dea8df759a7dd67fcb0a3674e3bf99e50e37a9da
[fw/openocd] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 by Andreas Fritiofson                              *
9  *   andreas.fritiofson@gmail.com                                          *
10  *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include <string.h>
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/cortex_m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR     0x00
42 #define STM32_FLASH_KEYR    0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR      0x0C
45 #define STM32_FLASH_CR      0x10
46 #define STM32_FLASH_AR      0x14
47 #define STM32_FLASH_OBR     0x1C
48 #define STM32_FLASH_WRPR    0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51  * There are valid cases, on dual flash devices the protection of the
52  * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0     0x40022000
54 #define STM32_FLASH_KEYR_B0    0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0      0x4002200C
57 #define STM32_FLASH_CR_B0      0x40022010
58 #define STM32_FLASH_AR_B0      0x40022014
59 #define STM32_FLASH_OBR_B0     0x4002201C
60 #define STM32_FLASH_WRPR_B0    0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP            0x1FFFF800
65 #define STM32_OB_USER           0x1FFFF802
66 #define STM32_OB_DATA0          0x1FFFF804
67 #define STM32_OB_DATA1          0x1FFFF806
68 #define STM32_OB_WRP0           0x1FFFF808
69 #define STM32_OB_WRP1           0x1FFFF80A
70 #define STM32_OB_WRP2           0x1FFFF80C
71 #define STM32_OB_WRP3           0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG                        (1 << 0)
76 #define FLASH_PER                       (1 << 1)
77 #define FLASH_MER                       (1 << 2)
78 #define FLASH_OPTPG                     (1 << 4)
79 #define FLASH_OPTER                     (1 << 5)
80 #define FLASH_STRT                      (1 << 6)
81 #define FLASH_LOCK                      (1 << 7)
82 #define FLASH_OPTWRE            (1 << 9)
83 #define FLASH_OBL_LAUNCH        (1 << 13)       /* except stm32f1x series */
84
85 /* FLASH_SR register bits */
86
87 #define FLASH_BSY               (1 << 0)
88 #define FLASH_PGERR             (1 << 2)
89 #define FLASH_WRPRTERR  (1 << 4)
90 #define FLASH_EOP               (1 << 5)
91
92 /* STM32_FLASH_OBR bit definitions (reading) */
93
94 #define OPT_ERROR               0
95 #define OPT_READOUT             1
96 #define OPT_RDWDGSW             2
97 #define OPT_RDRSTSTOP   3
98 #define OPT_RDRSTSTDBY  4
99 #define OPT_BFB2                5       /* dual flash bank only */
100
101 /* register unlock keys */
102
103 #define KEY1                    0x45670123
104 #define KEY2                    0xCDEF89AB
105
106 /* timeout values */
107
108 #define FLASH_WRITE_TIMEOUT 10
109 #define FLASH_ERASE_TIMEOUT 100
110
111 struct stm32x_options {
112         uint8_t rdp;
113         uint8_t user;
114         uint16_t data;
115         uint32_t protection;
116 };
117
118 struct stm32x_flash_bank {
119         struct stm32x_options option_bytes;
120         int ppage_size;
121         bool probed;
122
123         bool has_dual_banks;
124         /* used to access dual flash bank stm32xl */
125         bool can_load_options;
126         uint32_t register_base;
127         uint8_t default_rdp;
128         int user_data_offset;
129         int option_offset;
130         uint32_t user_bank_size;
131 };
132
133 static int stm32x_mass_erase(struct flash_bank *bank);
134 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
135                 uint32_t address, uint32_t hwords_count);
136
137 /* flash bank stm32x <base> <size> 0 0 <target#>
138  */
139 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
140 {
141         struct stm32x_flash_bank *stm32x_info;
142
143         if (CMD_ARGC < 6)
144                 return ERROR_COMMAND_SYNTAX_ERROR;
145
146         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
147
148         bank->driver_priv = stm32x_info;
149         stm32x_info->probed = false;
150         stm32x_info->has_dual_banks = false;
151         stm32x_info->can_load_options = false;
152         stm32x_info->register_base = FLASH_REG_BASE_B0;
153         stm32x_info->user_bank_size = bank->size;
154
155         /* The flash write must be aligned to a halfword boundary */
156         bank->write_start_alignment = bank->write_end_alignment = 2;
157
158         return ERROR_OK;
159 }
160
161 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
162 {
163         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
164         return reg + stm32x_info->register_base;
165 }
166
167 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
168 {
169         struct target *target = bank->target;
170         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
171 }
172
173 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
174 {
175         struct target *target = bank->target;
176         uint32_t status;
177         int retval = ERROR_OK;
178
179         /* wait for busy to clear */
180         for (;;) {
181                 retval = stm32x_get_flash_status(bank, &status);
182                 if (retval != ERROR_OK)
183                         return retval;
184                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
185                 if ((status & FLASH_BSY) == 0)
186                         break;
187                 if (timeout-- <= 0) {
188                         LOG_ERROR("timed out waiting for flash");
189                         return ERROR_FLASH_BUSY;
190                 }
191                 alive_sleep(1);
192         }
193
194         if (status & FLASH_WRPRTERR) {
195                 LOG_ERROR("stm32x device protected");
196                 retval = ERROR_FLASH_PROTECTED;
197         }
198
199         if (status & FLASH_PGERR) {
200                 LOG_ERROR("stm32x device programming failed / flash not erased");
201                 retval = ERROR_FLASH_OPERATION_FAILED;
202         }
203
204         /* Clear but report errors */
205         if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
206                 /* If this operation fails, we ignore it and report the original
207                  * retval
208                  */
209                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
210                                 FLASH_WRPRTERR | FLASH_PGERR);
211         }
212         return retval;
213 }
214
215 static int stm32x_check_operation_supported(struct flash_bank *bank)
216 {
217         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
218
219         /* if we have a dual flash bank device then
220          * we need to perform option byte stuff on bank0 only */
221         if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
222                 LOG_ERROR("Option byte operations must use bank 0");
223                 return ERROR_FLASH_OPERATION_FAILED;
224         }
225
226         return ERROR_OK;
227 }
228
229 static int stm32x_read_options(struct flash_bank *bank)
230 {
231         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232         struct target *target = bank->target;
233         uint32_t option_bytes;
234         int retval;
235
236         /* read user and read protection option bytes, user data option bytes */
237         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
238         if (retval != ERROR_OK)
239                 return retval;
240
241         stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
242         stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
243         stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
244
245         /* read write protection option bytes */
246         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
247         if (retval != ERROR_OK)
248                 return retval;
249
250         return ERROR_OK;
251 }
252
253 static int stm32x_erase_options(struct flash_bank *bank)
254 {
255         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
256         struct target *target = bank->target;
257
258         /* read current options */
259         stm32x_read_options(bank);
260
261         /* unlock flash registers */
262         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
263         if (retval != ERROR_OK)
264                 return retval;
265         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
266         if (retval != ERROR_OK)
267                 goto flash_lock;
268
269         /* unlock option flash registers */
270         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
271         if (retval != ERROR_OK)
272                 goto flash_lock;
273         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
274         if (retval != ERROR_OK)
275                 goto flash_lock;
276
277         /* erase option bytes */
278         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
279         if (retval != ERROR_OK)
280                 goto flash_lock;
281         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
282         if (retval != ERROR_OK)
283                 goto flash_lock;
284
285         retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
286         if (retval != ERROR_OK)
287                 goto flash_lock;
288
289         /* clear read protection option byte
290          * this will also force a device unlock if set */
291         stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
292
293         return ERROR_OK;
294
295 flash_lock:
296         target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
297         return retval;
298 }
299
300 static int stm32x_write_options(struct flash_bank *bank)
301 {
302         struct stm32x_flash_bank *stm32x_info = NULL;
303         struct target *target = bank->target;
304
305         stm32x_info = bank->driver_priv;
306
307         /* unlock flash registers */
308         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
309         if (retval != ERROR_OK)
310                 return retval;
311         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
312         if (retval != ERROR_OK)
313                 goto flash_lock;
314
315         /* unlock option flash registers */
316         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
317         if (retval != ERROR_OK)
318                 goto flash_lock;
319         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
320         if (retval != ERROR_OK)
321                 goto flash_lock;
322
323         /* program option bytes */
324         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
325         if (retval != ERROR_OK)
326                 goto flash_lock;
327
328         uint8_t opt_bytes[16];
329
330         target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
331         target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
332         target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
333         target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
334         target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
335         target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
336         target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
337         target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
338
339         /* Block write is preferred in favour of operation with ancient ST-Link
340          * firmwares without 16-bit memory access. See
341          * 480: flash: stm32f1x: write option bytes using the loader
342          * https://review.openocd.org/c/openocd/+/480
343          */
344         retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
345
346 flash_lock:
347         {
348                 int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
349                 if (retval == ERROR_OK)
350                         retval = retval2;
351         }
352         return retval;
353 }
354
355 static int stm32x_protect_check(struct flash_bank *bank)
356 {
357         struct target *target = bank->target;
358         uint32_t protection;
359
360         int retval = stm32x_check_operation_supported(bank);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         /* medium density - each bit refers to a 4 sector protection block
365          * high density - each bit refers to a 2 sector protection block
366          * bit 31 refers to all remaining sectors in a bank */
367         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
368         if (retval != ERROR_OK)
369                 return retval;
370
371         for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
372                 bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
373
374         return ERROR_OK;
375 }
376
377 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
378                 unsigned int last)
379 {
380         struct target *target = bank->target;
381
382         if (bank->target->state != TARGET_HALTED) {
383                 LOG_ERROR("Target not halted");
384                 return ERROR_TARGET_NOT_HALTED;
385         }
386
387         if ((first == 0) && (last == (bank->num_sectors - 1)))
388                 return stm32x_mass_erase(bank);
389
390         /* unlock flash registers */
391         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
392         if (retval != ERROR_OK)
393                 return retval;
394         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
395         if (retval != ERROR_OK)
396                 goto flash_lock;
397
398         for (unsigned int i = first; i <= last; i++) {
399                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
400                 if (retval != ERROR_OK)
401                         goto flash_lock;
402                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
403                                 bank->base + bank->sectors[i].offset);
404                 if (retval != ERROR_OK)
405                         goto flash_lock;
406                 retval = target_write_u32(target,
407                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
408                 if (retval != ERROR_OK)
409                         goto flash_lock;
410
411                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
412                 if (retval != ERROR_OK)
413                         goto flash_lock;
414         }
415
416 flash_lock:
417         {
418                 int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
419                 if (retval == ERROR_OK)
420                         retval = retval2;
421         }
422         return retval;
423 }
424
425 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
426                 unsigned int last)
427 {
428         struct target *target = bank->target;
429         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
430
431         if (target->state != TARGET_HALTED) {
432                 LOG_ERROR("Target not halted");
433                 return ERROR_TARGET_NOT_HALTED;
434         }
435
436         int retval = stm32x_check_operation_supported(bank);
437         if (retval != ERROR_OK)
438                 return retval;
439
440         retval = stm32x_erase_options(bank);
441         if (retval != ERROR_OK) {
442                 LOG_ERROR("stm32x failed to erase options");
443                 return retval;
444         }
445
446         for (unsigned int i = first; i <= last; i++) {
447                 if (set)
448                         stm32x_info->option_bytes.protection &= ~(1 << i);
449                 else
450                         stm32x_info->option_bytes.protection |= (1 << i);
451         }
452
453         return stm32x_write_options(bank);
454 }
455
456 static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer,
457                 uint32_t address, uint32_t hwords_count)
458 {
459         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
460         struct target *target = bank->target;
461         uint32_t buffer_size;
462         struct working_area *write_algorithm;
463         struct working_area *source;
464         struct armv7m_algorithm armv7m_info;
465         int retval;
466
467         static const uint8_t stm32x_flash_write_code[] = {
468 #include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
469         };
470
471         /* flash write code */
472         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
473                         &write_algorithm) != ERROR_OK) {
474                 LOG_WARNING("no working area available, can't do block memory writes");
475                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
476         }
477
478         retval = target_write_buffer(target, write_algorithm->address,
479                         sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
480         if (retval != ERROR_OK) {
481                 target_free_working_area(target, write_algorithm);
482                 return retval;
483         }
484
485         /* memory buffer */
486         buffer_size = target_get_working_area_avail(target);
487         buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
488         /* Normally we allocate all available working area.
489          * MIN shrinks buffer_size if the size of the written block is smaller.
490          * MAX prevents using async algo if the available working area is smaller
491          * than 256, the following allocation fails with
492          * ERROR_TARGET_RESOURCE_NOT_AVAILABLE and slow flashing takes place.
493          */
494
495         retval = target_alloc_working_area(target, buffer_size, &source);
496         /* Allocated size is always 32-bit word aligned */
497         if (retval != ERROR_OK) {
498                 target_free_working_area(target, write_algorithm);
499                 LOG_WARNING("no large enough working area available, can't do block memory writes");
500                 /* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
501                  * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
502                  */
503                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
504         }
505
506         struct reg_param reg_params[5];
507
508         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
509         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
510         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer start */
511         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* buffer end */
512         init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
513
514         buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
515         buf_set_u32(reg_params[1].value, 0, 32, hwords_count);
516         buf_set_u32(reg_params[2].value, 0, 32, source->address);
517         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
518         buf_set_u32(reg_params[4].value, 0, 32, address);
519
520         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
521         armv7m_info.core_mode = ARM_MODE_THREAD;
522
523         retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2,
524                         0, NULL,
525                         ARRAY_SIZE(reg_params), reg_params,
526                         source->address, source->size,
527                         write_algorithm->address, 0,
528                         &armv7m_info);
529
530         if (retval == ERROR_FLASH_OPERATION_FAILED) {
531                 /* Actually we just need to check for programming errors
532                  * stm32x_wait_status_busy also reports error and clears status bits.
533                  *
534                  * Target algo returns flash status in r0 only if properly finished.
535                  * It is safer to re-read status register.
536                  */
537                 int retval2 = stm32x_wait_status_busy(bank, 5);
538                 if (retval2 != ERROR_OK)
539                         retval = retval2;
540
541                 LOG_ERROR("flash write failed just before address 0x%"PRIx32,
542                                 buf_get_u32(reg_params[4].value, 0, 32));
543         }
544
545         for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
546                 destroy_reg_param(&reg_params[i]);
547
548         target_free_working_area(target, source);
549         target_free_working_area(target, write_algorithm);
550
551         return retval;
552 }
553
554 static int stm32x_write_block_riscv(struct flash_bank *bank, const uint8_t *buffer,
555                 uint32_t address, uint32_t hwords_count)
556 {
557         struct target *target = bank->target;
558         uint32_t buffer_size;
559         struct working_area *write_algorithm;
560         struct working_area *source;
561         static const uint8_t gd32vf103_flash_write_code[] = {
562 #include "../../../contrib/loaders/flash/gd32vf103/gd32vf103.inc"
563         };
564
565         /* flash write code */
566         if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code),
567                         &write_algorithm) != ERROR_OK) {
568                 LOG_WARNING("no working area available, can't do block memory writes");
569                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
570         }
571
572         int retval = target_write_buffer(target, write_algorithm->address,
573                         sizeof(gd32vf103_flash_write_code), gd32vf103_flash_write_code);
574         if (retval != ERROR_OK) {
575                 target_free_working_area(target, write_algorithm);
576                 return retval;
577         }
578
579         /* memory buffer */
580         buffer_size = target_get_working_area_avail(target);
581         buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
582
583         retval = target_alloc_working_area(target, buffer_size, &source);
584         /* Allocated size is always word aligned */
585         if (retval != ERROR_OK) {
586                 target_free_working_area(target, write_algorithm);
587                 LOG_WARNING("no large enough working area available, can't do block memory writes");
588                 /* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
589                  * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
590                  */
591                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
592         }
593
594         struct reg_param reg_params[4];
595
596         init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);    /* poiner to FLASH_SR */
597         init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);    /* count (halfword-16bit) */
598         init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);    /* buffer start */
599         init_reg_param(&reg_params[3], "a3", 32, PARAM_IN_OUT); /* target address */
600
601         while (hwords_count > 0) {
602                 uint32_t thisrun_hwords = source->size / 2;
603
604                 /* Limit to the amount of data we actually want to write */
605                 if (thisrun_hwords > hwords_count)
606                         thisrun_hwords = hwords_count;
607
608                 /* Write data to buffer */
609                 retval = target_write_buffer(target, source->address,
610                                         thisrun_hwords * 2, buffer);
611                 if (retval != ERROR_OK)
612                         break;
613
614                 buf_set_u32(reg_params[0].value, 0, 32, stm32x_get_flash_reg(bank, STM32_FLASH_SR));
615                 buf_set_u32(reg_params[1].value, 0, 32, thisrun_hwords);
616                 buf_set_u32(reg_params[2].value, 0, 32, source->address);
617                 buf_set_u32(reg_params[3].value, 0, 32, address);
618
619                 retval = target_run_algorithm(target,
620                                 0, NULL,
621                                 ARRAY_SIZE(reg_params), reg_params,
622                                 write_algorithm->address,
623                                 write_algorithm->address + sizeof(gd32vf103_flash_write_code) - 4,
624                                 10000, NULL);
625
626                 if (retval != ERROR_OK) {
627                         LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d",
628                                         write_algorithm->address, retval);
629                         break;
630                 }
631
632                 /* Actually we just need to check for programming errors
633                  * stm32x_wait_status_busy also reports error and clears status bits
634                  */
635                 retval = stm32x_wait_status_busy(bank, 5);
636                 if (retval != ERROR_OK) {
637                         LOG_ERROR("flash write failed at address 0x%"PRIx32,
638                                         buf_get_u32(reg_params[3].value, 0, 32));
639                         break;
640                 }
641
642                 /* Update counters */
643                 buffer += thisrun_hwords * 2;
644                 address += thisrun_hwords * 2;
645                 hwords_count -= thisrun_hwords;
646         }
647
648         for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
649                 destroy_reg_param(&reg_params[i]);
650
651         target_free_working_area(target, source);
652         target_free_working_area(target, write_algorithm);
653
654         return retval;
655 }
656
657 /** Writes a block to flash either using target algorithm
658  *  or use fallback, host controlled halfword-by-halfword access.
659  *  Flash controller must be unlocked before this call.
660  */
661 static int stm32x_write_block(struct flash_bank *bank,
662                 const uint8_t *buffer, uint32_t address, uint32_t hwords_count)
663 {
664         struct target *target = bank->target;
665
666         /* The flash write must be aligned to a halfword boundary.
667          * The flash infrastructure ensures it, do just a security check
668          */
669         assert(address % 2 == 0);
670
671         int retval;
672         struct arm *arm = target_to_arm(target);
673         if (is_arm(arm)) {
674                 /* try using a block write - on ARM architecture or... */
675                 retval = stm32x_write_block_async(bank, buffer, address, hwords_count);
676         } else {
677                 /* ... RISC-V architecture */
678                 retval = stm32x_write_block_riscv(bank, buffer, address, hwords_count);
679         }
680
681         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
682                 /* if block write failed (no sufficient working area),
683                  * we use normal (slow) single halfword accesses */
684                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
685
686                 while (hwords_count > 0) {
687                         retval = target_write_memory(target, address, 2, 1, buffer);
688                         if (retval != ERROR_OK)
689                                 return retval;
690
691                         retval = stm32x_wait_status_busy(bank, 5);
692                         if (retval != ERROR_OK)
693                                 return retval;
694
695                         hwords_count--;
696                         buffer += 2;
697                         address += 2;
698                 }
699         }
700         return retval;
701 }
702
703 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
704                 uint32_t offset, uint32_t count)
705 {
706         struct target *target = bank->target;
707
708         if (bank->target->state != TARGET_HALTED) {
709                 LOG_ERROR("Target not halted");
710                 return ERROR_TARGET_NOT_HALTED;
711         }
712
713         /* The flash write must be aligned to a halfword boundary.
714          * The flash infrastructure ensures it, do just a security check
715          */
716         assert(offset % 2 == 0);
717         assert(count % 2 == 0);
718
719         int retval, retval2;
720
721         /* unlock flash registers */
722         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
723         if (retval != ERROR_OK)
724                 return retval;
725         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
726         if (retval != ERROR_OK)
727                 goto reset_pg_and_lock;
728
729         /* enable flash programming */
730         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
731         if (retval != ERROR_OK)
732                 goto reset_pg_and_lock;
733
734         /* write to flash */
735         retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2);
736
737 reset_pg_and_lock:
738         retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
739         if (retval == ERROR_OK)
740                 retval = retval2;
741
742         return retval;
743 }
744
745 struct stm32x_property_addr {
746         uint32_t device_id;
747         uint32_t flash_size;
748 };
749
750 static int stm32x_get_property_addr(struct target *target, struct stm32x_property_addr *addr)
751 {
752         if (!target_was_examined(target)) {
753                 LOG_ERROR("Target not examined yet");
754                 return ERROR_TARGET_NOT_EXAMINED;
755         }
756
757         switch (cortex_m_get_partno_safe(target)) {
758         case CORTEX_M0_PARTNO: /* STM32F0x devices */
759                 addr->device_id = 0x40015800;
760                 addr->flash_size = 0x1FFFF7CC;
761                 return ERROR_OK;
762         case CORTEX_M3_PARTNO: /* STM32F1x devices */
763                 addr->device_id = 0xE0042000;
764                 addr->flash_size = 0x1FFFF7E0;
765                 return ERROR_OK;
766         case CORTEX_M4_PARTNO: /* STM32F3x devices */
767                 addr->device_id = 0xE0042000;
768                 addr->flash_size = 0x1FFFF7CC;
769                 return ERROR_OK;
770         case CORTEX_M23_PARTNO: /* GD32E23x devices */
771                 addr->device_id = 0x40015800;
772                 addr->flash_size = 0x1FFFF7E0;
773                 return ERROR_OK;
774         case CORTEX_M_PARTNO_INVALID:
775                 /* Check for GD32VF103 with RISC-V CPU */
776                 if (strcmp(target_type_name(target), "riscv") == 0
777                                 && target_address_bits(target) == 32) {
778                         /* There is nothing like arm common_magic in riscv_info_t
779                          * check text name of target and if target is 32-bit
780                          */
781                         addr->device_id = 0xE0042000;
782                         addr->flash_size = 0x1FFFF7E0;
783                         return ERROR_OK;
784                 }
785                 /* fallthrough */
786         default:
787                 LOG_ERROR("Cannot identify target as a stm32x");
788                 return ERROR_FAIL;
789         }
790 }
791
792 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
793 {
794         struct target *target = bank->target;
795         struct stm32x_property_addr addr;
796
797         int retval = stm32x_get_property_addr(target, &addr);
798         if (retval != ERROR_OK)
799                 return retval;
800
801         return target_read_u32(target, addr.device_id, device_id);
802 }
803
804 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
805 {
806         struct target *target = bank->target;
807         struct stm32x_property_addr addr;
808
809         int retval = stm32x_get_property_addr(target, &addr);
810         if (retval != ERROR_OK)
811                 return retval;
812
813         return target_read_u16(target, addr.flash_size, flash_size_in_kb);
814 }
815
816 static int stm32x_probe(struct flash_bank *bank)
817 {
818         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
819         uint16_t flash_size_in_kb;
820         uint16_t max_flash_size_in_kb;
821         uint32_t dbgmcu_idcode;
822         int page_size;
823         uint32_t base_address = 0x08000000;
824
825         stm32x_info->probed = false;
826         stm32x_info->register_base = FLASH_REG_BASE_B0;
827         stm32x_info->user_data_offset = 10;
828         stm32x_info->option_offset = 0;
829
830         /* default factory read protection level 0 */
831         stm32x_info->default_rdp = 0xA5;
832
833         /* read stm32 device id register */
834         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
835         if (retval != ERROR_OK)
836                 return retval;
837
838         LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
839
840         uint16_t device_id = dbgmcu_idcode & 0xfff;
841         uint16_t rev_id = dbgmcu_idcode >> 16;
842
843         /* set page size, protection granularity and max flash size depending on family */
844         switch (device_id) {
845         case 0x440: /* stm32f05x */
846                 page_size = 1024;
847                 stm32x_info->ppage_size = 4;
848                 max_flash_size_in_kb = 64;
849                 stm32x_info->user_data_offset = 16;
850                 stm32x_info->option_offset = 6;
851                 stm32x_info->default_rdp = 0xAA;
852                 stm32x_info->can_load_options = true;
853                 break;
854         case 0x444: /* stm32f03x */
855         case 0x445: /* stm32f04x */
856                 page_size = 1024;
857                 stm32x_info->ppage_size = 4;
858                 max_flash_size_in_kb = 32;
859                 stm32x_info->user_data_offset = 16;
860                 stm32x_info->option_offset = 6;
861                 stm32x_info->default_rdp = 0xAA;
862                 stm32x_info->can_load_options = true;
863                 break;
864         case 0x448: /* stm32f07x */
865                 page_size = 2048;
866                 stm32x_info->ppage_size = 4;
867                 max_flash_size_in_kb = 128;
868                 stm32x_info->user_data_offset = 16;
869                 stm32x_info->option_offset = 6;
870                 stm32x_info->default_rdp = 0xAA;
871                 stm32x_info->can_load_options = true;
872                 break;
873         case 0x442: /* stm32f09x */
874                 page_size = 2048;
875                 stm32x_info->ppage_size = 4;
876                 max_flash_size_in_kb = 256;
877                 stm32x_info->user_data_offset = 16;
878                 stm32x_info->option_offset = 6;
879                 stm32x_info->default_rdp = 0xAA;
880                 stm32x_info->can_load_options = true;
881                 break;
882         case 0x410: /* stm32f1x medium-density */
883                 page_size = 1024;
884                 stm32x_info->ppage_size = 4;
885                 max_flash_size_in_kb = 128;
886                 /* GigaDevice GD32F1x0 & GD32F3x0 & GD32E23x series devices
887                    share DEV_ID with STM32F101/2/3 medium-density line,
888                    however they use a REV_ID different from any STM32 device.
889                    The main difference is another offset of user option bits
890                    (like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register
891                    (FLASH_OBR/FMC_OBSTAT 0x4002201C).
892                    This caused problems e.g. during flash block programming
893                    because of unexpected active hardware watchog. */
894                 switch (rev_id) {
895                 case 0x1303: /* gd32f1x0 */
896                         stm32x_info->user_data_offset = 16;
897                         stm32x_info->option_offset = 6;
898                         max_flash_size_in_kb = 64;
899                         break;
900                 case 0x1704: /* gd32f3x0 */
901                         stm32x_info->user_data_offset = 16;
902                         stm32x_info->option_offset = 6;
903                         break;
904                 case 0x1906: /* gd32vf103 */
905                         break;
906                 case 0x1909: /* gd32e23x */
907                         stm32x_info->user_data_offset = 16;
908                         stm32x_info->option_offset = 6;
909                         max_flash_size_in_kb = 64;
910                         break;
911                 }
912                 break;
913         case 0x412: /* stm32f1x low-density */
914                 page_size = 1024;
915                 stm32x_info->ppage_size = 4;
916                 max_flash_size_in_kb = 32;
917                 break;
918         case 0x414: /* stm32f1x high-density */
919                 page_size = 2048;
920                 stm32x_info->ppage_size = 2;
921                 max_flash_size_in_kb = 512;
922                 break;
923         case 0x418: /* stm32f1x connectivity */
924                 page_size = 2048;
925                 stm32x_info->ppage_size = 2;
926                 max_flash_size_in_kb = 256;
927                 break;
928         case 0x430: /* stm32f1 XL-density (dual flash banks) */
929                 page_size = 2048;
930                 stm32x_info->ppage_size = 2;
931                 max_flash_size_in_kb = 1024;
932                 stm32x_info->has_dual_banks = true;
933                 break;
934         case 0x420: /* stm32f100xx low- and medium-density value line */
935                 page_size = 1024;
936                 stm32x_info->ppage_size = 4;
937                 max_flash_size_in_kb = 128;
938                 break;
939         case 0x428: /* stm32f100xx high-density value line */
940                 page_size = 2048;
941                 stm32x_info->ppage_size = 4;
942                 max_flash_size_in_kb = 512;
943                 break;
944         case 0x422: /* stm32f302/3xb/c */
945                 page_size = 2048;
946                 stm32x_info->ppage_size = 2;
947                 max_flash_size_in_kb = 256;
948                 stm32x_info->user_data_offset = 16;
949                 stm32x_info->option_offset = 6;
950                 stm32x_info->default_rdp = 0xAA;
951                 stm32x_info->can_load_options = true;
952                 break;
953         case 0x446: /* stm32f303xD/E */
954                 page_size = 2048;
955                 stm32x_info->ppage_size = 2;
956                 max_flash_size_in_kb = 512;
957                 stm32x_info->user_data_offset = 16;
958                 stm32x_info->option_offset = 6;
959                 stm32x_info->default_rdp = 0xAA;
960                 stm32x_info->can_load_options = true;
961                 break;
962         case 0x432: /* stm32f37x */
963                 page_size = 2048;
964                 stm32x_info->ppage_size = 2;
965                 max_flash_size_in_kb = 256;
966                 stm32x_info->user_data_offset = 16;
967                 stm32x_info->option_offset = 6;
968                 stm32x_info->default_rdp = 0xAA;
969                 stm32x_info->can_load_options = true;
970                 break;
971         case 0x438: /* stm32f33x */
972         case 0x439: /* stm32f302x6/8 */
973                 page_size = 2048;
974                 stm32x_info->ppage_size = 2;
975                 max_flash_size_in_kb = 64;
976                 stm32x_info->user_data_offset = 16;
977                 stm32x_info->option_offset = 6;
978                 stm32x_info->default_rdp = 0xAA;
979                 stm32x_info->can_load_options = true;
980                 break;
981         default:
982                 LOG_WARNING("Cannot identify target as a STM32 family.");
983                 return ERROR_FAIL;
984         }
985
986         /* get flash size from target. */
987         retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
988
989         /* failed reading flash size or flash size invalid (early silicon),
990          * default to max target family */
991         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
992                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
993                         max_flash_size_in_kb);
994                 flash_size_in_kb = max_flash_size_in_kb;
995         }
996
997         if (stm32x_info->has_dual_banks) {
998                 /* split reported size into matching bank */
999                 if (bank->base != 0x08080000) {
1000                         /* bank 0 will be fixed 512k */
1001                         flash_size_in_kb = 512;
1002                 } else {
1003                         flash_size_in_kb -= 512;
1004                         /* bank1 also uses a register offset */
1005                         stm32x_info->register_base = FLASH_REG_BASE_B1;
1006                         base_address = 0x08080000;
1007                 }
1008         }
1009
1010         /* if the user sets the size manually then ignore the probed value
1011          * this allows us to work around devices that have a invalid flash size register value */
1012         if (stm32x_info->user_bank_size) {
1013                 LOG_INFO("ignoring flash probed value, using configured bank size");
1014                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1015         }
1016
1017         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
1018
1019         /* did we assign flash size? */
1020         assert(flash_size_in_kb != 0xffff);
1021
1022         /* calculate numbers of pages */
1023         int num_pages = flash_size_in_kb * 1024 / page_size;
1024
1025         /* check that calculation result makes sense */
1026         assert(num_pages > 0);
1027
1028         free(bank->sectors);
1029         bank->sectors = NULL;
1030
1031         free(bank->prot_blocks);
1032         bank->prot_blocks = NULL;
1033
1034         bank->base = base_address;
1035         bank->size = (num_pages * page_size);
1036
1037         bank->num_sectors = num_pages;
1038         bank->sectors = alloc_block_array(0, page_size, num_pages);
1039         if (!bank->sectors)
1040                 return ERROR_FAIL;
1041
1042         /* calculate number of write protection blocks */
1043         int num_prot_blocks = num_pages / stm32x_info->ppage_size;
1044         if (num_prot_blocks > 32)
1045                 num_prot_blocks = 32;
1046
1047         bank->num_prot_blocks = num_prot_blocks;
1048         bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
1049         if (!bank->prot_blocks)
1050                 return ERROR_FAIL;
1051
1052         if (num_prot_blocks == 32)
1053                 bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
1054
1055         stm32x_info->probed = true;
1056
1057         return ERROR_OK;
1058 }
1059
1060 static int stm32x_auto_probe(struct flash_bank *bank)
1061 {
1062         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1063         if (stm32x_info->probed)
1064                 return ERROR_OK;
1065         return stm32x_probe(bank);
1066 }
1067
1068 #if 0
1069 COMMAND_HANDLER(stm32x_handle_part_id_command)
1070 {
1071         return ERROR_OK;
1072 }
1073 #endif
1074
1075 static const char *get_stm32f0_revision(uint16_t rev_id)
1076 {
1077         const char *rev_str = NULL;
1078
1079         switch (rev_id) {
1080         case 0x1000:
1081                 rev_str = "1.0";
1082                 break;
1083         case 0x2000:
1084                 rev_str = "2.0";
1085                 break;
1086         }
1087         return rev_str;
1088 }
1089
1090 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
1091 {
1092         uint32_t dbgmcu_idcode;
1093
1094         /* read stm32 device id register */
1095         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1096         if (retval != ERROR_OK)
1097                 return retval;
1098
1099         uint16_t device_id = dbgmcu_idcode & 0xfff;
1100         uint16_t rev_id = dbgmcu_idcode >> 16;
1101         const char *device_str;
1102         const char *rev_str = NULL;
1103
1104         switch (device_id) {
1105         case 0x410:
1106                 device_str = "STM32F10x (Medium Density)";
1107
1108                 switch (rev_id) {
1109                 case 0x0000:
1110                         rev_str = "A";
1111                         break;
1112
1113                 case 0x1303: /* gd32f1x0 */
1114                         device_str = "GD32F1x0";
1115                         break;
1116
1117                 case 0x1704: /* gd32f3x0 */
1118                         device_str = "GD32F3x0";
1119                         break;
1120
1121                 case 0x1906:
1122                         device_str = "GD32VF103";
1123                         break;
1124
1125                 case 0x1909: /* gd32e23x */
1126                         device_str = "GD32E23x";
1127                         break;
1128
1129                 case 0x2000:
1130                         rev_str = "B";
1131                         break;
1132
1133                 case 0x2001:
1134                         rev_str = "Z";
1135                         break;
1136
1137                 case 0x2003:
1138                         rev_str = "Y";
1139                         break;
1140                 }
1141                 break;
1142
1143         case 0x412:
1144                 device_str = "STM32F10x (Low Density)";
1145
1146                 switch (rev_id) {
1147                 case 0x1000:
1148                         rev_str = "A";
1149                         break;
1150                 }
1151                 break;
1152
1153         case 0x414:
1154                 device_str = "STM32F10x (High Density)";
1155
1156                 switch (rev_id) {
1157                 case 0x1000:
1158                         rev_str = "A";
1159                         break;
1160
1161                 case 0x1001:
1162                         rev_str = "Z";
1163                         break;
1164
1165                 case 0x1003:
1166                         rev_str = "Y";
1167                         break;
1168                 }
1169                 break;
1170
1171         case 0x418:
1172                 device_str = "STM32F10x (Connectivity)";
1173
1174                 switch (rev_id) {
1175                 case 0x1000:
1176                         rev_str = "A";
1177                         break;
1178
1179                 case 0x1001:
1180                         rev_str = "Z";
1181                         break;
1182                 }
1183                 break;
1184
1185         case 0x420:
1186                 device_str = "STM32F100 (Low/Medium Density)";
1187
1188                 switch (rev_id) {
1189                 case 0x1000:
1190                         rev_str = "A";
1191                         break;
1192
1193                 case 0x1001:
1194                         rev_str = "Z";
1195                         break;
1196                 }
1197                 break;
1198
1199         case 0x422:
1200                 device_str = "STM32F302xB/C";
1201
1202                 switch (rev_id) {
1203                 case 0x1000:
1204                         rev_str = "A";
1205                         break;
1206
1207                 case 0x1001:
1208                         rev_str = "Z";
1209                         break;
1210
1211                 case 0x1003:
1212                         rev_str = "Y";
1213                         break;
1214
1215                 case 0x2000:
1216                         rev_str = "B";
1217                         break;
1218                 }
1219                 break;
1220
1221         case 0x428:
1222                 device_str = "STM32F100 (High Density)";
1223
1224                 switch (rev_id) {
1225                 case 0x1000:
1226                         rev_str = "A";
1227                         break;
1228
1229                 case 0x1001:
1230                         rev_str = "Z";
1231                         break;
1232                 }
1233                 break;
1234
1235         case 0x430:
1236                 device_str = "STM32F10x (XL Density)";
1237
1238                 switch (rev_id) {
1239                 case 0x1000:
1240                         rev_str = "A";
1241                         break;
1242                 }
1243                 break;
1244
1245         case 0x432:
1246                 device_str = "STM32F37x";
1247
1248                 switch (rev_id) {
1249                 case 0x1000:
1250                         rev_str = "A";
1251                         break;
1252
1253                 case 0x2000:
1254                         rev_str = "B";
1255                         break;
1256                 }
1257                 break;
1258
1259         case 0x438:
1260                 device_str = "STM32F33x";
1261
1262                 switch (rev_id) {
1263                 case 0x1000:
1264                         rev_str = "A";
1265                         break;
1266                 }
1267                 break;
1268
1269         case 0x439:
1270                 device_str = "STM32F302x6/8";
1271
1272                 switch (rev_id) {
1273                 case 0x1000:
1274                         rev_str = "A";
1275                         break;
1276
1277                 case 0x1001:
1278                         rev_str = "Z";
1279                         break;
1280                 }
1281                 break;
1282
1283         case 0x444:
1284                 device_str = "STM32F03x";
1285                 rev_str = get_stm32f0_revision(rev_id);
1286                 break;
1287
1288         case 0x440:
1289                 device_str = "STM32F05x";
1290                 rev_str = get_stm32f0_revision(rev_id);
1291                 break;
1292
1293         case 0x445:
1294                 device_str = "STM32F04x";
1295                 rev_str = get_stm32f0_revision(rev_id);
1296                 break;
1297
1298         case 0x446:
1299                 device_str = "STM32F303xD/E";
1300                 switch (rev_id) {
1301                 case 0x1000:
1302                         rev_str = "A";
1303                         break;
1304                 }
1305                 break;
1306
1307         case 0x448:
1308                 device_str = "STM32F07x";
1309                 rev_str = get_stm32f0_revision(rev_id);
1310                 break;
1311
1312         case 0x442:
1313                 device_str = "STM32F09x";
1314                 rev_str = get_stm32f0_revision(rev_id);
1315                 break;
1316
1317         default:
1318                 command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n");
1319                 return ERROR_FAIL;
1320         }
1321
1322         if (rev_str)
1323                 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1324         else
1325                 command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1326
1327         return ERROR_OK;
1328 }
1329
1330 COMMAND_HANDLER(stm32x_handle_lock_command)
1331 {
1332         struct target *target = NULL;
1333         struct stm32x_flash_bank *stm32x_info = NULL;
1334
1335         if (CMD_ARGC < 1)
1336                 return ERROR_COMMAND_SYNTAX_ERROR;
1337
1338         struct flash_bank *bank;
1339         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1340         if (retval != ERROR_OK)
1341                 return retval;
1342
1343         stm32x_info = bank->driver_priv;
1344
1345         target = bank->target;
1346
1347         if (target->state != TARGET_HALTED) {
1348                 LOG_ERROR("Target not halted");
1349                 return ERROR_TARGET_NOT_HALTED;
1350         }
1351
1352         retval = stm32x_check_operation_supported(bank);
1353         if (retval != ERROR_OK)
1354                 return retval;
1355
1356         if (stm32x_erase_options(bank) != ERROR_OK) {
1357                 command_print(CMD, "stm32x failed to erase options");
1358                 return ERROR_OK;
1359         }
1360
1361         /* set readout protection */
1362         stm32x_info->option_bytes.rdp = 0;
1363
1364         if (stm32x_write_options(bank) != ERROR_OK) {
1365                 command_print(CMD, "stm32x failed to lock device");
1366                 return ERROR_OK;
1367         }
1368
1369         command_print(CMD, "stm32x locked");
1370
1371         return ERROR_OK;
1372 }
1373
1374 COMMAND_HANDLER(stm32x_handle_unlock_command)
1375 {
1376         struct target *target = NULL;
1377
1378         if (CMD_ARGC < 1)
1379                 return ERROR_COMMAND_SYNTAX_ERROR;
1380
1381         struct flash_bank *bank;
1382         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1383         if (retval != ERROR_OK)
1384                 return retval;
1385
1386         target = bank->target;
1387
1388         if (target->state != TARGET_HALTED) {
1389                 LOG_ERROR("Target not halted");
1390                 return ERROR_TARGET_NOT_HALTED;
1391         }
1392
1393         retval = stm32x_check_operation_supported(bank);
1394         if (retval != ERROR_OK)
1395                 return retval;
1396
1397         if (stm32x_erase_options(bank) != ERROR_OK) {
1398                 command_print(CMD, "stm32x failed to erase options");
1399                 return ERROR_OK;
1400         }
1401
1402         if (stm32x_write_options(bank) != ERROR_OK) {
1403                 command_print(CMD, "stm32x failed to unlock device");
1404                 return ERROR_OK;
1405         }
1406
1407         command_print(CMD, "stm32x unlocked.\n"
1408                         "INFO: a reset or power cycle is required "
1409                         "for the new settings to take effect.");
1410
1411         return ERROR_OK;
1412 }
1413
1414 COMMAND_HANDLER(stm32x_handle_options_read_command)
1415 {
1416         uint32_t optionbyte, protection;
1417         struct target *target = NULL;
1418         struct stm32x_flash_bank *stm32x_info = NULL;
1419
1420         if (CMD_ARGC < 1)
1421                 return ERROR_COMMAND_SYNTAX_ERROR;
1422
1423         struct flash_bank *bank;
1424         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1425         if (retval != ERROR_OK)
1426                 return retval;
1427
1428         stm32x_info = bank->driver_priv;
1429
1430         target = bank->target;
1431
1432         if (target->state != TARGET_HALTED) {
1433                 LOG_ERROR("Target not halted");
1434                 return ERROR_TARGET_NOT_HALTED;
1435         }
1436
1437         retval = stm32x_check_operation_supported(bank);
1438         if (retval != ERROR_OK)
1439                 return retval;
1440
1441         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1442         if (retval != ERROR_OK)
1443                 return retval;
1444
1445         uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
1446
1447         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
1448         if (retval != ERROR_OK)
1449                 return retval;
1450
1451         if (optionbyte & (1 << OPT_ERROR))
1452                 command_print(CMD, "option byte complement error");
1453
1454         command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
1455         command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
1456
1457         command_print(CMD, "read protection: %s",
1458                                 (optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
1459
1460         /* user option bytes are offset depending on variant */
1461         optionbyte >>= stm32x_info->option_offset;
1462
1463         command_print(CMD, "watchdog: %sware",
1464                                 (optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
1465
1466         command_print(CMD, "stop mode: %sreset generated upon entry",
1467                                 (optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
1468
1469         command_print(CMD, "standby mode: %sreset generated upon entry",
1470                                 (optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
1471
1472         if (stm32x_info->has_dual_banks)
1473                 command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
1474
1475         command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
1476
1477         return ERROR_OK;
1478 }
1479
1480 COMMAND_HANDLER(stm32x_handle_options_write_command)
1481 {
1482         struct target *target = NULL;
1483         struct stm32x_flash_bank *stm32x_info = NULL;
1484         uint8_t optionbyte;
1485         uint16_t useropt;
1486
1487         if (CMD_ARGC < 2)
1488                 return ERROR_COMMAND_SYNTAX_ERROR;
1489
1490         struct flash_bank *bank;
1491         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1492         if (retval != ERROR_OK)
1493                 return retval;
1494
1495         stm32x_info = bank->driver_priv;
1496
1497         target = bank->target;
1498
1499         if (target->state != TARGET_HALTED) {
1500                 LOG_ERROR("Target not halted");
1501                 return ERROR_TARGET_NOT_HALTED;
1502         }
1503
1504         retval = stm32x_check_operation_supported(bank);
1505         if (retval != ERROR_OK)
1506                 return retval;
1507
1508         retval = stm32x_read_options(bank);
1509         if (retval != ERROR_OK)
1510                 return retval;
1511
1512         /* start with current options */
1513         optionbyte = stm32x_info->option_bytes.user;
1514         useropt = stm32x_info->option_bytes.data;
1515
1516         /* skip over flash bank */
1517         CMD_ARGC--;
1518         CMD_ARGV++;
1519
1520         while (CMD_ARGC) {
1521                 if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
1522                         optionbyte |= (1 << 0);
1523                 else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
1524                         optionbyte &= ~(1 << 0);
1525                 else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
1526                         optionbyte |= (1 << 1);
1527                 else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
1528                         optionbyte &= ~(1 << 1);
1529                 else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
1530                         optionbyte |= (1 << 2);
1531                 else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
1532                         optionbyte &= ~(1 << 2);
1533                 else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
1534                         if (CMD_ARGC < 2)
1535                                 return ERROR_COMMAND_SYNTAX_ERROR;
1536                         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
1537                         CMD_ARGC--;
1538                         CMD_ARGV++;
1539                 } else if (stm32x_info->has_dual_banks) {
1540                         if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
1541                                 optionbyte |= (1 << 3);
1542                         else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
1543                                 optionbyte &= ~(1 << 3);
1544                         else
1545                                 return ERROR_COMMAND_SYNTAX_ERROR;
1546                 } else
1547                         return ERROR_COMMAND_SYNTAX_ERROR;
1548                 CMD_ARGC--;
1549                 CMD_ARGV++;
1550         }
1551
1552         if (stm32x_erase_options(bank) != ERROR_OK) {
1553                 command_print(CMD, "stm32x failed to erase options");
1554                 return ERROR_OK;
1555         }
1556
1557         stm32x_info->option_bytes.user = optionbyte;
1558         stm32x_info->option_bytes.data = useropt;
1559
1560         if (stm32x_write_options(bank) != ERROR_OK) {
1561                 command_print(CMD, "stm32x failed to write options");
1562                 return ERROR_OK;
1563         }
1564
1565         command_print(CMD, "stm32x write options complete.\n"
1566                                 "INFO: %spower cycle is required "
1567                                 "for the new settings to take effect.",
1568                                 stm32x_info->can_load_options
1569                                         ? "'stm32f1x options_load' command or " : "");
1570
1571         return ERROR_OK;
1572 }
1573
1574 COMMAND_HANDLER(stm32x_handle_options_load_command)
1575 {
1576         if (CMD_ARGC < 1)
1577                 return ERROR_COMMAND_SYNTAX_ERROR;
1578
1579         struct flash_bank *bank;
1580         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1581         if (retval != ERROR_OK)
1582                 return retval;
1583
1584         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1585
1586         if (!stm32x_info->can_load_options) {
1587                 LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
1588                         "required instead.");
1589                 return ERROR_FAIL;
1590         }
1591
1592         struct target *target = bank->target;
1593
1594         if (target->state != TARGET_HALTED) {
1595                 LOG_ERROR("Target not halted");
1596                 return ERROR_TARGET_NOT_HALTED;
1597         }
1598
1599         retval = stm32x_check_operation_supported(bank);
1600         if (retval != ERROR_OK)
1601                 return retval;
1602
1603         /* unlock option flash registers */
1604         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1605         if (retval != ERROR_OK)
1606                 return retval;
1607         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1608         if (retval != ERROR_OK) {
1609                 (void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1610                 return retval;
1611         }
1612
1613         /* force re-load of option bytes - generates software reset */
1614         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
1615         if (retval != ERROR_OK)
1616                 return retval;
1617
1618         return ERROR_OK;
1619 }
1620
1621 static int stm32x_mass_erase(struct flash_bank *bank)
1622 {
1623         struct target *target = bank->target;
1624
1625         if (target->state != TARGET_HALTED) {
1626                 LOG_ERROR("Target not halted");
1627                 return ERROR_TARGET_NOT_HALTED;
1628         }
1629
1630         /* unlock option flash registers */
1631         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1632         if (retval != ERROR_OK)
1633                 return retval;
1634         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1635         if (retval != ERROR_OK)
1636                 goto flash_lock;
1637
1638         /* mass erase flash memory */
1639         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1640         if (retval != ERROR_OK)
1641                 goto flash_lock;
1642         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1643                         FLASH_MER | FLASH_STRT);
1644         if (retval != ERROR_OK)
1645                 goto flash_lock;
1646
1647         retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1648
1649 flash_lock:
1650         {
1651                 int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1652                 if (retval == ERROR_OK)
1653                         retval = retval2;
1654         }
1655         return retval;
1656 }
1657
1658 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1659 {
1660         if (CMD_ARGC < 1)
1661                 return ERROR_COMMAND_SYNTAX_ERROR;
1662
1663         struct flash_bank *bank;
1664         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1665         if (retval != ERROR_OK)
1666                 return retval;
1667
1668         retval = stm32x_mass_erase(bank);
1669         if (retval == ERROR_OK)
1670                 command_print(CMD, "stm32x mass erase complete");
1671         else
1672                 command_print(CMD, "stm32x mass erase failed");
1673
1674         return retval;
1675 }
1676
1677 static const struct command_registration stm32f1x_exec_command_handlers[] = {
1678         {
1679                 .name = "lock",
1680                 .handler = stm32x_handle_lock_command,
1681                 .mode = COMMAND_EXEC,
1682                 .usage = "bank_id",
1683                 .help = "Lock entire flash device.",
1684         },
1685         {
1686                 .name = "unlock",
1687                 .handler = stm32x_handle_unlock_command,
1688                 .mode = COMMAND_EXEC,
1689                 .usage = "bank_id",
1690                 .help = "Unlock entire protected flash device.",
1691         },
1692         {
1693                 .name = "mass_erase",
1694                 .handler = stm32x_handle_mass_erase_command,
1695                 .mode = COMMAND_EXEC,
1696                 .usage = "bank_id",
1697                 .help = "Erase entire flash device.",
1698         },
1699         {
1700                 .name = "options_read",
1701                 .handler = stm32x_handle_options_read_command,
1702                 .mode = COMMAND_EXEC,
1703                 .usage = "bank_id",
1704                 .help = "Read and display device option bytes.",
1705         },
1706         {
1707                 .name = "options_write",
1708                 .handler = stm32x_handle_options_write_command,
1709                 .mode = COMMAND_EXEC,
1710                 .usage = "bank_id ('SWWDG'|'HWWDG') "
1711                         "('RSTSTNDBY'|'NORSTSTNDBY') "
1712                         "('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
1713                 .help = "Replace bits in device option bytes.",
1714         },
1715         {
1716                 .name = "options_load",
1717                 .handler = stm32x_handle_options_load_command,
1718                 .mode = COMMAND_EXEC,
1719                 .usage = "bank_id",
1720                 .help = "Force re-load of device option bytes.",
1721         },
1722         COMMAND_REGISTRATION_DONE
1723 };
1724
1725 static const struct command_registration stm32f1x_command_handlers[] = {
1726         {
1727                 .name = "stm32f1x",
1728                 .mode = COMMAND_ANY,
1729                 .help = "stm32f1x flash command group",
1730                 .usage = "",
1731                 .chain = stm32f1x_exec_command_handlers,
1732         },
1733         COMMAND_REGISTRATION_DONE
1734 };
1735
1736 const struct flash_driver stm32f1x_flash = {
1737         .name = "stm32f1x",
1738         .commands = stm32f1x_command_handlers,
1739         .flash_bank_command = stm32x_flash_bank_command,
1740         .erase = stm32x_erase,
1741         .protect = stm32x_protect,
1742         .write = stm32x_write,
1743         .read = default_flash_read,
1744         .probe = stm32x_probe,
1745         .auto_probe = stm32x_auto_probe,
1746         .erase_check = default_flash_blank_check,
1747         .protect_check = stm32x_protect_check,
1748         .info = get_stm32x_info,
1749         .free_driver_priv = default_flash_free_driver_priv,
1750 };