flash/nor/stm32f1x: lock flash in case of error
[fw/openocd] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 by Andreas Fritiofson                              *
9  *   andreas.fritiofson@gmail.com                                          *
10  *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/cortex_m.h>
33
34 /* stm32x register locations */
35
36 #define FLASH_REG_BASE_B0 0x40022000
37 #define FLASH_REG_BASE_B1 0x40022040
38
39 #define STM32_FLASH_ACR     0x00
40 #define STM32_FLASH_KEYR    0x04
41 #define STM32_FLASH_OPTKEYR 0x08
42 #define STM32_FLASH_SR      0x0C
43 #define STM32_FLASH_CR      0x10
44 #define STM32_FLASH_AR      0x14
45 #define STM32_FLASH_OBR     0x1C
46 #define STM32_FLASH_WRPR    0x20
47
48 /* TODO: Check if code using these really should be hard coded to bank 0.
49  * There are valid cases, on dual flash devices the protection of the
50  * second bank is done on the bank0 reg's. */
51 #define STM32_FLASH_ACR_B0     0x40022000
52 #define STM32_FLASH_KEYR_B0    0x40022004
53 #define STM32_FLASH_OPTKEYR_B0 0x40022008
54 #define STM32_FLASH_SR_B0      0x4002200C
55 #define STM32_FLASH_CR_B0      0x40022010
56 #define STM32_FLASH_AR_B0      0x40022014
57 #define STM32_FLASH_OBR_B0     0x4002201C
58 #define STM32_FLASH_WRPR_B0    0x40022020
59
60 /* option byte location */
61
62 #define STM32_OB_RDP            0x1FFFF800
63 #define STM32_OB_USER           0x1FFFF802
64 #define STM32_OB_DATA0          0x1FFFF804
65 #define STM32_OB_DATA1          0x1FFFF806
66 #define STM32_OB_WRP0           0x1FFFF808
67 #define STM32_OB_WRP1           0x1FFFF80A
68 #define STM32_OB_WRP2           0x1FFFF80C
69 #define STM32_OB_WRP3           0x1FFFF80E
70
71 /* FLASH_CR register bits */
72
73 #define FLASH_PG                        (1 << 0)
74 #define FLASH_PER                       (1 << 1)
75 #define FLASH_MER                       (1 << 2)
76 #define FLASH_OPTPG                     (1 << 4)
77 #define FLASH_OPTER                     (1 << 5)
78 #define FLASH_STRT                      (1 << 6)
79 #define FLASH_LOCK                      (1 << 7)
80 #define FLASH_OPTWRE            (1 << 9)
81 #define FLASH_OBL_LAUNCH        (1 << 13)       /* except stm32f1x series */
82
83 /* FLASH_SR register bits */
84
85 #define FLASH_BSY               (1 << 0)
86 #define FLASH_PGERR             (1 << 2)
87 #define FLASH_WRPRTERR  (1 << 4)
88 #define FLASH_EOP               (1 << 5)
89
90 /* STM32_FLASH_OBR bit definitions (reading) */
91
92 #define OPT_ERROR               0
93 #define OPT_READOUT             1
94 #define OPT_RDWDGSW             2
95 #define OPT_RDRSTSTOP   3
96 #define OPT_RDRSTSTDBY  4
97 #define OPT_BFB2                5       /* dual flash bank only */
98
99 /* register unlock keys */
100
101 #define KEY1                    0x45670123
102 #define KEY2                    0xCDEF89AB
103
104 /* timeout values */
105
106 #define FLASH_WRITE_TIMEOUT 10
107 #define FLASH_ERASE_TIMEOUT 100
108
109 struct stm32x_options {
110         uint8_t rdp;
111         uint8_t user;
112         uint16_t data;
113         uint32_t protection;
114 };
115
116 struct stm32x_flash_bank {
117         struct stm32x_options option_bytes;
118         int ppage_size;
119         bool probed;
120
121         bool has_dual_banks;
122         /* used to access dual flash bank stm32xl */
123         bool can_load_options;
124         uint32_t register_base;
125         uint8_t default_rdp;
126         int user_data_offset;
127         int option_offset;
128         uint32_t user_bank_size;
129 };
130
131 static int stm32x_mass_erase(struct flash_bank *bank);
132 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
133 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
134                 uint32_t address, uint32_t hwords_count);
135
136 /* flash bank stm32x <base> <size> 0 0 <target#>
137  */
138 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
139 {
140         struct stm32x_flash_bank *stm32x_info;
141
142         if (CMD_ARGC < 6)
143                 return ERROR_COMMAND_SYNTAX_ERROR;
144
145         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
146
147         bank->driver_priv = stm32x_info;
148         stm32x_info->probed = false;
149         stm32x_info->has_dual_banks = false;
150         stm32x_info->can_load_options = false;
151         stm32x_info->register_base = FLASH_REG_BASE_B0;
152         stm32x_info->user_bank_size = bank->size;
153
154         /* The flash write must be aligned to a halfword boundary */
155         bank->write_start_alignment = bank->write_end_alignment = 2;
156
157         return ERROR_OK;
158 }
159
160 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
161 {
162         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
163         return reg + stm32x_info->register_base;
164 }
165
166 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
167 {
168         struct target *target = bank->target;
169         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
170 }
171
172 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
173 {
174         struct target *target = bank->target;
175         uint32_t status;
176         int retval = ERROR_OK;
177
178         /* wait for busy to clear */
179         for (;;) {
180                 retval = stm32x_get_flash_status(bank, &status);
181                 if (retval != ERROR_OK)
182                         return retval;
183                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
184                 if ((status & FLASH_BSY) == 0)
185                         break;
186                 if (timeout-- <= 0) {
187                         LOG_ERROR("timed out waiting for flash");
188                         return ERROR_FLASH_BUSY;
189                 }
190                 alive_sleep(1);
191         }
192
193         if (status & FLASH_WRPRTERR) {
194                 LOG_ERROR("stm32x device protected");
195                 retval = ERROR_FLASH_PROTECTED;
196         }
197
198         if (status & FLASH_PGERR) {
199                 LOG_ERROR("stm32x device programming failed / flash not erased");
200                 retval = ERROR_FLASH_OPERATION_FAILED;
201         }
202
203         /* Clear but report errors */
204         if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
205                 /* If this operation fails, we ignore it and report the original
206                  * retval
207                  */
208                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
209                                 FLASH_WRPRTERR | FLASH_PGERR);
210         }
211         return retval;
212 }
213
214 static int stm32x_check_operation_supported(struct flash_bank *bank)
215 {
216         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
217
218         /* if we have a dual flash bank device then
219          * we need to perform option byte stuff on bank0 only */
220         if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
221                 LOG_ERROR("Option byte operations must use bank 0");
222                 return ERROR_FLASH_OPERATION_FAILED;
223         }
224
225         return ERROR_OK;
226 }
227
228 static int stm32x_read_options(struct flash_bank *bank)
229 {
230         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
231         struct target *target = bank->target;
232         uint32_t option_bytes;
233         int retval;
234
235         /* read user and read protection option bytes, user data option bytes */
236         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
241         stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
242         stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
243
244         /* read write protection option bytes */
245         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
246         if (retval != ERROR_OK)
247                 return retval;
248
249         return ERROR_OK;
250 }
251
252 static int stm32x_erase_options(struct flash_bank *bank)
253 {
254         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
255         struct target *target = bank->target;
256
257         /* read current options */
258         stm32x_read_options(bank);
259
260         /* unlock flash registers */
261         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
262         if (retval != ERROR_OK)
263                 return retval;
264         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
265         if (retval != ERROR_OK)
266                 goto flash_lock;
267
268         /* unlock option flash registers */
269         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
270         if (retval != ERROR_OK)
271                 goto flash_lock;
272         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
273         if (retval != ERROR_OK)
274                 goto flash_lock;
275
276         /* erase option bytes */
277         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
278         if (retval != ERROR_OK)
279                 goto flash_lock;
280         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
281         if (retval != ERROR_OK)
282                 goto flash_lock;
283
284         retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
285         if (retval != ERROR_OK)
286                 goto flash_lock;
287
288         /* clear read protection option byte
289          * this will also force a device unlock if set */
290         stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
291
292         return ERROR_OK;
293
294 flash_lock:
295         target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
296         return retval;
297 }
298
299 static int stm32x_write_options(struct flash_bank *bank)
300 {
301         struct stm32x_flash_bank *stm32x_info = NULL;
302         struct target *target = bank->target;
303
304         stm32x_info = bank->driver_priv;
305
306         /* unlock flash registers */
307         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
308         if (retval != ERROR_OK)
309                 return retval;
310         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
311         if (retval != ERROR_OK)
312                 goto flash_lock;
313
314         /* unlock option flash registers */
315         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
316         if (retval != ERROR_OK)
317                 goto flash_lock;
318         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
319         if (retval != ERROR_OK)
320                 goto flash_lock;
321
322         /* program option bytes */
323         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
324         if (retval != ERROR_OK)
325                 goto flash_lock;
326
327         uint8_t opt_bytes[16];
328
329         target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
330         target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
331         target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
332         target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
333         target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
334         target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
335         target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
336         target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
337
338         /* Block write is preferred in favour of operation with ancient ST-Link
339          * firmwares without 16-bit memory access. See
340          * 480: flash: stm32f1x: write option bytes using the loader
341          * https://review.openocd.org/c/openocd/+/480
342          */
343         retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
344
345 flash_lock:
346         {
347                 int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
348                 if (retval == ERROR_OK)
349                         retval = retval2;
350         }
351         return retval;
352 }
353
354 static int stm32x_protect_check(struct flash_bank *bank)
355 {
356         struct target *target = bank->target;
357         uint32_t protection;
358
359         int retval = stm32x_check_operation_supported(bank);
360         if (retval != ERROR_OK)
361                 return retval;
362
363         /* medium density - each bit refers to a 4 sector protection block
364          * high density - each bit refers to a 2 sector protection block
365          * bit 31 refers to all remaining sectors in a bank */
366         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
367         if (retval != ERROR_OK)
368                 return retval;
369
370         for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
371                 bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
372
373         return ERROR_OK;
374 }
375
376 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
377                 unsigned int last)
378 {
379         struct target *target = bank->target;
380
381         if (bank->target->state != TARGET_HALTED) {
382                 LOG_ERROR("Target not halted");
383                 return ERROR_TARGET_NOT_HALTED;
384         }
385
386         if ((first == 0) && (last == (bank->num_sectors - 1)))
387                 return stm32x_mass_erase(bank);
388
389         /* unlock flash registers */
390         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
391         if (retval != ERROR_OK)
392                 return retval;
393         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
394         if (retval != ERROR_OK)
395                 goto flash_lock;
396
397         for (unsigned int i = first; i <= last; i++) {
398                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
399                 if (retval != ERROR_OK)
400                         goto flash_lock;
401                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
402                                 bank->base + bank->sectors[i].offset);
403                 if (retval != ERROR_OK)
404                         goto flash_lock;
405                 retval = target_write_u32(target,
406                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
407                 if (retval != ERROR_OK)
408                         goto flash_lock;
409
410                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
411                 if (retval != ERROR_OK)
412                         goto flash_lock;
413         }
414
415 flash_lock:
416         {
417                 int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
418                 if (retval == ERROR_OK)
419                         retval = retval2;
420         }
421         return retval;
422 }
423
424 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
425                 unsigned int last)
426 {
427         struct target *target = bank->target;
428         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
429
430         if (target->state != TARGET_HALTED) {
431                 LOG_ERROR("Target not halted");
432                 return ERROR_TARGET_NOT_HALTED;
433         }
434
435         int retval = stm32x_check_operation_supported(bank);
436         if (retval != ERROR_OK)
437                 return retval;
438
439         retval = stm32x_erase_options(bank);
440         if (retval != ERROR_OK) {
441                 LOG_ERROR("stm32x failed to erase options");
442                 return retval;
443         }
444
445         for (unsigned int i = first; i <= last; i++) {
446                 if (set)
447                         stm32x_info->option_bytes.protection &= ~(1 << i);
448                 else
449                         stm32x_info->option_bytes.protection |= (1 << i);
450         }
451
452         return stm32x_write_options(bank);
453 }
454
455 static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer,
456                 uint32_t address, uint32_t hwords_count)
457 {
458         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
459         struct target *target = bank->target;
460         uint32_t buffer_size;
461         struct working_area *write_algorithm;
462         struct working_area *source;
463         struct armv7m_algorithm armv7m_info;
464         int retval;
465
466         static const uint8_t stm32x_flash_write_code[] = {
467 #include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
468         };
469
470         /* flash write code */
471         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
472                         &write_algorithm) != ERROR_OK) {
473                 LOG_WARNING("no working area available, can't do block memory writes");
474                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
475         }
476
477         retval = target_write_buffer(target, write_algorithm->address,
478                         sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
479         if (retval != ERROR_OK) {
480                 target_free_working_area(target, write_algorithm);
481                 return retval;
482         }
483
484         /* memory buffer */
485         buffer_size = target_get_working_area_avail(target);
486         buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
487         /* Normally we allocate all available working area.
488          * MIN shrinks buffer_size if the size of the written block is smaller.
489          * MAX prevents using async algo if the available working area is smaller
490          * than 256, the following allocation fails with
491          * ERROR_TARGET_RESOURCE_NOT_AVAILABLE and slow flashing takes place.
492          */
493
494         retval = target_alloc_working_area(target, buffer_size, &source);
495         /* Allocated size is always 32-bit word aligned */
496         if (retval != ERROR_OK) {
497                 target_free_working_area(target, write_algorithm);
498                 LOG_WARNING("no large enough working area available, can't do block memory writes");
499                 /* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
500                  * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
501                  */
502                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
503         }
504
505         struct reg_param reg_params[5];
506
507         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
508         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
509         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer start */
510         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* buffer end */
511         init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
512
513         buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
514         buf_set_u32(reg_params[1].value, 0, 32, hwords_count);
515         buf_set_u32(reg_params[2].value, 0, 32, source->address);
516         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
517         buf_set_u32(reg_params[4].value, 0, 32, address);
518
519         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
520         armv7m_info.core_mode = ARM_MODE_THREAD;
521
522         retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2,
523                         0, NULL,
524                         ARRAY_SIZE(reg_params), reg_params,
525                         source->address, source->size,
526                         write_algorithm->address, 0,
527                         &armv7m_info);
528
529         if (retval == ERROR_FLASH_OPERATION_FAILED) {
530                 /* Actually we just need to check for programming errors
531                  * stm32x_wait_status_busy also reports error and clears status bits.
532                  *
533                  * Target algo returns flash status in r0 only if properly finished.
534                  * It is safer to re-read status register.
535                  */
536                 int retval2 = stm32x_wait_status_busy(bank, 5);
537                 if (retval2 != ERROR_OK)
538                         retval = retval2;
539
540                 LOG_ERROR("flash write failed just before address 0x%"PRIx32,
541                                 buf_get_u32(reg_params[4].value, 0, 32));
542         }
543
544         for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
545                 destroy_reg_param(&reg_params[i]);
546
547         target_free_working_area(target, source);
548         target_free_working_area(target, write_algorithm);
549
550         return retval;
551 }
552
553 /** Writes a block to flash either using target algorithm
554  *  or use fallback, host controlled halfword-by-halfword access.
555  *  Flash controller must be unlocked before this call.
556  */
557 static int stm32x_write_block(struct flash_bank *bank,
558                 const uint8_t *buffer, uint32_t address, uint32_t hwords_count)
559 {
560         struct target *target = bank->target;
561
562         /* The flash write must be aligned to a halfword boundary.
563          * The flash infrastructure ensures it, do just a security check
564          */
565         assert(address % 2 == 0);
566
567         /* try using a block write - on ARM architecture or... */
568         int retval = stm32x_write_block_async(bank, buffer, address, hwords_count);
569
570         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
571                 /* if block write failed (no sufficient working area),
572                  * we use normal (slow) single halfword accesses */
573                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
574
575                 while (hwords_count > 0) {
576                         retval = target_write_memory(target, address, 2, 1, buffer);
577                         if (retval != ERROR_OK)
578                                 return retval;
579
580                         retval = stm32x_wait_status_busy(bank, 5);
581                         if (retval != ERROR_OK)
582                                 return retval;
583
584                         hwords_count--;
585                         buffer += 2;
586                         address += 2;
587                 }
588         }
589         return retval;
590 }
591
592 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
593                 uint32_t offset, uint32_t count)
594 {
595         struct target *target = bank->target;
596
597         if (bank->target->state != TARGET_HALTED) {
598                 LOG_ERROR("Target not halted");
599                 return ERROR_TARGET_NOT_HALTED;
600         }
601
602         /* The flash write must be aligned to a halfword boundary.
603          * The flash infrastructure ensures it, do just a security check
604          */
605         assert(offset % 2 == 0);
606         assert(count % 2 == 0);
607
608         int retval, retval2;
609
610         /* unlock flash registers */
611         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
612         if (retval != ERROR_OK)
613                 return retval;
614         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
615         if (retval != ERROR_OK)
616                 goto reset_pg_and_lock;
617
618         /* enable flash programming */
619         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
620         if (retval != ERROR_OK)
621                 goto reset_pg_and_lock;
622
623         /* write to flash */
624         retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2);
625
626 reset_pg_and_lock:
627         retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
628         if (retval == ERROR_OK)
629                 retval = retval2;
630
631         return retval;
632 }
633
634 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
635 {
636         struct target *target = bank->target;
637         uint32_t device_id_register = 0;
638
639         if (!target_was_examined(target)) {
640                 LOG_ERROR("Target not examined yet");
641                 return ERROR_TARGET_NOT_EXAMINED;
642         }
643
644         switch (cortex_m_get_partno_safe(target)) {
645         case CORTEX_M0_PARTNO: /* STM32F0x devices */
646                 device_id_register = 0x40015800;
647                 break;
648         case CORTEX_M3_PARTNO: /* STM32F1x devices */
649                 device_id_register = 0xE0042000;
650                 break;
651         case CORTEX_M4_PARTNO: /* STM32F3x devices */
652                 device_id_register = 0xE0042000;
653                 break;
654         case CORTEX_M23_PARTNO: /* GD32E23x devices */
655                 device_id_register = 0x40015800;
656                 break;
657         default:
658                 LOG_ERROR("Cannot identify target as a stm32x");
659                 return ERROR_FAIL;
660         }
661
662         /* read stm32 device id register */
663         int retval = target_read_u32(target, device_id_register, device_id);
664         if (retval != ERROR_OK)
665                 return retval;
666
667         return retval;
668 }
669
670 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
671 {
672         struct target *target = bank->target;
673         uint32_t flash_size_reg;
674
675         if (!target_was_examined(target)) {
676                 LOG_ERROR("Target not examined yet");
677                 return ERROR_TARGET_NOT_EXAMINED;
678         }
679
680         switch (cortex_m_get_partno_safe(target)) {
681         case CORTEX_M0_PARTNO: /* STM32F0x devices */
682                 flash_size_reg = 0x1FFFF7CC;
683                 break;
684         case CORTEX_M3_PARTNO: /* STM32F1x devices */
685                 flash_size_reg = 0x1FFFF7E0;
686                 break;
687         case CORTEX_M4_PARTNO: /* STM32F3x devices */
688                 flash_size_reg = 0x1FFFF7CC;
689                 break;
690         case CORTEX_M23_PARTNO: /* GD32E23x devices */
691                 flash_size_reg = 0x1FFFF7E0;
692                 break;
693         default:
694                 LOG_ERROR("Cannot identify target as a stm32x");
695                 return ERROR_FAIL;
696         }
697
698         int retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
699         if (retval != ERROR_OK)
700                 return retval;
701
702         return retval;
703 }
704
705 static int stm32x_probe(struct flash_bank *bank)
706 {
707         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
708         uint16_t flash_size_in_kb;
709         uint16_t max_flash_size_in_kb;
710         uint32_t dbgmcu_idcode;
711         int page_size;
712         uint32_t base_address = 0x08000000;
713
714         stm32x_info->probed = false;
715         stm32x_info->register_base = FLASH_REG_BASE_B0;
716         stm32x_info->user_data_offset = 10;
717         stm32x_info->option_offset = 0;
718
719         /* default factory read protection level 0 */
720         stm32x_info->default_rdp = 0xA5;
721
722         /* read stm32 device id register */
723         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
724         if (retval != ERROR_OK)
725                 return retval;
726
727         LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
728
729         uint16_t device_id = dbgmcu_idcode & 0xfff;
730         uint16_t rev_id = dbgmcu_idcode >> 16;
731
732         /* set page size, protection granularity and max flash size depending on family */
733         switch (device_id) {
734         case 0x440: /* stm32f05x */
735                 page_size = 1024;
736                 stm32x_info->ppage_size = 4;
737                 max_flash_size_in_kb = 64;
738                 stm32x_info->user_data_offset = 16;
739                 stm32x_info->option_offset = 6;
740                 stm32x_info->default_rdp = 0xAA;
741                 stm32x_info->can_load_options = true;
742                 break;
743         case 0x444: /* stm32f03x */
744         case 0x445: /* stm32f04x */
745                 page_size = 1024;
746                 stm32x_info->ppage_size = 4;
747                 max_flash_size_in_kb = 32;
748                 stm32x_info->user_data_offset = 16;
749                 stm32x_info->option_offset = 6;
750                 stm32x_info->default_rdp = 0xAA;
751                 stm32x_info->can_load_options = true;
752                 break;
753         case 0x448: /* stm32f07x */
754                 page_size = 2048;
755                 stm32x_info->ppage_size = 4;
756                 max_flash_size_in_kb = 128;
757                 stm32x_info->user_data_offset = 16;
758                 stm32x_info->option_offset = 6;
759                 stm32x_info->default_rdp = 0xAA;
760                 stm32x_info->can_load_options = true;
761                 break;
762         case 0x442: /* stm32f09x */
763                 page_size = 2048;
764                 stm32x_info->ppage_size = 4;
765                 max_flash_size_in_kb = 256;
766                 stm32x_info->user_data_offset = 16;
767                 stm32x_info->option_offset = 6;
768                 stm32x_info->default_rdp = 0xAA;
769                 stm32x_info->can_load_options = true;
770                 break;
771         case 0x410: /* stm32f1x medium-density */
772                 page_size = 1024;
773                 stm32x_info->ppage_size = 4;
774                 max_flash_size_in_kb = 128;
775                 /* GigaDevice GD32F1x0 & GD32F3x0 & GD32E23x series devices
776                    share DEV_ID with STM32F101/2/3 medium-density line,
777                    however they use a REV_ID different from any STM32 device.
778                    The main difference is another offset of user option bits
779                    (like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register
780                    (FLASH_OBR/FMC_OBSTAT 0x4002201C).
781                    This caused problems e.g. during flash block programming
782                    because of unexpected active hardware watchog. */
783                 switch (rev_id) {
784                 case 0x1303: /* gd32f1x0 */
785                         stm32x_info->user_data_offset = 16;
786                         stm32x_info->option_offset = 6;
787                         max_flash_size_in_kb = 64;
788                         break;
789                 case 0x1704: /* gd32f3x0 */
790                         stm32x_info->user_data_offset = 16;
791                         stm32x_info->option_offset = 6;
792                         break;
793                 case 0x1909: /* gd32e23x */
794                         stm32x_info->user_data_offset = 16;
795                         stm32x_info->option_offset = 6;
796                         max_flash_size_in_kb = 64;
797                         break;
798                 }
799                 break;
800         case 0x412: /* stm32f1x low-density */
801                 page_size = 1024;
802                 stm32x_info->ppage_size = 4;
803                 max_flash_size_in_kb = 32;
804                 break;
805         case 0x414: /* stm32f1x high-density */
806                 page_size = 2048;
807                 stm32x_info->ppage_size = 2;
808                 max_flash_size_in_kb = 512;
809                 break;
810         case 0x418: /* stm32f1x connectivity */
811                 page_size = 2048;
812                 stm32x_info->ppage_size = 2;
813                 max_flash_size_in_kb = 256;
814                 break;
815         case 0x430: /* stm32f1 XL-density (dual flash banks) */
816                 page_size = 2048;
817                 stm32x_info->ppage_size = 2;
818                 max_flash_size_in_kb = 1024;
819                 stm32x_info->has_dual_banks = true;
820                 break;
821         case 0x420: /* stm32f100xx low- and medium-density value line */
822                 page_size = 1024;
823                 stm32x_info->ppage_size = 4;
824                 max_flash_size_in_kb = 128;
825                 break;
826         case 0x428: /* stm32f100xx high-density value line */
827                 page_size = 2048;
828                 stm32x_info->ppage_size = 4;
829                 max_flash_size_in_kb = 512;
830                 break;
831         case 0x422: /* stm32f302/3xb/c */
832                 page_size = 2048;
833                 stm32x_info->ppage_size = 2;
834                 max_flash_size_in_kb = 256;
835                 stm32x_info->user_data_offset = 16;
836                 stm32x_info->option_offset = 6;
837                 stm32x_info->default_rdp = 0xAA;
838                 stm32x_info->can_load_options = true;
839                 break;
840         case 0x446: /* stm32f303xD/E */
841                 page_size = 2048;
842                 stm32x_info->ppage_size = 2;
843                 max_flash_size_in_kb = 512;
844                 stm32x_info->user_data_offset = 16;
845                 stm32x_info->option_offset = 6;
846                 stm32x_info->default_rdp = 0xAA;
847                 stm32x_info->can_load_options = true;
848                 break;
849         case 0x432: /* stm32f37x */
850                 page_size = 2048;
851                 stm32x_info->ppage_size = 2;
852                 max_flash_size_in_kb = 256;
853                 stm32x_info->user_data_offset = 16;
854                 stm32x_info->option_offset = 6;
855                 stm32x_info->default_rdp = 0xAA;
856                 stm32x_info->can_load_options = true;
857                 break;
858         case 0x438: /* stm32f33x */
859         case 0x439: /* stm32f302x6/8 */
860                 page_size = 2048;
861                 stm32x_info->ppage_size = 2;
862                 max_flash_size_in_kb = 64;
863                 stm32x_info->user_data_offset = 16;
864                 stm32x_info->option_offset = 6;
865                 stm32x_info->default_rdp = 0xAA;
866                 stm32x_info->can_load_options = true;
867                 break;
868         default:
869                 LOG_WARNING("Cannot identify target as a STM32 family.");
870                 return ERROR_FAIL;
871         }
872
873         /* get flash size from target. */
874         retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
875
876         /* failed reading flash size or flash size invalid (early silicon),
877          * default to max target family */
878         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
879                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
880                         max_flash_size_in_kb);
881                 flash_size_in_kb = max_flash_size_in_kb;
882         }
883
884         if (stm32x_info->has_dual_banks) {
885                 /* split reported size into matching bank */
886                 if (bank->base != 0x08080000) {
887                         /* bank 0 will be fixed 512k */
888                         flash_size_in_kb = 512;
889                 } else {
890                         flash_size_in_kb -= 512;
891                         /* bank1 also uses a register offset */
892                         stm32x_info->register_base = FLASH_REG_BASE_B1;
893                         base_address = 0x08080000;
894                 }
895         }
896
897         /* if the user sets the size manually then ignore the probed value
898          * this allows us to work around devices that have a invalid flash size register value */
899         if (stm32x_info->user_bank_size) {
900                 LOG_INFO("ignoring flash probed value, using configured bank size");
901                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
902         }
903
904         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
905
906         /* did we assign flash size? */
907         assert(flash_size_in_kb != 0xffff);
908
909         /* calculate numbers of pages */
910         int num_pages = flash_size_in_kb * 1024 / page_size;
911
912         /* check that calculation result makes sense */
913         assert(num_pages > 0);
914
915         free(bank->sectors);
916         bank->sectors = NULL;
917
918         free(bank->prot_blocks);
919         bank->prot_blocks = NULL;
920
921         bank->base = base_address;
922         bank->size = (num_pages * page_size);
923
924         bank->num_sectors = num_pages;
925         bank->sectors = alloc_block_array(0, page_size, num_pages);
926         if (!bank->sectors)
927                 return ERROR_FAIL;
928
929         /* calculate number of write protection blocks */
930         int num_prot_blocks = num_pages / stm32x_info->ppage_size;
931         if (num_prot_blocks > 32)
932                 num_prot_blocks = 32;
933
934         bank->num_prot_blocks = num_prot_blocks;
935         bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
936         if (!bank->prot_blocks)
937                 return ERROR_FAIL;
938
939         if (num_prot_blocks == 32)
940                 bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
941
942         stm32x_info->probed = true;
943
944         return ERROR_OK;
945 }
946
947 static int stm32x_auto_probe(struct flash_bank *bank)
948 {
949         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
950         if (stm32x_info->probed)
951                 return ERROR_OK;
952         return stm32x_probe(bank);
953 }
954
955 #if 0
956 COMMAND_HANDLER(stm32x_handle_part_id_command)
957 {
958         return ERROR_OK;
959 }
960 #endif
961
962 static const char *get_stm32f0_revision(uint16_t rev_id)
963 {
964         const char *rev_str = NULL;
965
966         switch (rev_id) {
967         case 0x1000:
968                 rev_str = "1.0";
969                 break;
970         case 0x2000:
971                 rev_str = "2.0";
972                 break;
973         }
974         return rev_str;
975 }
976
977 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
978 {
979         uint32_t dbgmcu_idcode;
980
981         /* read stm32 device id register */
982         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
983         if (retval != ERROR_OK)
984                 return retval;
985
986         uint16_t device_id = dbgmcu_idcode & 0xfff;
987         uint16_t rev_id = dbgmcu_idcode >> 16;
988         const char *device_str;
989         const char *rev_str = NULL;
990
991         switch (device_id) {
992         case 0x410:
993                 device_str = "STM32F10x (Medium Density)";
994
995                 switch (rev_id) {
996                 case 0x0000:
997                         rev_str = "A";
998                         break;
999
1000                 case 0x1303: /* gd32f1x0 */
1001                         device_str = "GD32F1x0";
1002                         break;
1003
1004                 case 0x1704: /* gd32f3x0 */
1005                         device_str = "GD32F3x0";
1006                         break;
1007
1008                 case 0x1909: /* gd32e23x */
1009                         device_str = "GD32E23x";
1010                         break;
1011
1012                 case 0x2000:
1013                         rev_str = "B";
1014                         break;
1015
1016                 case 0x2001:
1017                         rev_str = "Z";
1018                         break;
1019
1020                 case 0x2003:
1021                         rev_str = "Y";
1022                         break;
1023                 }
1024                 break;
1025
1026         case 0x412:
1027                 device_str = "STM32F10x (Low Density)";
1028
1029                 switch (rev_id) {
1030                 case 0x1000:
1031                         rev_str = "A";
1032                         break;
1033                 }
1034                 break;
1035
1036         case 0x414:
1037                 device_str = "STM32F10x (High Density)";
1038
1039                 switch (rev_id) {
1040                 case 0x1000:
1041                         rev_str = "A";
1042                         break;
1043
1044                 case 0x1001:
1045                         rev_str = "Z";
1046                         break;
1047
1048                 case 0x1003:
1049                         rev_str = "Y";
1050                         break;
1051                 }
1052                 break;
1053
1054         case 0x418:
1055                 device_str = "STM32F10x (Connectivity)";
1056
1057                 switch (rev_id) {
1058                 case 0x1000:
1059                         rev_str = "A";
1060                         break;
1061
1062                 case 0x1001:
1063                         rev_str = "Z";
1064                         break;
1065                 }
1066                 break;
1067
1068         case 0x420:
1069                 device_str = "STM32F100 (Low/Medium Density)";
1070
1071                 switch (rev_id) {
1072                 case 0x1000:
1073                         rev_str = "A";
1074                         break;
1075
1076                 case 0x1001:
1077                         rev_str = "Z";
1078                         break;
1079                 }
1080                 break;
1081
1082         case 0x422:
1083                 device_str = "STM32F302xB/C";
1084
1085                 switch (rev_id) {
1086                 case 0x1000:
1087                         rev_str = "A";
1088                         break;
1089
1090                 case 0x1001:
1091                         rev_str = "Z";
1092                         break;
1093
1094                 case 0x1003:
1095                         rev_str = "Y";
1096                         break;
1097
1098                 case 0x2000:
1099                         rev_str = "B";
1100                         break;
1101                 }
1102                 break;
1103
1104         case 0x428:
1105                 device_str = "STM32F100 (High Density)";
1106
1107                 switch (rev_id) {
1108                 case 0x1000:
1109                         rev_str = "A";
1110                         break;
1111
1112                 case 0x1001:
1113                         rev_str = "Z";
1114                         break;
1115                 }
1116                 break;
1117
1118         case 0x430:
1119                 device_str = "STM32F10x (XL Density)";
1120
1121                 switch (rev_id) {
1122                 case 0x1000:
1123                         rev_str = "A";
1124                         break;
1125                 }
1126                 break;
1127
1128         case 0x432:
1129                 device_str = "STM32F37x";
1130
1131                 switch (rev_id) {
1132                 case 0x1000:
1133                         rev_str = "A";
1134                         break;
1135
1136                 case 0x2000:
1137                         rev_str = "B";
1138                         break;
1139                 }
1140                 break;
1141
1142         case 0x438:
1143                 device_str = "STM32F33x";
1144
1145                 switch (rev_id) {
1146                 case 0x1000:
1147                         rev_str = "A";
1148                         break;
1149                 }
1150                 break;
1151
1152         case 0x439:
1153                 device_str = "STM32F302x6/8";
1154
1155                 switch (rev_id) {
1156                 case 0x1000:
1157                         rev_str = "A";
1158                         break;
1159
1160                 case 0x1001:
1161                         rev_str = "Z";
1162                         break;
1163                 }
1164                 break;
1165
1166         case 0x444:
1167                 device_str = "STM32F03x";
1168                 rev_str = get_stm32f0_revision(rev_id);
1169                 break;
1170
1171         case 0x440:
1172                 device_str = "STM32F05x";
1173                 rev_str = get_stm32f0_revision(rev_id);
1174                 break;
1175
1176         case 0x445:
1177                 device_str = "STM32F04x";
1178                 rev_str = get_stm32f0_revision(rev_id);
1179                 break;
1180
1181         case 0x446:
1182                 device_str = "STM32F303xD/E";
1183                 switch (rev_id) {
1184                 case 0x1000:
1185                         rev_str = "A";
1186                         break;
1187                 }
1188                 break;
1189
1190         case 0x448:
1191                 device_str = "STM32F07x";
1192                 rev_str = get_stm32f0_revision(rev_id);
1193                 break;
1194
1195         case 0x442:
1196                 device_str = "STM32F09x";
1197                 rev_str = get_stm32f0_revision(rev_id);
1198                 break;
1199
1200         default:
1201                 command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n");
1202                 return ERROR_FAIL;
1203         }
1204
1205         if (rev_str)
1206                 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1207         else
1208                 command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1209
1210         return ERROR_OK;
1211 }
1212
1213 COMMAND_HANDLER(stm32x_handle_lock_command)
1214 {
1215         struct target *target = NULL;
1216         struct stm32x_flash_bank *stm32x_info = NULL;
1217
1218         if (CMD_ARGC < 1)
1219                 return ERROR_COMMAND_SYNTAX_ERROR;
1220
1221         struct flash_bank *bank;
1222         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1223         if (retval != ERROR_OK)
1224                 return retval;
1225
1226         stm32x_info = bank->driver_priv;
1227
1228         target = bank->target;
1229
1230         if (target->state != TARGET_HALTED) {
1231                 LOG_ERROR("Target not halted");
1232                 return ERROR_TARGET_NOT_HALTED;
1233         }
1234
1235         retval = stm32x_check_operation_supported(bank);
1236         if (retval != ERROR_OK)
1237                 return retval;
1238
1239         if (stm32x_erase_options(bank) != ERROR_OK) {
1240                 command_print(CMD, "stm32x failed to erase options");
1241                 return ERROR_OK;
1242         }
1243
1244         /* set readout protection */
1245         stm32x_info->option_bytes.rdp = 0;
1246
1247         if (stm32x_write_options(bank) != ERROR_OK) {
1248                 command_print(CMD, "stm32x failed to lock device");
1249                 return ERROR_OK;
1250         }
1251
1252         command_print(CMD, "stm32x locked");
1253
1254         return ERROR_OK;
1255 }
1256
1257 COMMAND_HANDLER(stm32x_handle_unlock_command)
1258 {
1259         struct target *target = NULL;
1260
1261         if (CMD_ARGC < 1)
1262                 return ERROR_COMMAND_SYNTAX_ERROR;
1263
1264         struct flash_bank *bank;
1265         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1266         if (retval != ERROR_OK)
1267                 return retval;
1268
1269         target = bank->target;
1270
1271         if (target->state != TARGET_HALTED) {
1272                 LOG_ERROR("Target not halted");
1273                 return ERROR_TARGET_NOT_HALTED;
1274         }
1275
1276         retval = stm32x_check_operation_supported(bank);
1277         if (retval != ERROR_OK)
1278                 return retval;
1279
1280         if (stm32x_erase_options(bank) != ERROR_OK) {
1281                 command_print(CMD, "stm32x failed to erase options");
1282                 return ERROR_OK;
1283         }
1284
1285         if (stm32x_write_options(bank) != ERROR_OK) {
1286                 command_print(CMD, "stm32x failed to unlock device");
1287                 return ERROR_OK;
1288         }
1289
1290         command_print(CMD, "stm32x unlocked.\n"
1291                         "INFO: a reset or power cycle is required "
1292                         "for the new settings to take effect.");
1293
1294         return ERROR_OK;
1295 }
1296
1297 COMMAND_HANDLER(stm32x_handle_options_read_command)
1298 {
1299         uint32_t optionbyte, protection;
1300         struct target *target = NULL;
1301         struct stm32x_flash_bank *stm32x_info = NULL;
1302
1303         if (CMD_ARGC < 1)
1304                 return ERROR_COMMAND_SYNTAX_ERROR;
1305
1306         struct flash_bank *bank;
1307         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1308         if (retval != ERROR_OK)
1309                 return retval;
1310
1311         stm32x_info = bank->driver_priv;
1312
1313         target = bank->target;
1314
1315         if (target->state != TARGET_HALTED) {
1316                 LOG_ERROR("Target not halted");
1317                 return ERROR_TARGET_NOT_HALTED;
1318         }
1319
1320         retval = stm32x_check_operation_supported(bank);
1321         if (retval != ERROR_OK)
1322                 return retval;
1323
1324         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1325         if (retval != ERROR_OK)
1326                 return retval;
1327
1328         uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
1329
1330         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
1331         if (retval != ERROR_OK)
1332                 return retval;
1333
1334         if (optionbyte & (1 << OPT_ERROR))
1335                 command_print(CMD, "option byte complement error");
1336
1337         command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
1338         command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
1339
1340         command_print(CMD, "read protection: %s",
1341                                 (optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
1342
1343         /* user option bytes are offset depending on variant */
1344         optionbyte >>= stm32x_info->option_offset;
1345
1346         command_print(CMD, "watchdog: %sware",
1347                                 (optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
1348
1349         command_print(CMD, "stop mode: %sreset generated upon entry",
1350                                 (optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
1351
1352         command_print(CMD, "standby mode: %sreset generated upon entry",
1353                                 (optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
1354
1355         if (stm32x_info->has_dual_banks)
1356                 command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
1357
1358         command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
1359
1360         return ERROR_OK;
1361 }
1362
1363 COMMAND_HANDLER(stm32x_handle_options_write_command)
1364 {
1365         struct target *target = NULL;
1366         struct stm32x_flash_bank *stm32x_info = NULL;
1367         uint8_t optionbyte;
1368         uint16_t useropt;
1369
1370         if (CMD_ARGC < 2)
1371                 return ERROR_COMMAND_SYNTAX_ERROR;
1372
1373         struct flash_bank *bank;
1374         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1375         if (retval != ERROR_OK)
1376                 return retval;
1377
1378         stm32x_info = bank->driver_priv;
1379
1380         target = bank->target;
1381
1382         if (target->state != TARGET_HALTED) {
1383                 LOG_ERROR("Target not halted");
1384                 return ERROR_TARGET_NOT_HALTED;
1385         }
1386
1387         retval = stm32x_check_operation_supported(bank);
1388         if (retval != ERROR_OK)
1389                 return retval;
1390
1391         retval = stm32x_read_options(bank);
1392         if (retval != ERROR_OK)
1393                 return retval;
1394
1395         /* start with current options */
1396         optionbyte = stm32x_info->option_bytes.user;
1397         useropt = stm32x_info->option_bytes.data;
1398
1399         /* skip over flash bank */
1400         CMD_ARGC--;
1401         CMD_ARGV++;
1402
1403         while (CMD_ARGC) {
1404                 if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
1405                         optionbyte |= (1 << 0);
1406                 else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
1407                         optionbyte &= ~(1 << 0);
1408                 else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
1409                         optionbyte |= (1 << 1);
1410                 else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
1411                         optionbyte &= ~(1 << 1);
1412                 else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
1413                         optionbyte |= (1 << 2);
1414                 else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
1415                         optionbyte &= ~(1 << 2);
1416                 else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
1417                         if (CMD_ARGC < 2)
1418                                 return ERROR_COMMAND_SYNTAX_ERROR;
1419                         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
1420                         CMD_ARGC--;
1421                         CMD_ARGV++;
1422                 } else if (stm32x_info->has_dual_banks) {
1423                         if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
1424                                 optionbyte |= (1 << 3);
1425                         else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
1426                                 optionbyte &= ~(1 << 3);
1427                         else
1428                                 return ERROR_COMMAND_SYNTAX_ERROR;
1429                 } else
1430                         return ERROR_COMMAND_SYNTAX_ERROR;
1431                 CMD_ARGC--;
1432                 CMD_ARGV++;
1433         }
1434
1435         if (stm32x_erase_options(bank) != ERROR_OK) {
1436                 command_print(CMD, "stm32x failed to erase options");
1437                 return ERROR_OK;
1438         }
1439
1440         stm32x_info->option_bytes.user = optionbyte;
1441         stm32x_info->option_bytes.data = useropt;
1442
1443         if (stm32x_write_options(bank) != ERROR_OK) {
1444                 command_print(CMD, "stm32x failed to write options");
1445                 return ERROR_OK;
1446         }
1447
1448         command_print(CMD, "stm32x write options complete.\n"
1449                                 "INFO: %spower cycle is required "
1450                                 "for the new settings to take effect.",
1451                                 stm32x_info->can_load_options
1452                                         ? "'stm32f1x options_load' command or " : "");
1453
1454         return ERROR_OK;
1455 }
1456
1457 COMMAND_HANDLER(stm32x_handle_options_load_command)
1458 {
1459         if (CMD_ARGC < 1)
1460                 return ERROR_COMMAND_SYNTAX_ERROR;
1461
1462         struct flash_bank *bank;
1463         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1464         if (retval != ERROR_OK)
1465                 return retval;
1466
1467         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1468
1469         if (!stm32x_info->can_load_options) {
1470                 LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
1471                         "required instead.");
1472                 return ERROR_FAIL;
1473         }
1474
1475         struct target *target = bank->target;
1476
1477         if (target->state != TARGET_HALTED) {
1478                 LOG_ERROR("Target not halted");
1479                 return ERROR_TARGET_NOT_HALTED;
1480         }
1481
1482         retval = stm32x_check_operation_supported(bank);
1483         if (retval != ERROR_OK)
1484                 return retval;
1485
1486         /* unlock option flash registers */
1487         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1488         if (retval != ERROR_OK)
1489                 return retval;
1490         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1491         if (retval != ERROR_OK) {
1492                 (void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1493                 return retval;
1494         }
1495
1496         /* force re-load of option bytes - generates software reset */
1497         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
1498         if (retval != ERROR_OK)
1499                 return retval;
1500
1501         return ERROR_OK;
1502 }
1503
1504 static int stm32x_mass_erase(struct flash_bank *bank)
1505 {
1506         struct target *target = bank->target;
1507
1508         if (target->state != TARGET_HALTED) {
1509                 LOG_ERROR("Target not halted");
1510                 return ERROR_TARGET_NOT_HALTED;
1511         }
1512
1513         /* unlock option flash registers */
1514         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1515         if (retval != ERROR_OK)
1516                 return retval;
1517         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1518         if (retval != ERROR_OK)
1519                 goto flash_lock;
1520
1521         /* mass erase flash memory */
1522         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1523         if (retval != ERROR_OK)
1524                 goto flash_lock;
1525         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1526                         FLASH_MER | FLASH_STRT);
1527         if (retval != ERROR_OK)
1528                 goto flash_lock;
1529
1530         retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1531
1532 flash_lock:
1533         {
1534                 int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1535                 if (retval == ERROR_OK)
1536                         retval = retval2;
1537         }
1538         return retval;
1539 }
1540
1541 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1542 {
1543         if (CMD_ARGC < 1)
1544                 return ERROR_COMMAND_SYNTAX_ERROR;
1545
1546         struct flash_bank *bank;
1547         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1548         if (retval != ERROR_OK)
1549                 return retval;
1550
1551         retval = stm32x_mass_erase(bank);
1552         if (retval == ERROR_OK)
1553                 command_print(CMD, "stm32x mass erase complete");
1554         else
1555                 command_print(CMD, "stm32x mass erase failed");
1556
1557         return retval;
1558 }
1559
1560 static const struct command_registration stm32f1x_exec_command_handlers[] = {
1561         {
1562                 .name = "lock",
1563                 .handler = stm32x_handle_lock_command,
1564                 .mode = COMMAND_EXEC,
1565                 .usage = "bank_id",
1566                 .help = "Lock entire flash device.",
1567         },
1568         {
1569                 .name = "unlock",
1570                 .handler = stm32x_handle_unlock_command,
1571                 .mode = COMMAND_EXEC,
1572                 .usage = "bank_id",
1573                 .help = "Unlock entire protected flash device.",
1574         },
1575         {
1576                 .name = "mass_erase",
1577                 .handler = stm32x_handle_mass_erase_command,
1578                 .mode = COMMAND_EXEC,
1579                 .usage = "bank_id",
1580                 .help = "Erase entire flash device.",
1581         },
1582         {
1583                 .name = "options_read",
1584                 .handler = stm32x_handle_options_read_command,
1585                 .mode = COMMAND_EXEC,
1586                 .usage = "bank_id",
1587                 .help = "Read and display device option bytes.",
1588         },
1589         {
1590                 .name = "options_write",
1591                 .handler = stm32x_handle_options_write_command,
1592                 .mode = COMMAND_EXEC,
1593                 .usage = "bank_id ('SWWDG'|'HWWDG') "
1594                         "('RSTSTNDBY'|'NORSTSTNDBY') "
1595                         "('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
1596                 .help = "Replace bits in device option bytes.",
1597         },
1598         {
1599                 .name = "options_load",
1600                 .handler = stm32x_handle_options_load_command,
1601                 .mode = COMMAND_EXEC,
1602                 .usage = "bank_id",
1603                 .help = "Force re-load of device option bytes.",
1604         },
1605         COMMAND_REGISTRATION_DONE
1606 };
1607
1608 static const struct command_registration stm32f1x_command_handlers[] = {
1609         {
1610                 .name = "stm32f1x",
1611                 .mode = COMMAND_ANY,
1612                 .help = "stm32f1x flash command group",
1613                 .usage = "",
1614                 .chain = stm32f1x_exec_command_handlers,
1615         },
1616         COMMAND_REGISTRATION_DONE
1617 };
1618
1619 const struct flash_driver stm32f1x_flash = {
1620         .name = "stm32f1x",
1621         .commands = stm32f1x_command_handlers,
1622         .flash_bank_command = stm32x_flash_bank_command,
1623         .erase = stm32x_erase,
1624         .protect = stm32x_protect,
1625         .write = stm32x_write,
1626         .read = default_flash_read,
1627         .probe = stm32x_probe,
1628         .auto_probe = stm32x_auto_probe,
1629         .erase_check = default_flash_blank_check,
1630         .protect_check = stm32x_protect_check,
1631         .info = get_stm32x_info,
1632         .free_driver_priv = default_flash_free_driver_priv,
1633 };