flash/stm32f1x,f2x: fix endianess in slow fallback flash write
[fw/openocd] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 Ã˜yvind Harboe                                      *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/cortex_m.h>
33
34 /* Regarding performance:
35  *
36  * Short story - it might be best to leave the performance at
37  * current levels.
38  *
39  * You may see a jump in speed if you change to using
40  * 32bit words for the block programming.
41  *
42  * Its a shame you cannot use the double word as its
43  * even faster - but you require external VPP for that mode.
44  *
45  * Having said all that 16bit writes give us the widest vdd
46  * operating range, so may be worth adding a note to that effect.
47  *
48  */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51  * quite different flash controllers.
52  *
53  * What's more scary is that the names of the registers and their
54  * addresses are the same, but the actual bits and what they do are
55  * can be very different.
56  *
57  * To reduce testing complexity and dangers of regressions,
58  * a separate file is used for stm32fx2x.
59  *
60  * Sector sizes in kiBytes:
61  * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62  * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63  * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64  * 1 MiByte STM32F42x/43x part with DB1M Option set:
65  *                    4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66  *
67  * STM32F7[2|3]
68  * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69  *
70  * STM32F7[4|5]
71  * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72  *
73  * STM32F7[6|7]
74  * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75  * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76  * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77  * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78  *
79  * Protection size is sector size.
80  *
81  * Tested with STM3220F-EVAL board.
82  *
83  * STM32F4xx series for reference.
84  *
85  * RM0090
86  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87  *
88  * PM0059
89  * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90  * PROGRAMMING_MANUAL/CD00233952.pdf
91  *
92  * STM32F7xx series for reference.
93  *
94  * RM0385
95  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96  *
97  * RM0410
98  * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99  *
100  * RM0430
101  * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102  *
103  * RM0431
104  * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105  *
106  * STM32F1x series - notice that this code was copy, pasted and knocked
107  * into a stm32f2x driver, so in case something has been converted or
108  * bugs haven't been fixed, here are the original manuals:
109  *
110  * RM0008 - Reference manual
111  *
112  * RM0042, the Flash programming manual for low-, medium- high-density and
113  * connectivity line STM32F10x devices
114  *
115  * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116  *
117  */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE     0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE       0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE       ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE       0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE       ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE    0x40023c00
140 #define STM32_FLASH_ACR     0x40023c00
141 #define STM32_FLASH_KEYR    0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR      0x40023c0C
144 #define STM32_FLASH_CR      0x40023c10
145 #define STM32_FLASH_OPTCR   0x40023c14
146 #define STM32_FLASH_OPTCR1  0x40023c18
147 #define STM32_FLASH_OPTCR2  0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG       (1 << 0)
151 #define FLASH_SER      (1 << 1)
152 #define FLASH_MER      (1 << 2)         /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1     (1 << 15)        /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT     (1 << 16)
155 #define FLASH_PSIZE_8  (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a)   ((a) << 3)
161 #define FLASH_LOCK     (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY      (1 << 16)
165 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR   (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
169 #define FLASH_OPERR    (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK     (1 << 0)
175 #define OPTCR_START    (1 << 1)
176 #define OPTCR_NDBANK   (1 << 29)        /* not dual bank mode */
177 #define OPTCR_DB1M     (1 << 30)        /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD   (1 << 31)        /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP        (1 << 31)       /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1           0x45670123
185 #define KEY2           0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1        0x08192A3B
189 #define OPTKEY2        0x4C5D6E7F
190
191 struct stm32x_options {
192         uint8_t RDP;
193         uint16_t user_options;  /* bit 0-7 usual options, bit 8-11 extra options */
194         uint32_t protection;
195         uint32_t boot_addr;
196         uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200         struct stm32x_options option_bytes;
201         bool probed;
202         bool otp_unlocked;
203         bool has_large_mem;             /* F42x/43x/469/479/7xx in dual bank mode */
204         bool has_extra_options; /* F42x/43x/469/479/7xx */
205         bool has_boot_addr;     /* F7xx */
206         bool has_optcr2_pcrop;  /* F72x/73x */
207         unsigned int protection_bits; /* F413/423 */
208         uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213         return bank->base == STM32F2_OTP_BANK_BASE ||
214                 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219         return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226         return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233         LOG_INFO("OTP memory bank #%u is disabled for write commands.",
234                  bank->bank_number);
235         stm32x_info->otp_unlocked = false;
236         return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243         if (!stm32x_info->otp_unlocked) {
244                 LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
245                          bank->bank_number);
246                 stm32x_info->otp_unlocked = true;
247         } else {
248                 LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
249                             bank->bank_number);
250         }
251         return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255  */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258         struct stm32x_flash_bank *stm32x_info;
259
260         if (CMD_ARGC < 6)
261                 return ERROR_COMMAND_SYNTAX_ERROR;
262
263         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264         bank->driver_priv = stm32x_info;
265
266         stm32x_info->probed = false;
267         stm32x_info->otp_unlocked = false;
268         stm32x_info->user_bank_size = bank->size;
269
270         return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275         return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280         struct target *target = bank->target;
281         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286         struct target *target = bank->target;
287         uint32_t status;
288         int retval = ERROR_OK;
289
290         /* wait for busy to clear */
291         for (;;) {
292                 retval = stm32x_get_flash_status(bank, &status);
293                 if (retval != ERROR_OK)
294                         return retval;
295                 LOG_DEBUG("status: 0x%" PRIx32, status);
296                 if ((status & FLASH_BSY) == 0)
297                         break;
298                 if (timeout-- <= 0) {
299                         LOG_ERROR("timed out waiting for flash");
300                         return ERROR_FAIL;
301                 }
302                 alive_sleep(1);
303         }
304
305
306         if (status & FLASH_WRPERR) {
307                 LOG_ERROR("stm32x device protected");
308                 retval = ERROR_FAIL;
309         }
310
311         /* Clear but report errors */
312         if (status & FLASH_ERROR) {
313                 if (retval == ERROR_OK)
314                         retval = ERROR_FAIL;
315                 /* If this operation fails, we ignore it and report the original
316                  * retval
317                  */
318                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319                                 status & FLASH_ERROR);
320         }
321         return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326         uint32_t ctrl;
327
328         /* first check if not already unlocked
329          * otherwise writing on STM32_FLASH_KEYR will fail
330          */
331         int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332         if (retval != ERROR_OK)
333                 return retval;
334
335         if ((ctrl & FLASH_LOCK) == 0)
336                 return ERROR_OK;
337
338         /* unlock flash registers */
339         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340         if (retval != ERROR_OK)
341                 return retval;
342
343         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344         if (retval != ERROR_OK)
345                 return retval;
346
347         retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         if (ctrl & FLASH_LOCK) {
352                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
353                 return ERROR_TARGET_FAILURE;
354         }
355
356         return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361         uint32_t ctrl;
362
363         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364         if (retval != ERROR_OK)
365                 return retval;
366
367         if ((ctrl & OPTCR_LOCK) == 0)
368                 return ERROR_OK;
369
370         /* unlock option registers */
371         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372         if (retval != ERROR_OK)
373                 return retval;
374
375         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376         if (retval != ERROR_OK)
377                 return retval;
378
379         retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380         if (retval != ERROR_OK)
381                 return retval;
382
383         if (ctrl & OPTCR_LOCK) {
384                 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
385                 return ERROR_TARGET_FAILURE;
386         }
387
388         return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393         uint32_t optiondata;
394         struct stm32x_flash_bank *stm32x_info = NULL;
395         struct target *target = bank->target;
396
397         stm32x_info = bank->driver_priv;
398
399         /* read current option bytes */
400         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401         if (retval != ERROR_OK)
402                 return retval;
403
404     /* caution: F2 implements 5 bits (WDG_SW only)
405      * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406         stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407         stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408         stm32x_info->option_bytes.protection =
409                 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411         if (stm32x_info->has_extra_options) {
412                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413                 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415         }
416
417         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418                 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419                 if (retval != ERROR_OK)
420                         return retval;
421
422                 /* FLASH_OPTCR1 has quite different meanings ... */
423                 if (stm32x_info->has_boot_addr) {
424                         /* for F7xx it contains boot0 and boot1 */
425                         stm32x_info->option_bytes.boot_addr = optiondata;
426                 } else {
427                         /* for F42x/43x/469/479 it contains 12 additional protection bits */
428                         stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429                 }
430         }
431
432         if (stm32x_info->has_optcr2_pcrop) {
433                 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434                 if (retval != ERROR_OK)
435                         return retval;
436
437                 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438                 if (stm32x_info->has_optcr2_pcrop &&
439                         (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440                         LOG_INFO("PCROP Engaged");
441                 }
442         } else {
443                 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444         }
445
446         if (stm32x_info->option_bytes.RDP != 0xAA)
447                 LOG_INFO("Device Security Bit Set");
448
449         return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454         struct stm32x_flash_bank *stm32x_info = NULL;
455         struct target *target = bank->target;
456         uint32_t optiondata, optiondata2;
457
458         stm32x_info = bank->driver_priv;
459
460         int retval = stm32x_unlock_option_reg(target);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         /* rebuild option data */
465         optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466         optiondata |= stm32x_info->option_bytes.RDP << 8;
467         optiondata |= (stm32x_info->option_bytes.protection &
468                 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470         if (stm32x_info->has_extra_options) {
471                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472                 optiondata |= (stm32x_info->option_bytes.user_options &
473                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474         }
475
476         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477                 if (stm32x_info->has_boot_addr) {
478                         /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479                         optiondata2 = stm32x_info->option_bytes.boot_addr;
480                 } else {
481                         /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482                         optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483                 }
484
485                 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486                 if (retval != ERROR_OK)
487                         return retval;
488         }
489
490         /* program extra pcrop register */
491         if (stm32x_info->has_optcr2_pcrop) {
492                 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493                         stm32x_info->option_bytes.optcr2_pcrop);
494                 if (retval != ERROR_OK)
495                         return retval;
496         }
497
498         /* program options */
499         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         /* start programming cycle */
504         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505         if (retval != ERROR_OK)
506                 return retval;
507
508         /* wait for completion, this might trigger a security erase and take a while */
509         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         /* relock registers */
514         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515         if (retval != ERROR_OK)
516                 return retval;
517
518         return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523         struct target *target = bank->target;
524         uint32_t lock_base;
525         int retval;
526         uint8_t lock;
527
528         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529                   : STM32F2_OTP_LOCK_BASE;
530
531         for (unsigned int i = 0; i < bank->num_sectors; i++) {
532                 retval = target_read_u8(target, lock_base + i, &lock);
533                 if (retval != ERROR_OK)
534                         return retval;
535                 bank->sectors[i].is_protected = !lock;
536         }
537
538         return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
542                 unsigned int last)
543 {
544         struct target *target = bank->target;
545         uint32_t lock_base;
546         int i, retval;
547         uint8_t lock;
548
549         assert((first <= last) && (last < bank->num_sectors));
550
551         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
552                   : STM32F2_OTP_LOCK_BASE;
553
554         for (i = first; first <= last; i++) {
555                 retval = target_read_u8(target, lock_base + i, &lock);
556                 if (retval != ERROR_OK)
557                         return retval;
558                 if (lock)
559                         continue;
560
561                 lock = 0xff;
562                 retval = target_write_u8(target, lock_base + i, lock);
563                 if (retval != ERROR_OK)
564                         return retval;
565         }
566
567         return ERROR_OK;
568 }
569
570 static int stm32x_protect_check(struct flash_bank *bank)
571 {
572         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
573         struct flash_sector *prot_blocks;
574         unsigned int num_prot_blocks;
575         int retval;
576
577         /* if it's the OTP bank, look at the lock bits there */
578         if (stm32x_is_otp(bank))
579                 return stm32x_otp_read_protect(bank);
580
581         /* read write protection settings */
582         retval = stm32x_read_options(bank);
583         if (retval != ERROR_OK) {
584                 LOG_DEBUG("unable to read option bytes");
585                 return retval;
586         }
587
588         if (bank->prot_blocks) {
589                 num_prot_blocks = bank->num_prot_blocks;
590                 prot_blocks = bank->prot_blocks;
591         } else {
592                 num_prot_blocks = bank->num_sectors;
593                 prot_blocks = bank->sectors;
594         }
595
596         for (unsigned int i = 0; i < num_prot_blocks; i++)
597                 prot_blocks[i].is_protected =
598                         ~(stm32x_info->option_bytes.protection >> i) & 1;
599
600         return ERROR_OK;
601 }
602
603 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
604                 unsigned int last)
605 {
606         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
607         struct target *target = bank->target;
608
609         if (stm32x_is_otp(bank)) {
610                 LOG_ERROR("Cannot erase OTP memory");
611                 return ERROR_FAIL;
612         }
613
614         assert((first <= last) && (last < bank->num_sectors));
615
616         if (bank->target->state != TARGET_HALTED) {
617                 LOG_ERROR("Target not halted");
618                 return ERROR_TARGET_NOT_HALTED;
619         }
620
621         int retval;
622         retval = stm32x_unlock_reg(target);
623         if (retval != ERROR_OK)
624                 return retval;
625
626         /*
627         Sector Erase
628         To erase a sector, follow the procedure below:
629         1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
630           FLASH_SR register
631         2. Set the SER bit and select the sector
632           you wish to erase (SNB) in the FLASH_CR register
633         3. Set the STRT bit in the FLASH_CR register
634         4. Wait for the BSY bit to be cleared
635          */
636
637         for (unsigned int i = first; i <= last; i++) {
638                 unsigned int snb;
639                 if (stm32x_info->has_large_mem && i >= (bank->num_sectors / 2))
640                         snb = (i - (bank->num_sectors / 2)) | 0x10;
641                 else
642                         snb = i;
643
644                 retval = target_write_u32(target,
645                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
646                 if (retval != ERROR_OK)
647                         return retval;
648
649                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
650                 if (retval != ERROR_OK)
651                         return retval;
652         }
653
654         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
655         if (retval != ERROR_OK)
656                 return retval;
657
658         return ERROR_OK;
659 }
660
661 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
662                 unsigned int last)
663 {
664         struct target *target = bank->target;
665         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
666
667         if (target->state != TARGET_HALTED) {
668                 LOG_ERROR("Target not halted");
669                 return ERROR_TARGET_NOT_HALTED;
670         }
671
672         if (stm32x_is_otp(bank)) {
673                 if (!set)
674                         return ERROR_COMMAND_ARGUMENT_INVALID;
675
676                 return stm32x_otp_protect(bank, first, last);
677         }
678
679         /* read protection settings */
680         int retval = stm32x_read_options(bank);
681         if (retval != ERROR_OK) {
682                 LOG_DEBUG("unable to read option bytes");
683                 return retval;
684         }
685
686         for (unsigned int i = first; i <= last; i++) {
687                 if (set)
688                         stm32x_info->option_bytes.protection &= ~(1 << i);
689                 else
690                         stm32x_info->option_bytes.protection |= (1 << i);
691         }
692
693         retval = stm32x_write_options(bank);
694         if (retval != ERROR_OK)
695                 return retval;
696
697         return ERROR_OK;
698 }
699
700 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
701                 uint32_t offset, uint32_t count)
702 {
703         struct target *target = bank->target;
704         uint32_t buffer_size = 16384;
705         struct working_area *write_algorithm;
706         struct working_area *source;
707         uint32_t address = bank->base + offset;
708         struct reg_param reg_params[5];
709         struct armv7m_algorithm armv7m_info;
710         int retval = ERROR_OK;
711
712         static const uint8_t stm32x_flash_write_code[] = {
713 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
714         };
715
716         if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
717                 LOG_ERROR("OTP memory bank is disabled for write commands.");
718                 return ERROR_FAIL;
719         }
720
721         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
722                         &write_algorithm) != ERROR_OK) {
723                 LOG_WARNING("no working area available, can't do block memory writes");
724                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
725         }
726
727         retval = target_write_buffer(target, write_algorithm->address,
728                         sizeof(stm32x_flash_write_code),
729                         stm32x_flash_write_code);
730         if (retval != ERROR_OK) {
731                 target_free_working_area(target, write_algorithm);
732                 return retval;
733         }
734
735         /* memory buffer */
736         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
737                 buffer_size /= 2;
738                 if (buffer_size <= 256) {
739                         /* we already allocated the writing code, but failed to get a
740                          * buffer, free the algorithm */
741                         target_free_working_area(target, write_algorithm);
742
743                         LOG_WARNING("no large enough working area available, can't do block memory writes");
744                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
745                 }
746         }
747
748         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
749         armv7m_info.core_mode = ARM_MODE_THREAD;
750
751         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);         /* buffer start, status (out) */
752         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);            /* buffer end */
753         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);            /* target address */
754         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);            /* count (halfword-16bit) */
755         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);            /* flash base */
756
757         buf_set_u32(reg_params[0].value, 0, 32, source->address);
758         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
759         buf_set_u32(reg_params[2].value, 0, 32, address);
760         buf_set_u32(reg_params[3].value, 0, 32, count);
761         buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
762
763         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
764                         0, NULL,
765                         5, reg_params,
766                         source->address, source->size,
767                         write_algorithm->address, 0,
768                         &armv7m_info);
769
770         if (retval == ERROR_FLASH_OPERATION_FAILED) {
771                 LOG_ERROR("error executing stm32x flash write algorithm");
772
773                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
774
775                 if (error & FLASH_WRPERR)
776                         LOG_ERROR("flash memory write protected");
777
778                 if (error != 0) {
779                         LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
780                         /* Clear but report errors */
781                         target_write_u32(target, STM32_FLASH_SR, error);
782                         retval = ERROR_FAIL;
783                 }
784         }
785
786         target_free_working_area(target, source);
787         target_free_working_area(target, write_algorithm);
788
789         destroy_reg_param(&reg_params[0]);
790         destroy_reg_param(&reg_params[1]);
791         destroy_reg_param(&reg_params[2]);
792         destroy_reg_param(&reg_params[3]);
793         destroy_reg_param(&reg_params[4]);
794
795         return retval;
796 }
797
798 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
799                 uint32_t offset, uint32_t count)
800 {
801         struct target *target = bank->target;
802         uint32_t words_remaining = (count / 2);
803         uint32_t bytes_remaining = (count & 0x00000001);
804         uint32_t address = bank->base + offset;
805         uint32_t bytes_written = 0;
806         int retval;
807
808         if (bank->target->state != TARGET_HALTED) {
809                 LOG_ERROR("Target not halted");
810                 return ERROR_TARGET_NOT_HALTED;
811         }
812
813         if (offset & 0x1) {
814                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
815                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
816         }
817
818         retval = stm32x_unlock_reg(target);
819         if (retval != ERROR_OK)
820                 return retval;
821
822         /* multiple half words (2-byte) to be programmed? */
823         if (words_remaining > 0) {
824                 /* try using a block write */
825                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
826                 if (retval != ERROR_OK) {
827                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
828                                 /* if block write failed (no sufficient working area),
829                                  * we use normal (slow) single dword accesses */
830                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
831                         }
832                 } else {
833                         buffer += words_remaining * 2;
834                         address += words_remaining * 2;
835                         words_remaining = 0;
836                 }
837         }
838
839         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
840                 return retval;
841
842         /*
843         Standard programming
844         The Flash memory programming sequence is as follows:
845         1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
846           FLASH_SR register.
847         2. Set the PG bit in the FLASH_CR register
848         3. Perform the data write operation(s) to the desired memory address (inside main
849           memory block or OTP area):
850         â€“ â€“ Half-word access in case of x16 parallelism
851         â€“ Word access in case of x32 parallelism
852         â€“
853         4.
854         Byte access in case of x8 parallelism
855         Double word access in case of x64 parallelism
856         Wait for the BSY bit to be cleared
857         */
858         while (words_remaining > 0) {
859                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
860                                 FLASH_PG | FLASH_PSIZE_16);
861                 if (retval != ERROR_OK)
862                         return retval;
863
864                 retval = target_write_memory(target, address, 2, 1, buffer + bytes_written);
865                 if (retval != ERROR_OK)
866                         return retval;
867
868                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
869                 if (retval != ERROR_OK)
870                         return retval;
871
872                 bytes_written += 2;
873                 words_remaining--;
874                 address += 2;
875         }
876
877         if (bytes_remaining) {
878                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
879                                 FLASH_PG | FLASH_PSIZE_8);
880                 if (retval != ERROR_OK)
881                         return retval;
882                 retval = target_write_u8(target, address, buffer[bytes_written]);
883                 if (retval != ERROR_OK)
884                         return retval;
885
886                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
887                 if (retval != ERROR_OK)
888                         return retval;
889         }
890
891         return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
892 }
893
894 static void setup_sector(struct flash_bank *bank, unsigned int i,
895                 unsigned int size)
896 {
897         assert(i < bank->num_sectors);
898         bank->sectors[i].offset = bank->size;
899         bank->sectors[i].size = size;
900         bank->size += bank->sectors[i].size;
901         LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
902 }
903
904 static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
905 {
906         if (i < 4)
907                 return max_sector_size_in_kb / 8;
908         if (i == 4)
909                 return max_sector_size_in_kb / 2;
910         return max_sector_size_in_kb;
911 }
912
913 static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
914                 uint16_t flash_size_in_kb,
915                 uint16_t max_sector_size_in_kb)
916 {
917         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
918         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
919         unsigned int nr_sectors;
920
921         /* Dual Bank Flash has two identically-arranged banks of sectors. */
922         if (stm32x_info->has_large_mem)
923                 remaining_flash_size_in_kb /= 2;
924
925         for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
926                 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
927                 if (size_in_kb > remaining_flash_size_in_kb) {
928                         LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
929                                  stm32x_info->has_large_mem ? "Dual" : "Single",
930                                  flash_size_in_kb, remaining_flash_size_in_kb);
931                         remaining_flash_size_in_kb = 0;
932                 } else {
933                         remaining_flash_size_in_kb -= size_in_kb;
934                 }
935         }
936
937         return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
938 }
939
940 static void setup_bank(struct flash_bank *bank, unsigned int start,
941         uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
942 {
943         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
944         unsigned int sector_index = 0;
945         while (remaining_flash_size_in_kb > 0) {
946                 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
947                 if (size_in_kb > remaining_flash_size_in_kb) {
948                         /* Clip last sector. Already warned in
949                          * calculate_number_of_sectors. */
950                         size_in_kb = remaining_flash_size_in_kb;
951                 }
952                 setup_sector(bank, start + sector_index, size_in_kb * 1024);
953                 remaining_flash_size_in_kb -= size_in_kb;
954                 sector_index++;
955         }
956 }
957
958 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
959 {
960         /* this checks for a stm32f4x errata issue where a
961          * stm32f2x DBGMCU_IDCODE is incorrectly returned.
962          * If the issue is detected target is forced to stm32f4x Rev A.
963          * Only effects Rev A silicon */
964
965         struct target *target = bank->target;
966
967         /* read stm32 device id register */
968         int retval = target_read_u32(target, 0xE0042000, device_id);
969         if (retval != ERROR_OK)
970                 return retval;
971
972         if ((*device_id & 0xfff) == 0x411
973                         && cortex_m_get_partno_safe(target) == CORTEX_M4_PARTNO) {
974                 *device_id &= ~((0xFFFF << 16) | 0xfff);
975                 *device_id |= (0x1000 << 16) | 0x413;
976                 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
977         }
978         return retval;
979 }
980
981 static int stm32x_probe(struct flash_bank *bank)
982 {
983         struct target *target = bank->target;
984         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
985         unsigned int num_prot_blocks, num_sectors;
986         uint16_t flash_size_in_kb;
987         uint16_t otp_size_in_b;
988         uint16_t otp_sector_size;
989         uint32_t flash_size_reg = 0x1FFF7A22;
990         uint16_t max_sector_size_in_kb = 128;
991         uint16_t max_flash_size_in_kb;
992         uint32_t device_id;
993         uint32_t base_address = 0x08000000;
994
995         stm32x_info->probed = false;
996         stm32x_info->has_large_mem = false;
997         stm32x_info->has_boot_addr = false;
998         stm32x_info->has_extra_options = false;
999         stm32x_info->has_optcr2_pcrop = false;
1000         stm32x_info->protection_bits = 12;              /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1001         num_prot_blocks = 0;
1002
1003         free(bank->sectors);
1004         bank->num_sectors = 0;
1005         bank->sectors = NULL;
1006
1007         free(bank->prot_blocks);
1008         bank->num_prot_blocks = 0;
1009         bank->prot_blocks = NULL;
1010
1011         if (!target_was_examined(target)) {
1012                 LOG_ERROR("Target not examined yet");
1013                 return ERROR_TARGET_NOT_EXAMINED;
1014         }
1015
1016         /* if explicitly called out as OTP bank, short circuit probe */
1017         if (stm32x_is_otp(bank)) {
1018                 if (stm32x_otp_is_f7(bank)) {
1019                         otp_size_in_b = STM32F7_OTP_SIZE;
1020                         otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1021                 } else {
1022                         otp_size_in_b = STM32F2_OTP_SIZE;
1023                         otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1024                 }
1025
1026                 num_sectors = otp_size_in_b / otp_sector_size;
1027                 LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
1028
1029                 assert(num_sectors > 0);
1030
1031                 bank->num_sectors = num_sectors;
1032                 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1033
1034                 if (stm32x_otp_is_f7(bank))
1035                         bank->size = STM32F7_OTP_SIZE;
1036                 else
1037                         bank->size = STM32F2_OTP_SIZE;
1038
1039                 for (unsigned int i = 0; i < num_sectors; i++) {
1040                         bank->sectors[i].offset = i * otp_sector_size;
1041                         bank->sectors[i].size = otp_sector_size;
1042                         bank->sectors[i].is_erased = 1;
1043                         bank->sectors[i].is_protected = 0;
1044                 }
1045
1046                 stm32x_info->probed = true;
1047                 return ERROR_OK;
1048         }
1049
1050         /* read stm32 device id register */
1051         int retval = stm32x_get_device_id(bank, &device_id);
1052         if (retval != ERROR_OK)
1053                 return retval;
1054         LOG_INFO("device id = 0x%08" PRIx32, device_id);
1055         device_id &= 0xfff;             /* only bits 0-11 are used further on */
1056
1057         /* set max flash size depending on family, id taken from AN2606 */
1058         switch (device_id) {
1059         case 0x411: /* F20x/21x */
1060         case 0x413: /* F40x/41x */
1061                 max_flash_size_in_kb = 1024;
1062                 break;
1063
1064         case 0x419: /* F42x/43x */
1065         case 0x434: /* F469/479 */
1066                 stm32x_info->has_extra_options = true;
1067                 max_flash_size_in_kb = 2048;
1068                 break;
1069
1070         case 0x423:     /* F401xB/C */
1071                 max_flash_size_in_kb = 256;
1072                 break;
1073
1074         case 0x421:     /* F446 */
1075         case 0x431: /* F411 */
1076         case 0x433: /* F401xD/E */
1077         case 0x441: /* F412 */
1078                 max_flash_size_in_kb = 512;
1079                 break;
1080
1081         case 0x458: /* F410 */
1082                 max_flash_size_in_kb = 128;
1083                 break;
1084
1085         case 0x449:     /* F74x/75x */
1086                 max_flash_size_in_kb = 1024;
1087                 max_sector_size_in_kb = 256;
1088                 flash_size_reg = 0x1FF0F442;
1089                 stm32x_info->has_extra_options = true;
1090                 stm32x_info->has_boot_addr = true;
1091                 break;
1092
1093         case 0x451:     /* F76x/77x */
1094                 max_flash_size_in_kb = 2048;
1095                 max_sector_size_in_kb = 256;
1096                 flash_size_reg = 0x1FF0F442;
1097                 stm32x_info->has_extra_options = true;
1098                 stm32x_info->has_boot_addr = true;
1099                 break;
1100
1101         case 0x452:     /* F72x/73x */
1102                 max_flash_size_in_kb = 512;
1103                 flash_size_reg = 0x1FF07A22;    /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1104                 stm32x_info->has_extra_options = true;
1105                 stm32x_info->has_boot_addr = true;
1106                 stm32x_info->has_optcr2_pcrop = true;
1107                 break;
1108
1109         case 0x463:     /* F413x/423x */
1110                 max_flash_size_in_kb = 1536;
1111                 stm32x_info->has_extra_options = true;
1112                 stm32x_info->protection_bits = 15;
1113                 num_prot_blocks = 15;
1114                 break;
1115
1116         default:
1117                 LOG_WARNING("Cannot identify target as a STM32 family.");
1118                 return ERROR_FAIL;
1119         }
1120
1121         /* get flash size from target. */
1122         retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1123
1124         /* failed reading flash size or flash size invalid (early silicon),
1125          * default to max target family */
1126         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1127                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
1128                         max_flash_size_in_kb);
1129                 flash_size_in_kb = max_flash_size_in_kb;
1130         }
1131
1132         /* if the user sets the size manually then ignore the probed value
1133          * this allows us to work around devices that have a invalid flash size register value */
1134         if (stm32x_info->user_bank_size) {
1135                 LOG_INFO("ignoring flash probed value, using configured bank size");
1136                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1137         }
1138
1139         LOG_INFO("flash size = %" PRIu16 " kbytes", flash_size_in_kb);
1140
1141         /* did we assign flash size? */
1142         assert(flash_size_in_kb != 0xffff);
1143
1144         /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1145         if ((device_id == 0x419) || (device_id == 0x434)) {
1146                 uint32_t optiondata;
1147                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1148                 if (retval != ERROR_OK) {
1149                         LOG_DEBUG("unable to read option bytes");
1150                         return retval;
1151                 }
1152                 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1153                         stm32x_info->has_large_mem = true;
1154                         LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1155                 } else {
1156                         stm32x_info->has_large_mem = false;
1157                         LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1158                 }
1159         }
1160
1161         /* F76x/77x devices have a dual bank option */
1162         if (device_id == 0x451) {
1163                 uint32_t optiondata;
1164                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1165                 if (retval != ERROR_OK) {
1166                         LOG_DEBUG("unable to read option bytes");
1167                         return retval;
1168                 }
1169                 if (optiondata & OPTCR_NDBANK) {
1170                         stm32x_info->has_large_mem = false;
1171                         LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1172                 } else {
1173                         stm32x_info->has_large_mem = true;
1174                         max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1175                         LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1176                 }
1177         }
1178
1179         /* calculate numbers of pages */
1180         unsigned int num_pages = calculate_number_of_sectors(
1181                         bank, flash_size_in_kb, max_sector_size_in_kb);
1182
1183         bank->base = base_address;
1184         bank->num_sectors = num_pages;
1185         bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1186         for (unsigned int i = 0; i < num_pages; i++) {
1187                 bank->sectors[i].is_erased = -1;
1188                 bank->sectors[i].is_protected = 0;
1189         }
1190         bank->size = 0;
1191         LOG_DEBUG("allocated %u sectors", num_pages);
1192
1193         /* F76x/77x in dual bank mode */
1194         if ((device_id == 0x451) && stm32x_info->has_large_mem)
1195                 num_prot_blocks = num_pages >> 1;
1196
1197         if (num_prot_blocks) {
1198                 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1199                 for (unsigned int i = 0; i < num_prot_blocks; i++)
1200                         bank->prot_blocks[i].is_protected = 0;
1201                 LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
1202         }
1203
1204         if (stm32x_info->has_large_mem) {
1205                 /* dual-bank */
1206                 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1207                 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1208                         max_sector_size_in_kb);
1209
1210                 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1211                 if (device_id == 0x451) {
1212                         for (unsigned int i = 0; i < num_prot_blocks; i++) {
1213                                 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1214                                 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1215                                                 + bank->sectors[(i << 1) + 1].size;
1216                         }
1217                 }
1218         } else {
1219                 /* single-bank */
1220                 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1221
1222                 /* F413/F423, sectors 14 and 15 share one common protection bit */
1223                 if (device_id == 0x463) {
1224                         for (unsigned int i = 0; i < num_prot_blocks; i++) {
1225                                 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1226                                 bank->prot_blocks[i].size = bank->sectors[i].size;
1227                         }
1228                         bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1229                 }
1230         }
1231         bank->num_prot_blocks = num_prot_blocks;
1232         assert((bank->size >> 10) == flash_size_in_kb);
1233
1234         stm32x_info->probed = true;
1235         return ERROR_OK;
1236 }
1237
1238 static int stm32x_auto_probe(struct flash_bank *bank)
1239 {
1240         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1241         if (stm32x_info->probed)
1242                 return ERROR_OK;
1243         return stm32x_probe(bank);
1244 }
1245
1246 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
1247 {
1248         uint32_t dbgmcu_idcode;
1249
1250         /* read stm32 device id register */
1251         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1252         if (retval != ERROR_OK)
1253                 return retval;
1254
1255         uint16_t device_id = dbgmcu_idcode & 0xfff;
1256         uint16_t rev_id = dbgmcu_idcode >> 16;
1257         const char *device_str;
1258         const char *rev_str = NULL;
1259
1260         switch (device_id) {
1261         case 0x411:
1262                 device_str = "STM32F2xx";
1263
1264                 switch (rev_id) {
1265                 case 0x1000:
1266                         rev_str = "A";
1267                         break;
1268
1269                 case 0x2000:
1270                         rev_str = "B";
1271                         break;
1272
1273                 case 0x1001:
1274                         rev_str = "Z";
1275                         break;
1276
1277                 case 0x2001:
1278                         rev_str = "Y";
1279                         break;
1280
1281                 case 0x2003:
1282                         rev_str = "X";
1283                         break;
1284
1285                 case 0x2007:
1286                         rev_str = "1";
1287                         break;
1288
1289                 case 0x200F:
1290                         rev_str = "V";
1291                         break;
1292
1293                 case 0x201F:
1294                         rev_str = "2";
1295                         break;
1296                 }
1297                 break;
1298
1299         case 0x413:
1300         case 0x419:
1301         case 0x434:
1302                 device_str = "STM32F4xx";
1303
1304                 switch (rev_id) {
1305                 case 0x1000:
1306                         rev_str = "A";
1307                         break;
1308
1309                 case 0x1001:
1310                         rev_str = "Z";
1311                         break;
1312
1313                 case 0x1003:
1314                         rev_str = "Y";
1315                         break;
1316
1317                 case 0x1007:
1318                         rev_str = "1";
1319                         break;
1320
1321                 case 0x2001:
1322                         rev_str = "3";
1323                         break;
1324                 }
1325                 break;
1326
1327         case 0x421:
1328                 device_str = "STM32F446";
1329
1330                 switch (rev_id) {
1331                 case 0x1000:
1332                         rev_str = "A";
1333                         break;
1334                 }
1335                 break;
1336
1337         case 0x423:
1338         case 0x431:
1339         case 0x433:
1340         case 0x458:
1341         case 0x441:
1342                 device_str = "STM32F4xx (Low Power)";
1343
1344                 switch (rev_id) {
1345                 case 0x1000:
1346                         rev_str = "A";
1347                         break;
1348
1349                 case 0x1001:
1350                         rev_str = "Z";
1351                         break;
1352
1353                 case 0x2000:
1354                         rev_str = "B";
1355                         break;
1356
1357                 case 0x3000:
1358                         rev_str = "C";
1359                         break;
1360                 }
1361                 break;
1362
1363         case 0x449:
1364                 device_str = "STM32F7[4|5]x";
1365
1366                 switch (rev_id) {
1367                 case 0x1000:
1368                         rev_str = "A";
1369                         break;
1370
1371                 case 0x1001:
1372                         rev_str = "Z";
1373                         break;
1374                 }
1375                 break;
1376
1377         case 0x451:
1378                 device_str = "STM32F7[6|7]x";
1379
1380                 switch (rev_id) {
1381                 case 0x1000:
1382                         rev_str = "A";
1383                         break;
1384                 case 0x1001:
1385                         rev_str = "Z";
1386                         break;
1387                 }
1388                 break;
1389
1390         case 0x452:
1391                 device_str = "STM32F7[2|3]x";
1392
1393                 switch (rev_id) {
1394                 case 0x1000:
1395                         rev_str = "A";
1396                         break;
1397                 }
1398                 break;
1399
1400         case 0x463:
1401                 device_str = "STM32F4[1|2]3";
1402
1403                 switch (rev_id) {
1404                 case 0x1000:
1405                         rev_str = "A";
1406                         break;
1407                 }
1408                 break;
1409
1410         default:
1411                 command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
1412                 return ERROR_FAIL;
1413         }
1414
1415         if (rev_str)
1416                 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1417         else
1418                 command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
1419
1420         return ERROR_OK;
1421 }
1422
1423 COMMAND_HANDLER(stm32x_handle_lock_command)
1424 {
1425         struct target *target = NULL;
1426         struct stm32x_flash_bank *stm32x_info = NULL;
1427
1428         if (CMD_ARGC < 1)
1429                 return ERROR_COMMAND_SYNTAX_ERROR;
1430
1431         struct flash_bank *bank;
1432         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1433         if (retval != ERROR_OK)
1434                 return retval;
1435
1436         stm32x_info = bank->driver_priv;
1437         target = bank->target;
1438
1439         if (target->state != TARGET_HALTED) {
1440                 LOG_INFO("Target not halted");
1441                 /* return ERROR_TARGET_NOT_HALTED; */
1442         }
1443
1444         if (stm32x_read_options(bank) != ERROR_OK) {
1445                 command_print(CMD, "%s failed to read options", bank->driver->name);
1446                 return ERROR_OK;
1447         }
1448
1449         /* set readout protection */
1450         stm32x_info->option_bytes.RDP = 0;
1451
1452         if (stm32x_write_options(bank) != ERROR_OK) {
1453                 command_print(CMD, "%s failed to lock device", bank->driver->name);
1454                 return ERROR_OK;
1455         }
1456
1457         command_print(CMD, "%s locked", bank->driver->name);
1458
1459         return ERROR_OK;
1460 }
1461
1462 COMMAND_HANDLER(stm32x_handle_unlock_command)
1463 {
1464         struct target *target = NULL;
1465         struct stm32x_flash_bank *stm32x_info = NULL;
1466
1467         if (CMD_ARGC < 1)
1468                 return ERROR_COMMAND_SYNTAX_ERROR;
1469
1470         struct flash_bank *bank;
1471         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1472         if (retval != ERROR_OK)
1473                 return retval;
1474
1475         stm32x_info = bank->driver_priv;
1476         target = bank->target;
1477
1478         if (target->state != TARGET_HALTED) {
1479                 LOG_INFO("Target not halted");
1480                 /* return ERROR_TARGET_NOT_HALTED; */
1481         }
1482
1483         if (stm32x_read_options(bank) != ERROR_OK) {
1484                 command_print(CMD, "%s failed to read options", bank->driver->name);
1485                 return ERROR_OK;
1486         }
1487
1488         /* clear readout protection and complementary option bytes
1489          * this will also force a device unlock if set */
1490         stm32x_info->option_bytes.RDP = 0xAA;
1491         if (stm32x_info->has_optcr2_pcrop) {
1492                 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1493         }
1494
1495         if (stm32x_write_options(bank) != ERROR_OK) {
1496                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1497                 return ERROR_OK;
1498         }
1499
1500         command_print(CMD, "%s unlocked.\n"
1501                         "INFO: a reset or power cycle is required "
1502                         "for the new settings to take effect.", bank->driver->name);
1503
1504         return ERROR_OK;
1505 }
1506
1507 static int stm32x_mass_erase(struct flash_bank *bank)
1508 {
1509         int retval;
1510         uint32_t flash_mer;
1511         struct target *target = bank->target;
1512         struct stm32x_flash_bank *stm32x_info = NULL;
1513
1514         if (target->state != TARGET_HALTED) {
1515                 LOG_ERROR("Target not halted");
1516                 return ERROR_TARGET_NOT_HALTED;
1517         }
1518
1519         stm32x_info = bank->driver_priv;
1520
1521         retval = stm32x_unlock_reg(target);
1522         if (retval != ERROR_OK)
1523                 return retval;
1524
1525         /* mass erase flash memory */
1526         if (stm32x_info->has_large_mem)
1527                 flash_mer = FLASH_MER | FLASH_MER1;
1528         else
1529                 flash_mer = FLASH_MER;
1530
1531         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1532         if (retval != ERROR_OK)
1533                 return retval;
1534         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1535                 flash_mer | FLASH_STRT);
1536         if (retval != ERROR_OK)
1537                 return retval;
1538
1539         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1540         if (retval != ERROR_OK)
1541                 return retval;
1542
1543         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1544         if (retval != ERROR_OK)
1545                 return retval;
1546
1547         return ERROR_OK;
1548 }
1549
1550 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1551 {
1552         if (CMD_ARGC < 1) {
1553                 command_print(CMD, "stm32x mass_erase <bank>");
1554                 return ERROR_COMMAND_SYNTAX_ERROR;
1555         }
1556
1557         struct flash_bank *bank;
1558         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1559         if (retval != ERROR_OK)
1560                 return retval;
1561
1562         retval = stm32x_mass_erase(bank);
1563         if (retval == ERROR_OK) {
1564                 command_print(CMD, "stm32x mass erase complete");
1565         } else {
1566                 command_print(CMD, "stm32x mass erase failed");
1567         }
1568
1569         return retval;
1570 }
1571
1572 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1573 {
1574         int retval;
1575         struct flash_bank *bank;
1576         struct stm32x_flash_bank *stm32x_info = NULL;
1577
1578         if (CMD_ARGC != 1) {
1579                 command_print(CMD, "stm32f2x options_read <bank>");
1580                 return ERROR_COMMAND_SYNTAX_ERROR;
1581         }
1582
1583         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1584         if (retval != ERROR_OK)
1585                 return retval;
1586
1587         retval = stm32x_read_options(bank);
1588         if (retval != ERROR_OK)
1589                 return retval;
1590
1591         stm32x_info = bank->driver_priv;
1592         if (stm32x_info->has_extra_options) {
1593                 if (stm32x_info->has_boot_addr) {
1594                         uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1595
1596                         command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
1597                                 " boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
1598                                 stm32x_info->option_bytes.user_options,
1599                                 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1600                         if (stm32x_info->has_optcr2_pcrop) {
1601                                 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
1602                                                 stm32x_info->option_bytes.optcr2_pcrop);
1603                         }
1604                 } else {
1605                         command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
1606                                 stm32x_info->option_bytes.user_options);
1607                 }
1608         } else {
1609                 command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
1610                         stm32x_info->option_bytes.user_options);
1611
1612         }
1613
1614         return retval;
1615 }
1616
1617 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1618 {
1619         int retval;
1620         struct flash_bank *bank;
1621         struct stm32x_flash_bank *stm32x_info = NULL;
1622         uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1623
1624         if (CMD_ARGC < 1) {
1625                 command_print(CMD, "stm32f2x options_write <bank> ...");
1626                 return ERROR_COMMAND_SYNTAX_ERROR;
1627         }
1628
1629         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1630         if (retval != ERROR_OK)
1631                 return retval;
1632
1633         retval = stm32x_read_options(bank);
1634         if (retval != ERROR_OK)
1635                 return retval;
1636
1637         stm32x_info = bank->driver_priv;
1638         if (stm32x_info->has_boot_addr) {
1639                 if (CMD_ARGC != 4) {
1640                         command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1641                                 " <boot_addr0> <boot_addr1>");
1642                         return ERROR_COMMAND_SYNTAX_ERROR;
1643                 }
1644                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1645                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1646                 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1647         } else {
1648                 if (CMD_ARGC != 2) {
1649                         command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1650                         return ERROR_COMMAND_SYNTAX_ERROR;
1651                 }
1652         }
1653
1654         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1655         options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1656                 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1657         if (user_options & options_mask) {
1658                 command_print(CMD, "stm32f2x invalid user_options");
1659                 return ERROR_COMMAND_ARGUMENT_INVALID;
1660         }
1661
1662         stm32x_info->option_bytes.user_options = user_options;
1663
1664         if (stm32x_write_options(bank) != ERROR_OK) {
1665                 command_print(CMD, "stm32f2x failed to write options");
1666                 return ERROR_OK;
1667         }
1668
1669         /* switching between single- and dual-bank modes requires re-probe */
1670         /* ... and reprogramming of whole flash */
1671         stm32x_info->probed = false;
1672
1673         command_print(CMD, "stm32f2x write options complete.\n"
1674                                 "INFO: a reset or power cycle is required "
1675                                 "for the new settings to take effect.");
1676         return retval;
1677 }
1678
1679 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1680 {
1681         int retval;
1682         struct flash_bank *bank;
1683         struct stm32x_flash_bank *stm32x_info = NULL;
1684         uint32_t optcr2_pcrop;
1685
1686         if (CMD_ARGC != 2) {
1687                 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1688                 return ERROR_COMMAND_SYNTAX_ERROR;
1689         }
1690
1691         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1692         if (retval != ERROR_OK)
1693                 return retval;
1694
1695         stm32x_info = bank->driver_priv;
1696         if (!stm32x_info->has_optcr2_pcrop) {
1697                 command_print(CMD, "no optcr2 register");
1698                 return ERROR_COMMAND_ARGUMENT_INVALID;
1699         }
1700
1701         command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1702                                 " with PCROPi bits STILL SET, then\nlock device and"
1703                                 " finally unlock it. Clears PCROP and mass erases flash.");
1704
1705         retval = stm32x_read_options(bank);
1706         if (retval != ERROR_OK)
1707                 return retval;
1708
1709         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1710         stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1711
1712         if (stm32x_write_options(bank) != ERROR_OK) {
1713                 command_print(CMD, "stm32f2x failed to write options");
1714                 return ERROR_OK;
1715         }
1716
1717         command_print(CMD, "stm32f2x optcr2_write complete.");
1718         return retval;
1719 }
1720
1721 COMMAND_HANDLER(stm32x_handle_otp_command)
1722 {
1723         if (CMD_ARGC < 2) {
1724                 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1725                 return ERROR_COMMAND_SYNTAX_ERROR;
1726         }
1727
1728         struct flash_bank *bank;
1729         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1730         if (retval != ERROR_OK)
1731                 return retval;
1732         if (stm32x_is_otp(bank)) {
1733                 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1734                         stm32x_otp_enable(bank);
1735                 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1736                         stm32x_otp_disable(bank);
1737                 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1738                         command_print(CMD,
1739                                 "OTP memory bank #%u is %s for write commands.",
1740                                 bank->bank_number,
1741                                 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1742                 } else {
1743                         return ERROR_COMMAND_SYNTAX_ERROR;
1744                 }
1745         } else {
1746                 command_print(CMD, "Failed: not an OTP bank.");
1747         }
1748
1749         return retval;
1750 }
1751
1752 static const struct command_registration stm32f2x_exec_command_handlers[] = {
1753         {
1754                 .name = "lock",
1755                 .handler = stm32x_handle_lock_command,
1756                 .mode = COMMAND_EXEC,
1757                 .usage = "bank_id",
1758                 .help = "Lock entire flash device.",
1759         },
1760         {
1761                 .name = "unlock",
1762                 .handler = stm32x_handle_unlock_command,
1763                 .mode = COMMAND_EXEC,
1764                 .usage = "bank_id",
1765                 .help = "Unlock entire protected flash device.",
1766         },
1767         {
1768                 .name = "mass_erase",
1769                 .handler = stm32x_handle_mass_erase_command,
1770                 .mode = COMMAND_EXEC,
1771                 .usage = "bank_id",
1772                 .help = "Erase entire flash device.",
1773         },
1774         {
1775                 .name = "options_read",
1776                 .handler = stm32f2x_handle_options_read_command,
1777                 .mode = COMMAND_EXEC,
1778                 .usage = "bank_id",
1779                 .help = "Read and display device option bytes.",
1780         },
1781         {
1782                 .name = "options_write",
1783                 .handler = stm32f2x_handle_options_write_command,
1784                 .mode = COMMAND_EXEC,
1785                 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1786                 .help = "Write option bytes",
1787         },
1788         {
1789                 .name = "optcr2_write",
1790                 .handler = stm32f2x_handle_optcr2_write_command,
1791                 .mode = COMMAND_EXEC,
1792                 .usage = "bank_id optcr2",
1793                 .help = "Write optcr2 word",
1794         },
1795         {
1796                 .name = "otp",
1797                 .handler = stm32x_handle_otp_command,
1798                 .mode = COMMAND_EXEC,
1799                 .usage = "bank_id",
1800                 .help = "OTP (One Time Programmable) memory write enable/disable.",
1801         },
1802         COMMAND_REGISTRATION_DONE
1803 };
1804
1805 static const struct command_registration stm32f2x_command_handlers[] = {
1806         {
1807                 .name = "stm32f2x",
1808                 .mode = COMMAND_ANY,
1809                 .help = "stm32f2x flash command group",
1810                 .usage = "",
1811                 .chain = stm32f2x_exec_command_handlers,
1812         },
1813         COMMAND_REGISTRATION_DONE
1814 };
1815
1816 const struct flash_driver stm32f2x_flash = {
1817         .name = "stm32f2x",
1818         .commands = stm32f2x_command_handlers,
1819         .flash_bank_command = stm32x_flash_bank_command,
1820         .erase = stm32x_erase,
1821         .protect = stm32x_protect,
1822         .write = stm32x_write,
1823         .read = default_flash_read,
1824         .probe = stm32x_probe,
1825         .auto_probe = stm32x_auto_probe,
1826         .erase_check = default_flash_blank_check,
1827         .protect_check = stm32x_protect_check,
1828         .info = get_stm32x_info,
1829         .free_driver_priv = default_flash_free_driver_priv,
1830 };