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1100
1101         int wrp_start = wrpxy->first - wrpxy->offset;
1102         int wrp_end = wrpxy->last - wrpxy->offset;
1103
1104         uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
1105
1106         return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
1107 }
1108
1109 static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
1110 {
1111         int ret;
1112
1113         for (unsigned int i = 0; i < n_wrp; i++) {
1114                 ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
1115                 if (ret != ERROR_OK)
1116                         return ret;
1117         }
1118
1119         return ERROR_OK;
1120 }
1121
1122 static int stm32l4_protect_check(struct flash_bank *bank)
1123 {
1124         unsigned int n_wrp;
1125         struct stm32l4_wrp wrpxy[4];
1126
1127         int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
1128         if (ret != ERROR_OK)
1129                 return ret;
1130
1131         /* initialize all sectors as unprotected */
1132         for (unsigned int i = 0; i < bank->num_sectors; i++)
1133                 bank->sectors[i].is_protected = 0;
1134
1135         /* now check WRPxy and mark the protected sectors */
1136         for (unsigned int i = 0; i < n_wrp; i++) {
1137                 if (wrpxy[i].used) {
1138                         for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
1139                                 bank->sectors[s].is_protected = 1;
1140                 }
1141         }
1142
1143         return ERROR_OK;
1144 }
1145
1146 static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
1147                 unsigned int last)
1148 {
1149         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1150         int retval, retval2;
1151
1152         assert((first <= last) && (last < bank->num_sectors));
1153
1154         if (stm32l4_is_otp(bank)) {
1155                 LOG_ERROR("cannot erase OTP memory");
1156                 return ERROR_FLASH_OPER_UNSUPPORTED;
1157         }
1158
1159         if (bank->target->state != TARGET_HALTED) {
1160                 LOG_ERROR("Target not halted");
1161                 return ERROR_TARGET_NOT_HALTED;
1162         }
1163
1164         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1165                 /* set all FLASH pages as secure */
1166                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1167                 if (retval != ERROR_OK) {
1168                         /* restore all FLASH pages as non-secure */
1169                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1170                         return retval;
1171                 }
1172         }
1173
1174         retval = stm32l4_unlock_reg(bank);
1175         if (retval != ERROR_OK)
1176                 goto err_lock;
1177
1178         /*
1179         Sector Erase
1180         To erase a sector, follow the procedure below:
1181         1. Check that no Flash memory operation is ongoing by
1182            checking the BSY bit in the FLASH_SR register
1183         2. Set the PER bit and select the page and bank
1184            you wish to erase in the FLASH_CR register
1185         3. Set the STRT bit in the FLASH_CR register
1186         4. Wait for the BSY bit to be cleared
1187          */
1188
1189         for (unsigned int i = first; i <= last; i++) {
1190                 uint32_t erase_flags;
1191                 erase_flags = FLASH_PER | FLASH_STRT;
1192
1193                 if (i >= stm32l4_info->bank1_sectors) {
1194                         uint8_t snb;
1195                         snb = i - stm32l4_info->bank1_sectors;
1196                         erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
1197                 } else
1198                         erase_flags |= i << FLASH_PAGE_SHIFT;
1199                 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
1200                 if (retval != ERROR_OK)
1201                         break;
1202
1203                 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1204                 if (retval != ERROR_OK)
1205                         break;
1206         }
1207
1208 err_lock:
1209         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1210
1211         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1212                 /* restore all FLASH pages as non-secure */
1213                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1214                 if (retval3 != ERROR_OK)
1215                         return retval3;
1216         }
1217
1218         if (retval != ERROR_OK)
1219                 return retval;
1220
1221         return retval2;
1222 }
1223
1224 static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
1225 {
1226         struct target *target = bank->target;
1227         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1228         int ret = ERROR_OK;
1229         unsigned int i;
1230
1231         if (stm32l4_is_otp(bank)) {
1232                 LOG_ERROR("cannot protect/unprotect OTP memory");
1233                 return ERROR_FLASH_OPER_UNSUPPORTED;
1234         }
1235
1236         if (target->state != TARGET_HALTED) {
1237                 LOG_ERROR("Target not halted");
1238                 return ERROR_TARGET_NOT_HALTED;
1239         }
1240
1241         /* the requested sectors could be located into bank1 and/or bank2 */
1242         bool use_bank2 = false;
1243         if (last >= stm32l4_info->bank1_sectors) {
1244                 if (first < stm32l4_info->bank1_sectors) {
1245                         /* the requested sectors for (un)protection are shared between
1246                          * bank 1 and 2, then split the operation */
1247
1248                         /*  1- deal with bank 1 sectors */
1249                         LOG_DEBUG("The requested sectors for %s are shared between bank 1 and 2",
1250                                         set ? "protection" : "unprotection");
1251                         ret = stm32l4_protect(bank, set, first, stm32l4_info->bank1_sectors - 1);
1252                         if (ret != ERROR_OK)
1253                                 return ret;
1254
1255                         /*  2- then continue with bank 2 sectors */
1256                         first = stm32l4_info->bank1_sectors;
1257                 }
1258
1259                 use_bank2 = true;
1260         }
1261
1262         /* refresh the sectors' protection */
1263         ret = stm32l4_protect_check(bank);
1264         if (ret != ERROR_OK)
1265                 return ret;
1266
1267         /* check if the desired protection is already configured */
1268         for (i = first; i <= last; i++) {
1269                 if (bank->sectors[i].is_protected != set)
1270                         break;
1271                 else if (i == last) {
1272                         LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
1273                         return ERROR_OK;
1274                 }
1275         }
1276
1277         /* all sectors from first to last (or part of them) could have different
1278          * protection other than the requested */
1279         unsigned int n_wrp;
1280         struct stm32l4_wrp wrpxy[4];
1281
1282         ret = stm32l4_get_all_wrpxy(bank, use_bank2 ? STM32_BANK2 : STM32_BANK1, wrpxy, &n_wrp);
1283         if (ret != ERROR_OK)
1284                 return ret;
1285
1286         /* use bitmap and range helpers to optimize the WRP usage */
1287         DECLARE_BITMAP(pages, bank->num_sectors);
1288         bitmap_zero(pages, bank->num_sectors);
1289
1290         for (i = 0; i < n_wrp; i++) {
1291                 if (wrpxy[i].used) {
1292                         for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
1293                                 set_bit(p, pages);
1294                 }
1295         }
1296
1297         /* we have at most 'n_wrp' WRP areas
1298          * add one range if the user is trying to protect a fifth range */
1299         struct range ranges[n_wrp + 1];
1300         unsigned int ranges_count = 0;
1301
1302         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1303
1304         /* pretty-print the currently protected ranges */
1305         if (ranges_count > 0) {
1306                 char *ranges_str = range_print_alloc(ranges, ranges_count);
1307                 LOG_DEBUG("current protected areas: %s", ranges_str);
1308                 free(ranges_str);
1309         } else
1310                 LOG_DEBUG("current protected areas: none");
1311
1312         if (set) { /* flash protect */
1313                 for (i = first; i <= last; i++)
1314                         set_bit(i, pages);
1315         } else { /* flash unprotect */
1316                 for (i = first; i <= last; i++)
1317                         clear_bit(i, pages);
1318         }
1319
1320         /* check the ranges_count after the user request */
1321         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1322
1323         /* pretty-print the requested areas for protection */
1324         if (ranges_count > 0) {
1325                 char *ranges_str = range_print_alloc(ranges, ranges_count);
1326                 LOG_DEBUG("requested areas for protection: %s", ranges_str);
1327                 free(ranges_str);
1328         } else
1329                 LOG_DEBUG("requested areas for protection: none");
1330
1331         if (ranges_count > n_wrp) {
1332                 LOG_ERROR("cannot set the requested protection "
1333                                 "(only %u write protection areas are available)" , n_wrp);
1334                 return ERROR_FAIL;
1335         }
1336
1337         /* re-init all WRPxy as disabled (first > last)*/
1338         for (i = 0; i < n_wrp; i++) {
1339                 wrpxy[i].first = wrpxy[i].offset + 1;
1340                 wrpxy[i].last = wrpxy[i].offset;
1341         }
1342
1343         /* then configure WRPxy areas */
1344         for (i = 0; i < ranges_count; i++) {
1345                 wrpxy[i].first = ranges[i].start;
1346                 wrpxy[i].last = ranges[i].end;
1347         }
1348
1349         /* finally write WRPxy registers */
1350         return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
1351 }
1352
1353 /* count is the size divided by stm32l4_info->data_width */
1354 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
1355         uint32_t offset, uint32_t count)
1356 {
1357         struct target *target = bank->target;
1358         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1359         struct working_area *write_algorithm;
1360         struct working_area *source;
1361         uint32_t address = bank->base + offset;
1362         struct reg_param reg_params[5];
1363         struct armv7m_algorithm armv7m_info;
1364         int retval = ERROR_OK;
1365
1366         static const uint8_t stm32l4_flash_write_code[] = {
1367 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
1368         };
1369
1370         if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
1371                         &write_algorithm) != ERROR_OK) {
1372                 LOG_WARNING("no working area available, can't do block memory writes");
1373                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1374         }
1375
1376         retval = target_write_buffer(target, write_algorithm->address,
1377                         sizeof(stm32l4_flash_write_code),
1378                         stm32l4_flash_write_code);
1379         if (retval != ERROR_OK) {
1380                 target_free_working_area(target, write_algorithm);
1381                 return retval;
1382         }
1383
1384         /* data_width should be multiple of double-word */
1385         assert(stm32l4_info->data_width % 8 == 0);
1386         const size_t extra_size = sizeof(struct stm32l4_work_area);
1387         uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
1388         /* buffer_size should be multiple of stm32l4_info->data_width */
1389         buffer_size &= ~(stm32l4_info->data_width - 1);
1390
1391         if (buffer_size < 256) {
1392                 LOG_WARNING("large enough working area not available, can't do block memory writes");
1393                 target_free_working_area(target, write_algorithm);
1394                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1395         } else if (buffer_size > 16384) {
1396                 /* probably won't benefit from more than 16k ... */
1397                 buffer_size = 16384;
1398         }
1399
1400         if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
1401                 LOG_ERROR("allocating working area failed");
1402                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1403         }
1404
1405         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1406         armv7m_info.core_mode = ARM_MODE_THREAD;
1407
1408         /* contrib/loaders/flash/stm32/stm32l4x.c:write() arguments */
1409         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* stm32l4_work_area ptr , status (out) */
1410         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer end */
1411         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* target address */
1412         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* count (of stm32l4_info->data_width) */
1413
1414         buf_set_u32(reg_params[0].value, 0, 32, source->address);
1415         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
1416         buf_set_u32(reg_params[2].value, 0, 32, address);
1417         buf_set_u32(reg_params[3].value, 0, 32, count);
1418
1419         /* write algo stack pointer */
1420         init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT);
1421         buf_set_u32(reg_params[4].value, 0, 32, source->address +
1422                         offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);
1423
1424         struct stm32l4_loader_params loader_extra_params;
1425
1426         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
1427                         stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
1428         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
1429                         stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
1430         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
1431                         stm32l4_info->data_width);
1432         target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
1433                         stm32l4_info->sr_bsy_mask);
1434
1435         retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
1436                         (uint8_t *) &loader_extra_params);
1437         if (retval != ERROR_OK)
1438                 return retval;
1439
1440         retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
1441                         0, NULL,
1442                         ARRAY_SIZE(reg_params), reg_params,
1443                         source->address + offsetof(struct stm32l4_work_area, fifo),
1444                         source->size - offsetof(struct stm32l4_work_area, fifo),
1445                         write_algorithm->address, 0,
1446                         &armv7m_info);
1447
1448         if (retval == ERROR_FLASH_OPERATION_FAILED) {
1449                 LOG_ERROR("error executing stm32l4 flash write algorithm");
1450
1451                 uint32_t error;
1452                 stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
1453                 error &= FLASH_ERROR;
1454
1455                 if (error & FLASH_WRPERR)
1456                         LOG_ERROR("flash memory write protected");
1457
1458                 if (error != 0) {
1459                         LOG_ERROR("flash write failed = %08" PRIx32, error);
1460                         /* Clear but report errors */
1461                         stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
1462                         retval = ERROR_FAIL;
1463                 }
1464         }
1465
1466         target_free_working_area(target, source);
1467         target_free_working_area(target, write_algorithm);
1468
1469         destroy_reg_param(&reg_params[0]);
1470         destroy_reg_param(&reg_params[1]);
1471         destroy_reg_param(&reg_params[2]);
1472         destroy_reg_param(&reg_params[3]);
1473         destroy_reg_param(&reg_params[4]);
1474
1475         return retval;
1476 }
1477
1478 /* count is the size divided by stm32l4_info->data_width */
1479 static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
1480                                 uint32_t offset, uint32_t count)
1481 {
1482         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1483         struct target *target = bank->target;
1484         uint32_t address = bank->base + offset;
1485         int retval = ERROR_OK;
1486
1487         /* wait for BSY bit */
1488         retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1489         if (retval != ERROR_OK)
1490                 return retval;
1491
1492         /* set PG in FLASH_CR */
1493         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
1494         if (retval != ERROR_OK)
1495                 return retval;
1496
1497
1498         /* write directly to flash memory */
1499         const uint8_t *src = buffer;
1500         const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
1501         while (count--) {
1502                 retval = target_write_memory(target, address, 4, data_width_in_words, src);
1503                 if (retval != ERROR_OK)
1504                         return retval;
1505
1506                 /* wait for BSY bit */
1507                 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1508                 if (retval != ERROR_OK)
1509                         return retval;
1510
1511                 src += stm32l4_info->data_width;
1512                 address += stm32l4_info->data_width;
1513         }
1514
1515         /* reset PG in FLASH_CR */
1516         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
1517         if (retval != ERROR_OK)
1518                 return retval;
1519
1520         return retval;
1521 }
1522
1523 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
1524         uint32_t offset, uint32_t count)
1525 {
1526         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1527         int retval = ERROR_OK, retval2;
1528
1529         if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
1530                 LOG_ERROR("OTP memory is disabled for write commands");
1531                 return ERROR_FAIL;
1532         }
1533
1534         if (bank->target->state != TARGET_HALTED) {
1535                 LOG_ERROR("Target not halted");
1536                 return ERROR_TARGET_NOT_HALTED;
1537         }
1538
1539         /* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
1540         assert(stm32l4_info->data_width % 8 == 0);
1541
1542         /* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
1543          * The flash infrastructure ensures it, do just a security check */
1544         assert(offset % stm32l4_info->data_width == 0);
1545         assert(count % stm32l4_info->data_width == 0);
1546
1547         /* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
1548          * data to be written does not go into a gap:
1549          * suppose buffer is fully contained in bank from sector 0 to sector
1550          * num->sectors - 1 and sectors are ordered according to offset
1551          */
1552         struct flash_sector *head = &bank->sectors[0];
1553         struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
1554
1555         while ((head < tail) && (offset >= (head + 1)->offset)) {
1556                 /* buffer does not intersect head nor gap behind head */
1557                 head++;
1558         }
1559
1560         while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
1561                 /* buffer does not intersect tail nor gap before tail */
1562                 --tail;
1563         }
1564
1565         LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
1566                 offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
1567
1568         /* Now check that there is no gap from head to tail, this should work
1569          * even for multiple or non-symmetric gaps
1570          */
1571         while (head < tail) {
1572                 if (head->offset + head->size != (head + 1)->offset) {
1573                         LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
1574                                 bank->base + head->offset + head->size,
1575                                 bank->base + (head + 1)->offset - 1);
1576                         retval = ERROR_FLASH_DST_OUT_OF_BANK;
1577                 }
1578                 head++;
1579         }
1580
1581         if (retval != ERROR_OK)
1582                 return retval;
1583
1584         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1585                 /* set all FLASH pages as secure */
1586                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1587                 if (retval != ERROR_OK) {
1588                         /* restore all FLASH pages as non-secure */
1589                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1590                         return retval;
1591                 }
1592         }
1593
1594         retval = stm32l4_unlock_reg(bank);
1595         if (retval != ERROR_OK)
1596                 goto err_lock;
1597
1598         if (stm32l4_info->use_flashloader) {
1599                 /* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
1600                  * the debug is possible only in non-secure state.
1601                  * Thus means the flashloader will run in non-secure mode,
1602                  * and the workarea need to be in non-secure RAM */
1603                 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
1604                         LOG_INFO("RDP level is 0.5, the work-area should reside in non-secure RAM");
1605
1606                 retval = stm32l4_write_block(bank, buffer, offset,
1607                                 count / stm32l4_info->data_width);
1608         }
1609
1610         if (!stm32l4_info->use_flashloader || retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1611                 LOG_INFO("falling back to single memory accesses");
1612                 retval = stm32l4_write_block_without_loader(bank, buffer, offset,
1613                                 count / stm32l4_info->data_width);
1614         }
1615
1616 err_lock:
1617         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1618
1619         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1620                 /* restore all FLASH pages as non-secure */
1621                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1622                 if (retval3 != ERROR_OK)
1623                         return retval3;
1624         }
1625
1626         if (retval != ERROR_OK) {
1627                 LOG_ERROR("block write failed");
1628                 return retval;
1629         }
1630         return retval2;
1631 }
1632
1633 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
1634 {
1635         int retval;
1636
1637         /* try reading possible IDCODE registers, in the following order */
1638         uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
1639
1640         for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
1641                 retval = target_read_u32(bank->target, dbgmcu_idcode[i], id);
1642                 if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
1643                         return ERROR_OK;
1644         }
1645
1646         /* Workaround for STM32WL5x devices:
1647          * DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
1648          * to solve this read the UID64 (IEEE 64-bit unique device ID register) */
1649
1650         struct cortex_m_common *cortex_m = target_to_cm(bank->target);
1651
1652         /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1653          * Using HLA adapters armv7m.debug_ap is null, and checking ap_num triggers a segfault */
1654         if (cortex_m->core_info->partno == CORTEX_M0P_PARTNO &&
1655                         cortex_m->armv7m.debug_ap && cortex_m->armv7m.debug_ap->ap_num == 1) {
1656                 uint32_t uid64_ids;
1657
1658                 /* UID64 is contains
1659                  *  - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
1660                  *  - Bits 31:08 : STID (company ID) = 0x0080E1
1661                  *  - Bits 07:00 : DEVID (device ID) = 0x15
1662                  *
1663                  *  read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
1664                  */
1665                 retval = target_read_u32(bank->target, UID64_IDS, &uid64_ids);
1666                 if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
1667                         /* force the DEV_ID to DEVID_STM32WLE_WL5XX and the REV_ID to unknown */
1668                         *id = DEVID_STM32WLE_WL5XX;
1669                         return ERROR_OK;
1670                 }
1671         }
1672
1673         LOG_ERROR("can't get the device id");
1674         return (retval == ERROR_OK) ? ERROR_FAIL : retval;
1675 }
1676
1677 static const char *get_stm32l4_rev_str(struct flash_bank *bank)
1678 {
1679         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1680         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
1681         assert(part_info);
1682
1683         const uint16_t rev_id = stm32l4_info->idcode >> 16;
1684         for (unsigned int i = 0; i < part_info->num_revs; i++) {
1685                 if (rev_id == part_info->revs[i].rev)
1686                         return part_info->revs[i].str;
1687         }
1688         return "'unknown'";
1689 }
1690
1691 static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
1692 {
1693         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1694         assert(stm32l4_info->part_info);
1695         return stm32l4_is_otp(bank) ? "OTP" :
1696                         stm32l4_info->dual_bank_mode ? "Flash dual" :
1697                         "Flash single";
1698 }
1699
1700 static int stm32l4_probe(struct flash_bank *bank)
1701 {
1702         struct target *target = bank->target;
1703         struct armv7m_common *armv7m = target_to_armv7m(target);
1704         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1705         const struct stm32l4_part_info *part_info;
1706         uint16_t flash_size_kb = 0xffff;
1707
1708         stm32l4_info->probed = false;
1709
1710         /* read stm32 device id registers */
1711         int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
1712         if (retval != ERROR_OK)
1713                 return retval;
1714
1715         const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
1716
1717         for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
1718                 if (device_id == stm32l4_parts[n].id) {
1719                         stm32l4_info->part_info = &stm32l4_parts[n];
1720                         break;
1721                 }
1722         }
1723
1724         if (!stm32l4_info->part_info) {
1725                 LOG_WARNING("Cannot identify target as an %s family device.", device_families);
1726                 return ERROR_FAIL;
1727         }
1728
1729         part_info = stm32l4_info->part_info;
1730         const char *rev_str = get_stm32l4_rev_str(bank);
1731         const uint16_t rev_id = stm32l4_info->idcode >> 16;
1732
1733         LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
1734                         stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
1735
1736         stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
1737         stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
1738         stm32l4_info->cr_bker_mask = FLASH_BKER;
1739         stm32l4_info->sr_bsy_mask = FLASH_BSY;
1740
1741         /* Set flash write alignment boundaries.
1742          * Ask the flash infrastructure to ensure required alignment */
1743         bank->write_start_alignment = bank->write_end_alignment = stm32l4_info->data_width;
1744
1745         /* initialise the flash registers layout */
1746         if (part_info->flags & F_HAS_L5_FLASH_REGS)
1747                 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
1748         else
1749                 stm32l4_info->flash_regs = stm32l4_flash_regs;
1750
1751         /* read flash option register */
1752         retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
1753         if (retval != ERROR_OK)
1754                 return retval;
1755
1756         stm32l4_sync_rdp_tzen(bank);
1757
1758         /* for devices with trustzone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
1759         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1760                 if (part_info->flags & F_HAS_L5_FLASH_REGS) {
1761                         stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
1762                         stm32l4_info->flash_regs = stm32l5_s_flash_regs;
1763                 } else {
1764                         LOG_ERROR("BUG: device supported incomplete");
1765                         return ERROR_NOT_IMPLEMENTED;
1766                 }
1767         }
1768
1769         if (part_info->flags & F_HAS_TZ)
1770                 LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
1771                                 stm32l4_info->tzen,
1772                                 stm32l4_info->tzen ? "enabled" : "disabled");
1773
1774         LOG_INFO("RDP level %s (0x%02X)",
1775                         stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
1776                         stm32l4_info->rdp);
1777
1778         if (stm32l4_is_otp(bank)) {
1779                 bank->size = part_info->otp_size;
1780
1781                 LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
1782
1783                 /* OTP memory is considered as one sector */
1784                 free(bank->sectors);
1785                 bank->num_sectors = 1;
1786                 bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
1787
1788                 if (!bank->sectors) {
1789                         LOG_ERROR("failed to allocate bank sectors");
1790                         return ERROR_FAIL;
1791                 }
1792
1793                 stm32l4_info->probed = true;
1794                 return ERROR_OK;
1795         } else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
1796                 LOG_ERROR("invalid bank base address");
1797                 return ERROR_FAIL;
1798         }
1799
1800         /* get flash size from target. */
1801         retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
1802
1803         /* failed reading flash size or flash size invalid (early silicon),
1804          * default to max target family */
1805         if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
1806                         || flash_size_kb > part_info->max_flash_size_kb) {
1807                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1808                         part_info->max_flash_size_kb);
1809                 flash_size_kb = part_info->max_flash_size_kb;
1810         }
1811
1812         /* if the user sets the size manually then ignore the probed value
1813          * this allows us to work around devices that have a invalid flash size register value */
1814         if (stm32l4_info->user_bank_size) {
1815                 LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
1816                 flash_size_kb = stm32l4_info->user_bank_size / 1024;
1817         }
1818
1819         LOG_INFO("flash size = %dkbytes", flash_size_kb);
1820
1821         /* did we assign a flash size? */
1822         assert((flash_size_kb != 0xffff) && flash_size_kb);
1823
1824         const bool is_max_flash_size = flash_size_kb == stm32l4_info->part_info->max_flash_size_kb;
1825
1826         stm32l4_info->bank1_sectors = 0;
1827         stm32l4_info->hole_sectors = 0;
1828
1829         int num_pages = 0;
1830         int page_size_kb = 0;
1831
1832         stm32l4_info->dual_bank_mode = false;
1833
1834         switch (device_id) {
1835         case DEVID_STM32L47_L48XX:
1836         case DEVID_STM32L49_L4AXX:
1837                 /* if flash size is max (1M) the device is always dual bank
1838                  * STM32L47/L48xx: has variants with 512K
1839                  * STM32L49/L4Axx: has variants with 512 and 256
1840                  * for these variants:
1841                  *   if DUAL_BANK = 0 -> single bank
1842                  *   else -> dual bank without gap
1843                  * note: the page size is invariant
1844                  */
1845                 page_size_kb = 2;
1846                 num_pages = flash_size_kb / page_size_kb;
1847                 stm32l4_info->bank1_sectors = num_pages;
1848
1849                 /* check DUAL_BANK option bit if the flash is less than 1M */
1850                 if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) {
1851                         stm32l4_info->dual_bank_mode = true;
1852                         stm32l4_info->bank1_sectors = num_pages / 2;
1853                 }
1854                 break;
1855         case DEVID_STM32L43_L44XX:
1856         case DEVID_STM32G05_G06XX:
1857         case DEVID_STM32G07_G08XX:
1858         case DEVID_STM32L45_L46XX:
1859         case DEVID_STM32L41_L42XX:
1860         case DEVID_STM32G03_G04XX:
1861         case DEVID_STM32G43_G44XX:
1862         case DEVID_STM32G49_G4AXX:
1863         case DEVID_STM32WB1XX:
1864                 /* single bank flash */
1865                 page_size_kb = 2;
1866                 num_pages = flash_size_kb / page_size_kb;
1867                 stm32l4_info->bank1_sectors = num_pages;
1868                 break;
1869         case DEVID_STM32G0B_G0CXX:
1870                 /* single/dual bank depending on DUAL_BANK option bit */
1871                 page_size_kb = 2;
1872                 num_pages = flash_size_kb / page_size_kb;
1873                 stm32l4_info->bank1_sectors = num_pages;
1874                 stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
1875
1876                 /* check DUAL_BANK bit */
1877                 if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) {
1878                         stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
1879                         stm32l4_info->dual_bank_mode = true;
1880                         stm32l4_info->bank1_sectors = num_pages / 2;
1881                 }
1882                 break;
1883         case DEVID_STM32G47_G48XX:
1884                 /* STM32G47/8 can be single/dual bank:
1885                  *   if DUAL_BANK = 0 -> single bank
1886                  *   else -> dual bank WITH gap
1887                  */
1888                 page_size_kb = 4;
1889                 num_pages = flash_size_kb / page_size_kb;
1890                 stm32l4_info->bank1_sectors = num_pages;
1891                 if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) {
1892                         stm32l4_info->dual_bank_mode = true;
1893                         page_size_kb = 2;
1894                         num_pages = flash_size_kb / page_size_kb;
1895                         stm32l4_info->bank1_sectors = num_pages / 2;
1896
1897                         /* for devices with trimmed flash, there is a gap between both banks */
1898                         stm32l4_info->hole_sectors =
1899                                 (part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
1900                 }
1901                 break;
1902         case DEVID_STM32L4R_L4SXX:
1903         case DEVID_STM32L4P_L4QXX:
1904                 /* STM32L4R/S can be single/dual bank:
1905                  *   if size = 2M check DBANK bit
1906                  *   if size = 1M check DB1M bit
1907                  * STM32L4P/Q can be single/dual bank
1908                  *   if size = 1M check DBANK bit
1909                  *   if size = 512K check DB512K bit (same as DB1M bit)
1910                  */
1911                 page_size_kb = 8;
1912                 num_pages = flash_size_kb / page_size_kb;
1913                 stm32l4_info->bank1_sectors = num_pages;
1914                 if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) ||
1915                         (!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) {
1916                         stm32l4_info->dual_bank_mode = true;
1917                         page_size_kb = 4;
1918                         num_pages = flash_size_kb / page_size_kb;
1919                         stm32l4_info->bank1_sectors = num_pages / 2;
1920                 }
1921                 break;
1922         case DEVID_STM32L55_L56XX:
1923                 /* STM32L55/L56xx can be single/dual bank:
1924                  *   if size = 512K check DBANK bit
1925                  *   if size = 256K check DB256K bit
1926                  */
1927                 page_size_kb = 4;
1928                 num_pages = flash_size_kb / page_size_kb;
1929                 stm32l4_info->bank1_sectors = num_pages;
1930                 if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) ||
1931                         (!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) {
1932                         stm32l4_info->dual_bank_mode = true;
1933                         page_size_kb = 2;
1934                         num_pages = flash_size_kb / page_size_kb;
1935                         stm32l4_info->bank1_sectors = num_pages / 2;
1936                 }
1937                 break;
1938         case DEVID_STM32U57_U58XX:
1939                 /* if flash size is max (2M) the device is always dual bank
1940                  * otherwise check DUALBANK
1941                  */
1942                 page_size_kb = 8;
1943                 num_pages = flash_size_kb / page_size_kb;
1944                 stm32l4_info->bank1_sectors = num_pages;
1945                 if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) {
1946                         stm32l4_info->dual_bank_mode = true;
1947                         stm32l4_info->bank1_sectors = num_pages / 2;
1948                 }
1949                 break;
1950         case DEVID_STM32WB5XX:
1951         case DEVID_STM32WB3XX:
1952                 /* single bank flash */
1953                 page_size_kb = 4;
1954                 num_pages = flash_size_kb / page_size_kb;
1955                 stm32l4_info->bank1_sectors = num_pages;
1956                 break;
1957         case DEVID_STM32WLE_WL5XX:
1958                 /* single bank flash */
1959                 page_size_kb = 2;
1960                 num_pages = flash_size_kb / page_size_kb;
1961                 stm32l4_info->bank1_sectors = num_pages;
1962
1963                 /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1964                  * Using HLA adapters armv7m->debug_ap is null, and checking ap_num triggers a segfault */
1965                 if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
1966                         stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
1967                 break;
1968         default:
1969                 LOG_ERROR("unsupported device");
1970                 return ERROR_FAIL;
1971         }
1972
1973         LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
1974
1975         const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
1976
1977         if (gap_size_kb != 0) {
1978                 LOG_INFO("gap detected from 0x%08x to 0x%08x",
1979                         STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
1980                                 * page_size_kb * 1024,
1981                         STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
1982                                 * page_size_kb + gap_size_kb) * 1024 - 1);
1983         }
1984
1985         /* number of significant bits in WRPxxR differs per device,
1986          * always right adjusted, on some devices non-implemented
1987          * bits read as '0', on others as '1' ...
1988          * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
1989          */
1990
1991         /* use *max_flash_size* instead of actual size as the trimmed versions
1992          * certainly use the same number of bits
1993          */
1994         uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
1995
1996         /* in dual bank mode number of pages is doubled, but extra bit is bank selection */
1997         stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
1998         assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
1999         LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
2000
2001         free(bank->sectors);
2002
2003         bank->size = (flash_size_kb + gap_size_kb) * 1024;
2004         bank->num_sectors = num_pages;
2005         bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
2006         if (!bank->sectors) {
2007                 LOG_ERROR("failed to allocate bank sectors");
2008                 return ERROR_FAIL;
2009         }
2010
2011         for (unsigned int i = 0; i < bank->num_sectors; i++) {
2012                 bank->sectors[i].offset = i * page_size_kb * 1024;
2013                 /* in dual bank configuration, if there is a gap between banks
2014                  * we fix up the sector offset to consider this gap */
2015                 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
2016                         bank->sectors[i].offset += gap_size_kb * 1024;
2017                 bank->sectors[i].size = page_size_kb * 1024;
2018                 bank->sectors[i].is_erased = -1;
2019                 bank->sectors[i].is_protected = 1;
2020         }
2021
2022         stm32l4_info->probed = true;
2023         return ERROR_OK;
2024 }
2025
2026 static int stm32l4_auto_probe(struct flash_bank *bank)
2027 {
2028         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2029         if (stm32l4_info->probed) {
2030                 uint32_t optr_cur;
2031
2032                 /* read flash option register and re-probe if optr value is changed */
2033                 int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
2034                 if (retval != ERROR_OK)
2035                         return retval;
2036
2037                 if (stm32l4_info->optr == optr_cur)
2038                         return ERROR_OK;
2039         }
2040
2041         return stm32l4_probe(bank);
2042 }
2043
2044 static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
2045 {
2046         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2047         const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
2048
2049         if (part_info) {
2050                 const uint16_t rev_id = stm32l4_info->idcode >> 16;
2051                 command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
2052                                 get_stm32l4_rev_str(bank), rev_id);
2053                 if (stm32l4_info->probed)
2054                         command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
2055         } else {
2056                 command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
2057         }
2058
2059         return ERROR_OK;
2060 }
2061
2062 static int stm32l4_mass_erase(struct flash_bank *bank)
2063 {
2064         int retval, retval2;
2065         struct target *target = bank->target;
2066         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2067
2068         if (stm32l4_is_otp(bank)) {
2069                 LOG_ERROR("cannot erase OTP memory");
2070                 return ERROR_FLASH_OPER_UNSUPPORTED;
2071         }
2072
2073         uint32_t action = FLASH_MER1;
2074
2075         if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
2076                 action |= FLASH_MER2;
2077
2078         if (target->state != TARGET_HALTED) {
2079                 LOG_ERROR("Target not halted");
2080                 return ERROR_TARGET_NOT_HALTED;
2081         }
2082
2083         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2084                 /* set all FLASH pages as secure */
2085                 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
2086                 if (retval != ERROR_OK) {
2087                         /* restore all FLASH pages as non-secure */
2088                         stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
2089                         return retval;
2090                 }
2091         }
2092
2093         retval = stm32l4_unlock_reg(bank);
2094         if (retval != ERROR_OK)
2095                 goto err_lock;
2096
2097         /* mass erase flash memory */
2098         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
2099         if (retval != ERROR_OK)
2100                 goto err_lock;
2101
2102         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
2103         if (retval != ERROR_OK)
2104                 goto err_lock;
2105
2106         retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
2107         if (retval != ERROR_OK)
2108                 goto err_lock;
2109
2110         retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
2111
2112 err_lock:
2113         retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
2114
2115         if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2116                 /* restore all FLASH pages as non-secure */
2117                 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
2118                 if (retval3 != ERROR_OK)
2119                         return retval3;
2120         }
2121
2122         if (retval != ERROR_OK)
2123                 return retval;
2124
2125         return retval2;
2126 }
2127
2128 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
2129 {
2130         if (CMD_ARGC < 1) {
2131                 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
2132                 return ERROR_COMMAND_SYNTAX_ERROR;
2133         }
2134
2135         struct flash_bank *bank;
2136         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2137         if (retval != ERROR_OK)
2138                 return retval;
2139
2140         retval = stm32l4_mass_erase(bank);
2141         if (retval == ERROR_OK)
2142                 command_print(CMD, "stm32l4x mass erase complete");
2143         else
2144                 command_print(CMD, "stm32l4x mass erase failed");
2145
2146         return retval;
2147 }
2148
2149 COMMAND_HANDLER(stm32l4_handle_option_read_command)
2150 {
2151         if (CMD_ARGC < 2) {
2152                 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
2153                 return ERROR_COMMAND_SYNTAX_ERROR;
2154         }
2155
2156         struct flash_bank *bank;
2157         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2158         if (retval != ERROR_OK)
2159                 return retval;
2160
2161         uint32_t reg_offset, reg_addr;
2162         uint32_t value = 0;
2163
2164         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2165         reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
2166
2167         retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
2168         if (retval != ERROR_OK)
2169                 return retval;
2170
2171         command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
2172
2173         return retval;
2174 }
2175
2176 COMMAND_HANDLER(stm32l4_handle_option_write_command)
2177 {
2178         if (CMD_ARGC < 3) {
2179                 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
2180                 return ERROR_COMMAND_SYNTAX_ERROR;
2181         }
2182
2183         struct flash_bank *bank;
2184         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2185         if (retval != ERROR_OK)
2186                 return retval;
2187
2188         uint32_t reg_offset;
2189         uint32_t value = 0;
2190         uint32_t mask = 0xFFFFFFFF;
2191
2192         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2193         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2194
2195         if (CMD_ARGC > 3)
2196                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
2197
2198         command_print(CMD, "%s Option written.\n"
2199                                 "INFO: a reset or power cycle is required "
2200                                 "for the new settings to take effect.", bank->driver->name);
2201
2202         retval = stm32l4_write_option(bank, reg_offset, value, mask);
2203         return retval;
2204 }
2205
2206 COMMAND_HANDLER(stm32l4_handle_trustzone_command)
2207 {
2208         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2209                 return ERROR_COMMAND_SYNTAX_ERROR;
2210
2211         struct flash_bank *bank;
2212         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2213         if (retval != ERROR_OK)
2214                 return retval;
2215
2216         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2217         if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
2218                 LOG_ERROR("This device does not have a TrustZone");
2219                 return ERROR_FAIL;
2220         }
2221
2222         retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
2223         if (retval != ERROR_OK)
2224                 return retval;
2225
2226         stm32l4_sync_rdp_tzen(bank);
2227
2228         if (CMD_ARGC == 1) {
2229                 /* only display the TZEN value */
2230                 LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
2231                 return ERROR_OK;
2232         }
2233
2234         bool new_tzen;
2235         COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
2236
2237         if (new_tzen == stm32l4_info->tzen) {
2238                 LOG_INFO("The requested TZEN is already programmed");
2239                 return ERROR_OK;
2240         }
2241
2242         if (new_tzen) {
2243                 if (stm32l4_info->rdp != RDP_LEVEL_0) {
2244                         LOG_ERROR("TZEN can be set only when RDP level is 0");
2245                         return ERROR_FAIL;
2246                 }
2247                 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2248                                 FLASH_TZEN, FLASH_TZEN);
2249         } else {
2250                 /* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
2251                  * changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
2252                 if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
2253                         LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
2254                         return ERROR_FAIL;
2255                 }
2256
2257                 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2258                                 RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
2259         }
2260
2261         if (retval != ERROR_OK)
2262                 return retval;
2263
2264         return stm32l4_perform_obl_launch(bank);
2265 }
2266
2267 COMMAND_HANDLER(stm32l4_handle_flashloader_command)
2268 {
2269         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2270                 return ERROR_COMMAND_SYNTAX_ERROR;
2271
2272         struct flash_bank *bank;
2273         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2274         if (retval != ERROR_OK)
2275                 return retval;
2276
2277         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2278
2279         if (CMD_ARGC == 2)
2280                 COMMAND_PARSE_ENABLE(CMD_ARGV[1], stm32l4_info->use_flashloader);
2281
2282         command_print(CMD, "FlashLoader usage is %s", stm32l4_info->use_flashloader ? "enabled" : "disabled");
2283
2284         return ERROR_OK;
2285 }
2286
2287 COMMAND_HANDLER(stm32l4_handle_option_load_command)
2288 {
2289         if (CMD_ARGC != 1)
2290                 return ERROR_COMMAND_SYNTAX_ERROR;
2291
2292         struct flash_bank *bank;
2293         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2294         if (retval != ERROR_OK)
2295                 return retval;
2296
2297         retval = stm32l4_perform_obl_launch(bank);
2298         if (retval != ERROR_OK) {
2299                 command_print(CMD, "stm32l4x option load failed");
2300                 return retval;
2301         }
2302
2303
2304         command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
2305
2306         return ERROR_OK;
2307 }
2308
2309 COMMAND_HANDLER(stm32l4_handle_lock_command)
2310 {
2311         struct target *target = NULL;
2312
2313         if (CMD_ARGC < 1)
2314                 return ERROR_COMMAND_SYNTAX_ERROR;
2315
2316         struct flash_bank *bank;
2317         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2318         if (retval != ERROR_OK)
2319                 return retval;
2320
2321         if (stm32l4_is_otp(bank)) {
2322                 LOG_ERROR("cannot lock/unlock OTP memory");
2323                 return ERROR_FLASH_OPER_UNSUPPORTED;
2324         }
2325
2326         target = bank->target;
2327
2328         if (target->state != TARGET_HALTED) {
2329                 LOG_ERROR("Target not halted");
2330                 return ERROR_TARGET_NOT_HALTED;
2331         }
2332
2333         /* set readout protection level 1 by erasing the RDP option byte */
2334         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2335         if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2336                         RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
2337                 command_print(CMD, "%s failed to lock device", bank->driver->name);
2338                 return ERROR_OK;
2339         }
2340
2341         return ERROR_OK;
2342 }
2343
2344 COMMAND_HANDLER(stm32l4_handle_unlock_command)
2345 {
2346         struct target *target = NULL;
2347
2348         if (CMD_ARGC < 1)
2349                 return ERROR_COMMAND_SYNTAX_ERROR;
2350
2351         struct flash_bank *bank;
2352         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2353         if (retval != ERROR_OK)
2354                 return retval;
2355
2356         if (stm32l4_is_otp(bank)) {
2357                 LOG_ERROR("cannot lock/unlock OTP memory");
2358                 return ERROR_FLASH_OPER_UNSUPPORTED;
2359         }
2360
2361         target = bank->target;
2362
2363         if (target->state != TARGET_HALTED) {
2364                 LOG_ERROR("Target not halted");
2365                 return ERROR_TARGET_NOT_HALTED;
2366         }
2367
2368         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2369         if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2370                         RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
2371                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
2372                 return ERROR_OK;
2373         }
2374
2375         return ERROR_OK;
2376 }
2377
2378 COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
2379 {
2380         if (CMD_ARGC < 1 || CMD_ARGC > 2)
2381                 return ERROR_COMMAND_SYNTAX_ERROR;
2382
2383         struct flash_bank *bank;
2384         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2385         if (retval != ERROR_OK)
2386                 return retval;
2387
2388         if (stm32l4_is_otp(bank)) {
2389                 LOG_ERROR("OTP memory does not have write protection areas");
2390                 return ERROR_FLASH_OPER_UNSUPPORTED;
2391         }
2392
2393         struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2394         enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
2395         if (CMD_ARGC == 2) {
2396                 if (strcmp(CMD_ARGV[1], "bank1") == 0)
2397                         dev_bank_id = STM32_BANK1;
2398                 else if (strcmp(CMD_ARGV[1], "bank2") == 0)
2399                         dev_bank_id = STM32_BANK2;
2400                 else
2401                         return ERROR_COMMAND_ARGUMENT_INVALID;
2402         }
2403
2404         if (dev_bank_id == STM32_BANK2) {
2405                 if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
2406                         LOG_ERROR("this device has no second bank");
2407                         return ERROR_FAIL;
2408                 } else if (!stm32l4_info->dual_bank_mode) {
2409                         LOG_ERROR("this device is configured in single bank mode");
2410                         return ERROR_FAIL;
2411                 }
2412         }
2413
2414         int ret;
2415         unsigned int n_wrp, i;
2416         struct stm32l4_wrp wrpxy[4];
2417
2418         ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
2419         if (ret != ERROR_OK)
2420                 return ret;
2421
2422         /* use bitmap and range helpers to better describe protected areas */
2423         DECLARE_BITMAP(pages, bank->num_sectors);
2424         bitmap_zero(pages, bank->num_sectors);
2425
2426         for (i = 0; i < n_wrp; i++) {
2427                 if (wrpxy[i].used) {
2428                         for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
2429                                 set_bit(p, pages);
2430                 }
2431         }
2432
2433         /* we have at most 'n_wrp' WRP areas */
2434         struct range ranges[n_wrp];
2435         unsigned int ranges_count = 0;
2436
2437         bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
2438
2439         if (ranges_count > 0) {
2440                 /* pretty-print the protected ranges */
2441                 char *ranges_str = range_print_alloc(ranges, ranges_count);
2442                 command_print(CMD, "protected areas: %s", ranges_str);
2443                 free(ranges_str);
2444         } else
2445                 command_print(CMD, "no protected areas");
2446
2447         return ERROR_OK;
2448 }
2449
2450 COMMAND_HANDLER(stm32l4_handle_otp_command)
2451 {
2452         if (CMD_ARGC < 2)
2453                 return ERROR_COMMAND_SYNTAX_ERROR;
2454
2455         struct flash_bank *bank;
2456         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2457         if (retval != ERROR_OK)
2458                 return retval;
2459
2460         if (!stm32l4_is_otp(bank)) {
2461                 command_print(CMD, "the specified bank is not an OTP memory");
2462                 return ERROR_FAIL;
2463         }
2464         if (strcmp(CMD_ARGV[1], "enable") == 0)
2465                 stm32l4_otp_enable(bank, true);
2466         else if (strcmp(CMD_ARGV[1], "disable") == 0)
2467                 stm32l4_otp_enable(bank, false);
2468         else if (strcmp(CMD_ARGV[1], "show") == 0)
2469                 command_print(CMD, "OTP memory bank #%d is %s for write commands.",
2470                                 bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
2471         else
2472                 return ERROR_COMMAND_SYNTAX_ERROR;
2473
2474         return ERROR_OK;
2475 }
2476
2477 static const struct command_registration stm32l4_exec_command_handlers[] = {
2478         {
2479                 .name = "lock",
2480                 .handler = stm32l4_handle_lock_command,
2481                 .mode = COMMAND_EXEC,
2482                 .usage = "bank_id",
2483                 .help = "Lock entire flash device.",
2484         },
2485         {
2486                 .name = "unlock",
2487                 .handler = stm32l4_handle_unlock_command,
2488                 .mode = COMMAND_EXEC,
2489                 .usage = "bank_id",
2490                 .help = "Unlock entire protected flash device.",
2491         },
2492         {
2493                 .name = "flashloader",
2494                 .handler = stm32l4_handle_flashloader_command,
2495                 .mode = COMMAND_EXEC,
2496                 .usage = "<bank_id> [enable|disable]",
2497                 .help = "Configure the flashloader usage",
2498         },
2499         {
2500                 .name = "mass_erase",
2501                 .handler = stm32l4_handle_mass_erase_command,
2502                 .mode = COMMAND_EXEC,
2503                 .usage = "bank_id",
2504                 .help = "Erase entire flash device.",
2505         },
2506         {
2507                 .name = "option_read",
2508                 .handler = stm32l4_handle_option_read_command,
2509                 .mode = COMMAND_EXEC,
2510                 .usage = "bank_id reg_offset",
2511                 .help = "Read & Display device option bytes.",
2512         },
2513         {
2514                 .name = "option_write",
2515                 .handler = stm32l4_handle_option_write_command,
2516                 .mode = COMMAND_EXEC,
2517                 .usage = "bank_id reg_offset value mask",
2518                 .help = "Write device option bit fields with provided value.",
2519         },
2520         {
2521                 .name = "trustzone",
2522                 .handler = stm32l4_handle_trustzone_command,
2523                 .mode = COMMAND_EXEC,
2524                 .usage = "<bank_id> [enable|disable]",
2525                 .help = "Configure TrustZone security",
2526         },
2527         {
2528                 .name = "wrp_info",
2529                 .handler = stm32l4_handle_wrp_info_command,
2530                 .mode = COMMAND_EXEC,
2531                 .usage = "bank_id [bank1|bank2]",
2532                 .help = "list the protected areas using WRP",
2533         },
2534         {
2535                 .name = "option_load",
2536                 .handler = stm32l4_handle_option_load_command,
2537                 .mode = COMMAND_EXEC,
2538                 .usage = "bank_id",
2539                 .help = "Force re-load of device options (will cause device reset).",
2540         },
2541         {
2542                 .name = "otp",
2543                 .handler = stm32l4_handle_otp_command,
2544                 .mode = COMMAND_EXEC,
2545                 .usage = "<bank_id> <enable|disable|show>",
2546                 .help = "OTP (One Time Programmable) memory write enable/disable",
2547         },
2548         COMMAND_REGISTRATION_DONE
2549 };
2550
2551 static const struct command_registration stm32l4_command_handlers[] = {
2552         {
2553                 .name = "stm32l4x",
2554                 .mode = COMMAND_ANY,
2555                 .help = "stm32l4x flash command group",
2556                 .usage = "",
2557                 .chain = stm32l4_exec_command_handlers,
2558         },
2559         COMMAND_REGISTRATION_DONE
2560 };
2561
2562 const struct flash_driver stm32l4x_flash = {
2563         .name = "stm32l4x",
2564         .commands = stm32l4_command_handlers,
2565         .flash_bank_command = stm32l4_flash_bank_command,
2566         .erase = stm32l4_erase,
2567         .protect = stm32l4_protect,
2568         .write = stm32l4_write,
2569         .read = default_flash_read,
2570         .probe = stm32l4_probe,
2571         .auto_probe = stm32l4_auto_probe,
2572         .erase_check = default_flash_blank_check,
2573         .protect_check = stm32l4_protect_check,
2574         .info = get_stm32l4_info,
2575         .free_driver_priv = default_flash_free_driver_priv,
2576 };