flash/nor/stm32f2x: Support value line chips with trimmed flash
[fw/openocd] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 Ã˜yvind Harboe                                      *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33
34 /* Regarding performance:
35  *
36  * Short story - it might be best to leave the performance at
37  * current levels.
38  *
39  * You may see a jump in speed if you change to using
40  * 32bit words for the block programming.
41  *
42  * Its a shame you cannot use the double word as its
43  * even faster - but you require external VPP for that mode.
44  *
45  * Having said all that 16bit writes give us the widest vdd
46  * operating range, so may be worth adding a note to that effect.
47  *
48  */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51  * quite different flash controllers.
52  *
53  * What's more scary is that the names of the registers and their
54  * addresses are the same, but the actual bits and what they do are
55  * can be very different.
56  *
57  * To reduce testing complexity and dangers of regressions,
58  * a seperate file is used for stm32fx2x.
59  *
60  * Sector sizes in kiBytes:
61  * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62  * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63  * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64  * 1 MiByte STM32F42x/43x part with DB1M Option set:
65  *                    4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66  *
67  * STM32F7[2|3]
68  * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69  *
70  * STM32F7[4|5]
71  * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72  *
73  * STM32F7[6|7]
74  * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75  * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76  * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77  * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78  *
79  * Protection size is sector size.
80  *
81  * Tested with STM3220F-EVAL board.
82  *
83  * STM32F4xx series for reference.
84  *
85  * RM0090
86  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87  *
88  * PM0059
89  * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90  * PROGRAMMING_MANUAL/CD00233952.pdf
91  *
92  * STM32F7xx series for reference.
93  *
94  * RM0385
95  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96  *
97  * RM0410
98  * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99  *
100  * RM0430
101  * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102  *
103  * RM0431
104  * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105  *
106  * STM32F1x series - notice that this code was copy, pasted and knocked
107  * into a stm32f2x driver, so in case something has been converted or
108  * bugs haven't been fixed, here are the original manuals:
109  *
110  * RM0008 - Reference manual
111  *
112  * RM0042, the Flash programming manual for low-, medium- high-density and
113  * connectivity line STM32F10x devices
114  *
115  * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116  *
117  */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE     0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE       0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE       ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE       0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE       ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE    0x40023c00
140 #define STM32_FLASH_ACR     0x40023c00
141 #define STM32_FLASH_KEYR    0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR      0x40023c0C
144 #define STM32_FLASH_CR      0x40023c10
145 #define STM32_FLASH_OPTCR   0x40023c14
146 #define STM32_FLASH_OPTCR1  0x40023c18
147 #define STM32_FLASH_OPTCR2  0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG       (1 << 0)
151 #define FLASH_SER      (1 << 1)
152 #define FLASH_MER      (1 << 2)         /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1     (1 << 15)        /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT     (1 << 16)
155 #define FLASH_PSIZE_8  (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a)   ((a) << 3)
161 #define FLASH_LOCK     (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY      (1 << 16)
165 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR   (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
169 #define FLASH_OPERR    (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK     (1 << 0)
175 #define OPTCR_START    (1 << 1)
176 #define OPTCR_NDBANK   (1 << 29)        /* not dual bank mode */
177 #define OPTCR_DB1M     (1 << 30)        /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD   (1 << 31)        /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP        (1 << 31)       /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1           0x45670123
185 #define KEY2           0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1        0x08192A3B
189 #define OPTKEY2        0x4C5D6E7F
190
191 struct stm32x_options {
192         uint8_t RDP;
193         uint16_t user_options;  /* bit 0-7 usual options, bit 8-11 extra options */
194         uint32_t protection;
195         uint32_t boot_addr;
196         uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200         struct stm32x_options option_bytes;
201         bool probed;
202         bool otp_unlocked;
203         bool has_large_mem;             /* F42x/43x/469/479/7xx in dual bank mode */
204         bool has_extra_options; /* F42x/43x/469/479/7xx */
205         bool has_boot_addr;     /* F7xx */
206         bool has_optcr2_pcrop;  /* F72x/73x */
207         int protection_bits;    /* F413/423 */
208         uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213         return bank->base == STM32F2_OTP_BANK_BASE ||
214                 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219         return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226         return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233         LOG_INFO("OTP memory bank #%d is disabled for write commands.",
234                  bank->bank_number);
235         stm32x_info->otp_unlocked = false;
236         return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243         if (!stm32x_info->otp_unlocked) {
244                 LOG_INFO("OTP memory bank #%d is is enabled for write commands.",
245                          bank->bank_number);
246                 stm32x_info->otp_unlocked = true;
247         } else {
248                 LOG_WARNING("OTP memory bank #%d is is already enabled for write commands.",
249                             bank->bank_number);
250         }
251         return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255  */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258         struct stm32x_flash_bank *stm32x_info;
259
260         if (CMD_ARGC < 6)
261                 return ERROR_COMMAND_SYNTAX_ERROR;
262
263         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264         bank->driver_priv = stm32x_info;
265
266         stm32x_info->probed = false;
267         stm32x_info->otp_unlocked = false;
268         stm32x_info->user_bank_size = bank->size;
269
270         return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275         return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280         struct target *target = bank->target;
281         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286         struct target *target = bank->target;
287         uint32_t status;
288         int retval = ERROR_OK;
289
290         /* wait for busy to clear */
291         for (;;) {
292                 retval = stm32x_get_flash_status(bank, &status);
293                 if (retval != ERROR_OK)
294                         return retval;
295                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
296                 if ((status & FLASH_BSY) == 0)
297                         break;
298                 if (timeout-- <= 0) {
299                         LOG_ERROR("timed out waiting for flash");
300                         return ERROR_FAIL;
301                 }
302                 alive_sleep(1);
303         }
304
305
306         if (status & FLASH_WRPERR) {
307                 LOG_ERROR("stm32x device protected");
308                 retval = ERROR_FAIL;
309         }
310
311         /* Clear but report errors */
312         if (status & FLASH_ERROR) {
313                 if (retval == ERROR_OK)
314                         retval = ERROR_FAIL;
315                 /* If this operation fails, we ignore it and report the original
316                  * retval
317                  */
318                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319                                 status & FLASH_ERROR);
320         }
321         return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326         uint32_t ctrl;
327
328         /* first check if not already unlocked
329          * otherwise writing on STM32_FLASH_KEYR will fail
330          */
331         int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332         if (retval != ERROR_OK)
333                 return retval;
334
335         if ((ctrl & FLASH_LOCK) == 0)
336                 return ERROR_OK;
337
338         /* unlock flash registers */
339         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340         if (retval != ERROR_OK)
341                 return retval;
342
343         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344         if (retval != ERROR_OK)
345                 return retval;
346
347         retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         if (ctrl & FLASH_LOCK) {
352                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
353                 return ERROR_TARGET_FAILURE;
354         }
355
356         return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361         uint32_t ctrl;
362
363         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364         if (retval != ERROR_OK)
365                 return retval;
366
367         if ((ctrl & OPTCR_LOCK) == 0)
368                 return ERROR_OK;
369
370         /* unlock option registers */
371         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372         if (retval != ERROR_OK)
373                 return retval;
374
375         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376         if (retval != ERROR_OK)
377                 return retval;
378
379         retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380         if (retval != ERROR_OK)
381                 return retval;
382
383         if (ctrl & OPTCR_LOCK) {
384                 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
385                 return ERROR_TARGET_FAILURE;
386         }
387
388         return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393         uint32_t optiondata;
394         struct stm32x_flash_bank *stm32x_info = NULL;
395         struct target *target = bank->target;
396
397         stm32x_info = bank->driver_priv;
398
399         /* read current option bytes */
400         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401         if (retval != ERROR_OK)
402                 return retval;
403
404     /* caution: F2 implements 5 bits (WDG_SW only)
405      * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406         stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407         stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408         stm32x_info->option_bytes.protection =
409                 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411         if (stm32x_info->has_extra_options) {
412                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413                 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415         }
416
417         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418                 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419                 if (retval != ERROR_OK)
420                         return retval;
421
422                 /* FLASH_OPTCR1 has quite diffent meanings ... */
423                 if (stm32x_info->has_boot_addr) {
424                         /* for F7xx it contains boot0 and boot1 */
425                         stm32x_info->option_bytes.boot_addr = optiondata;
426                 } else {
427                         /* for F42x/43x/469/479 it contains 12 additional protection bits */
428                         stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429                 }
430         }
431
432         if (stm32x_info->has_optcr2_pcrop) {
433                 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434                 if (retval != ERROR_OK)
435                         return retval;
436
437                 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438                 if (stm32x_info->has_optcr2_pcrop &&
439                         (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440                         LOG_INFO("PCROP Engaged");
441                 }
442         } else {
443                 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444         }
445
446         if (stm32x_info->option_bytes.RDP != 0xAA)
447                 LOG_INFO("Device Security Bit Set");
448
449         return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454         struct stm32x_flash_bank *stm32x_info = NULL;
455         struct target *target = bank->target;
456         uint32_t optiondata, optiondata2;
457
458         stm32x_info = bank->driver_priv;
459
460         int retval = stm32x_unlock_option_reg(target);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         /* rebuild option data */
465         optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466         optiondata |= stm32x_info->option_bytes.RDP << 8;
467         optiondata |= (stm32x_info->option_bytes.protection &
468                 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470         if (stm32x_info->has_extra_options) {
471                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472                 optiondata |= (stm32x_info->option_bytes.user_options &
473                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474         }
475
476         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477                 if (stm32x_info->has_boot_addr) {
478                         /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479                         optiondata2 = stm32x_info->option_bytes.boot_addr;
480                 } else {
481                         /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482                         optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483                 }
484
485                 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486                 if (retval != ERROR_OK)
487                         return retval;
488         }
489
490         /* program extra pcrop register */
491         if (stm32x_info->has_optcr2_pcrop) {
492                 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493                         stm32x_info->option_bytes.optcr2_pcrop);
494                 if (retval != ERROR_OK)
495                         return retval;
496         }
497
498         /* program options */
499         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         /* start programming cycle */
504         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505         if (retval != ERROR_OK)
506                 return retval;
507
508         /* wait for completion, this might trigger a security erase and take a while */
509         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         /* relock registers */
514         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515         if (retval != ERROR_OK)
516                 return retval;
517
518         return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523         struct target *target = bank->target;
524         uint32_t lock_base;
525         int i, retval;
526         uint8_t lock;
527
528         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529                   : STM32F2_OTP_LOCK_BASE;
530
531         for (i = 0; i < bank->num_sectors; i++) {
532                 retval = target_read_u8(target, lock_base + i, &lock);
533                 if (retval != ERROR_OK)
534                         return retval;
535                 bank->sectors[i].is_protected = !lock;
536         }
537
538         return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, int first, int last)
542 {
543         struct target *target = bank->target;
544         uint32_t lock_base;
545         int i, retval;
546         uint8_t lock;
547
548         assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
549
550         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
551                   : STM32F2_OTP_LOCK_BASE;
552
553         for (i = first; first <= last; i++) {
554                 retval = target_read_u8(target, lock_base + i, &lock);
555                 if (retval != ERROR_OK)
556                         return retval;
557                 if (lock)
558                         continue;
559
560                 lock = 0xff;
561                 retval = target_write_u8(target, lock_base + i, lock);
562                 if (retval != ERROR_OK)
563                         return retval;
564         }
565
566         return ERROR_OK;
567 }
568
569 static int stm32x_protect_check(struct flash_bank *bank)
570 {
571         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
572         struct flash_sector *prot_blocks;
573         int num_prot_blocks;
574         int retval;
575
576         /* if it's the OTP bank, look at the lock bits there */
577         if (stm32x_is_otp(bank))
578                 return stm32x_otp_read_protect(bank);
579
580         /* read write protection settings */
581         retval = stm32x_read_options(bank);
582         if (retval != ERROR_OK) {
583                 LOG_DEBUG("unable to read option bytes");
584                 return retval;
585         }
586
587         if (bank->prot_blocks) {
588                 num_prot_blocks = bank->num_prot_blocks;
589                 prot_blocks = bank->prot_blocks;
590         } else {
591                 num_prot_blocks = bank->num_sectors;
592                 prot_blocks = bank->sectors;
593         }
594
595         for (int i = 0; i < num_prot_blocks; i++)
596                 prot_blocks[i].is_protected =
597                         ~(stm32x_info->option_bytes.protection >> i) & 1;
598
599         return ERROR_OK;
600 }
601
602 static int stm32x_erase(struct flash_bank *bank, int first, int last)
603 {
604         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
605         struct target *target = bank->target;
606         int i;
607
608         if (stm32x_is_otp(bank)) {
609                 LOG_ERROR("Cannot erase OTP memory");
610                 return ERROR_FAIL;
611         }
612
613         assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
614
615         if (bank->target->state != TARGET_HALTED) {
616                 LOG_ERROR("Target not halted");
617                 return ERROR_TARGET_NOT_HALTED;
618         }
619
620         int retval;
621         retval = stm32x_unlock_reg(target);
622         if (retval != ERROR_OK)
623                 return retval;
624
625         /*
626         Sector Erase
627         To erase a sector, follow the procedure below:
628         1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
629           FLASH_SR register
630         2. Set the SER bit and select the sector
631           you wish to erase (SNB) in the FLASH_CR register
632         3. Set the STRT bit in the FLASH_CR register
633         4. Wait for the BSY bit to be cleared
634          */
635
636         for (i = first; i <= last; i++) {
637                 unsigned int snb;
638                 if (stm32x_info->has_large_mem && i >= 12)
639                         snb = (i - 12) | 0x10;
640                 else
641                         snb = i;
642
643                 retval = target_write_u32(target,
644                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
645                 if (retval != ERROR_OK)
646                         return retval;
647
648                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
649                 if (retval != ERROR_OK)
650                         return retval;
651
652                 bank->sectors[i].is_erased = 1;
653         }
654
655         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
656         if (retval != ERROR_OK)
657                 return retval;
658
659         return ERROR_OK;
660 }
661
662 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
663 {
664         struct target *target = bank->target;
665         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
666
667         if (target->state != TARGET_HALTED) {
668                 LOG_ERROR("Target not halted");
669                 return ERROR_TARGET_NOT_HALTED;
670         }
671
672         if (stm32x_is_otp(bank)) {
673                 if (!set)
674                         return ERROR_COMMAND_ARGUMENT_INVALID;
675
676                 return stm32x_otp_protect(bank, first, last);
677         }
678
679         /* read protection settings */
680         int retval = stm32x_read_options(bank);
681         if (retval != ERROR_OK) {
682                 LOG_DEBUG("unable to read option bytes");
683                 return retval;
684         }
685
686         for (int i = first; i <= last; i++) {
687                 if (set)
688                         stm32x_info->option_bytes.protection &= ~(1 << i);
689                 else
690                         stm32x_info->option_bytes.protection |= (1 << i);
691         }
692
693         retval = stm32x_write_options(bank);
694         if (retval != ERROR_OK)
695                 return retval;
696
697         return ERROR_OK;
698 }
699
700 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
701                 uint32_t offset, uint32_t count)
702 {
703         struct target *target = bank->target;
704         uint32_t buffer_size = 16384;
705         struct working_area *write_algorithm;
706         struct working_area *source;
707         uint32_t address = bank->base + offset;
708         struct reg_param reg_params[5];
709         struct armv7m_algorithm armv7m_info;
710         int retval = ERROR_OK;
711
712         static const uint8_t stm32x_flash_write_code[] = {
713 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
714         };
715
716         if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
717                 LOG_ERROR("OTP memory bank is disabled for write commands.");
718                 return ERROR_FAIL;
719         }
720
721         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
722                         &write_algorithm) != ERROR_OK) {
723                 LOG_WARNING("no working area available, can't do block memory writes");
724                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
725         }
726
727         retval = target_write_buffer(target, write_algorithm->address,
728                         sizeof(stm32x_flash_write_code),
729                         stm32x_flash_write_code);
730         if (retval != ERROR_OK) {
731                 target_free_working_area(target, write_algorithm);
732                 return retval;
733         }
734
735         /* memory buffer */
736         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
737                 buffer_size /= 2;
738                 if (buffer_size <= 256) {
739                         /* we already allocated the writing code, but failed to get a
740                          * buffer, free the algorithm */
741                         target_free_working_area(target, write_algorithm);
742
743                         LOG_WARNING("no large enough working area available, can't do block memory writes");
744                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
745                 }
746         }
747
748         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
749         armv7m_info.core_mode = ARM_MODE_THREAD;
750
751         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);         /* buffer start, status (out) */
752         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);            /* buffer end */
753         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);            /* target address */
754         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);            /* count (halfword-16bit) */
755         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);            /* flash base */
756
757         buf_set_u32(reg_params[0].value, 0, 32, source->address);
758         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
759         buf_set_u32(reg_params[2].value, 0, 32, address);
760         buf_set_u32(reg_params[3].value, 0, 32, count);
761         buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
762
763         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
764                         0, NULL,
765                         5, reg_params,
766                         source->address, source->size,
767                         write_algorithm->address, 0,
768                         &armv7m_info);
769
770         if (retval == ERROR_FLASH_OPERATION_FAILED) {
771                 LOG_ERROR("error executing stm32x flash write algorithm");
772
773                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
774
775                 if (error & FLASH_WRPERR)
776                         LOG_ERROR("flash memory write protected");
777
778                 if (error != 0) {
779                         LOG_ERROR("flash write failed = %08" PRIx32, error);
780                         /* Clear but report errors */
781                         target_write_u32(target, STM32_FLASH_SR, error);
782                         retval = ERROR_FAIL;
783                 }
784         }
785
786         target_free_working_area(target, source);
787         target_free_working_area(target, write_algorithm);
788
789         destroy_reg_param(&reg_params[0]);
790         destroy_reg_param(&reg_params[1]);
791         destroy_reg_param(&reg_params[2]);
792         destroy_reg_param(&reg_params[3]);
793         destroy_reg_param(&reg_params[4]);
794
795         return retval;
796 }
797
798 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
799                 uint32_t offset, uint32_t count)
800 {
801         struct target *target = bank->target;
802         uint32_t words_remaining = (count / 2);
803         uint32_t bytes_remaining = (count & 0x00000001);
804         uint32_t address = bank->base + offset;
805         uint32_t bytes_written = 0;
806         int retval;
807
808         if (bank->target->state != TARGET_HALTED) {
809                 LOG_ERROR("Target not halted");
810                 return ERROR_TARGET_NOT_HALTED;
811         }
812
813         if (offset & 0x1) {
814                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
815                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
816         }
817
818         retval = stm32x_unlock_reg(target);
819         if (retval != ERROR_OK)
820                 return retval;
821
822         /* multiple half words (2-byte) to be programmed? */
823         if (words_remaining > 0) {
824                 /* try using a block write */
825                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
826                 if (retval != ERROR_OK) {
827                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
828                                 /* if block write failed (no sufficient working area),
829                                  * we use normal (slow) single dword accesses */
830                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
831                         }
832                 } else {
833                         buffer += words_remaining * 2;
834                         address += words_remaining * 2;
835                         words_remaining = 0;
836                 }
837         }
838
839         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
840                 return retval;
841
842         /*
843         Standard programming
844         The Flash memory programming sequence is as follows:
845         1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
846           FLASH_SR register.
847         2. Set the PG bit in the FLASH_CR register
848         3. Perform the data write operation(s) to the desired memory address (inside main
849           memory block or OTP area):
850         â€“ â€“ Half-word access in case of x16 parallelism
851         â€“ Word access in case of x32 parallelism
852         â€“
853         4.
854         Byte access in case of x8 parallelism
855         Double word access in case of x64 parallelism
856         Wait for the BSY bit to be cleared
857         */
858         while (words_remaining > 0) {
859                 uint16_t value;
860                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
861
862                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
863                                 FLASH_PG | FLASH_PSIZE_16);
864                 if (retval != ERROR_OK)
865                         return retval;
866
867                 retval = target_write_u16(target, address, value);
868                 if (retval != ERROR_OK)
869                         return retval;
870
871                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
872                 if (retval != ERROR_OK)
873                         return retval;
874
875                 bytes_written += 2;
876                 words_remaining--;
877                 address += 2;
878         }
879
880         if (bytes_remaining) {
881                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
882                                 FLASH_PG | FLASH_PSIZE_8);
883                 if (retval != ERROR_OK)
884                         return retval;
885                 retval = target_write_u8(target, address, buffer[bytes_written]);
886                 if (retval != ERROR_OK)
887                         return retval;
888
889                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
890                 if (retval != ERROR_OK)
891                         return retval;
892         }
893
894         return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
895 }
896
897 static void setup_sector(struct flash_bank *bank, int i, int size)
898 {
899         assert(i < bank->num_sectors);
900         bank->sectors[i].offset = bank->size;
901         bank->sectors[i].size = size;
902         bank->size += bank->sectors[i].size;
903         LOG_DEBUG("sector %d: %dkBytes", i, size >> 10);
904 }
905
906 static uint16_t sector_size_in_kb(int i, uint16_t max_sector_size_in_kb)
907 {
908         assert(i >= 0);
909         if (i < 4)
910                 return max_sector_size_in_kb / 8;
911         if (i == 4)
912                 return max_sector_size_in_kb / 2;
913         return max_sector_size_in_kb;
914 }
915
916 static int calculate_number_of_sectors(struct flash_bank *bank,
917                 uint16_t flash_size_in_kb,
918                 uint16_t max_sector_size_in_kb)
919 {
920         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
921         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
922         int nr_sectors;
923
924         /* Dual Bank Flash has two identically-arranged banks of sectors. */
925         if (stm32x_info->has_large_mem)
926                 remaining_flash_size_in_kb /= 2;
927
928         for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
929                 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
930                 if (size_in_kb > remaining_flash_size_in_kb) {
931                         LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
932                                  stm32x_info->has_large_mem ? "Dual" : "Single",
933                                  flash_size_in_kb, remaining_flash_size_in_kb);
934                         remaining_flash_size_in_kb = 0;
935                 } else {
936                         remaining_flash_size_in_kb -= size_in_kb;
937                 }
938         }
939
940         return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
941 }
942
943 static void setup_bank(struct flash_bank *bank, int start,
944         uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
945 {
946         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
947         int sector_index = 0;
948         while (remaining_flash_size_in_kb > 0) {
949                 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
950                 if (size_in_kb > remaining_flash_size_in_kb) {
951                         /* Clip last sector. Already warned in
952                          * calculate_number_of_sectors. */
953                         size_in_kb = remaining_flash_size_in_kb;
954                 }
955                 setup_sector(bank, start + sector_index, size_in_kb * 1024);
956                 remaining_flash_size_in_kb -= size_in_kb;
957                 sector_index++;
958         }
959 }
960
961 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
962 {
963         /* this checks for a stm32f4x errata issue where a
964          * stm32f2x DBGMCU_IDCODE is incorrectly returned.
965          * If the issue is detected target is forced to stm32f4x Rev A.
966          * Only effects Rev A silicon */
967
968         struct target *target = bank->target;
969         uint32_t cpuid;
970
971         /* read stm32 device id register */
972         int retval = target_read_u32(target, 0xE0042000, device_id);
973         if (retval != ERROR_OK)
974                 return retval;
975
976         if ((*device_id & 0xfff) == 0x411) {
977                 /* read CPUID reg to check core type */
978                 retval = target_read_u32(target, 0xE000ED00, &cpuid);
979                 if (retval != ERROR_OK)
980                         return retval;
981
982                 /* check for cortex_m4 */
983                 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
984                         *device_id &= ~((0xFFFF << 16) | 0xfff);
985                         *device_id |= (0x1000 << 16) | 0x413;
986                         LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
987                 }
988         }
989         return retval;
990 }
991
992 static int stm32x_probe(struct flash_bank *bank)
993 {
994         struct target *target = bank->target;
995         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
996         int i, num_prot_blocks, num_sectors;
997         uint16_t flash_size_in_kb;
998         uint16_t otp_size_in_b;
999         uint16_t otp_sector_size;
1000         uint32_t flash_size_reg = 0x1FFF7A22;
1001         uint16_t max_sector_size_in_kb = 128;
1002         uint16_t max_flash_size_in_kb;
1003         uint32_t device_id;
1004         uint32_t base_address = 0x08000000;
1005
1006         stm32x_info->probed = false;
1007         stm32x_info->has_large_mem = false;
1008         stm32x_info->has_boot_addr = false;
1009         stm32x_info->has_extra_options = false;
1010         stm32x_info->has_optcr2_pcrop = false;
1011         stm32x_info->protection_bits = 12;              /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1012         num_prot_blocks = 0;
1013
1014         if (bank->sectors) {
1015                 free(bank->sectors);
1016                 bank->num_sectors = 0;
1017                 bank->sectors = NULL;
1018         }
1019
1020         if (bank->prot_blocks) {
1021                 free(bank->prot_blocks);
1022                 bank->num_prot_blocks = 0;
1023                 bank->prot_blocks = NULL;
1024         }
1025
1026         /* if explicitely called out as OTP bank, short circuit probe */
1027         if (stm32x_is_otp(bank)) {
1028                 if (stm32x_otp_is_f7(bank)) {
1029                         otp_size_in_b = STM32F7_OTP_SIZE;
1030                         otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1031                 } else {
1032                         otp_size_in_b = STM32F2_OTP_SIZE;
1033                         otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1034                 }
1035
1036                 num_sectors = otp_size_in_b / otp_sector_size;
1037                 LOG_INFO("flash size = %d bytes", otp_size_in_b);
1038
1039                 assert(num_sectors > 0);
1040
1041                 bank->num_sectors = num_sectors;
1042                 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1043
1044                 if (stm32x_otp_is_f7(bank))
1045                         bank->size = STM32F7_OTP_SIZE;
1046                 else
1047                         bank->size = STM32F2_OTP_SIZE;
1048
1049                 for (i = 0; i < num_sectors; i++) {
1050                         bank->sectors[i].offset = i * otp_sector_size;
1051                         bank->sectors[i].size = otp_sector_size;
1052                         bank->sectors[i].is_erased = 1;
1053                         bank->sectors[i].is_protected = 0;
1054                 }
1055
1056                 stm32x_info->probed = true;
1057                 return ERROR_OK;
1058         }
1059
1060         /* read stm32 device id register */
1061         int retval = stm32x_get_device_id(bank, &device_id);
1062         if (retval != ERROR_OK)
1063                 return retval;
1064         LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
1065         device_id &= 0xfff;             /* only bits 0-11 are used further on */
1066
1067         /* set max flash size depending on family, id taken from AN2606 */
1068         switch (device_id) {
1069         case 0x411: /* F20x/21x */
1070         case 0x413: /* F40x/41x */
1071                 max_flash_size_in_kb = 1024;
1072                 break;
1073
1074         case 0x419: /* F42x/43x */
1075         case 0x434: /* F469/479 */
1076                 stm32x_info->has_extra_options = true;
1077                 max_flash_size_in_kb = 2048;
1078                 break;
1079
1080         case 0x423:     /* F401xB/C */
1081                 max_flash_size_in_kb = 256;
1082                 break;
1083
1084         case 0x421:     /* F446 */
1085         case 0x431: /* F411 */
1086         case 0x433: /* F401xD/E */
1087         case 0x441: /* F412 */
1088                 max_flash_size_in_kb = 512;
1089                 break;
1090
1091         case 0x458: /* F410 */
1092                 max_flash_size_in_kb = 128;
1093                 break;
1094
1095         case 0x449:     /* F74x/75x */
1096                 max_flash_size_in_kb = 1024;
1097                 max_sector_size_in_kb = 256;
1098                 flash_size_reg = 0x1FF0F442;
1099                 stm32x_info->has_extra_options = true;
1100                 stm32x_info->has_boot_addr = true;
1101                 break;
1102
1103         case 0x451:     /* F76x/77x */
1104                 max_flash_size_in_kb = 2048;
1105                 max_sector_size_in_kb = 256;
1106                 flash_size_reg = 0x1FF0F442;
1107                 stm32x_info->has_extra_options = true;
1108                 stm32x_info->has_boot_addr = true;
1109                 break;
1110
1111         case 0x452:     /* F72x/73x */
1112                 max_flash_size_in_kb = 512;
1113                 flash_size_reg = 0x1FF07A22;    /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1114                 stm32x_info->has_extra_options = true;
1115                 stm32x_info->has_boot_addr = true;
1116                 stm32x_info->has_optcr2_pcrop = true;
1117                 break;
1118
1119         case 0x463:     /* F413x/423x */
1120                 max_flash_size_in_kb = 1536;
1121                 stm32x_info->has_extra_options = true;
1122                 stm32x_info->protection_bits = 15;
1123                 num_prot_blocks = 15;
1124                 break;
1125
1126         default:
1127                 LOG_WARNING("Cannot identify target as a STM32 family.");
1128                 return ERROR_FAIL;
1129         }
1130
1131         /* get flash size from target. */
1132         retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1133
1134         /* failed reading flash size or flash size invalid (early silicon),
1135          * default to max target family */
1136         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1137                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1138                         max_flash_size_in_kb);
1139                 flash_size_in_kb = max_flash_size_in_kb;
1140         }
1141
1142         /* if the user sets the size manually then ignore the probed value
1143          * this allows us to work around devices that have a invalid flash size register value */
1144         if (stm32x_info->user_bank_size) {
1145                 LOG_INFO("ignoring flash probed value, using configured bank size");
1146                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1147         }
1148
1149         LOG_INFO("flash size = %d kbytes", flash_size_in_kb);
1150
1151         /* did we assign flash size? */
1152         assert(flash_size_in_kb != 0xffff);
1153
1154         /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1155         if ((device_id == 0x419) || (device_id == 0x434)) {
1156                 uint32_t optiondata;
1157                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1158                 if (retval != ERROR_OK) {
1159                         LOG_DEBUG("unable to read option bytes");
1160                         return retval;
1161                 }
1162                 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1163                         stm32x_info->has_large_mem = true;
1164                         LOG_INFO("Dual Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1165                 } else {
1166                         stm32x_info->has_large_mem = false;
1167                         LOG_INFO("Single Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1168                 }
1169         }
1170
1171         /* F76x/77x devices have a dual bank option */
1172         if (device_id == 0x451) {
1173                 uint32_t optiondata;
1174                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1175                 if (retval != ERROR_OK) {
1176                         LOG_DEBUG("unable to read option bytes");
1177                         return retval;
1178                 }
1179                 if (optiondata & OPTCR_NDBANK) {
1180                         stm32x_info->has_large_mem = false;
1181                         LOG_INFO("Single Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
1182                 } else {
1183                         stm32x_info->has_large_mem = true;
1184                         max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1185                         LOG_INFO("Dual Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
1186                 }
1187         }
1188
1189         /* calculate numbers of pages */
1190         int num_pages = calculate_number_of_sectors(
1191                         bank, flash_size_in_kb, max_sector_size_in_kb);
1192
1193         bank->base = base_address;
1194         bank->num_sectors = num_pages;
1195         bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1196         for (i = 0; i < num_pages; i++) {
1197                 bank->sectors[i].is_erased = -1;
1198                 bank->sectors[i].is_protected = 0;
1199         }
1200         bank->size = 0;
1201         LOG_DEBUG("allocated %d sectors", num_pages);
1202
1203         /* F76x/77x in dual bank mode */
1204         if ((device_id == 0x451) && stm32x_info->has_large_mem)
1205                 num_prot_blocks = num_pages >> 1;
1206
1207         if (num_prot_blocks) {
1208                 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1209                 for (i = 0; i < num_prot_blocks; i++)
1210                         bank->prot_blocks[i].is_protected = 0;
1211                 LOG_DEBUG("allocated %d prot blocks", num_prot_blocks);
1212         }
1213
1214         if (stm32x_info->has_large_mem) {
1215                 /* dual-bank */
1216                 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1217                 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1218                         max_sector_size_in_kb);
1219
1220                 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1221                 if (device_id == 0x451) {
1222                         for (i = 0; i < num_prot_blocks; i++) {
1223                                 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1224                                 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1225                                                 + bank->sectors[(i << 1) + 1].size;
1226                         }
1227                 }
1228         } else {
1229                 /* single-bank */
1230                 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1231
1232                 /* F413/F423, sectors 14 and 15 share one common protection bit */
1233                 if (device_id == 0x463) {
1234                         for (i = 0; i < num_prot_blocks; i++) {
1235                                 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1236                                 bank->prot_blocks[i].size = bank->sectors[i].size;
1237                         }
1238                         bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1239                 }
1240         }
1241         bank->num_prot_blocks = num_prot_blocks;
1242         assert((bank->size >> 10) == flash_size_in_kb);
1243
1244         stm32x_info->probed = true;
1245         return ERROR_OK;
1246 }
1247
1248 static int stm32x_auto_probe(struct flash_bank *bank)
1249 {
1250         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1251         if (stm32x_info->probed)
1252                 return ERROR_OK;
1253         return stm32x_probe(bank);
1254 }
1255
1256 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1257 {
1258         uint32_t dbgmcu_idcode;
1259
1260         /* read stm32 device id register */
1261         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1262         if (retval != ERROR_OK)
1263                 return retval;
1264
1265         uint16_t device_id = dbgmcu_idcode & 0xfff;
1266         uint16_t rev_id = dbgmcu_idcode >> 16;
1267         const char *device_str;
1268         const char *rev_str = NULL;
1269
1270         switch (device_id) {
1271         case 0x411:
1272                 device_str = "STM32F2xx";
1273
1274                 switch (rev_id) {
1275                 case 0x1000:
1276                         rev_str = "A";
1277                         break;
1278
1279                 case 0x2000:
1280                         rev_str = "B";
1281                         break;
1282
1283                 case 0x1001:
1284                         rev_str = "Z";
1285                         break;
1286
1287                 case 0x2001:
1288                         rev_str = "Y";
1289                         break;
1290
1291                 case 0x2003:
1292                         rev_str = "X";
1293                         break;
1294
1295                 case 0x2007:
1296                         rev_str = "1";
1297                         break;
1298
1299                 case 0x200F:
1300                         rev_str = "V";
1301                         break;
1302
1303                 case 0x201F:
1304                         rev_str = "2";
1305                         break;
1306                 }
1307                 break;
1308
1309         case 0x413:
1310         case 0x419:
1311         case 0x434:
1312                 device_str = "STM32F4xx";
1313
1314                 switch (rev_id) {
1315                 case 0x1000:
1316                         rev_str = "A";
1317                         break;
1318
1319                 case 0x1001:
1320                         rev_str = "Z";
1321                         break;
1322
1323                 case 0x1003:
1324                         rev_str = "Y";
1325                         break;
1326
1327                 case 0x1007:
1328                         rev_str = "1";
1329                         break;
1330
1331                 case 0x2001:
1332                         rev_str = "3";
1333                         break;
1334                 }
1335                 break;
1336
1337         case 0x421:
1338                 device_str = "STM32F446";
1339
1340                 switch (rev_id) {
1341                 case 0x1000:
1342                         rev_str = "A";
1343                         break;
1344                 }
1345                 break;
1346
1347         case 0x423:
1348         case 0x431:
1349         case 0x433:
1350         case 0x458:
1351         case 0x441:
1352                 device_str = "STM32F4xx (Low Power)";
1353
1354                 switch (rev_id) {
1355                 case 0x1000:
1356                         rev_str = "A";
1357                         break;
1358
1359                 case 0x1001:
1360                         rev_str = "Z";
1361                         break;
1362
1363                 case 0x2000:
1364                         rev_str = "B";
1365                         break;
1366
1367                 case 0x3000:
1368                         rev_str = "C";
1369                         break;
1370                 }
1371                 break;
1372
1373         case 0x449:
1374                 device_str = "STM32F7[4|5]x";
1375
1376                 switch (rev_id) {
1377                 case 0x1000:
1378                         rev_str = "A";
1379                         break;
1380
1381                 case 0x1001:
1382                         rev_str = "Z";
1383                         break;
1384                 }
1385                 break;
1386
1387         case 0x451:
1388                 device_str = "STM32F7[6|7]x";
1389
1390                 switch (rev_id) {
1391                 case 0x1000:
1392                         rev_str = "A";
1393                         break;
1394                 case 0x1001:
1395                         rev_str = "Z";
1396                         break;
1397                 }
1398                 break;
1399
1400         case 0x452:
1401                 device_str = "STM32F7[2|3]x";
1402
1403                 switch (rev_id) {
1404                 case 0x1000:
1405                         rev_str = "A";
1406                         break;
1407                 }
1408                 break;
1409
1410         case 0x463:
1411                 device_str = "STM32F4[1|2]3";
1412
1413                 switch (rev_id) {
1414                 case 0x1000:
1415                         rev_str = "A";
1416                         break;
1417                 }
1418                 break;
1419
1420         default:
1421                 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
1422                 return ERROR_FAIL;
1423         }
1424
1425         if (rev_str != NULL)
1426                 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
1427         else
1428                 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1429
1430         return ERROR_OK;
1431 }
1432
1433 COMMAND_HANDLER(stm32x_handle_lock_command)
1434 {
1435         struct target *target = NULL;
1436         struct stm32x_flash_bank *stm32x_info = NULL;
1437
1438         if (CMD_ARGC < 1)
1439                 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441         struct flash_bank *bank;
1442         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1443         if (ERROR_OK != retval)
1444                 return retval;
1445
1446         stm32x_info = bank->driver_priv;
1447         target = bank->target;
1448
1449         if (target->state != TARGET_HALTED) {
1450                 LOG_INFO("Target not halted");
1451                 /* return ERROR_TARGET_NOT_HALTED; */
1452         }
1453
1454         if (stm32x_read_options(bank) != ERROR_OK) {
1455                 command_print(CMD, "%s failed to read options", bank->driver->name);
1456                 return ERROR_OK;
1457         }
1458
1459         /* set readout protection */
1460         stm32x_info->option_bytes.RDP = 0;
1461
1462         if (stm32x_write_options(bank) != ERROR_OK) {
1463                 command_print(CMD, "%s failed to lock device", bank->driver->name);
1464                 return ERROR_OK;
1465         }
1466
1467         command_print(CMD, "%s locked", bank->driver->name);
1468
1469         return ERROR_OK;
1470 }
1471
1472 COMMAND_HANDLER(stm32x_handle_unlock_command)
1473 {
1474         struct target *target = NULL;
1475         struct stm32x_flash_bank *stm32x_info = NULL;
1476
1477         if (CMD_ARGC < 1)
1478                 return ERROR_COMMAND_SYNTAX_ERROR;
1479
1480         struct flash_bank *bank;
1481         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1482         if (ERROR_OK != retval)
1483                 return retval;
1484
1485         stm32x_info = bank->driver_priv;
1486         target = bank->target;
1487
1488         if (target->state != TARGET_HALTED) {
1489                 LOG_INFO("Target not halted");
1490                 /* return ERROR_TARGET_NOT_HALTED; */
1491         }
1492
1493         if (stm32x_read_options(bank) != ERROR_OK) {
1494                 command_print(CMD, "%s failed to read options", bank->driver->name);
1495                 return ERROR_OK;
1496         }
1497
1498         /* clear readout protection and complementary option bytes
1499          * this will also force a device unlock if set */
1500         stm32x_info->option_bytes.RDP = 0xAA;
1501         if (stm32x_info->has_optcr2_pcrop) {
1502                 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1503         }
1504
1505         if (stm32x_write_options(bank) != ERROR_OK) {
1506                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1507                 return ERROR_OK;
1508         }
1509
1510         command_print(CMD, "%s unlocked.\n"
1511                         "INFO: a reset or power cycle is required "
1512                         "for the new settings to take effect.", bank->driver->name);
1513
1514         return ERROR_OK;
1515 }
1516
1517 static int stm32x_mass_erase(struct flash_bank *bank)
1518 {
1519         int retval;
1520         uint32_t flash_mer;
1521         struct target *target = bank->target;
1522         struct stm32x_flash_bank *stm32x_info = NULL;
1523
1524         if (target->state != TARGET_HALTED) {
1525                 LOG_ERROR("Target not halted");
1526                 return ERROR_TARGET_NOT_HALTED;
1527         }
1528
1529         stm32x_info = bank->driver_priv;
1530
1531         retval = stm32x_unlock_reg(target);
1532         if (retval != ERROR_OK)
1533                 return retval;
1534
1535         /* mass erase flash memory */
1536         if (stm32x_info->has_large_mem)
1537                 flash_mer = FLASH_MER | FLASH_MER1;
1538         else
1539                 flash_mer = FLASH_MER;
1540
1541         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1542         if (retval != ERROR_OK)
1543                 return retval;
1544         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1545                 flash_mer | FLASH_STRT);
1546         if (retval != ERROR_OK)
1547                 return retval;
1548
1549         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1550         if (retval != ERROR_OK)
1551                 return retval;
1552
1553         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1554         if (retval != ERROR_OK)
1555                 return retval;
1556
1557         return ERROR_OK;
1558 }
1559
1560 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1561 {
1562         int i;
1563
1564         if (CMD_ARGC < 1) {
1565                 command_print(CMD, "stm32x mass_erase <bank>");
1566                 return ERROR_COMMAND_SYNTAX_ERROR;
1567         }
1568
1569         struct flash_bank *bank;
1570         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1571         if (ERROR_OK != retval)
1572                 return retval;
1573
1574         retval = stm32x_mass_erase(bank);
1575         if (retval == ERROR_OK) {
1576                 /* set all sectors as erased */
1577                 for (i = 0; i < bank->num_sectors; i++)
1578                         bank->sectors[i].is_erased = 1;
1579
1580                 command_print(CMD, "stm32x mass erase complete");
1581         } else {
1582                 command_print(CMD, "stm32x mass erase failed");
1583         }
1584
1585         return retval;
1586 }
1587
1588 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1589 {
1590         int retval;
1591         struct flash_bank *bank;
1592         struct stm32x_flash_bank *stm32x_info = NULL;
1593
1594         if (CMD_ARGC != 1) {
1595                 command_print(CMD, "stm32f2x options_read <bank>");
1596                 return ERROR_COMMAND_SYNTAX_ERROR;
1597         }
1598
1599         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1600         if (ERROR_OK != retval)
1601                 return retval;
1602
1603         retval = stm32x_read_options(bank);
1604         if (ERROR_OK != retval)
1605                 return retval;
1606
1607         stm32x_info = bank->driver_priv;
1608         if (stm32x_info->has_extra_options) {
1609                 if (stm32x_info->has_boot_addr) {
1610                         uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1611
1612                         command_print(CMD, "stm32f2x user_options 0x%03X,"
1613                                 " boot_add0 0x%04X, boot_add1 0x%04X",
1614                                 stm32x_info->option_bytes.user_options,
1615                                 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1616                         if (stm32x_info->has_optcr2_pcrop) {
1617                                 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08X",
1618                                                 stm32x_info->option_bytes.optcr2_pcrop);
1619                         }
1620                 } else {
1621                         command_print(CMD, "stm32f2x user_options 0x%03X",
1622                                 stm32x_info->option_bytes.user_options);
1623                 }
1624         } else {
1625                 command_print(CMD, "stm32f2x user_options 0x%02X",
1626                         stm32x_info->option_bytes.user_options);
1627
1628         }
1629
1630         return retval;
1631 }
1632
1633 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1634 {
1635         int retval;
1636         struct flash_bank *bank;
1637         struct stm32x_flash_bank *stm32x_info = NULL;
1638         uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1639
1640         if (CMD_ARGC < 1) {
1641                 command_print(CMD, "stm32f2x options_write <bank> ...");
1642                 return ERROR_COMMAND_SYNTAX_ERROR;
1643         }
1644
1645         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1646         if (ERROR_OK != retval)
1647                 return retval;
1648
1649         retval = stm32x_read_options(bank);
1650         if (ERROR_OK != retval)
1651                 return retval;
1652
1653         stm32x_info = bank->driver_priv;
1654         if (stm32x_info->has_boot_addr) {
1655                 if (CMD_ARGC != 4) {
1656                         command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1657                                 " <boot_addr0> <boot_addr1>");
1658                         return ERROR_COMMAND_SYNTAX_ERROR;
1659                 }
1660                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1661                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1662                 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1663         } else {
1664                 if (CMD_ARGC != 2) {
1665                         command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1666                         return ERROR_COMMAND_SYNTAX_ERROR;
1667                 }
1668         }
1669
1670         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1671         options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1672                 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1673         if (user_options & options_mask) {
1674                 command_print(CMD, "stm32f2x invalid user_options");
1675                 return ERROR_COMMAND_ARGUMENT_INVALID;
1676         }
1677
1678         stm32x_info->option_bytes.user_options = user_options;
1679
1680         if (stm32x_write_options(bank) != ERROR_OK) {
1681                 command_print(CMD, "stm32f2x failed to write options");
1682                 return ERROR_OK;
1683         }
1684
1685         /* switching between single- and dual-bank modes requires re-probe */
1686         /* ... and reprogramming of whole flash */
1687         stm32x_info->probed = false;
1688
1689         command_print(CMD, "stm32f2x write options complete.\n"
1690                                 "INFO: a reset or power cycle is required "
1691                                 "for the new settings to take effect.");
1692         return retval;
1693 }
1694
1695 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1696 {
1697         int retval;
1698         struct flash_bank *bank;
1699         struct stm32x_flash_bank *stm32x_info = NULL;
1700         uint32_t optcr2_pcrop;
1701
1702         if (CMD_ARGC != 2) {
1703                 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1704                 return ERROR_COMMAND_SYNTAX_ERROR;
1705         }
1706
1707         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1708         if (ERROR_OK != retval)
1709                 return retval;
1710
1711         stm32x_info = bank->driver_priv;
1712         if (!stm32x_info->has_optcr2_pcrop) {
1713                 command_print(CMD, "no optcr2 register");
1714                 return ERROR_COMMAND_ARGUMENT_INVALID;
1715         }
1716
1717         command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1718                                 " with PCROPi bits STILL SET, then\nlock device and"
1719                                 " finally unlock it. Clears PCROP and mass erases flash.");
1720
1721         retval = stm32x_read_options(bank);
1722         if (ERROR_OK != retval)
1723                 return retval;
1724
1725         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1726         stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1727
1728         if (stm32x_write_options(bank) != ERROR_OK) {
1729                 command_print(CMD, "stm32f2x failed to write options");
1730                 return ERROR_OK;
1731         }
1732
1733         command_print(CMD, "stm32f2x optcr2_write complete.");
1734         return retval;
1735 }
1736
1737 COMMAND_HANDLER(stm32x_handle_otp_command)
1738 {
1739         if (CMD_ARGC < 2) {
1740                 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1741                 return ERROR_COMMAND_SYNTAX_ERROR;
1742         }
1743
1744         struct flash_bank *bank;
1745         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1746         if (ERROR_OK != retval)
1747                 return retval;
1748         if (stm32x_is_otp(bank)) {
1749                 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1750                         stm32x_otp_enable(bank);
1751                 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1752                         stm32x_otp_disable(bank);
1753                 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1754                         command_print(CMD,
1755                                 "OTP memory bank #%d is %s for write commands.",
1756                                 bank->bank_number,
1757                                 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1758                 } else {
1759                         return ERROR_COMMAND_SYNTAX_ERROR;
1760                 }
1761         } else {
1762                 command_print(CMD, "Failed: not an OTP bank.");
1763         }
1764
1765         return retval;
1766 }
1767
1768 static const struct command_registration stm32x_exec_command_handlers[] = {
1769         {
1770                 .name = "lock",
1771                 .handler = stm32x_handle_lock_command,
1772                 .mode = COMMAND_EXEC,
1773                 .usage = "bank_id",
1774                 .help = "Lock entire flash device.",
1775         },
1776         {
1777                 .name = "unlock",
1778                 .handler = stm32x_handle_unlock_command,
1779                 .mode = COMMAND_EXEC,
1780                 .usage = "bank_id",
1781                 .help = "Unlock entire protected flash device.",
1782         },
1783         {
1784                 .name = "mass_erase",
1785                 .handler = stm32x_handle_mass_erase_command,
1786                 .mode = COMMAND_EXEC,
1787                 .usage = "bank_id",
1788                 .help = "Erase entire flash device.",
1789         },
1790         {
1791                 .name = "options_read",
1792                 .handler = stm32f2x_handle_options_read_command,
1793                 .mode = COMMAND_EXEC,
1794                 .usage = "bank_id",
1795                 .help = "Read and display device option bytes.",
1796         },
1797         {
1798                 .name = "options_write",
1799                 .handler = stm32f2x_handle_options_write_command,
1800                 .mode = COMMAND_EXEC,
1801                 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1802                 .help = "Write option bytes",
1803         },
1804         {
1805                 .name = "optcr2_write",
1806                 .handler = stm32f2x_handle_optcr2_write_command,
1807                 .mode = COMMAND_EXEC,
1808                 .usage = "bank_id optcr2",
1809                 .help = "Write optcr2 word",
1810         },
1811         {
1812                 .name = "otp",
1813                 .handler = stm32x_handle_otp_command,
1814                 .mode = COMMAND_EXEC,
1815                 .usage = "bank_id",
1816                 .help = "OTP (One Time Programmable) memory write enable/disable.",
1817         },
1818         COMMAND_REGISTRATION_DONE
1819 };
1820
1821 static const struct command_registration stm32x_command_handlers[] = {
1822         {
1823                 .name = "stm32f2x",
1824                 .mode = COMMAND_ANY,
1825                 .help = "stm32f2x flash command group",
1826                 .usage = "",
1827                 .chain = stm32x_exec_command_handlers,
1828         },
1829         COMMAND_REGISTRATION_DONE
1830 };
1831
1832 const struct flash_driver stm32f2x_flash = {
1833         .name = "stm32f2x",
1834         .commands = stm32x_command_handlers,
1835         .flash_bank_command = stm32x_flash_bank_command,
1836         .erase = stm32x_erase,
1837         .protect = stm32x_protect,
1838         .write = stm32x_write,
1839         .read = default_flash_read,
1840         .probe = stm32x_probe,
1841         .auto_probe = stm32x_auto_probe,
1842         .erase_check = default_flash_blank_check,
1843         .protect_check = stm32x_protect_check,
1844         .info = get_stm32x_info,
1845         .free_driver_priv = default_flash_free_driver_priv,
1846 };