flash/stm32fxx.c: do not read CPUID as this info is stored in cortex_m_common
[fw/openocd] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 Ã˜yvind Harboe                                      *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/cortex_m.h>
33
34 /* Regarding performance:
35  *
36  * Short story - it might be best to leave the performance at
37  * current levels.
38  *
39  * You may see a jump in speed if you change to using
40  * 32bit words for the block programming.
41  *
42  * Its a shame you cannot use the double word as its
43  * even faster - but you require external VPP for that mode.
44  *
45  * Having said all that 16bit writes give us the widest vdd
46  * operating range, so may be worth adding a note to that effect.
47  *
48  */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51  * quite different flash controllers.
52  *
53  * What's more scary is that the names of the registers and their
54  * addresses are the same, but the actual bits and what they do are
55  * can be very different.
56  *
57  * To reduce testing complexity and dangers of regressions,
58  * a separate file is used for stm32fx2x.
59  *
60  * Sector sizes in kiBytes:
61  * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62  * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63  * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64  * 1 MiByte STM32F42x/43x part with DB1M Option set:
65  *                    4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66  *
67  * STM32F7[2|3]
68  * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69  *
70  * STM32F7[4|5]
71  * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72  *
73  * STM32F7[6|7]
74  * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75  * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76  * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77  * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78  *
79  * Protection size is sector size.
80  *
81  * Tested with STM3220F-EVAL board.
82  *
83  * STM32F4xx series for reference.
84  *
85  * RM0090
86  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87  *
88  * PM0059
89  * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90  * PROGRAMMING_MANUAL/CD00233952.pdf
91  *
92  * STM32F7xx series for reference.
93  *
94  * RM0385
95  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96  *
97  * RM0410
98  * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99  *
100  * RM0430
101  * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102  *
103  * RM0431
104  * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105  *
106  * STM32F1x series - notice that this code was copy, pasted and knocked
107  * into a stm32f2x driver, so in case something has been converted or
108  * bugs haven't been fixed, here are the original manuals:
109  *
110  * RM0008 - Reference manual
111  *
112  * RM0042, the Flash programming manual for low-, medium- high-density and
113  * connectivity line STM32F10x devices
114  *
115  * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116  *
117  */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE     0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE       0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE       ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE       0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE       ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE    0x40023c00
140 #define STM32_FLASH_ACR     0x40023c00
141 #define STM32_FLASH_KEYR    0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR      0x40023c0C
144 #define STM32_FLASH_CR      0x40023c10
145 #define STM32_FLASH_OPTCR   0x40023c14
146 #define STM32_FLASH_OPTCR1  0x40023c18
147 #define STM32_FLASH_OPTCR2  0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG       (1 << 0)
151 #define FLASH_SER      (1 << 1)
152 #define FLASH_MER      (1 << 2)         /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1     (1 << 15)        /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT     (1 << 16)
155 #define FLASH_PSIZE_8  (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a)   ((a) << 3)
161 #define FLASH_LOCK     (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY      (1 << 16)
165 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR   (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
169 #define FLASH_OPERR    (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK     (1 << 0)
175 #define OPTCR_START    (1 << 1)
176 #define OPTCR_NDBANK   (1 << 29)        /* not dual bank mode */
177 #define OPTCR_DB1M     (1 << 30)        /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD   (1 << 31)        /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP        (1 << 31)       /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1           0x45670123
185 #define KEY2           0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1        0x08192A3B
189 #define OPTKEY2        0x4C5D6E7F
190
191 struct stm32x_options {
192         uint8_t RDP;
193         uint16_t user_options;  /* bit 0-7 usual options, bit 8-11 extra options */
194         uint32_t protection;
195         uint32_t boot_addr;
196         uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200         struct stm32x_options option_bytes;
201         bool probed;
202         bool otp_unlocked;
203         bool has_large_mem;             /* F42x/43x/469/479/7xx in dual bank mode */
204         bool has_extra_options; /* F42x/43x/469/479/7xx */
205         bool has_boot_addr;     /* F7xx */
206         bool has_optcr2_pcrop;  /* F72x/73x */
207         unsigned int protection_bits; /* F413/423 */
208         uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213         return bank->base == STM32F2_OTP_BANK_BASE ||
214                 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219         return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226         return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233         LOG_INFO("OTP memory bank #%u is disabled for write commands.",
234                  bank->bank_number);
235         stm32x_info->otp_unlocked = false;
236         return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243         if (!stm32x_info->otp_unlocked) {
244                 LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
245                          bank->bank_number);
246                 stm32x_info->otp_unlocked = true;
247         } else {
248                 LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
249                             bank->bank_number);
250         }
251         return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255  */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258         struct stm32x_flash_bank *stm32x_info;
259
260         if (CMD_ARGC < 6)
261                 return ERROR_COMMAND_SYNTAX_ERROR;
262
263         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264         bank->driver_priv = stm32x_info;
265
266         stm32x_info->probed = false;
267         stm32x_info->otp_unlocked = false;
268         stm32x_info->user_bank_size = bank->size;
269
270         return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275         return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280         struct target *target = bank->target;
281         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286         struct target *target = bank->target;
287         uint32_t status;
288         int retval = ERROR_OK;
289
290         /* wait for busy to clear */
291         for (;;) {
292                 retval = stm32x_get_flash_status(bank, &status);
293                 if (retval != ERROR_OK)
294                         return retval;
295                 LOG_DEBUG("status: 0x%" PRIx32, status);
296                 if ((status & FLASH_BSY) == 0)
297                         break;
298                 if (timeout-- <= 0) {
299                         LOG_ERROR("timed out waiting for flash");
300                         return ERROR_FAIL;
301                 }
302                 alive_sleep(1);
303         }
304
305
306         if (status & FLASH_WRPERR) {
307                 LOG_ERROR("stm32x device protected");
308                 retval = ERROR_FAIL;
309         }
310
311         /* Clear but report errors */
312         if (status & FLASH_ERROR) {
313                 if (retval == ERROR_OK)
314                         retval = ERROR_FAIL;
315                 /* If this operation fails, we ignore it and report the original
316                  * retval
317                  */
318                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319                                 status & FLASH_ERROR);
320         }
321         return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326         uint32_t ctrl;
327
328         /* first check if not already unlocked
329          * otherwise writing on STM32_FLASH_KEYR will fail
330          */
331         int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332         if (retval != ERROR_OK)
333                 return retval;
334
335         if ((ctrl & FLASH_LOCK) == 0)
336                 return ERROR_OK;
337
338         /* unlock flash registers */
339         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340         if (retval != ERROR_OK)
341                 return retval;
342
343         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344         if (retval != ERROR_OK)
345                 return retval;
346
347         retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         if (ctrl & FLASH_LOCK) {
352                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
353                 return ERROR_TARGET_FAILURE;
354         }
355
356         return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361         uint32_t ctrl;
362
363         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364         if (retval != ERROR_OK)
365                 return retval;
366
367         if ((ctrl & OPTCR_LOCK) == 0)
368                 return ERROR_OK;
369
370         /* unlock option registers */
371         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372         if (retval != ERROR_OK)
373                 return retval;
374
375         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376         if (retval != ERROR_OK)
377                 return retval;
378
379         retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380         if (retval != ERROR_OK)
381                 return retval;
382
383         if (ctrl & OPTCR_LOCK) {
384                 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
385                 return ERROR_TARGET_FAILURE;
386         }
387
388         return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393         uint32_t optiondata;
394         struct stm32x_flash_bank *stm32x_info = NULL;
395         struct target *target = bank->target;
396
397         stm32x_info = bank->driver_priv;
398
399         /* read current option bytes */
400         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401         if (retval != ERROR_OK)
402                 return retval;
403
404     /* caution: F2 implements 5 bits (WDG_SW only)
405      * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406         stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407         stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408         stm32x_info->option_bytes.protection =
409                 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411         if (stm32x_info->has_extra_options) {
412                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413                 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415         }
416
417         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418                 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419                 if (retval != ERROR_OK)
420                         return retval;
421
422                 /* FLASH_OPTCR1 has quite different meanings ... */
423                 if (stm32x_info->has_boot_addr) {
424                         /* for F7xx it contains boot0 and boot1 */
425                         stm32x_info->option_bytes.boot_addr = optiondata;
426                 } else {
427                         /* for F42x/43x/469/479 it contains 12 additional protection bits */
428                         stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429                 }
430         }
431
432         if (stm32x_info->has_optcr2_pcrop) {
433                 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434                 if (retval != ERROR_OK)
435                         return retval;
436
437                 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438                 if (stm32x_info->has_optcr2_pcrop &&
439                         (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440                         LOG_INFO("PCROP Engaged");
441                 }
442         } else {
443                 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444         }
445
446         if (stm32x_info->option_bytes.RDP != 0xAA)
447                 LOG_INFO("Device Security Bit Set");
448
449         return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454         struct stm32x_flash_bank *stm32x_info = NULL;
455         struct target *target = bank->target;
456         uint32_t optiondata, optiondata2;
457
458         stm32x_info = bank->driver_priv;
459
460         int retval = stm32x_unlock_option_reg(target);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         /* rebuild option data */
465         optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466         optiondata |= stm32x_info->option_bytes.RDP << 8;
467         optiondata |= (stm32x_info->option_bytes.protection &
468                 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470         if (stm32x_info->has_extra_options) {
471                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472                 optiondata |= (stm32x_info->option_bytes.user_options &
473                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474         }
475
476         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477                 if (stm32x_info->has_boot_addr) {
478                         /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479                         optiondata2 = stm32x_info->option_bytes.boot_addr;
480                 } else {
481                         /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482                         optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483                 }
484
485                 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486                 if (retval != ERROR_OK)
487                         return retval;
488         }
489
490         /* program extra pcrop register */
491         if (stm32x_info->has_optcr2_pcrop) {
492                 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493                         stm32x_info->option_bytes.optcr2_pcrop);
494                 if (retval != ERROR_OK)
495                         return retval;
496         }
497
498         /* program options */
499         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         /* start programming cycle */
504         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505         if (retval != ERROR_OK)
506                 return retval;
507
508         /* wait for completion, this might trigger a security erase and take a while */
509         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         /* relock registers */
514         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515         if (retval != ERROR_OK)
516                 return retval;
517
518         return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523         struct target *target = bank->target;
524         uint32_t lock_base;
525         int retval;
526         uint8_t lock;
527
528         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529                   : STM32F2_OTP_LOCK_BASE;
530
531         for (unsigned int i = 0; i < bank->num_sectors; i++) {
532                 retval = target_read_u8(target, lock_base + i, &lock);
533                 if (retval != ERROR_OK)
534                         return retval;
535                 bank->sectors[i].is_protected = !lock;
536         }
537
538         return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
542                 unsigned int last)
543 {
544         struct target *target = bank->target;
545         uint32_t lock_base;
546         int i, retval;
547         uint8_t lock;
548
549         assert((first <= last) && (last < bank->num_sectors));
550
551         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
552                   : STM32F2_OTP_LOCK_BASE;
553
554         for (i = first; first <= last; i++) {
555                 retval = target_read_u8(target, lock_base + i, &lock);
556                 if (retval != ERROR_OK)
557                         return retval;
558                 if (lock)
559                         continue;
560
561                 lock = 0xff;
562                 retval = target_write_u8(target, lock_base + i, lock);
563                 if (retval != ERROR_OK)
564                         return retval;
565         }
566
567         return ERROR_OK;
568 }
569
570 static int stm32x_protect_check(struct flash_bank *bank)
571 {
572         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
573         struct flash_sector *prot_blocks;
574         unsigned int num_prot_blocks;
575         int retval;
576
577         /* if it's the OTP bank, look at the lock bits there */
578         if (stm32x_is_otp(bank))
579                 return stm32x_otp_read_protect(bank);
580
581         /* read write protection settings */
582         retval = stm32x_read_options(bank);
583         if (retval != ERROR_OK) {
584                 LOG_DEBUG("unable to read option bytes");
585                 return retval;
586         }
587
588         if (bank->prot_blocks) {
589                 num_prot_blocks = bank->num_prot_blocks;
590                 prot_blocks = bank->prot_blocks;
591         } else {
592                 num_prot_blocks = bank->num_sectors;
593                 prot_blocks = bank->sectors;
594         }
595
596         for (unsigned int i = 0; i < num_prot_blocks; i++)
597                 prot_blocks[i].is_protected =
598                         ~(stm32x_info->option_bytes.protection >> i) & 1;
599
600         return ERROR_OK;
601 }
602
603 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
604                 unsigned int last)
605 {
606         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
607         struct target *target = bank->target;
608
609         if (stm32x_is_otp(bank)) {
610                 LOG_ERROR("Cannot erase OTP memory");
611                 return ERROR_FAIL;
612         }
613
614         assert((first <= last) && (last < bank->num_sectors));
615
616         if (bank->target->state != TARGET_HALTED) {
617                 LOG_ERROR("Target not halted");
618                 return ERROR_TARGET_NOT_HALTED;
619         }
620
621         int retval;
622         retval = stm32x_unlock_reg(target);
623         if (retval != ERROR_OK)
624                 return retval;
625
626         /*
627         Sector Erase
628         To erase a sector, follow the procedure below:
629         1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
630           FLASH_SR register
631         2. Set the SER bit and select the sector
632           you wish to erase (SNB) in the FLASH_CR register
633         3. Set the STRT bit in the FLASH_CR register
634         4. Wait for the BSY bit to be cleared
635          */
636
637         for (unsigned int i = first; i <= last; i++) {
638                 unsigned int snb;
639                 if (stm32x_info->has_large_mem && i >= 12)
640                         snb = (i - 12) | 0x10;
641                 else
642                         snb = i;
643
644                 retval = target_write_u32(target,
645                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
646                 if (retval != ERROR_OK)
647                         return retval;
648
649                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
650                 if (retval != ERROR_OK)
651                         return retval;
652
653                 bank->sectors[i].is_erased = 1;
654         }
655
656         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
657         if (retval != ERROR_OK)
658                 return retval;
659
660         return ERROR_OK;
661 }
662
663 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
664                 unsigned int last)
665 {
666         struct target *target = bank->target;
667         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
668
669         if (target->state != TARGET_HALTED) {
670                 LOG_ERROR("Target not halted");
671                 return ERROR_TARGET_NOT_HALTED;
672         }
673
674         if (stm32x_is_otp(bank)) {
675                 if (!set)
676                         return ERROR_COMMAND_ARGUMENT_INVALID;
677
678                 return stm32x_otp_protect(bank, first, last);
679         }
680
681         /* read protection settings */
682         int retval = stm32x_read_options(bank);
683         if (retval != ERROR_OK) {
684                 LOG_DEBUG("unable to read option bytes");
685                 return retval;
686         }
687
688         for (unsigned int i = first; i <= last; i++) {
689                 if (set)
690                         stm32x_info->option_bytes.protection &= ~(1 << i);
691                 else
692                         stm32x_info->option_bytes.protection |= (1 << i);
693         }
694
695         retval = stm32x_write_options(bank);
696         if (retval != ERROR_OK)
697                 return retval;
698
699         return ERROR_OK;
700 }
701
702 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
703                 uint32_t offset, uint32_t count)
704 {
705         struct target *target = bank->target;
706         uint32_t buffer_size = 16384;
707         struct working_area *write_algorithm;
708         struct working_area *source;
709         uint32_t address = bank->base + offset;
710         struct reg_param reg_params[5];
711         struct armv7m_algorithm armv7m_info;
712         int retval = ERROR_OK;
713
714         static const uint8_t stm32x_flash_write_code[] = {
715 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
716         };
717
718         if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
719                 LOG_ERROR("OTP memory bank is disabled for write commands.");
720                 return ERROR_FAIL;
721         }
722
723         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
724                         &write_algorithm) != ERROR_OK) {
725                 LOG_WARNING("no working area available, can't do block memory writes");
726                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
727         }
728
729         retval = target_write_buffer(target, write_algorithm->address,
730                         sizeof(stm32x_flash_write_code),
731                         stm32x_flash_write_code);
732         if (retval != ERROR_OK) {
733                 target_free_working_area(target, write_algorithm);
734                 return retval;
735         }
736
737         /* memory buffer */
738         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
739                 buffer_size /= 2;
740                 if (buffer_size <= 256) {
741                         /* we already allocated the writing code, but failed to get a
742                          * buffer, free the algorithm */
743                         target_free_working_area(target, write_algorithm);
744
745                         LOG_WARNING("no large enough working area available, can't do block memory writes");
746                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
747                 }
748         }
749
750         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
751         armv7m_info.core_mode = ARM_MODE_THREAD;
752
753         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);         /* buffer start, status (out) */
754         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);            /* buffer end */
755         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);            /* target address */
756         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);            /* count (halfword-16bit) */
757         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);            /* flash base */
758
759         buf_set_u32(reg_params[0].value, 0, 32, source->address);
760         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
761         buf_set_u32(reg_params[2].value, 0, 32, address);
762         buf_set_u32(reg_params[3].value, 0, 32, count);
763         buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
764
765         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
766                         0, NULL,
767                         5, reg_params,
768                         source->address, source->size,
769                         write_algorithm->address, 0,
770                         &armv7m_info);
771
772         if (retval == ERROR_FLASH_OPERATION_FAILED) {
773                 LOG_ERROR("error executing stm32x flash write algorithm");
774
775                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
776
777                 if (error & FLASH_WRPERR)
778                         LOG_ERROR("flash memory write protected");
779
780                 if (error != 0) {
781                         LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
782                         /* Clear but report errors */
783                         target_write_u32(target, STM32_FLASH_SR, error);
784                         retval = ERROR_FAIL;
785                 }
786         }
787
788         target_free_working_area(target, source);
789         target_free_working_area(target, write_algorithm);
790
791         destroy_reg_param(&reg_params[0]);
792         destroy_reg_param(&reg_params[1]);
793         destroy_reg_param(&reg_params[2]);
794         destroy_reg_param(&reg_params[3]);
795         destroy_reg_param(&reg_params[4]);
796
797         return retval;
798 }
799
800 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
801                 uint32_t offset, uint32_t count)
802 {
803         struct target *target = bank->target;
804         uint32_t words_remaining = (count / 2);
805         uint32_t bytes_remaining = (count & 0x00000001);
806         uint32_t address = bank->base + offset;
807         uint32_t bytes_written = 0;
808         int retval;
809
810         if (bank->target->state != TARGET_HALTED) {
811                 LOG_ERROR("Target not halted");
812                 return ERROR_TARGET_NOT_HALTED;
813         }
814
815         if (offset & 0x1) {
816                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
817                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
818         }
819
820         retval = stm32x_unlock_reg(target);
821         if (retval != ERROR_OK)
822                 return retval;
823
824         /* multiple half words (2-byte) to be programmed? */
825         if (words_remaining > 0) {
826                 /* try using a block write */
827                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
828                 if (retval != ERROR_OK) {
829                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
830                                 /* if block write failed (no sufficient working area),
831                                  * we use normal (slow) single dword accesses */
832                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
833                         }
834                 } else {
835                         buffer += words_remaining * 2;
836                         address += words_remaining * 2;
837                         words_remaining = 0;
838                 }
839         }
840
841         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
842                 return retval;
843
844         /*
845         Standard programming
846         The Flash memory programming sequence is as follows:
847         1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
848           FLASH_SR register.
849         2. Set the PG bit in the FLASH_CR register
850         3. Perform the data write operation(s) to the desired memory address (inside main
851           memory block or OTP area):
852         â€“ â€“ Half-word access in case of x16 parallelism
853         â€“ Word access in case of x32 parallelism
854         â€“
855         4.
856         Byte access in case of x8 parallelism
857         Double word access in case of x64 parallelism
858         Wait for the BSY bit to be cleared
859         */
860         while (words_remaining > 0) {
861                 uint16_t value;
862                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
863
864                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
865                                 FLASH_PG | FLASH_PSIZE_16);
866                 if (retval != ERROR_OK)
867                         return retval;
868
869                 retval = target_write_u16(target, address, value);
870                 if (retval != ERROR_OK)
871                         return retval;
872
873                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
874                 if (retval != ERROR_OK)
875                         return retval;
876
877                 bytes_written += 2;
878                 words_remaining--;
879                 address += 2;
880         }
881
882         if (bytes_remaining) {
883                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
884                                 FLASH_PG | FLASH_PSIZE_8);
885                 if (retval != ERROR_OK)
886                         return retval;
887                 retval = target_write_u8(target, address, buffer[bytes_written]);
888                 if (retval != ERROR_OK)
889                         return retval;
890
891                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
892                 if (retval != ERROR_OK)
893                         return retval;
894         }
895
896         return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
897 }
898
899 static void setup_sector(struct flash_bank *bank, unsigned int i,
900                 unsigned int size)
901 {
902         assert(i < bank->num_sectors);
903         bank->sectors[i].offset = bank->size;
904         bank->sectors[i].size = size;
905         bank->size += bank->sectors[i].size;
906         LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
907 }
908
909 static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
910 {
911         if (i < 4)
912                 return max_sector_size_in_kb / 8;
913         if (i == 4)
914                 return max_sector_size_in_kb / 2;
915         return max_sector_size_in_kb;
916 }
917
918 static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
919                 uint16_t flash_size_in_kb,
920                 uint16_t max_sector_size_in_kb)
921 {
922         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
923         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
924         unsigned int nr_sectors;
925
926         /* Dual Bank Flash has two identically-arranged banks of sectors. */
927         if (stm32x_info->has_large_mem)
928                 remaining_flash_size_in_kb /= 2;
929
930         for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
931                 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
932                 if (size_in_kb > remaining_flash_size_in_kb) {
933                         LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
934                                  stm32x_info->has_large_mem ? "Dual" : "Single",
935                                  flash_size_in_kb, remaining_flash_size_in_kb);
936                         remaining_flash_size_in_kb = 0;
937                 } else {
938                         remaining_flash_size_in_kb -= size_in_kb;
939                 }
940         }
941
942         return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
943 }
944
945 static void setup_bank(struct flash_bank *bank, unsigned int start,
946         uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
947 {
948         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
949         unsigned int sector_index = 0;
950         while (remaining_flash_size_in_kb > 0) {
951                 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
952                 if (size_in_kb > remaining_flash_size_in_kb) {
953                         /* Clip last sector. Already warned in
954                          * calculate_number_of_sectors. */
955                         size_in_kb = remaining_flash_size_in_kb;
956                 }
957                 setup_sector(bank, start + sector_index, size_in_kb * 1024);
958                 remaining_flash_size_in_kb -= size_in_kb;
959                 sector_index++;
960         }
961 }
962
963 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
964 {
965         /* this checks for a stm32f4x errata issue where a
966          * stm32f2x DBGMCU_IDCODE is incorrectly returned.
967          * If the issue is detected target is forced to stm32f4x Rev A.
968          * Only effects Rev A silicon */
969
970         struct target *target = bank->target;
971         struct cortex_m_common *cortex_m = target_to_cm(target);
972
973         /* read stm32 device id register */
974         int retval = target_read_u32(target, 0xE0042000, device_id);
975         if (retval != ERROR_OK)
976                 return retval;
977
978         if ((*device_id & 0xfff) == 0x411 && cortex_m->core_info->partno == CORTEX_M4_PARTNO) {
979                 *device_id &= ~((0xFFFF << 16) | 0xfff);
980                 *device_id |= (0x1000 << 16) | 0x413;
981                 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
982         }
983         return retval;
984 }
985
986 static int stm32x_probe(struct flash_bank *bank)
987 {
988         struct target *target = bank->target;
989         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
990         unsigned int num_prot_blocks, num_sectors;
991         uint16_t flash_size_in_kb;
992         uint16_t otp_size_in_b;
993         uint16_t otp_sector_size;
994         uint32_t flash_size_reg = 0x1FFF7A22;
995         uint16_t max_sector_size_in_kb = 128;
996         uint16_t max_flash_size_in_kb;
997         uint32_t device_id;
998         uint32_t base_address = 0x08000000;
999
1000         stm32x_info->probed = false;
1001         stm32x_info->has_large_mem = false;
1002         stm32x_info->has_boot_addr = false;
1003         stm32x_info->has_extra_options = false;
1004         stm32x_info->has_optcr2_pcrop = false;
1005         stm32x_info->protection_bits = 12;              /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1006         num_prot_blocks = 0;
1007
1008         free(bank->sectors);
1009         bank->num_sectors = 0;
1010         bank->sectors = NULL;
1011
1012         free(bank->prot_blocks);
1013         bank->num_prot_blocks = 0;
1014         bank->prot_blocks = NULL;
1015
1016         /* if explicitly called out as OTP bank, short circuit probe */
1017         if (stm32x_is_otp(bank)) {
1018                 if (stm32x_otp_is_f7(bank)) {
1019                         otp_size_in_b = STM32F7_OTP_SIZE;
1020                         otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1021                 } else {
1022                         otp_size_in_b = STM32F2_OTP_SIZE;
1023                         otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1024                 }
1025
1026                 num_sectors = otp_size_in_b / otp_sector_size;
1027                 LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
1028
1029                 assert(num_sectors > 0);
1030
1031                 bank->num_sectors = num_sectors;
1032                 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1033
1034                 if (stm32x_otp_is_f7(bank))
1035                         bank->size = STM32F7_OTP_SIZE;
1036                 else
1037                         bank->size = STM32F2_OTP_SIZE;
1038
1039                 for (unsigned int i = 0; i < num_sectors; i++) {
1040                         bank->sectors[i].offset = i * otp_sector_size;
1041                         bank->sectors[i].size = otp_sector_size;
1042                         bank->sectors[i].is_erased = 1;
1043                         bank->sectors[i].is_protected = 0;
1044                 }
1045
1046                 stm32x_info->probed = true;
1047                 return ERROR_OK;
1048         }
1049
1050         /* read stm32 device id register */
1051         int retval = stm32x_get_device_id(bank, &device_id);
1052         if (retval != ERROR_OK)
1053                 return retval;
1054         LOG_INFO("device id = 0x%08" PRIx32, device_id);
1055         device_id &= 0xfff;             /* only bits 0-11 are used further on */
1056
1057         /* set max flash size depending on family, id taken from AN2606 */
1058         switch (device_id) {
1059         case 0x411: /* F20x/21x */
1060         case 0x413: /* F40x/41x */
1061                 max_flash_size_in_kb = 1024;
1062                 break;
1063
1064         case 0x419: /* F42x/43x */
1065         case 0x434: /* F469/479 */
1066                 stm32x_info->has_extra_options = true;
1067                 max_flash_size_in_kb = 2048;
1068                 break;
1069
1070         case 0x423:     /* F401xB/C */
1071                 max_flash_size_in_kb = 256;
1072                 break;
1073
1074         case 0x421:     /* F446 */
1075         case 0x431: /* F411 */
1076         case 0x433: /* F401xD/E */
1077         case 0x441: /* F412 */
1078                 max_flash_size_in_kb = 512;
1079                 break;
1080
1081         case 0x458: /* F410 */
1082                 max_flash_size_in_kb = 128;
1083                 break;
1084
1085         case 0x449:     /* F74x/75x */
1086                 max_flash_size_in_kb = 1024;
1087                 max_sector_size_in_kb = 256;
1088                 flash_size_reg = 0x1FF0F442;
1089                 stm32x_info->has_extra_options = true;
1090                 stm32x_info->has_boot_addr = true;
1091                 break;
1092
1093         case 0x451:     /* F76x/77x */
1094                 max_flash_size_in_kb = 2048;
1095                 max_sector_size_in_kb = 256;
1096                 flash_size_reg = 0x1FF0F442;
1097                 stm32x_info->has_extra_options = true;
1098                 stm32x_info->has_boot_addr = true;
1099                 break;
1100
1101         case 0x452:     /* F72x/73x */
1102                 max_flash_size_in_kb = 512;
1103                 flash_size_reg = 0x1FF07A22;    /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1104                 stm32x_info->has_extra_options = true;
1105                 stm32x_info->has_boot_addr = true;
1106                 stm32x_info->has_optcr2_pcrop = true;
1107                 break;
1108
1109         case 0x463:     /* F413x/423x */
1110                 max_flash_size_in_kb = 1536;
1111                 stm32x_info->has_extra_options = true;
1112                 stm32x_info->protection_bits = 15;
1113                 num_prot_blocks = 15;
1114                 break;
1115
1116         default:
1117                 LOG_WARNING("Cannot identify target as a STM32 family.");
1118                 return ERROR_FAIL;
1119         }
1120
1121         /* get flash size from target. */
1122         retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1123
1124         /* failed reading flash size or flash size invalid (early silicon),
1125          * default to max target family */
1126         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1127                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
1128                         max_flash_size_in_kb);
1129                 flash_size_in_kb = max_flash_size_in_kb;
1130         }
1131
1132         /* if the user sets the size manually then ignore the probed value
1133          * this allows us to work around devices that have a invalid flash size register value */
1134         if (stm32x_info->user_bank_size) {
1135                 LOG_INFO("ignoring flash probed value, using configured bank size");
1136                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1137         }
1138
1139         LOG_INFO("flash size = %" PRIu16 " kbytes", flash_size_in_kb);
1140
1141         /* did we assign flash size? */
1142         assert(flash_size_in_kb != 0xffff);
1143
1144         /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1145         if ((device_id == 0x419) || (device_id == 0x434)) {
1146                 uint32_t optiondata;
1147                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1148                 if (retval != ERROR_OK) {
1149                         LOG_DEBUG("unable to read option bytes");
1150                         return retval;
1151                 }
1152                 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1153                         stm32x_info->has_large_mem = true;
1154                         LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1155                 } else {
1156                         stm32x_info->has_large_mem = false;
1157                         LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1158                 }
1159         }
1160
1161         /* F76x/77x devices have a dual bank option */
1162         if (device_id == 0x451) {
1163                 uint32_t optiondata;
1164                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1165                 if (retval != ERROR_OK) {
1166                         LOG_DEBUG("unable to read option bytes");
1167                         return retval;
1168                 }
1169                 if (optiondata & OPTCR_NDBANK) {
1170                         stm32x_info->has_large_mem = false;
1171                         LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1172                 } else {
1173                         stm32x_info->has_large_mem = true;
1174                         max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1175                         LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1176                 }
1177         }
1178
1179         /* calculate numbers of pages */
1180         unsigned int num_pages = calculate_number_of_sectors(
1181                         bank, flash_size_in_kb, max_sector_size_in_kb);
1182
1183         bank->base = base_address;
1184         bank->num_sectors = num_pages;
1185         bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1186         for (unsigned int i = 0; i < num_pages; i++) {
1187                 bank->sectors[i].is_erased = -1;
1188                 bank->sectors[i].is_protected = 0;
1189         }
1190         bank->size = 0;
1191         LOG_DEBUG("allocated %u sectors", num_pages);
1192
1193         /* F76x/77x in dual bank mode */
1194         if ((device_id == 0x451) && stm32x_info->has_large_mem)
1195                 num_prot_blocks = num_pages >> 1;
1196
1197         if (num_prot_blocks) {
1198                 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1199                 for (unsigned int i = 0; i < num_prot_blocks; i++)
1200                         bank->prot_blocks[i].is_protected = 0;
1201                 LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
1202         }
1203
1204         if (stm32x_info->has_large_mem) {
1205                 /* dual-bank */
1206                 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1207                 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1208                         max_sector_size_in_kb);
1209
1210                 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1211                 if (device_id == 0x451) {
1212                         for (unsigned int i = 0; i < num_prot_blocks; i++) {
1213                                 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1214                                 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1215                                                 + bank->sectors[(i << 1) + 1].size;
1216                         }
1217                 }
1218         } else {
1219                 /* single-bank */
1220                 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1221
1222                 /* F413/F423, sectors 14 and 15 share one common protection bit */
1223                 if (device_id == 0x463) {
1224                         for (unsigned int i = 0; i < num_prot_blocks; i++) {
1225                                 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1226                                 bank->prot_blocks[i].size = bank->sectors[i].size;
1227                         }
1228                         bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1229                 }
1230         }
1231         bank->num_prot_blocks = num_prot_blocks;
1232         assert((bank->size >> 10) == flash_size_in_kb);
1233
1234         stm32x_info->probed = true;
1235         return ERROR_OK;
1236 }
1237
1238 static int stm32x_auto_probe(struct flash_bank *bank)
1239 {
1240         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1241         if (stm32x_info->probed)
1242                 return ERROR_OK;
1243         return stm32x_probe(bank);
1244 }
1245
1246 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
1247 {
1248         uint32_t dbgmcu_idcode;
1249
1250         /* read stm32 device id register */
1251         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1252         if (retval != ERROR_OK)
1253                 return retval;
1254
1255         uint16_t device_id = dbgmcu_idcode & 0xfff;
1256         uint16_t rev_id = dbgmcu_idcode >> 16;
1257         const char *device_str;
1258         const char *rev_str = NULL;
1259
1260         switch (device_id) {
1261         case 0x411:
1262                 device_str = "STM32F2xx";
1263
1264                 switch (rev_id) {
1265                 case 0x1000:
1266                         rev_str = "A";
1267                         break;
1268
1269                 case 0x2000:
1270                         rev_str = "B";
1271                         break;
1272
1273                 case 0x1001:
1274                         rev_str = "Z";
1275                         break;
1276
1277                 case 0x2001:
1278                         rev_str = "Y";
1279                         break;
1280
1281                 case 0x2003:
1282                         rev_str = "X";
1283                         break;
1284
1285                 case 0x2007:
1286                         rev_str = "1";
1287                         break;
1288
1289                 case 0x200F:
1290                         rev_str = "V";
1291                         break;
1292
1293                 case 0x201F:
1294                         rev_str = "2";
1295                         break;
1296                 }
1297                 break;
1298
1299         case 0x413:
1300         case 0x419:
1301         case 0x434:
1302                 device_str = "STM32F4xx";
1303
1304                 switch (rev_id) {
1305                 case 0x1000:
1306                         rev_str = "A";
1307                         break;
1308
1309                 case 0x1001:
1310                         rev_str = "Z";
1311                         break;
1312
1313                 case 0x1003:
1314                         rev_str = "Y";
1315                         break;
1316
1317                 case 0x1007:
1318                         rev_str = "1";
1319                         break;
1320
1321                 case 0x2001:
1322                         rev_str = "3";
1323                         break;
1324                 }
1325                 break;
1326
1327         case 0x421:
1328                 device_str = "STM32F446";
1329
1330                 switch (rev_id) {
1331                 case 0x1000:
1332                         rev_str = "A";
1333                         break;
1334                 }
1335                 break;
1336
1337         case 0x423:
1338         case 0x431:
1339         case 0x433:
1340         case 0x458:
1341         case 0x441:
1342                 device_str = "STM32F4xx (Low Power)";
1343
1344                 switch (rev_id) {
1345                 case 0x1000:
1346                         rev_str = "A";
1347                         break;
1348
1349                 case 0x1001:
1350                         rev_str = "Z";
1351                         break;
1352
1353                 case 0x2000:
1354                         rev_str = "B";
1355                         break;
1356
1357                 case 0x3000:
1358                         rev_str = "C";
1359                         break;
1360                 }
1361                 break;
1362
1363         case 0x449:
1364                 device_str = "STM32F7[4|5]x";
1365
1366                 switch (rev_id) {
1367                 case 0x1000:
1368                         rev_str = "A";
1369                         break;
1370
1371                 case 0x1001:
1372                         rev_str = "Z";
1373                         break;
1374                 }
1375                 break;
1376
1377         case 0x451:
1378                 device_str = "STM32F7[6|7]x";
1379
1380                 switch (rev_id) {
1381                 case 0x1000:
1382                         rev_str = "A";
1383                         break;
1384                 case 0x1001:
1385                         rev_str = "Z";
1386                         break;
1387                 }
1388                 break;
1389
1390         case 0x452:
1391                 device_str = "STM32F7[2|3]x";
1392
1393                 switch (rev_id) {
1394                 case 0x1000:
1395                         rev_str = "A";
1396                         break;
1397                 }
1398                 break;
1399
1400         case 0x463:
1401                 device_str = "STM32F4[1|2]3";
1402
1403                 switch (rev_id) {
1404                 case 0x1000:
1405                         rev_str = "A";
1406                         break;
1407                 }
1408                 break;
1409
1410         default:
1411                 command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
1412                 return ERROR_FAIL;
1413         }
1414
1415         if (rev_str != NULL)
1416                 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1417         else
1418                 command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
1419
1420         return ERROR_OK;
1421 }
1422
1423 COMMAND_HANDLER(stm32x_handle_lock_command)
1424 {
1425         struct target *target = NULL;
1426         struct stm32x_flash_bank *stm32x_info = NULL;
1427
1428         if (CMD_ARGC < 1)
1429                 return ERROR_COMMAND_SYNTAX_ERROR;
1430
1431         struct flash_bank *bank;
1432         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1433         if (ERROR_OK != retval)
1434                 return retval;
1435
1436         stm32x_info = bank->driver_priv;
1437         target = bank->target;
1438
1439         if (target->state != TARGET_HALTED) {
1440                 LOG_INFO("Target not halted");
1441                 /* return ERROR_TARGET_NOT_HALTED; */
1442         }
1443
1444         if (stm32x_read_options(bank) != ERROR_OK) {
1445                 command_print(CMD, "%s failed to read options", bank->driver->name);
1446                 return ERROR_OK;
1447         }
1448
1449         /* set readout protection */
1450         stm32x_info->option_bytes.RDP = 0;
1451
1452         if (stm32x_write_options(bank) != ERROR_OK) {
1453                 command_print(CMD, "%s failed to lock device", bank->driver->name);
1454                 return ERROR_OK;
1455         }
1456
1457         command_print(CMD, "%s locked", bank->driver->name);
1458
1459         return ERROR_OK;
1460 }
1461
1462 COMMAND_HANDLER(stm32x_handle_unlock_command)
1463 {
1464         struct target *target = NULL;
1465         struct stm32x_flash_bank *stm32x_info = NULL;
1466
1467         if (CMD_ARGC < 1)
1468                 return ERROR_COMMAND_SYNTAX_ERROR;
1469
1470         struct flash_bank *bank;
1471         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1472         if (ERROR_OK != retval)
1473                 return retval;
1474
1475         stm32x_info = bank->driver_priv;
1476         target = bank->target;
1477
1478         if (target->state != TARGET_HALTED) {
1479                 LOG_INFO("Target not halted");
1480                 /* return ERROR_TARGET_NOT_HALTED; */
1481         }
1482
1483         if (stm32x_read_options(bank) != ERROR_OK) {
1484                 command_print(CMD, "%s failed to read options", bank->driver->name);
1485                 return ERROR_OK;
1486         }
1487
1488         /* clear readout protection and complementary option bytes
1489          * this will also force a device unlock if set */
1490         stm32x_info->option_bytes.RDP = 0xAA;
1491         if (stm32x_info->has_optcr2_pcrop) {
1492                 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1493         }
1494
1495         if (stm32x_write_options(bank) != ERROR_OK) {
1496                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1497                 return ERROR_OK;
1498         }
1499
1500         command_print(CMD, "%s unlocked.\n"
1501                         "INFO: a reset or power cycle is required "
1502                         "for the new settings to take effect.", bank->driver->name);
1503
1504         return ERROR_OK;
1505 }
1506
1507 static int stm32x_mass_erase(struct flash_bank *bank)
1508 {
1509         int retval;
1510         uint32_t flash_mer;
1511         struct target *target = bank->target;
1512         struct stm32x_flash_bank *stm32x_info = NULL;
1513
1514         if (target->state != TARGET_HALTED) {
1515                 LOG_ERROR("Target not halted");
1516                 return ERROR_TARGET_NOT_HALTED;
1517         }
1518
1519         stm32x_info = bank->driver_priv;
1520
1521         retval = stm32x_unlock_reg(target);
1522         if (retval != ERROR_OK)
1523                 return retval;
1524
1525         /* mass erase flash memory */
1526         if (stm32x_info->has_large_mem)
1527                 flash_mer = FLASH_MER | FLASH_MER1;
1528         else
1529                 flash_mer = FLASH_MER;
1530
1531         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1532         if (retval != ERROR_OK)
1533                 return retval;
1534         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1535                 flash_mer | FLASH_STRT);
1536         if (retval != ERROR_OK)
1537                 return retval;
1538
1539         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1540         if (retval != ERROR_OK)
1541                 return retval;
1542
1543         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1544         if (retval != ERROR_OK)
1545                 return retval;
1546
1547         return ERROR_OK;
1548 }
1549
1550 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1551 {
1552         if (CMD_ARGC < 1) {
1553                 command_print(CMD, "stm32x mass_erase <bank>");
1554                 return ERROR_COMMAND_SYNTAX_ERROR;
1555         }
1556
1557         struct flash_bank *bank;
1558         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1559         if (ERROR_OK != retval)
1560                 return retval;
1561
1562         retval = stm32x_mass_erase(bank);
1563         if (retval == ERROR_OK) {
1564                 /* set all sectors as erased */
1565                 for (unsigned int i = 0; i < bank->num_sectors; i++)
1566                         bank->sectors[i].is_erased = 1;
1567
1568                 command_print(CMD, "stm32x mass erase complete");
1569         } else {
1570                 command_print(CMD, "stm32x mass erase failed");
1571         }
1572
1573         return retval;
1574 }
1575
1576 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1577 {
1578         int retval;
1579         struct flash_bank *bank;
1580         struct stm32x_flash_bank *stm32x_info = NULL;
1581
1582         if (CMD_ARGC != 1) {
1583                 command_print(CMD, "stm32f2x options_read <bank>");
1584                 return ERROR_COMMAND_SYNTAX_ERROR;
1585         }
1586
1587         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1588         if (ERROR_OK != retval)
1589                 return retval;
1590
1591         retval = stm32x_read_options(bank);
1592         if (ERROR_OK != retval)
1593                 return retval;
1594
1595         stm32x_info = bank->driver_priv;
1596         if (stm32x_info->has_extra_options) {
1597                 if (stm32x_info->has_boot_addr) {
1598                         uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1599
1600                         command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
1601                                 " boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
1602                                 stm32x_info->option_bytes.user_options,
1603                                 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1604                         if (stm32x_info->has_optcr2_pcrop) {
1605                                 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
1606                                                 stm32x_info->option_bytes.optcr2_pcrop);
1607                         }
1608                 } else {
1609                         command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
1610                                 stm32x_info->option_bytes.user_options);
1611                 }
1612         } else {
1613                 command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
1614                         stm32x_info->option_bytes.user_options);
1615
1616         }
1617
1618         return retval;
1619 }
1620
1621 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1622 {
1623         int retval;
1624         struct flash_bank *bank;
1625         struct stm32x_flash_bank *stm32x_info = NULL;
1626         uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1627
1628         if (CMD_ARGC < 1) {
1629                 command_print(CMD, "stm32f2x options_write <bank> ...");
1630                 return ERROR_COMMAND_SYNTAX_ERROR;
1631         }
1632
1633         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1634         if (ERROR_OK != retval)
1635                 return retval;
1636
1637         retval = stm32x_read_options(bank);
1638         if (ERROR_OK != retval)
1639                 return retval;
1640
1641         stm32x_info = bank->driver_priv;
1642         if (stm32x_info->has_boot_addr) {
1643                 if (CMD_ARGC != 4) {
1644                         command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1645                                 " <boot_addr0> <boot_addr1>");
1646                         return ERROR_COMMAND_SYNTAX_ERROR;
1647                 }
1648                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1649                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1650                 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1651         } else {
1652                 if (CMD_ARGC != 2) {
1653                         command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1654                         return ERROR_COMMAND_SYNTAX_ERROR;
1655                 }
1656         }
1657
1658         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1659         options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1660                 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1661         if (user_options & options_mask) {
1662                 command_print(CMD, "stm32f2x invalid user_options");
1663                 return ERROR_COMMAND_ARGUMENT_INVALID;
1664         }
1665
1666         stm32x_info->option_bytes.user_options = user_options;
1667
1668         if (stm32x_write_options(bank) != ERROR_OK) {
1669                 command_print(CMD, "stm32f2x failed to write options");
1670                 return ERROR_OK;
1671         }
1672
1673         /* switching between single- and dual-bank modes requires re-probe */
1674         /* ... and reprogramming of whole flash */
1675         stm32x_info->probed = false;
1676
1677         command_print(CMD, "stm32f2x write options complete.\n"
1678                                 "INFO: a reset or power cycle is required "
1679                                 "for the new settings to take effect.");
1680         return retval;
1681 }
1682
1683 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1684 {
1685         int retval;
1686         struct flash_bank *bank;
1687         struct stm32x_flash_bank *stm32x_info = NULL;
1688         uint32_t optcr2_pcrop;
1689
1690         if (CMD_ARGC != 2) {
1691                 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1692                 return ERROR_COMMAND_SYNTAX_ERROR;
1693         }
1694
1695         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1696         if (ERROR_OK != retval)
1697                 return retval;
1698
1699         stm32x_info = bank->driver_priv;
1700         if (!stm32x_info->has_optcr2_pcrop) {
1701                 command_print(CMD, "no optcr2 register");
1702                 return ERROR_COMMAND_ARGUMENT_INVALID;
1703         }
1704
1705         command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1706                                 " with PCROPi bits STILL SET, then\nlock device and"
1707                                 " finally unlock it. Clears PCROP and mass erases flash.");
1708
1709         retval = stm32x_read_options(bank);
1710         if (ERROR_OK != retval)
1711                 return retval;
1712
1713         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1714         stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1715
1716         if (stm32x_write_options(bank) != ERROR_OK) {
1717                 command_print(CMD, "stm32f2x failed to write options");
1718                 return ERROR_OK;
1719         }
1720
1721         command_print(CMD, "stm32f2x optcr2_write complete.");
1722         return retval;
1723 }
1724
1725 COMMAND_HANDLER(stm32x_handle_otp_command)
1726 {
1727         if (CMD_ARGC < 2) {
1728                 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1729                 return ERROR_COMMAND_SYNTAX_ERROR;
1730         }
1731
1732         struct flash_bank *bank;
1733         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1734         if (ERROR_OK != retval)
1735                 return retval;
1736         if (stm32x_is_otp(bank)) {
1737                 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1738                         stm32x_otp_enable(bank);
1739                 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1740                         stm32x_otp_disable(bank);
1741                 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1742                         command_print(CMD,
1743                                 "OTP memory bank #%u is %s for write commands.",
1744                                 bank->bank_number,
1745                                 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1746                 } else {
1747                         return ERROR_COMMAND_SYNTAX_ERROR;
1748                 }
1749         } else {
1750                 command_print(CMD, "Failed: not an OTP bank.");
1751         }
1752
1753         return retval;
1754 }
1755
1756 static const struct command_registration stm32x_exec_command_handlers[] = {
1757         {
1758                 .name = "lock",
1759                 .handler = stm32x_handle_lock_command,
1760                 .mode = COMMAND_EXEC,
1761                 .usage = "bank_id",
1762                 .help = "Lock entire flash device.",
1763         },
1764         {
1765                 .name = "unlock",
1766                 .handler = stm32x_handle_unlock_command,
1767                 .mode = COMMAND_EXEC,
1768                 .usage = "bank_id",
1769                 .help = "Unlock entire protected flash device.",
1770         },
1771         {
1772                 .name = "mass_erase",
1773                 .handler = stm32x_handle_mass_erase_command,
1774                 .mode = COMMAND_EXEC,
1775                 .usage = "bank_id",
1776                 .help = "Erase entire flash device.",
1777         },
1778         {
1779                 .name = "options_read",
1780                 .handler = stm32f2x_handle_options_read_command,
1781                 .mode = COMMAND_EXEC,
1782                 .usage = "bank_id",
1783                 .help = "Read and display device option bytes.",
1784         },
1785         {
1786                 .name = "options_write",
1787                 .handler = stm32f2x_handle_options_write_command,
1788                 .mode = COMMAND_EXEC,
1789                 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1790                 .help = "Write option bytes",
1791         },
1792         {
1793                 .name = "optcr2_write",
1794                 .handler = stm32f2x_handle_optcr2_write_command,
1795                 .mode = COMMAND_EXEC,
1796                 .usage = "bank_id optcr2",
1797                 .help = "Write optcr2 word",
1798         },
1799         {
1800                 .name = "otp",
1801                 .handler = stm32x_handle_otp_command,
1802                 .mode = COMMAND_EXEC,
1803                 .usage = "bank_id",
1804                 .help = "OTP (One Time Programmable) memory write enable/disable.",
1805         },
1806         COMMAND_REGISTRATION_DONE
1807 };
1808
1809 static const struct command_registration stm32x_command_handlers[] = {
1810         {
1811                 .name = "stm32f2x",
1812                 .mode = COMMAND_ANY,
1813                 .help = "stm32f2x flash command group",
1814                 .usage = "",
1815                 .chain = stm32x_exec_command_handlers,
1816         },
1817         COMMAND_REGISTRATION_DONE
1818 };
1819
1820 const struct flash_driver stm32f2x_flash = {
1821         .name = "stm32f2x",
1822         .commands = stm32x_command_handlers,
1823         .flash_bank_command = stm32x_flash_bank_command,
1824         .erase = stm32x_erase,
1825         .protect = stm32x_protect,
1826         .write = stm32x_write,
1827         .read = default_flash_read,
1828         .probe = stm32x_probe,
1829         .auto_probe = stm32x_auto_probe,
1830         .erase_check = default_flash_blank_check,
1831         .protect_check = stm32x_protect_check,
1832         .info = get_stm32x_info,
1833         .free_driver_priv = default_flash_free_driver_priv,
1834 };