flash/nor, contrib/loaders: add stm32 loaders Makefile and generated .inc
[fw/openocd] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 Ã˜yvind Harboe                                      *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33
34 /* Regarding performance:
35  *
36  * Short story - it might be best to leave the performance at
37  * current levels.
38  *
39  * You may see a jump in speed if you change to using
40  * 32bit words for the block programming.
41  *
42  * Its a shame you cannot use the double word as its
43  * even faster - but you require external VPP for that mode.
44  *
45  * Having said all that 16bit writes give us the widest vdd
46  * operating range, so may be worth adding a note to that effect.
47  *
48  */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51  * quite different flash controllers.
52  *
53  * What's more scary is that the names of the registers and their
54  * addresses are the same, but the actual bits and what they do are
55  * can be very different.
56  *
57  * To reduce testing complexity and dangers of regressions,
58  * a seperate file is used for stm32fx2x.
59  *
60  * Sector sizes in kiBytes:
61  * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62  * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63  * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64  * 1 MiByte STM32F42x/43x part with DB1M Option set:
65  *                    4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66  *
67  * STM32F7[2|3]
68  * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69  *
70  * STM32F7[4|5]
71  * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72  *
73  * STM32F7[6|7]
74  * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75  * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76  * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77  * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78  *
79  * Protection size is sector size.
80  *
81  * Tested with STM3220F-EVAL board.
82  *
83  * STM32F4xx series for reference.
84  *
85  * RM0090
86  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87  *
88  * PM0059
89  * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90  * PROGRAMMING_MANUAL/CD00233952.pdf
91  *
92  * STM32F7xx series for reference.
93  *
94  * RM0385
95  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96  *
97  * RM0410
98  * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99  *
100  * RM0430
101  * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102  *
103  * RM0431
104  * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105  *
106  * STM32F1x series - notice that this code was copy, pasted and knocked
107  * into a stm32f2x driver, so in case something has been converted or
108  * bugs haven't been fixed, here are the original manuals:
109  *
110  * RM0008 - Reference manual
111  *
112  * RM0042, the Flash programming manual for low-, medium- high-density and
113  * connectivity line STM32F10x devices
114  *
115  * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116  *
117  */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define STM32_FLASH_BASE    0x40023c00
127 #define STM32_FLASH_ACR     0x40023c00
128 #define STM32_FLASH_KEYR    0x40023c04
129 #define STM32_FLASH_OPTKEYR 0x40023c08
130 #define STM32_FLASH_SR      0x40023c0C
131 #define STM32_FLASH_CR      0x40023c10
132 #define STM32_FLASH_OPTCR   0x40023c14
133 #define STM32_FLASH_OPTCR1  0x40023c18
134 #define STM32_FLASH_OPTCR2  0x40023c1c
135
136 /* FLASH_CR register bits */
137 #define FLASH_PG       (1 << 0)
138 #define FLASH_SER      (1 << 1)
139 #define FLASH_MER      (1 << 2)         /* MER/MER1 for f76x/77x */
140 #define FLASH_MER1     (1 << 15)        /* MER2 for f76x/77x, confusing ... */
141 #define FLASH_STRT     (1 << 16)
142 #define FLASH_PSIZE_8  (0 << 8)
143 #define FLASH_PSIZE_16 (1 << 8)
144 #define FLASH_PSIZE_32 (2 << 8)
145 #define FLASH_PSIZE_64 (3 << 8)
146 /* The sector number encoding is not straight binary for dual bank flash. */
147 #define FLASH_SNB(a)   ((a) << 3)
148 #define FLASH_LOCK     (1 << 31)
149
150 /* FLASH_SR register bits */
151 #define FLASH_BSY      (1 << 16)
152 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
153 #define FLASH_PGPERR   (1 << 6) /* Programming parallelism error */
154 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
155 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
156 #define FLASH_OPERR    (1 << 1) /* Operation error */
157
158 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
159
160 /* STM32_FLASH_OPTCR register bits */
161 #define OPTCR_LOCK     (1 << 0)
162 #define OPTCR_START    (1 << 1)
163 #define OPTCR_NDBANK   (1 << 29)        /* not dual bank mode */
164 #define OPTCR_DB1M     (1 << 30)        /* 1 MiB devices dual flash bank option */
165 #define OPTCR_SPRMOD   (1 << 31)        /* switches PCROPi/nWPRi interpretation */
166
167 /* STM32_FLASH_OPTCR2 register bits */
168 #define OPTCR2_PCROP_RDP        (1 << 31)       /* erase PCROP zone when decreasing RDP */
169
170 /* register unlock keys */
171 #define KEY1           0x45670123
172 #define KEY2           0xCDEF89AB
173
174 /* option register unlock key */
175 #define OPTKEY1        0x08192A3B
176 #define OPTKEY2        0x4C5D6E7F
177
178 struct stm32x_options {
179         uint8_t RDP;
180         uint16_t user_options;  /* bit 0-7 usual options, bit 8-11 extra options */
181         uint32_t protection;
182         uint32_t boot_addr;
183         uint32_t optcr2_pcrop;
184 };
185
186 struct stm32x_flash_bank {
187         struct stm32x_options option_bytes;
188         int probed;
189         bool has_large_mem;             /* F42x/43x/469/479/7xx in dual bank mode */
190         bool has_extra_options; /* F42x/43x/469/479/7xx */
191         bool has_boot_addr;     /* F7xx */
192         bool has_optcr2_pcrop;  /* F72x/73x */
193         int protection_bits;    /* F413/423 */
194         uint32_t user_bank_size;
195 };
196
197 /* flash bank stm32x <base> <size> 0 0 <target#>
198  */
199 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
200 {
201         struct stm32x_flash_bank *stm32x_info;
202
203         if (CMD_ARGC < 6)
204                 return ERROR_COMMAND_SYNTAX_ERROR;
205
206         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
207         bank->driver_priv = stm32x_info;
208
209         stm32x_info->probed = 0;
210         stm32x_info->user_bank_size = bank->size;
211
212         return ERROR_OK;
213 }
214
215 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
216 {
217         return reg;
218 }
219
220 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
221 {
222         struct target *target = bank->target;
223         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
224 }
225
226 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
227 {
228         struct target *target = bank->target;
229         uint32_t status;
230         int retval = ERROR_OK;
231
232         /* wait for busy to clear */
233         for (;;) {
234                 retval = stm32x_get_flash_status(bank, &status);
235                 if (retval != ERROR_OK)
236                         return retval;
237                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
238                 if ((status & FLASH_BSY) == 0)
239                         break;
240                 if (timeout-- <= 0) {
241                         LOG_ERROR("timed out waiting for flash");
242                         return ERROR_FAIL;
243                 }
244                 alive_sleep(1);
245         }
246
247
248         if (status & FLASH_WRPERR) {
249                 LOG_ERROR("stm32x device protected");
250                 retval = ERROR_FAIL;
251         }
252
253         /* Clear but report errors */
254         if (status & FLASH_ERROR) {
255                 /* If this operation fails, we ignore it and report the original
256                  * retval
257                  */
258                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
259                                 status & FLASH_ERROR);
260         }
261         return retval;
262 }
263
264 static int stm32x_unlock_reg(struct target *target)
265 {
266         uint32_t ctrl;
267
268         /* first check if not already unlocked
269          * otherwise writing on STM32_FLASH_KEYR will fail
270          */
271         int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
272         if (retval != ERROR_OK)
273                 return retval;
274
275         if ((ctrl & FLASH_LOCK) == 0)
276                 return ERROR_OK;
277
278         /* unlock flash registers */
279         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
280         if (retval != ERROR_OK)
281                 return retval;
282
283         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
284         if (retval != ERROR_OK)
285                 return retval;
286
287         retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
288         if (retval != ERROR_OK)
289                 return retval;
290
291         if (ctrl & FLASH_LOCK) {
292                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
293                 return ERROR_TARGET_FAILURE;
294         }
295
296         return ERROR_OK;
297 }
298
299 static int stm32x_unlock_option_reg(struct target *target)
300 {
301         uint32_t ctrl;
302
303         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
304         if (retval != ERROR_OK)
305                 return retval;
306
307         if ((ctrl & OPTCR_LOCK) == 0)
308                 return ERROR_OK;
309
310         /* unlock option registers */
311         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
312         if (retval != ERROR_OK)
313                 return retval;
314
315         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
316         if (retval != ERROR_OK)
317                 return retval;
318
319         retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
320         if (retval != ERROR_OK)
321                 return retval;
322
323         if (ctrl & OPTCR_LOCK) {
324                 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
325                 return ERROR_TARGET_FAILURE;
326         }
327
328         return ERROR_OK;
329 }
330
331 static int stm32x_read_options(struct flash_bank *bank)
332 {
333         uint32_t optiondata;
334         struct stm32x_flash_bank *stm32x_info = NULL;
335         struct target *target = bank->target;
336
337         stm32x_info = bank->driver_priv;
338
339         /* read current option bytes */
340         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
341         if (retval != ERROR_OK)
342                 return retval;
343
344     /* caution: F2 implements 5 bits (WDG_SW only)
345      * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
346         stm32x_info->option_bytes.user_options = optiondata & 0xfc;
347         stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
348         stm32x_info->option_bytes.protection =
349                 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
350
351         if (stm32x_info->has_extra_options) {
352                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
353                 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
354                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
355         }
356
357         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
358                 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
359                 if (retval != ERROR_OK)
360                         return retval;
361
362                 /* FLASH_OPTCR1 has quite diffent meanings ... */
363                 if (stm32x_info->has_boot_addr) {
364                         /* for F7xx it contains boot0 and boot1 */
365                         stm32x_info->option_bytes.boot_addr = optiondata;
366                 } else {
367                         /* for F42x/43x/469/479 it contains 12 additional protection bits */
368                         stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
369                 }
370         }
371
372         if (stm32x_info->has_optcr2_pcrop) {
373                 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
374                 if (retval != ERROR_OK)
375                         return retval;
376
377                 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
378                 if (stm32x_info->has_optcr2_pcrop &&
379                         (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
380                         LOG_INFO("PCROP Engaged");
381                 }
382         } else {
383                 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
384         }
385
386         if (stm32x_info->option_bytes.RDP != 0xAA)
387                 LOG_INFO("Device Security Bit Set");
388
389         return ERROR_OK;
390 }
391
392 static int stm32x_write_options(struct flash_bank *bank)
393 {
394         struct stm32x_flash_bank *stm32x_info = NULL;
395         struct target *target = bank->target;
396         uint32_t optiondata, optiondata2;
397
398         stm32x_info = bank->driver_priv;
399
400         int retval = stm32x_unlock_option_reg(target);
401         if (retval != ERROR_OK)
402                 return retval;
403
404         /* rebuild option data */
405         optiondata = stm32x_info->option_bytes.user_options & 0xfc;
406         optiondata |= stm32x_info->option_bytes.RDP << 8;
407         optiondata |= (stm32x_info->option_bytes.protection &
408                 (~(0xffff << stm32x_info->protection_bits))) << 16;
409
410         if (stm32x_info->has_extra_options) {
411                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
412                 optiondata |= (stm32x_info->option_bytes.user_options &
413                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
414         }
415
416         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
417                 if (stm32x_info->has_boot_addr) {
418                         /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
419                         optiondata2 = stm32x_info->option_bytes.boot_addr;
420                 } else {
421                         /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
422                         optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
423                 }
424
425                 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
426                 if (retval != ERROR_OK)
427                         return retval;
428         }
429
430         /* program extra pcrop register */
431         if (stm32x_info->has_optcr2_pcrop) {
432                 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
433                         stm32x_info->option_bytes.optcr2_pcrop);
434                 if (retval != ERROR_OK)
435                         return retval;
436         }
437
438         /* program options */
439         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
440         if (retval != ERROR_OK)
441                 return retval;
442
443         /* start programming cycle */
444         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
445         if (retval != ERROR_OK)
446                 return retval;
447
448         /* wait for completion, this might trigger a security erase and take a while */
449         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
450         if (retval != ERROR_OK)
451                 return retval;
452
453         /* relock registers */
454         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
455         if (retval != ERROR_OK)
456                 return retval;
457
458         return ERROR_OK;
459 }
460
461 static int stm32x_protect_check(struct flash_bank *bank)
462 {
463         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
464         struct flash_sector *prot_blocks;
465         int num_prot_blocks;
466
467         /* read write protection settings */
468         int retval = stm32x_read_options(bank);
469         if (retval != ERROR_OK) {
470                 LOG_DEBUG("unable to read option bytes");
471                 return retval;
472         }
473
474         if (bank->prot_blocks) {
475                 num_prot_blocks = bank->num_prot_blocks;
476                 prot_blocks = bank->prot_blocks;
477         } else {
478                 num_prot_blocks = bank->num_sectors;
479                 prot_blocks = bank->sectors;
480         }
481
482         for (int i = 0; i < num_prot_blocks; i++)
483                 prot_blocks[i].is_protected =
484                         ~(stm32x_info->option_bytes.protection >> i) & 1;
485
486         return ERROR_OK;
487 }
488
489 static int stm32x_erase(struct flash_bank *bank, int first, int last)
490 {
491         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
492         struct target *target = bank->target;
493         int i;
494
495         assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
496
497         if (bank->target->state != TARGET_HALTED) {
498                 LOG_ERROR("Target not halted");
499                 return ERROR_TARGET_NOT_HALTED;
500         }
501
502         int retval;
503         retval = stm32x_unlock_reg(target);
504         if (retval != ERROR_OK)
505                 return retval;
506
507         /*
508         Sector Erase
509         To erase a sector, follow the procedure below:
510         1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
511           FLASH_SR register
512         2. Set the SER bit and select the sector
513           you wish to erase (SNB) in the FLASH_CR register
514         3. Set the STRT bit in the FLASH_CR register
515         4. Wait for the BSY bit to be cleared
516          */
517
518         for (i = first; i <= last; i++) {
519                 int snb;
520                 if (stm32x_info->has_large_mem && i >= 12)
521                         snb = (i - 12) | 0x10;
522                 else
523                         snb = i;
524
525                 retval = target_write_u32(target,
526                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
527                 if (retval != ERROR_OK)
528                         return retval;
529
530                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
531                 if (retval != ERROR_OK)
532                         return retval;
533
534                 bank->sectors[i].is_erased = 1;
535         }
536
537         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
538         if (retval != ERROR_OK)
539                 return retval;
540
541         return ERROR_OK;
542 }
543
544 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
545 {
546         struct target *target = bank->target;
547         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
548
549         if (target->state != TARGET_HALTED) {
550                 LOG_ERROR("Target not halted");
551                 return ERROR_TARGET_NOT_HALTED;
552         }
553
554         /* read protection settings */
555         int retval = stm32x_read_options(bank);
556         if (retval != ERROR_OK) {
557                 LOG_DEBUG("unable to read option bytes");
558                 return retval;
559         }
560
561         for (int i = first; i <= last; i++) {
562                 if (set)
563                         stm32x_info->option_bytes.protection &= ~(1 << i);
564                 else
565                         stm32x_info->option_bytes.protection |= (1 << i);
566         }
567
568         retval = stm32x_write_options(bank);
569         if (retval != ERROR_OK)
570                 return retval;
571
572         return ERROR_OK;
573 }
574
575 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
576                 uint32_t offset, uint32_t count)
577 {
578         struct target *target = bank->target;
579         uint32_t buffer_size = 16384;
580         struct working_area *write_algorithm;
581         struct working_area *source;
582         uint32_t address = bank->base + offset;
583         struct reg_param reg_params[5];
584         struct armv7m_algorithm armv7m_info;
585         int retval = ERROR_OK;
586
587         static const uint8_t stm32x_flash_write_code[] = {
588 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
589         };
590
591         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
592                         &write_algorithm) != ERROR_OK) {
593                 LOG_WARNING("no working area available, can't do block memory writes");
594                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
595         }
596
597         retval = target_write_buffer(target, write_algorithm->address,
598                         sizeof(stm32x_flash_write_code),
599                         stm32x_flash_write_code);
600         if (retval != ERROR_OK)
601                 return retval;
602
603         /* memory buffer */
604         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
605                 buffer_size /= 2;
606                 if (buffer_size <= 256) {
607                         /* we already allocated the writing code, but failed to get a
608                          * buffer, free the algorithm */
609                         target_free_working_area(target, write_algorithm);
610
611                         LOG_WARNING("no large enough working area available, can't do block memory writes");
612                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
613                 }
614         }
615
616         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
617         armv7m_info.core_mode = ARM_MODE_THREAD;
618
619         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);         /* buffer start, status (out) */
620         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);            /* buffer end */
621         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);            /* target address */
622         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);            /* count (halfword-16bit) */
623         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);            /* flash base */
624
625         buf_set_u32(reg_params[0].value, 0, 32, source->address);
626         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
627         buf_set_u32(reg_params[2].value, 0, 32, address);
628         buf_set_u32(reg_params[3].value, 0, 32, count);
629         buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
630
631         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
632                         0, NULL,
633                         5, reg_params,
634                         source->address, source->size,
635                         write_algorithm->address, 0,
636                         &armv7m_info);
637
638         if (retval == ERROR_FLASH_OPERATION_FAILED) {
639                 LOG_ERROR("error executing stm32x flash write algorithm");
640
641                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
642
643                 if (error & FLASH_WRPERR)
644                         LOG_ERROR("flash memory write protected");
645
646                 if (error != 0) {
647                         LOG_ERROR("flash write failed = %08" PRIx32, error);
648                         /* Clear but report errors */
649                         target_write_u32(target, STM32_FLASH_SR, error);
650                         retval = ERROR_FAIL;
651                 }
652         }
653
654         target_free_working_area(target, source);
655         target_free_working_area(target, write_algorithm);
656
657         destroy_reg_param(&reg_params[0]);
658         destroy_reg_param(&reg_params[1]);
659         destroy_reg_param(&reg_params[2]);
660         destroy_reg_param(&reg_params[3]);
661         destroy_reg_param(&reg_params[4]);
662
663         return retval;
664 }
665
666 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
667                 uint32_t offset, uint32_t count)
668 {
669         struct target *target = bank->target;
670         uint32_t words_remaining = (count / 2);
671         uint32_t bytes_remaining = (count & 0x00000001);
672         uint32_t address = bank->base + offset;
673         uint32_t bytes_written = 0;
674         int retval;
675
676         if (bank->target->state != TARGET_HALTED) {
677                 LOG_ERROR("Target not halted");
678                 return ERROR_TARGET_NOT_HALTED;
679         }
680
681         if (offset & 0x1) {
682                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
683                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
684         }
685
686         retval = stm32x_unlock_reg(target);
687         if (retval != ERROR_OK)
688                 return retval;
689
690         /* multiple half words (2-byte) to be programmed? */
691         if (words_remaining > 0) {
692                 /* try using a block write */
693                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
694                 if (retval != ERROR_OK) {
695                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
696                                 /* if block write failed (no sufficient working area),
697                                  * we use normal (slow) single dword accesses */
698                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
699                         }
700                 } else {
701                         buffer += words_remaining * 2;
702                         address += words_remaining * 2;
703                         words_remaining = 0;
704                 }
705         }
706
707         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
708                 return retval;
709
710         /*
711         Standard programming
712         The Flash memory programming sequence is as follows:
713         1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
714           FLASH_SR register.
715         2. Set the PG bit in the FLASH_CR register
716         3. Perform the data write operation(s) to the desired memory address (inside main
717           memory block or OTP area):
718         â€“ â€“ Half-word access in case of x16 parallelism
719         â€“ Word access in case of x32 parallelism
720         â€“
721         4.
722         Byte access in case of x8 parallelism
723         Double word access in case of x64 parallelism
724         Wait for the BSY bit to be cleared
725         */
726         while (words_remaining > 0) {
727                 uint16_t value;
728                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
729
730                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
731                                 FLASH_PG | FLASH_PSIZE_16);
732                 if (retval != ERROR_OK)
733                         return retval;
734
735                 retval = target_write_u16(target, address, value);
736                 if (retval != ERROR_OK)
737                         return retval;
738
739                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
740                 if (retval != ERROR_OK)
741                         return retval;
742
743                 bytes_written += 2;
744                 words_remaining--;
745                 address += 2;
746         }
747
748         if (bytes_remaining) {
749                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
750                                 FLASH_PG | FLASH_PSIZE_8);
751                 if (retval != ERROR_OK)
752                         return retval;
753                 retval = target_write_u8(target, address, buffer[bytes_written]);
754                 if (retval != ERROR_OK)
755                         return retval;
756
757                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
758                 if (retval != ERROR_OK)
759                         return retval;
760         }
761
762         return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
763 }
764
765 static int setup_sector(struct flash_bank *bank, int start, int num, int size)
766 {
767
768         for (int i = start; i < (start + num) ; i++) {
769                 assert(i < bank->num_sectors);
770                 bank->sectors[i].offset = bank->size;
771                 bank->sectors[i].size = size;
772                 bank->size += bank->sectors[i].size;
773             LOG_DEBUG("sector %d: %dkBytes", i, size >> 10);
774         }
775
776         return start + num;
777 }
778
779 static void setup_bank(struct flash_bank *bank, int start,
780         uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
781 {
782         int remain;
783
784         start = setup_sector(bank, start, 4, (max_sector_size_in_kb / 8) * 1024);
785         start = setup_sector(bank, start, 1, (max_sector_size_in_kb / 2) * 1024);
786
787         /* remaining sectors all of size max_sector_size_in_kb */
788         remain = (flash_size_in_kb / max_sector_size_in_kb) - 1;
789         start = setup_sector(bank, start, remain, max_sector_size_in_kb * 1024);
790 }
791
792 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
793 {
794         /* this checks for a stm32f4x errata issue where a
795          * stm32f2x DBGMCU_IDCODE is incorrectly returned.
796          * If the issue is detected target is forced to stm32f4x Rev A.
797          * Only effects Rev A silicon */
798
799         struct target *target = bank->target;
800         uint32_t cpuid;
801
802         /* read stm32 device id register */
803         int retval = target_read_u32(target, 0xE0042000, device_id);
804         if (retval != ERROR_OK)
805                 return retval;
806
807         if ((*device_id & 0xfff) == 0x411) {
808                 /* read CPUID reg to check core type */
809                 retval = target_read_u32(target, 0xE000ED00, &cpuid);
810                 if (retval != ERROR_OK)
811                         return retval;
812
813                 /* check for cortex_m4 */
814                 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
815                         *device_id &= ~((0xFFFF << 16) | 0xfff);
816                         *device_id |= (0x1000 << 16) | 0x413;
817                         LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
818                 }
819         }
820         return retval;
821 }
822
823 static int stm32x_probe(struct flash_bank *bank)
824 {
825         struct target *target = bank->target;
826         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
827         int i, num_prot_blocks;
828         uint16_t flash_size_in_kb;
829         uint32_t flash_size_reg = 0x1FFF7A22;
830         uint16_t max_sector_size_in_kb = 128;
831         uint16_t max_flash_size_in_kb;
832         uint32_t device_id;
833         uint32_t base_address = 0x08000000;
834
835         stm32x_info->probed = 0;
836         stm32x_info->has_large_mem = false;
837         stm32x_info->has_boot_addr = false;
838         stm32x_info->has_extra_options = false;
839         stm32x_info->has_optcr2_pcrop = false;
840         stm32x_info->protection_bits = 12;              /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
841         num_prot_blocks = 0;
842
843         if (bank->sectors) {
844                 free(bank->sectors);
845                 bank->num_sectors = 0;
846                 bank->sectors = NULL;
847         }
848
849         if (bank->prot_blocks) {
850                 free(bank->prot_blocks);
851                 bank->num_prot_blocks = 0;
852                 bank->prot_blocks = NULL;
853         }
854
855         /* read stm32 device id register */
856         int retval = stm32x_get_device_id(bank, &device_id);
857         if (retval != ERROR_OK)
858                 return retval;
859         LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
860         device_id &= 0xfff;             /* only bits 0-11 are used further on */
861
862         /* set max flash size depending on family, id taken from AN2606 */
863         switch (device_id) {
864         case 0x411: /* F20x/21x */
865         case 0x413: /* F40x/41x */
866                 max_flash_size_in_kb = 1024;
867                 break;
868
869         case 0x419: /* F42x/43x */
870         case 0x434: /* F469/479 */
871                 stm32x_info->has_extra_options = true;
872                 max_flash_size_in_kb = 2048;
873                 break;
874
875         case 0x423:     /* F401xB/C */
876                 max_flash_size_in_kb = 256;
877                 break;
878
879         case 0x421:     /* F446 */
880         case 0x431: /* F411 */
881         case 0x433: /* F401xD/E */
882         case 0x441: /* F412 */
883                 max_flash_size_in_kb = 512;
884                 break;
885
886         case 0x458: /* F410 */
887                 max_flash_size_in_kb = 128;
888                 break;
889
890         case 0x449:     /* F74x/75x */
891                 max_flash_size_in_kb = 1024;
892                 max_sector_size_in_kb = 256;
893                 flash_size_reg = 0x1FF0F442;
894                 stm32x_info->has_extra_options = true;
895                 stm32x_info->has_boot_addr = true;
896                 break;
897
898         case 0x451:     /* F76x/77x */
899                 max_flash_size_in_kb = 2048;
900                 max_sector_size_in_kb = 256;
901                 flash_size_reg = 0x1FF0F442;
902                 stm32x_info->has_extra_options = true;
903                 stm32x_info->has_boot_addr = true;
904                 break;
905
906         case 0x452:     /* F72x/73x */
907                 max_flash_size_in_kb = 512;
908                 flash_size_reg = 0x1FF07A22;    /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
909                 stm32x_info->has_extra_options = true;
910                 stm32x_info->has_boot_addr = true;
911                 stm32x_info->has_optcr2_pcrop = true;
912                 break;
913
914         case 0x463:     /* F413x/423x */
915                 max_flash_size_in_kb = 1536;
916                 stm32x_info->has_extra_options = true;
917                 stm32x_info->protection_bits = 15;
918                 num_prot_blocks = 15;
919                 break;
920
921         default:
922                 LOG_WARNING("Cannot identify target as a STM32 family.");
923                 return ERROR_FAIL;
924         }
925
926         /* get flash size from target. */
927         retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
928
929         /* failed reading flash size or flash size invalid (early silicon),
930          * default to max target family */
931         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
932                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
933                         max_flash_size_in_kb);
934                 flash_size_in_kb = max_flash_size_in_kb;
935         }
936
937         /* if the user sets the size manually then ignore the probed value
938          * this allows us to work around devices that have a invalid flash size register value */
939         if (stm32x_info->user_bank_size) {
940                 LOG_INFO("ignoring flash probed value, using configured bank size");
941                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
942         }
943
944         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
945
946         /* did we assign flash size? */
947         assert(flash_size_in_kb != 0xffff);
948
949         /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
950         if ((device_id == 0x419) || (device_id == 0x434)) {
951                 uint32_t optiondata;
952                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
953                 if (retval != ERROR_OK) {
954                         LOG_DEBUG("unable to read option bytes");
955                         return retval;
956                 }
957                 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
958                         stm32x_info->has_large_mem = true;
959                         LOG_INFO("Dual Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
960                 } else {
961                         stm32x_info->has_large_mem = false;
962                         LOG_INFO("Single Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
963                 }
964         }
965
966         /* F76x/77x devices have a dual bank option */
967         if (device_id == 0x451) {
968                 uint32_t optiondata;
969                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
970                 if (retval != ERROR_OK) {
971                         LOG_DEBUG("unable to read option bytes");
972                         return retval;
973                 }
974                 if (optiondata & OPTCR_NDBANK) {
975                         stm32x_info->has_large_mem = false;
976                         LOG_INFO("Single Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
977                 } else {
978                         stm32x_info->has_large_mem = true;
979                         max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
980                         LOG_INFO("Dual Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
981                 }
982         }
983
984         /* calculate numbers of pages */
985         int num_pages = flash_size_in_kb / max_sector_size_in_kb
986                 + (stm32x_info->has_large_mem ? 8 : 4);
987
988         bank->base = base_address;
989         bank->num_sectors = num_pages;
990         bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
991         for (i = 0; i < num_pages; i++) {
992                 bank->sectors[i].is_erased = -1;
993                 bank->sectors[i].is_protected = 0;
994         }
995         bank->size = 0;
996         LOG_DEBUG("allocated %d sectors", num_pages);
997
998         /* F76x/77x in dual bank mode */
999         if ((device_id == 0x451) && stm32x_info->has_large_mem)
1000                 num_prot_blocks = num_pages >> 1;
1001
1002         if (num_prot_blocks) {
1003                 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1004                 for (i = 0; i < num_prot_blocks; i++)
1005                         bank->prot_blocks[i].is_protected = 0;
1006                 LOG_DEBUG("allocated %d prot blocks", num_prot_blocks);
1007         }
1008
1009         if (stm32x_info->has_large_mem) {
1010                 /* dual-bank */
1011                 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1012                 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1013                         max_sector_size_in_kb);
1014
1015                 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1016                 if (device_id == 0x451) {
1017                         for (i = 0; i < num_prot_blocks; i++) {
1018                                 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1019                                 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1020                                                 + bank->sectors[(i << 1) + 1].size;
1021                         }
1022                 }
1023         } else {
1024                 /* single-bank */
1025                 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1026
1027                 /* F413/F423, sectors 14 and 15 share one common protection bit */
1028                 if (device_id == 0x463) {
1029                         for (i = 0; i < num_prot_blocks; i++) {
1030                                 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1031                                 bank->prot_blocks[i].size = bank->sectors[i].size;
1032                         }
1033                         bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1034                 }
1035         }
1036         bank->num_prot_blocks = num_prot_blocks;
1037         assert((bank->size >> 10) == flash_size_in_kb);
1038
1039         stm32x_info->probed = 1;
1040         return ERROR_OK;
1041 }
1042
1043 static int stm32x_auto_probe(struct flash_bank *bank)
1044 {
1045         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1046         if (stm32x_info->probed)
1047                 return ERROR_OK;
1048         return stm32x_probe(bank);
1049 }
1050
1051 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1052 {
1053         uint32_t dbgmcu_idcode;
1054
1055         /* read stm32 device id register */
1056         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1057         if (retval != ERROR_OK)
1058                 return retval;
1059
1060         uint16_t device_id = dbgmcu_idcode & 0xfff;
1061         uint16_t rev_id = dbgmcu_idcode >> 16;
1062         const char *device_str;
1063         const char *rev_str = NULL;
1064
1065         switch (device_id) {
1066         case 0x411:
1067                 device_str = "STM32F2xx";
1068
1069                 switch (rev_id) {
1070                 case 0x1000:
1071                         rev_str = "A";
1072                         break;
1073
1074                 case 0x2000:
1075                         rev_str = "B";
1076                         break;
1077
1078                 case 0x1001:
1079                         rev_str = "Z";
1080                         break;
1081
1082                 case 0x2001:
1083                         rev_str = "Y";
1084                         break;
1085
1086                 case 0x2003:
1087                         rev_str = "X";
1088                         break;
1089
1090                 case 0x2007:
1091                         rev_str = "1";
1092                         break;
1093
1094                 case 0x200F:
1095                         rev_str = "V";
1096                         break;
1097
1098                 case 0x201F:
1099                         rev_str = "2";
1100                         break;
1101                 }
1102                 break;
1103
1104         case 0x413:
1105         case 0x419:
1106         case 0x434:
1107                 device_str = "STM32F4xx";
1108
1109                 switch (rev_id) {
1110                 case 0x1000:
1111                         rev_str = "A";
1112                         break;
1113
1114                 case 0x1001:
1115                         rev_str = "Z";
1116                         break;
1117
1118                 case 0x1003:
1119                         rev_str = "Y";
1120                         break;
1121
1122                 case 0x1007:
1123                         rev_str = "1";
1124                         break;
1125
1126                 case 0x2001:
1127                         rev_str = "3";
1128                         break;
1129                 }
1130                 break;
1131
1132         case 0x421:
1133                 device_str = "STM32F446";
1134
1135                 switch (rev_id) {
1136                 case 0x1000:
1137                         rev_str = "A";
1138                         break;
1139                 }
1140                 break;
1141
1142         case 0x423:
1143         case 0x431:
1144         case 0x433:
1145         case 0x458:
1146         case 0x441:
1147                 device_str = "STM32F4xx (Low Power)";
1148
1149                 switch (rev_id) {
1150                 case 0x1000:
1151                         rev_str = "A";
1152                         break;
1153
1154                 case 0x1001:
1155                         rev_str = "Z";
1156                         break;
1157
1158                 case 0x2000:
1159                         rev_str = "B";
1160                         break;
1161
1162                 case 0x3000:
1163                         rev_str = "C";
1164                         break;
1165                 }
1166                 break;
1167
1168         case 0x449:
1169                 device_str = "STM32F7[4|5]x";
1170
1171                 switch (rev_id) {
1172                 case 0x1000:
1173                         rev_str = "A";
1174                         break;
1175
1176                 case 0x1001:
1177                         rev_str = "Z";
1178                         break;
1179                 }
1180                 break;
1181
1182         case 0x451:
1183                 device_str = "STM32F7[6|7]x";
1184
1185                 switch (rev_id) {
1186                 case 0x1000:
1187                         rev_str = "A";
1188                         break;
1189                 }
1190                 break;
1191
1192         case 0x452:
1193                 device_str = "STM32F7[2|3]x";
1194
1195                 switch (rev_id) {
1196                 case 0x1000:
1197                         rev_str = "A";
1198                         break;
1199                 }
1200                 break;
1201
1202         case 0x463:
1203                 device_str = "STM32F4[1|2]3";
1204
1205                 switch (rev_id) {
1206                 case 0x1000:
1207                         rev_str = "A";
1208                         break;
1209                 }
1210                 break;
1211
1212         default:
1213                 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
1214                 return ERROR_FAIL;
1215         }
1216
1217         if (rev_str != NULL)
1218                 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
1219         else
1220                 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1221
1222         return ERROR_OK;
1223 }
1224
1225 COMMAND_HANDLER(stm32x_handle_lock_command)
1226 {
1227         struct target *target = NULL;
1228         struct stm32x_flash_bank *stm32x_info = NULL;
1229
1230         if (CMD_ARGC < 1)
1231                 return ERROR_COMMAND_SYNTAX_ERROR;
1232
1233         struct flash_bank *bank;
1234         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1235         if (ERROR_OK != retval)
1236                 return retval;
1237
1238         stm32x_info = bank->driver_priv;
1239         target = bank->target;
1240
1241         if (target->state != TARGET_HALTED) {
1242                 LOG_INFO("Target not halted");
1243                 /* return ERROR_TARGET_NOT_HALTED; */
1244         }
1245
1246         if (stm32x_read_options(bank) != ERROR_OK) {
1247                 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1248                 return ERROR_OK;
1249         }
1250
1251         /* set readout protection */
1252         stm32x_info->option_bytes.RDP = 0;
1253
1254         if (stm32x_write_options(bank) != ERROR_OK) {
1255                 command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
1256                 return ERROR_OK;
1257         }
1258
1259         command_print(CMD_CTX, "%s locked", bank->driver->name);
1260
1261         return ERROR_OK;
1262 }
1263
1264 COMMAND_HANDLER(stm32x_handle_unlock_command)
1265 {
1266         struct target *target = NULL;
1267         struct stm32x_flash_bank *stm32x_info = NULL;
1268
1269         if (CMD_ARGC < 1)
1270                 return ERROR_COMMAND_SYNTAX_ERROR;
1271
1272         struct flash_bank *bank;
1273         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1274         if (ERROR_OK != retval)
1275                 return retval;
1276
1277         stm32x_info = bank->driver_priv;
1278         target = bank->target;
1279
1280         if (target->state != TARGET_HALTED) {
1281                 LOG_INFO("Target not halted");
1282                 /* return ERROR_TARGET_NOT_HALTED; */
1283         }
1284
1285         if (stm32x_read_options(bank) != ERROR_OK) {
1286                 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1287                 return ERROR_OK;
1288         }
1289
1290         /* clear readout protection and complementary option bytes
1291          * this will also force a device unlock if set */
1292         stm32x_info->option_bytes.RDP = 0xAA;
1293         if (stm32x_info->has_optcr2_pcrop) {
1294                 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1295         }
1296
1297         if (stm32x_write_options(bank) != ERROR_OK) {
1298                 command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
1299                 return ERROR_OK;
1300         }
1301
1302         command_print(CMD_CTX, "%s unlocked.\n"
1303                         "INFO: a reset or power cycle is required "
1304                         "for the new settings to take effect.", bank->driver->name);
1305
1306         return ERROR_OK;
1307 }
1308
1309 static int stm32x_mass_erase(struct flash_bank *bank)
1310 {
1311         int retval;
1312         uint32_t flash_mer;
1313         struct target *target = bank->target;
1314         struct stm32x_flash_bank *stm32x_info = NULL;
1315
1316         if (target->state != TARGET_HALTED) {
1317                 LOG_ERROR("Target not halted");
1318                 return ERROR_TARGET_NOT_HALTED;
1319         }
1320
1321         stm32x_info = bank->driver_priv;
1322
1323         retval = stm32x_unlock_reg(target);
1324         if (retval != ERROR_OK)
1325                 return retval;
1326
1327         /* mass erase flash memory */
1328         if (stm32x_info->has_large_mem)
1329                 flash_mer = FLASH_MER | FLASH_MER1;
1330         else
1331                 flash_mer = FLASH_MER;
1332
1333         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1334         if (retval != ERROR_OK)
1335                 return retval;
1336         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1337                 flash_mer | FLASH_STRT);
1338         if (retval != ERROR_OK)
1339                 return retval;
1340
1341         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1342         if (retval != ERROR_OK)
1343                 return retval;
1344
1345         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1346         if (retval != ERROR_OK)
1347                 return retval;
1348
1349         return ERROR_OK;
1350 }
1351
1352 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1353 {
1354         int i;
1355
1356         if (CMD_ARGC < 1) {
1357                 command_print(CMD_CTX, "stm32x mass_erase <bank>");
1358                 return ERROR_COMMAND_SYNTAX_ERROR;
1359         }
1360
1361         struct flash_bank *bank;
1362         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1363         if (ERROR_OK != retval)
1364                 return retval;
1365
1366         retval = stm32x_mass_erase(bank);
1367         if (retval == ERROR_OK) {
1368                 /* set all sectors as erased */
1369                 for (i = 0; i < bank->num_sectors; i++)
1370                         bank->sectors[i].is_erased = 1;
1371
1372                 command_print(CMD_CTX, "stm32x mass erase complete");
1373         } else {
1374                 command_print(CMD_CTX, "stm32x mass erase failed");
1375         }
1376
1377         return retval;
1378 }
1379
1380 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1381 {
1382         int retval;
1383         struct flash_bank *bank;
1384         struct stm32x_flash_bank *stm32x_info = NULL;
1385
1386         if (CMD_ARGC != 1) {
1387                 command_print(CMD_CTX, "stm32f2x options_read <bank>");
1388                 return ERROR_COMMAND_SYNTAX_ERROR;
1389         }
1390
1391         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1392         if (ERROR_OK != retval)
1393                 return retval;
1394
1395         retval = stm32x_read_options(bank);
1396         if (ERROR_OK != retval)
1397                 return retval;
1398
1399         stm32x_info = bank->driver_priv;
1400         if (stm32x_info->has_extra_options) {
1401                 if (stm32x_info->has_boot_addr) {
1402                         uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1403
1404                         command_print(CMD_CTX, "stm32f2x user_options 0x%03X,"
1405                                 " boot_add0 0x%04X, boot_add1 0x%04X",
1406                                 stm32x_info->option_bytes.user_options,
1407                                 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1408                         if (stm32x_info->has_optcr2_pcrop) {
1409                                 command_print(CMD_CTX, "stm32f2x optcr2_pcrop 0x%08X",
1410                                                 stm32x_info->option_bytes.optcr2_pcrop);
1411                         }
1412                 } else {
1413                         command_print(CMD_CTX, "stm32f2x user_options 0x%03X",
1414                                 stm32x_info->option_bytes.user_options);
1415                 }
1416         } else {
1417                 command_print(CMD_CTX, "stm32f2x user_options 0x%02X",
1418                         stm32x_info->option_bytes.user_options);
1419
1420         }
1421
1422         return retval;
1423 }
1424
1425 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1426 {
1427         int retval;
1428         struct flash_bank *bank;
1429         struct stm32x_flash_bank *stm32x_info = NULL;
1430         uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1431
1432         if (CMD_ARGC < 1) {
1433                 command_print(CMD_CTX, "stm32f2x options_write <bank> ...");
1434                 return ERROR_COMMAND_SYNTAX_ERROR;
1435         }
1436
1437         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1438         if (ERROR_OK != retval)
1439                 return retval;
1440
1441         retval = stm32x_read_options(bank);
1442         if (ERROR_OK != retval)
1443                 return retval;
1444
1445         stm32x_info = bank->driver_priv;
1446         if (stm32x_info->has_boot_addr) {
1447                 if (CMD_ARGC != 4) {
1448                         command_print(CMD_CTX, "stm32f2x options_write <bank> <user_options>"
1449                                 " <boot_addr0> <boot_addr1>");
1450                         return ERROR_COMMAND_SYNTAX_ERROR;
1451                 }
1452                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1453                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1454                 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1455         } else {
1456                 if (CMD_ARGC != 2) {
1457                         command_print(CMD_CTX, "stm32f2x options_write <bank> <user_options>");
1458                         return ERROR_COMMAND_SYNTAX_ERROR;
1459                 }
1460         }
1461
1462         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1463         options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1464                 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1465         if (user_options & options_mask) {
1466                 command_print(CMD_CTX, "stm32f2x invalid user_options");
1467                 return ERROR_COMMAND_ARGUMENT_INVALID;
1468         }
1469
1470         stm32x_info->option_bytes.user_options = user_options;
1471
1472         if (stm32x_write_options(bank) != ERROR_OK) {
1473                 command_print(CMD_CTX, "stm32f2x failed to write options");
1474                 return ERROR_OK;
1475         }
1476
1477         /* switching between single- and dual-bank modes requires re-probe */
1478         /* ... and reprogramming of whole flash */
1479         stm32x_info->probed = 0;
1480
1481         command_print(CMD_CTX, "stm32f2x write options complete.\n"
1482                                 "INFO: a reset or power cycle is required "
1483                                 "for the new settings to take effect.");
1484         return retval;
1485 }
1486
1487 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1488 {
1489         int retval;
1490         struct flash_bank *bank;
1491         struct stm32x_flash_bank *stm32x_info = NULL;
1492         uint32_t optcr2_pcrop;
1493
1494         if (CMD_ARGC != 2) {
1495                 command_print(CMD_CTX, "stm32f2x optcr2_write <bank> <optcr2_value>");
1496                 return ERROR_COMMAND_SYNTAX_ERROR;
1497         }
1498
1499         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1500         if (ERROR_OK != retval)
1501                 return retval;
1502
1503         stm32x_info = bank->driver_priv;
1504         if (!stm32x_info->has_optcr2_pcrop) {
1505                 command_print(CMD_CTX, "no optcr2 register");
1506                 return ERROR_COMMAND_ARGUMENT_INVALID;
1507         }
1508
1509         command_print(CMD_CTX, "INFO: To disable PCROP, set PCROP_RDP"
1510                                 " with PCROPi bits STILL SET, then\nlock device and"
1511                                 " finally unlock it. Clears PCROP and mass erases flash.");
1512
1513         retval = stm32x_read_options(bank);
1514         if (ERROR_OK != retval)
1515                 return retval;
1516
1517         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1518         stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1519
1520         if (stm32x_write_options(bank) != ERROR_OK) {
1521                 command_print(CMD_CTX, "stm32f2x failed to write options");
1522                 return ERROR_OK;
1523         }
1524
1525         command_print(CMD_CTX, "stm32f2x optcr2_write complete.");
1526         return retval;
1527 }
1528
1529 static const struct command_registration stm32x_exec_command_handlers[] = {
1530         {
1531                 .name = "lock",
1532                 .handler = stm32x_handle_lock_command,
1533                 .mode = COMMAND_EXEC,
1534                 .usage = "bank_id",
1535                 .help = "Lock entire flash device.",
1536         },
1537         {
1538                 .name = "unlock",
1539                 .handler = stm32x_handle_unlock_command,
1540                 .mode = COMMAND_EXEC,
1541                 .usage = "bank_id",
1542                 .help = "Unlock entire protected flash device.",
1543         },
1544         {
1545                 .name = "mass_erase",
1546                 .handler = stm32x_handle_mass_erase_command,
1547                 .mode = COMMAND_EXEC,
1548                 .usage = "bank_id",
1549                 .help = "Erase entire flash device.",
1550         },
1551         {
1552                 .name = "options_read",
1553                 .handler = stm32f2x_handle_options_read_command,
1554                 .mode = COMMAND_EXEC,
1555                 .usage = "bank_id",
1556                 .help = "Read and display device option bytes.",
1557         },
1558         {
1559                 .name = "options_write",
1560                 .handler = stm32f2x_handle_options_write_command,
1561                 .mode = COMMAND_EXEC,
1562                 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1563                 .help = "Write option bytes",
1564         },
1565         {
1566                 .name = "optcr2_write",
1567                 .handler = stm32f2x_handle_optcr2_write_command,
1568                 .mode = COMMAND_EXEC,
1569                 .usage = "bank_id optcr2",
1570                 .help = "Write optcr2 word",
1571         },
1572
1573         COMMAND_REGISTRATION_DONE
1574 };
1575
1576 static const struct command_registration stm32x_command_handlers[] = {
1577         {
1578                 .name = "stm32f2x",
1579                 .mode = COMMAND_ANY,
1580                 .help = "stm32f2x flash command group",
1581                 .usage = "",
1582                 .chain = stm32x_exec_command_handlers,
1583         },
1584         COMMAND_REGISTRATION_DONE
1585 };
1586
1587 struct flash_driver stm32f2x_flash = {
1588         .name = "stm32f2x",
1589         .commands = stm32x_command_handlers,
1590         .flash_bank_command = stm32x_flash_bank_command,
1591         .erase = stm32x_erase,
1592         .protect = stm32x_protect,
1593         .write = stm32x_write,
1594         .read = default_flash_read,
1595         .probe = stm32x_probe,
1596         .auto_probe = stm32x_auto_probe,
1597         .erase_check = default_flash_blank_check,
1598         .protect_check = stm32x_protect_check,
1599         .info = get_stm32x_info,
1600         .free_driver_priv = default_flash_free_driver_priv,
1601 };