flash/nor: Use proper data types in driver API
[fw/openocd] / src / flash / nor / nrf5.c
1 /***************************************************************************
2  *   Copyright (C) 2013 Synapse Product Development                        *
3  *   Andrey Smirnov <andrew.smironv@gmail.com>                             *
4  *   Angus Gratton <gus@projectgus.com>                                    *
5  *   Erdem U. Altunyurt <spamjunkeater@gmail.com>                          *
6  *                                                                         *
7  *   This program is free software; you can redistribute it and/or modify  *
8  *   it under the terms of the GNU General Public License as published by  *
9  *   the Free Software Foundation; either version 2 of the License, or     *
10  *   (at your option) any later version.                                   *
11  *                                                                         *
12  *   This program is distributed in the hope that it will be useful,       *
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
15  *   GNU General Public License for more details.                          *
16  *                                                                         *
17  *   You should have received a copy of the GNU General Public License     *
18  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
19  ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "imp.h"
26 #include <target/algorithm.h>
27 #include <target/armv7m.h>
28 #include <helper/types.h>
29 #include <helper/time_support.h>
30
31 /* Both those values are constant across the current spectrum ofr nRF5 devices */
32 #define WATCHDOG_REFRESH_REGISTER       0x40010600
33 #define WATCHDOG_REFRESH_VALUE          0x6e524635
34
35 enum {
36         NRF5_FLASH_BASE = 0x00000000,
37 };
38
39 enum nrf5_ficr_registers {
40         NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
41
42 #define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
43
44         NRF5_FICR_CODEPAGESIZE          = NRF5_FICR_REG(0x010),
45         NRF5_FICR_CODESIZE              = NRF5_FICR_REG(0x014),
46
47         NRF51_FICR_CLENR0               = NRF5_FICR_REG(0x028),
48         NRF51_FICR_PPFC                 = NRF5_FICR_REG(0x02C),
49         NRF51_FICR_NUMRAMBLOCK          = NRF5_FICR_REG(0x034),
50         NRF51_FICR_SIZERAMBLOCK0        = NRF5_FICR_REG(0x038),
51         NRF51_FICR_SIZERAMBLOCK1        = NRF5_FICR_REG(0x03C),
52         NRF51_FICR_SIZERAMBLOCK2        = NRF5_FICR_REG(0x040),
53         NRF51_FICR_SIZERAMBLOCK3        = NRF5_FICR_REG(0x044),
54
55         NRF5_FICR_CONFIGID              = NRF5_FICR_REG(0x05C),
56         NRF5_FICR_DEVICEID0             = NRF5_FICR_REG(0x060),
57         NRF5_FICR_DEVICEID1             = NRF5_FICR_REG(0x064),
58         NRF5_FICR_ER0                   = NRF5_FICR_REG(0x080),
59         NRF5_FICR_ER1                   = NRF5_FICR_REG(0x084),
60         NRF5_FICR_ER2                   = NRF5_FICR_REG(0x088),
61         NRF5_FICR_ER3                   = NRF5_FICR_REG(0x08C),
62         NRF5_FICR_IR0                   = NRF5_FICR_REG(0x090),
63         NRF5_FICR_IR1                   = NRF5_FICR_REG(0x094),
64         NRF5_FICR_IR2                   = NRF5_FICR_REG(0x098),
65         NRF5_FICR_IR3                   = NRF5_FICR_REG(0x09C),
66         NRF5_FICR_DEVICEADDRTYPE        = NRF5_FICR_REG(0x0A0),
67         NRF5_FICR_DEVICEADDR0           = NRF5_FICR_REG(0x0A4),
68         NRF5_FICR_DEVICEADDR1           = NRF5_FICR_REG(0x0A8),
69
70         NRF51_FICR_OVERRIDEN            = NRF5_FICR_REG(0x0AC),
71         NRF51_FICR_NRF_1MBIT0           = NRF5_FICR_REG(0x0B0),
72         NRF51_FICR_NRF_1MBIT1           = NRF5_FICR_REG(0x0B4),
73         NRF51_FICR_NRF_1MBIT2           = NRF5_FICR_REG(0x0B8),
74         NRF51_FICR_NRF_1MBIT3           = NRF5_FICR_REG(0x0BC),
75         NRF51_FICR_NRF_1MBIT4           = NRF5_FICR_REG(0x0C0),
76         NRF51_FICR_BLE_1MBIT0           = NRF5_FICR_REG(0x0EC),
77         NRF51_FICR_BLE_1MBIT1           = NRF5_FICR_REG(0x0F0),
78         NRF51_FICR_BLE_1MBIT2           = NRF5_FICR_REG(0x0F4),
79         NRF51_FICR_BLE_1MBIT3           = NRF5_FICR_REG(0x0F8),
80         NRF51_FICR_BLE_1MBIT4           = NRF5_FICR_REG(0x0FC),
81
82         /* Following registers are available on nRF52 and on nRF51 since rev 3 */
83         NRF5_FICR_INFO_PART                     = NRF5_FICR_REG(0x100),
84         NRF5_FICR_INFO_VARIANT          = NRF5_FICR_REG(0x104),
85         NRF5_FICR_INFO_PACKAGE          = NRF5_FICR_REG(0x108),
86         NRF5_FICR_INFO_RAM                      = NRF5_FICR_REG(0x10C),
87         NRF5_FICR_INFO_FLASH            = NRF5_FICR_REG(0x110),
88 };
89
90 enum nrf5_uicr_registers {
91         NRF5_UICR_BASE = 0x10001000, /* User Information
92                                        * Configuration Regsters */
93
94 #define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
95
96         NRF51_UICR_CLENR0       = NRF5_UICR_REG(0x000),
97         NRF51_UICR_RBPCONF      = NRF5_UICR_REG(0x004),
98         NRF51_UICR_XTALFREQ     = NRF5_UICR_REG(0x008),
99         NRF51_UICR_FWID         = NRF5_UICR_REG(0x010),
100 };
101
102 enum nrf5_nvmc_registers {
103         NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
104                                        * Controller Registers */
105
106 #define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
107
108         NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
109         NRF5_NVMC_CONFIG        = NRF5_NVMC_REG(0x504),
110         NRF5_NVMC_ERASEPAGE     = NRF5_NVMC_REG(0x508),
111         NRF5_NVMC_ERASEALL      = NRF5_NVMC_REG(0x50C),
112         NRF5_NVMC_ERASEUICR     = NRF5_NVMC_REG(0x514),
113
114         NRF5_BPROT_BASE = 0x40000000,
115 };
116
117 enum nrf5_nvmc_config_bits {
118         NRF5_NVMC_CONFIG_REN = 0x00,
119         NRF5_NVMC_CONFIG_WEN = 0x01,
120         NRF5_NVMC_CONFIG_EEN = 0x02,
121
122 };
123
124 struct nrf52_ficr_info {
125         uint32_t part;
126         uint32_t variant;
127         uint32_t package;
128         uint32_t ram;
129         uint32_t flash;
130 };
131
132 enum nrf5_features {
133         NRF5_FEATURE_SERIES_51  = 1 << 0,
134         NRF5_FEATURE_SERIES_52  = 1 << 1,
135         NRF5_FEATURE_BPROT              = 1 << 2,
136         NRF5_FEATURE_ACL_PROT   = 1 << 3,
137 };
138
139 struct nrf5_device_spec {
140         uint16_t hwid;
141         const char *part;
142         const char *variant;
143         const char *build_code;
144         unsigned int flash_size_kb;
145         enum nrf5_features features;
146 };
147
148 struct nrf5_info {
149         uint32_t refcount;
150
151         struct nrf5_bank {
152                 struct nrf5_info *chip;
153                 bool probed;
154         } bank[2];
155         struct target *target;
156
157         /* chip identification stored in nrf5_probe() for use in nrf5_info() */
158         bool ficr_info_valid;
159         struct nrf52_ficr_info ficr_info;
160         const struct nrf5_device_spec *spec;
161         uint32_t hwid;
162         enum nrf5_features features;
163         unsigned int flash_size_kb;
164         unsigned int ram_size_kb;
165 };
166
167 #define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
168 {                                                   \
169 .hwid          = (id),                              \
170 .part          = pt,                                \
171 .variant       = var,                               \
172 .build_code    = bcode,                             \
173 .flash_size_kb = (fsize),                           \
174 .features      = NRF5_FEATURE_SERIES_51,            \
175 }
176
177 #define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize, features) \
178 {                                                   \
179 .hwid          = (id),                              \
180 .part          = pt,                                \
181 .variant       = var,                               \
182 .build_code    = bcode,                             \
183 .flash_size_kb = (fsize),                           \
184 .features      = features,                          \
185 }
186
187 /* The known devices table below is derived from the "nRF5x series
188  * compatibility matrix" documents, which can be found in the "DocLib" of
189  * nordic:
190  *
191  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
192  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
193  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
194  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
195  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
196  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
197  *
198  * Up to date with Matrix v2.0, plus some additional HWIDs.
199  *
200  * The additional HWIDs apply where the build code in the matrix is
201  * shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
202  * for x==0, x!=0 means different (unspecified) HWIDs.
203  */
204 static const struct nrf5_device_spec nrf5_known_devices_table[] = {
205         /* nRF51822 Devices (IC rev 1). */
206         NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
207         NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA",    128),
208         NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0",    128),
209         NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA",    256),
210         NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0",    256),
211
212         /* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
213            with built-in jlink seem to use engineering samples not listed
214            in the nRF51 Series Compatibility Matrix V1.0. */
215         NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB",    256),
216
217         /* nRF51822 Devices (IC rev 2). */
218         NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0",   256),
219         NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0",   256),
220         NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0",    256),
221         NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2",    256),
222         NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3",    256),
223         NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0",    128),
224         NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0",   256),
225         NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0",   256),
226         NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00",   256),
227
228         /* nRF51822 Devices (IC rev 3). */
229         NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0",    256),
230         NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2",    256),
231         NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0",    128),
232         NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0",    256),
233         NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1",    256),
234         NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0",    128),
235         NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0",    256),
236         NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0",    256),
237         NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1",    256),
238
239         /* nRF51422 Devices (IC rev 1). */
240         NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA",    256),
241         NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0",    256),
242         NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A",   256),
243
244         /* nRF51422 Devices (IC rev 2). */
245         NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA",   256),
246         NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0",    256),
247         NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00",   128),
248         NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0",    256),
249
250         /* nRF51422 Devices (IC rev 3). */
251         NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0",    256),
252         NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0",    128),
253         NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0",    256),
254         NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1",    256),
255         NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0",    128),
256         NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0",    256),
257         NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0",    256),
258
259         /* The driver fully autodects nRF52 series devices by FICR INFO,
260          * no need for nRF52xxx HWIDs in this table */
261 #if 0
262         /* nRF52810 Devices */
263         NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0",    192,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
264         NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0",    192,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
265
266         /* nRF52832 Devices */
267         NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
268         NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
269         NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
270
271         /* nRF52840 Devices */
272         NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0",    1024, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_ACL_PROT),
273 #endif
274 };
275
276 struct nrf5_device_package {
277         uint32_t package;
278         const char *code;
279 };
280
281 /* Newer devices have FICR INFO.PACKAGE.
282  * This table converts its value to two character code */
283 static const struct nrf5_device_package nrf5_packages_table[] = {
284         { 0x2000, "QF" },
285         { 0x2001, "CH" },
286         { 0x2002, "CI" },
287         { 0x2005, "CK" },
288 };
289
290 const struct flash_driver nrf5_flash, nrf51_flash;
291
292 static int nrf5_bank_is_probed(struct flash_bank *bank)
293 {
294         struct nrf5_bank *nbank = bank->driver_priv;
295
296         assert(nbank != NULL);
297
298         return nbank->probed;
299 }
300 static int nrf5_probe(struct flash_bank *bank);
301
302 static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
303 {
304         if (bank->target->state != TARGET_HALTED) {
305                 LOG_ERROR("Target not halted");
306                 return ERROR_TARGET_NOT_HALTED;
307         }
308
309         struct nrf5_bank *nbank = bank->driver_priv;
310         *chip = nbank->chip;
311
312         int probed = nrf5_bank_is_probed(bank);
313         if (probed < 0)
314                 return probed;
315         else if (!probed)
316                 return nrf5_probe(bank);
317         else
318                 return ERROR_OK;
319 }
320
321 static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
322 {
323         uint32_t ready;
324         int res;
325         int timeout_ms = 340;
326         int64_t ts_start = timeval_ms();
327
328         do {
329                 res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
330                 if (res != ERROR_OK) {
331                         LOG_ERROR("Couldn't read NVMC_READY register");
332                         return res;
333                 }
334
335                 if (ready == 0x00000001)
336                         return ERROR_OK;
337
338                 keep_alive();
339
340         } while ((timeval_ms()-ts_start) < timeout_ms);
341
342         LOG_DEBUG("Timed out waiting for NVMC_READY");
343         return ERROR_FLASH_BUSY;
344 }
345
346 static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
347 {
348         int res;
349         res = target_write_u32(chip->target,
350                                NRF5_NVMC_CONFIG,
351                                NRF5_NVMC_CONFIG_EEN);
352
353         if (res != ERROR_OK) {
354                 LOG_ERROR("Failed to enable erase operation");
355                 return res;
356         }
357
358         /*
359           According to NVMC examples in Nordic SDK busy status must be
360           checked after writing to NVMC_CONFIG
361          */
362         res = nrf5_wait_for_nvmc(chip);
363         if (res != ERROR_OK)
364                 LOG_ERROR("Erase enable did not complete");
365
366         return res;
367 }
368
369 static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
370 {
371         int res;
372         res = target_write_u32(chip->target,
373                                NRF5_NVMC_CONFIG,
374                                NRF5_NVMC_CONFIG_WEN);
375
376         if (res != ERROR_OK) {
377                 LOG_ERROR("Failed to enable write operation");
378                 return res;
379         }
380
381         /*
382           According to NVMC examples in Nordic SDK busy status must be
383           checked after writing to NVMC_CONFIG
384          */
385         res = nrf5_wait_for_nvmc(chip);
386         if (res != ERROR_OK)
387                 LOG_ERROR("Write enable did not complete");
388
389         return res;
390 }
391
392 static int nrf5_nvmc_read_only(struct nrf5_info *chip)
393 {
394         int res;
395         res = target_write_u32(chip->target,
396                                NRF5_NVMC_CONFIG,
397                                NRF5_NVMC_CONFIG_REN);
398
399         if (res != ERROR_OK) {
400                 LOG_ERROR("Failed to enable read-only operation");
401                 return res;
402         }
403         /*
404           According to NVMC examples in Nordic SDK busy status must be
405           checked after writing to NVMC_CONFIG
406          */
407         res = nrf5_wait_for_nvmc(chip);
408         if (res != ERROR_OK)
409                 LOG_ERROR("Read only enable did not complete");
410
411         return res;
412 }
413
414 static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
415                                uint32_t erase_register, uint32_t erase_value)
416 {
417         int res;
418
419         res = nrf5_nvmc_erase_enable(chip);
420         if (res != ERROR_OK)
421                 goto error;
422
423         res = target_write_u32(chip->target,
424                                erase_register,
425                                erase_value);
426         if (res != ERROR_OK)
427                 goto set_read_only;
428
429         res = nrf5_wait_for_nvmc(chip);
430         if (res != ERROR_OK)
431                 goto set_read_only;
432
433         return nrf5_nvmc_read_only(chip);
434
435 set_read_only:
436         nrf5_nvmc_read_only(chip);
437 error:
438         LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
439                   erase_register, erase_value);
440         return ERROR_FAIL;
441 }
442
443 static int nrf5_protect_check_bprot(struct flash_bank *bank)
444 {
445         struct nrf5_bank *nbank = bank->driver_priv;
446         struct nrf5_info *chip = nbank->chip;
447
448         assert(chip != NULL);
449
450         static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
451         uint32_t bprot_reg = 0;
452         int res;
453
454         for (unsigned int i = 0; i < bank->num_sectors; i++) {
455                 unsigned int bit = i % 32;
456                 if (bit == 0) {
457                         unsigned int n_reg = i / 32;
458                         if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
459                                 break;
460
461                         res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
462                         if (res != ERROR_OK)
463                                 return res;
464                 }
465                 bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
466         }
467         return ERROR_OK;
468 }
469
470 static int nrf5_protect_check(struct flash_bank *bank)
471 {
472         int res;
473         uint32_t clenr0;
474
475         /* UICR cannot be write protected so just return early */
476         if (bank->base == NRF5_UICR_BASE)
477                 return ERROR_OK;
478
479         struct nrf5_bank *nbank = bank->driver_priv;
480         struct nrf5_info *chip = nbank->chip;
481
482         assert(chip != NULL);
483
484         if (chip->features & NRF5_FEATURE_BPROT)
485                 return nrf5_protect_check_bprot(bank);
486
487         if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
488                 LOG_WARNING("Flash protection of this nRF device is not supported");
489                 return ERROR_FLASH_OPER_UNSUPPORTED;
490         }
491
492         res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
493                               &clenr0);
494         if (res != ERROR_OK) {
495                 LOG_ERROR("Couldn't read code region 0 size[FICR]");
496                 return res;
497         }
498
499         if (clenr0 == 0xFFFFFFFF) {
500                 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
501                                       &clenr0);
502                 if (res != ERROR_OK) {
503                         LOG_ERROR("Couldn't read code region 0 size[UICR]");
504                         return res;
505                 }
506         }
507
508         for (unsigned int i = 0; i < bank->num_sectors; i++)
509                 bank->sectors[i].is_protected =
510                         clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
511
512         return ERROR_OK;
513 }
514
515 static int nrf5_protect(struct flash_bank *bank, int set, unsigned int first,
516                 unsigned int last)
517 {
518         int res;
519         uint32_t clenr0, ppfc;
520         struct nrf5_info *chip;
521
522         /* UICR cannot be write protected so just bail out early */
523         if (bank->base == NRF5_UICR_BASE)
524                 return ERROR_FAIL;
525
526         res = nrf5_get_probed_chip_if_halted(bank, &chip);
527         if (res != ERROR_OK)
528                 return res;
529
530         if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
531                 LOG_ERROR("Flash protection setting of this nRF device is not supported");
532                 return ERROR_FLASH_OPER_UNSUPPORTED;
533         }
534
535         if (first != 0) {
536                 LOG_ERROR("Code region 0 must start at the begining of the bank");
537                 return ERROR_FAIL;
538         }
539
540         res = target_read_u32(chip->target, NRF51_FICR_PPFC,
541                               &ppfc);
542         if (res != ERROR_OK) {
543                 LOG_ERROR("Couldn't read PPFC register");
544                 return res;
545         }
546
547         if ((ppfc & 0xFF) == 0x00) {
548                 LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
549                 return ERROR_FAIL;
550         }
551
552         res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
553                               &clenr0);
554         if (res != ERROR_OK) {
555                 LOG_ERROR("Couldn't read code region 0 size[UICR]");
556                 return res;
557         }
558
559         if (clenr0 == 0xFFFFFFFF) {
560                 res = target_write_u32(chip->target, NRF51_UICR_CLENR0,
561                                        clenr0);
562                 if (res != ERROR_OK) {
563                         LOG_ERROR("Couldn't write code region 0 size[UICR]");
564                         return res;
565                 }
566
567         } else {
568                 LOG_ERROR("You need to perform chip erase before changing the protection settings");
569         }
570
571         nrf5_protect_check(bank);
572
573         return ERROR_OK;
574 }
575
576 static bool nrf5_info_variant_to_str(uint32_t variant, char *bf)
577 {
578         uint8_t b[4];
579
580         h_u32_to_be(b, variant);
581         if (isalnum(b[0]) && isalnum(b[1]) && isalnum(b[2]) && isalnum(b[3])) {
582                 memcpy(bf, b, 4);
583                 bf[4] = 0;
584                 return true;
585         }
586
587         strcpy(bf, "xxxx");
588         return false;
589 }
590
591 static const char *nrf5_decode_info_package(uint32_t package)
592 {
593         for (size_t i = 0; i < ARRAY_SIZE(nrf5_packages_table); i++) {
594                 if (nrf5_packages_table[i].package == package)
595                         return nrf5_packages_table[i].code;
596         }
597         return "xx";
598 }
599
600 static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
601 {
602         struct nrf5_bank *nbank = bank->driver_priv;
603         struct nrf5_info *chip = nbank->chip;
604         int res;
605
606         if (chip->spec) {
607                 res = snprintf(buf, buf_size,
608                                 "nRF%s-%s(build code: %s)",
609                                 chip->spec->part, chip->spec->variant, chip->spec->build_code);
610
611         } else if (chip->ficr_info_valid) {
612                 char variant[5];
613                 nrf5_info_variant_to_str(chip->ficr_info.variant, variant);
614                 res = snprintf(buf, buf_size,
615                                 "nRF%" PRIx32 "-%s%.2s(build code: %s)",
616                                 chip->ficr_info.part,
617                                 nrf5_decode_info_package(chip->ficr_info.package),
618                                 variant, &variant[2]);
619
620         } else {
621                 res = snprintf(buf, buf_size, "nRF51xxx (HWID 0x%08" PRIx32 ")",
622                                 chip->hwid);
623         }
624         if (res <= 0)
625                 return ERROR_FAIL;
626
627         snprintf(buf + res, buf_size - res, " %ukB Flash, %ukB RAM",
628                                 chip->flash_size_kb, chip->ram_size_kb);
629         return ERROR_OK;
630 }
631
632 static int nrf5_read_ficr_info(struct nrf5_info *chip)
633 {
634         int res;
635         struct target *target = chip->target;
636
637         chip->ficr_info_valid = false;
638
639         res = target_read_u32(target, NRF5_FICR_INFO_PART, &chip->ficr_info.part);
640         if (res != ERROR_OK) {
641                 LOG_DEBUG("Couldn't read FICR INFO.PART register");
642                 return res;
643         }
644
645         uint32_t series = chip->ficr_info.part & 0xfffff000;
646         switch (series) {
647         case 0x51000:
648                 chip->features = NRF5_FEATURE_SERIES_51;
649                 break;
650
651         case 0x52000:
652                 chip->features = NRF5_FEATURE_SERIES_52;
653
654                 switch (chip->ficr_info.part) {
655                 case 0x52810:
656                 case 0x52832:
657                         chip->features |= NRF5_FEATURE_BPROT;
658                         break;
659
660                 case 0x52840:
661                         chip->features |= NRF5_FEATURE_ACL_PROT;
662                         break;
663                 }
664                 break;
665
666         default:
667                 LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
668                                 PRIx32, chip->ficr_info.part);
669                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
670         }
671
672         /* Now we know the device has FICR INFO filled by something relevant:
673          * Although it is not documented, the tested nRF51 rev 3 devices
674          * have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
675          * VARIANT and PACKAGE coding is unknown for a nRF51 device.
676          * nRF52 devices have FICR INFO documented and always filled. */
677
678         res = target_read_u32(target, NRF5_FICR_INFO_VARIANT, &chip->ficr_info.variant);
679         if (res != ERROR_OK)
680                 return res;
681
682         res = target_read_u32(target, NRF5_FICR_INFO_PACKAGE, &chip->ficr_info.package);
683         if (res != ERROR_OK)
684                 return res;
685
686         res = target_read_u32(target, NRF5_FICR_INFO_RAM, &chip->ficr_info.ram);
687         if (res != ERROR_OK)
688                 return res;
689
690         res = target_read_u32(target, NRF5_FICR_INFO_FLASH, &chip->ficr_info.flash);
691         if (res != ERROR_OK)
692                 return res;
693
694         chip->ficr_info_valid = true;
695         return ERROR_OK;
696 }
697
698 static int nrf5_get_ram_size(struct target *target, uint32_t *ram_size)
699 {
700         int res;
701
702         *ram_size = 0;
703
704         uint32_t numramblock;
705         res = target_read_u32(target, NRF51_FICR_NUMRAMBLOCK, &numramblock);
706         if (res != ERROR_OK) {
707                 LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
708                 return res;
709         }
710
711         if (numramblock < 1 || numramblock > 4) {
712                 LOG_DEBUG("FICR NUMRAMBLOCK strange value %" PRIx32, numramblock);
713                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
714         }
715
716         for (unsigned int i = 0; i < numramblock; i++) {
717                 uint32_t sizeramblock;
718                 res = target_read_u32(target, NRF51_FICR_SIZERAMBLOCK0 + sizeof(uint32_t)*i, &sizeramblock);
719                 if (res != ERROR_OK) {
720                         LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
721                         return res;
722                 }
723                 if (sizeramblock < 1024 || sizeramblock > 65536)
724                         LOG_DEBUG("FICR SIZERAMBLOCK strange value %" PRIx32, sizeramblock);
725                 else
726                         *ram_size += sizeramblock;
727         }
728         return res;
729 }
730
731 static int nrf5_probe(struct flash_bank *bank)
732 {
733         int res;
734         struct nrf5_bank *nbank = bank->driver_priv;
735         struct nrf5_info *chip = nbank->chip;
736         struct target *target = chip->target;
737
738         res = target_read_u32(target, NRF5_FICR_CONFIGID, &chip->hwid);
739         if (res != ERROR_OK) {
740                 LOG_ERROR("Couldn't read CONFIGID register");
741                 return res;
742         }
743
744         chip->hwid &= 0xFFFF;   /* HWID is stored in the lower two
745                          * bytes of the CONFIGID register */
746
747         /* guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
748         chip->features = NRF5_FEATURE_SERIES_51;
749
750         /* Don't bail out on error for the case that some old engineering
751          * sample has FICR INFO registers unreadable. We can proceed anyway. */
752         (void)nrf5_read_ficr_info(chip);
753
754         chip->spec = NULL;
755         for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
756                 if (chip->hwid == nrf5_known_devices_table[i].hwid) {
757                         chip->spec = &nrf5_known_devices_table[i];
758                         chip->features = chip->spec->features;
759                         break;
760                 }
761         }
762
763         if (chip->spec && chip->ficr_info_valid) {
764                 /* check if HWID table gives the same part as FICR INFO */
765                 if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
766                         LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
767                                                 PRIx32, chip->hwid, chip->ficr_info.part);
768         }
769
770         if (chip->ficr_info_valid) {
771                 chip->ram_size_kb = chip->ficr_info.ram;
772         } else {
773                 uint32_t ram_size;
774                 nrf5_get_ram_size(target, &ram_size);
775                 chip->ram_size_kb = ram_size / 1024;
776         }
777
778         /* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
779         uint32_t flash_page_size;
780         res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
781                                 &flash_page_size);
782         if (res != ERROR_OK) {
783                 LOG_ERROR("Couldn't read code page size");
784                 return res;
785         }
786
787         /* Note the register name is misleading,
788          * NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
789         uint32_t num_sectors;
790         res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
791         if (res != ERROR_OK) {
792                 LOG_ERROR("Couldn't read code memory size");
793                 return res;
794         }
795
796         chip->flash_size_kb = num_sectors * flash_page_size / 1024;
797
798         if (!chip->bank[0].probed && !chip->bank[1].probed) {
799                 char buf[80];
800                 nrf5_info(bank, buf, sizeof(buf));
801                 if (!chip->spec && !chip->ficr_info_valid) {
802                         LOG_INFO("Unknown device: %s", buf);
803                 } else {
804                         LOG_INFO("%s", buf);
805                 }
806         }
807
808         free(bank->sectors);
809
810         if (bank->base == NRF5_FLASH_BASE) {
811                 /* Sanity check */
812                 if (chip->spec && chip->flash_size_kb != chip->spec->flash_size_kb)
813                         LOG_WARNING("Chip's reported Flash capacity does not match expected one");
814                 if (chip->ficr_info_valid && chip->flash_size_kb != chip->ficr_info.flash)
815                         LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
816
817                 bank->num_sectors = num_sectors;
818                 bank->size = num_sectors * flash_page_size;
819
820                 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
821                 if (!bank->sectors)
822                         return ERROR_FAIL;
823
824                 nrf5_protect_check(bank);
825
826                 chip->bank[0].probed = true;
827
828         } else {
829                 bank->num_sectors = 1;
830                 bank->size = flash_page_size;
831
832                 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
833                 if (!bank->sectors)
834                         return ERROR_FAIL;
835
836                 bank->sectors[0].is_protected = 0;
837
838                 chip->bank[1].probed = true;
839         }
840
841         return ERROR_OK;
842 }
843
844 static int nrf5_auto_probe(struct flash_bank *bank)
845 {
846         int probed = nrf5_bank_is_probed(bank);
847
848         if (probed < 0)
849                 return probed;
850         else if (probed)
851                 return ERROR_OK;
852         else
853                 return nrf5_probe(bank);
854 }
855
856 static int nrf5_erase_all(struct nrf5_info *chip)
857 {
858         LOG_DEBUG("Erasing all non-volatile memory");
859         return nrf5_nvmc_generic_erase(chip,
860                                         NRF5_NVMC_ERASEALL,
861                                         0x00000001);
862 }
863
864 static int nrf5_erase_page(struct flash_bank *bank,
865                                                         struct nrf5_info *chip,
866                                                         struct flash_sector *sector)
867 {
868         int res;
869
870         LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
871
872         if (bank->base == NRF5_UICR_BASE) {
873                 if (chip->features & NRF5_FEATURE_SERIES_51) {
874                         uint32_t ppfc;
875                         res = target_read_u32(chip->target, NRF51_FICR_PPFC,
876                                       &ppfc);
877                         if (res != ERROR_OK) {
878                                 LOG_ERROR("Couldn't read PPFC register");
879                                 return res;
880                         }
881
882                         if ((ppfc & 0xFF) == 0xFF) {
883                                 /* We can't erase the UICR.  Double-check to
884                                    see if it's already erased before complaining. */
885                                 default_flash_blank_check(bank);
886                                 if (sector->is_erased == 1)
887                                         return ERROR_OK;
888
889                                 LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
890                                 return ERROR_FAIL;
891                         }
892                 }
893
894                 res = nrf5_nvmc_generic_erase(chip,
895                                                NRF5_NVMC_ERASEUICR,
896                                                0x00000001);
897
898
899         } else {
900                 res = nrf5_nvmc_generic_erase(chip,
901                                                NRF5_NVMC_ERASEPAGE,
902                                                sector->offset);
903         }
904
905         return res;
906 }
907
908 /* Start a low level flash write for the specified region */
909 static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
910 {
911         struct target *target = chip->target;
912         uint32_t buffer_size = 8192;
913         struct working_area *write_algorithm;
914         struct working_area *source;
915         struct reg_param reg_params[6];
916         struct armv7m_algorithm armv7m_info;
917         int retval = ERROR_OK;
918
919         static const uint8_t nrf5_flash_write_code[] = {
920 #include "../../../contrib/loaders/flash/nrf5/nrf5.inc"
921         };
922
923         LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
924         assert(bytes % 4 == 0);
925
926         /* allocate working area with flash programming code */
927         if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
928                         &write_algorithm) != ERROR_OK) {
929                 LOG_WARNING("no working area available, falling back to slow memory writes");
930
931                 for (; bytes > 0; bytes -= 4) {
932                         retval = target_write_memory(target, address, 4, 1, buffer);
933                         if (retval != ERROR_OK)
934                                 return retval;
935
936                         retval = nrf5_wait_for_nvmc(chip);
937                         if (retval != ERROR_OK)
938                                 return retval;
939
940                         address += 4;
941                         buffer += 4;
942                 }
943
944                 return ERROR_OK;
945         }
946
947         retval = target_write_buffer(target, write_algorithm->address,
948                                 sizeof(nrf5_flash_write_code),
949                                 nrf5_flash_write_code);
950         if (retval != ERROR_OK)
951                 return retval;
952
953         /* memory buffer */
954         while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
955                 buffer_size /= 2;
956                 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
957                 if (buffer_size <= 256) {
958                         /* free working area, write algorithm already allocated */
959                         target_free_working_area(target, write_algorithm);
960
961                         LOG_WARNING("No large enough working area available, can't do block memory writes");
962                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
963                 }
964         }
965
966         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
967         armv7m_info.core_mode = ARM_MODE_THREAD;
968
969         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
970         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer start */
971         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer end */
972         init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
973         init_reg_param(&reg_params[4], "r6", 32, PARAM_OUT);    /* watchdog refresh value */
974         init_reg_param(&reg_params[5], "r7", 32, PARAM_OUT);    /* watchdog refresh register address */
975
976         buf_set_u32(reg_params[0].value, 0, 32, bytes);
977         buf_set_u32(reg_params[1].value, 0, 32, source->address);
978         buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
979         buf_set_u32(reg_params[3].value, 0, 32, address);
980         buf_set_u32(reg_params[4].value, 0, 32, WATCHDOG_REFRESH_VALUE);
981         buf_set_u32(reg_params[5].value, 0, 32, WATCHDOG_REFRESH_REGISTER);
982
983         retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
984                         0, NULL,
985                         ARRAY_SIZE(reg_params), reg_params,
986                         source->address, source->size,
987                         write_algorithm->address, 0,
988                         &armv7m_info);
989
990         target_free_working_area(target, source);
991         target_free_working_area(target, write_algorithm);
992
993         destroy_reg_param(&reg_params[0]);
994         destroy_reg_param(&reg_params[1]);
995         destroy_reg_param(&reg_params[2]);
996         destroy_reg_param(&reg_params[3]);
997         destroy_reg_param(&reg_params[4]);
998         destroy_reg_param(&reg_params[5]);
999
1000         return retval;
1001 }
1002
1003 static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
1004                                         uint32_t offset, uint32_t count)
1005 {
1006         struct nrf5_info *chip;
1007
1008         int res = nrf5_get_probed_chip_if_halted(bank, &chip);
1009         if (res != ERROR_OK)
1010                 return res;
1011
1012         assert(offset % 4 == 0);
1013         assert(count % 4 == 0);
1014
1015         res = nrf5_nvmc_write_enable(chip);
1016         if (res != ERROR_OK)
1017                 goto error;
1018
1019         res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
1020         if (res != ERROR_OK)
1021                 goto error;
1022
1023         return nrf5_nvmc_read_only(chip);
1024
1025 error:
1026         nrf5_nvmc_read_only(chip);
1027         LOG_ERROR("Failed to write to nrf5 flash");
1028         return res;
1029 }
1030
1031 static int nrf5_erase(struct flash_bank *bank, unsigned int first,
1032                 unsigned int last)
1033 {
1034         int res;
1035         struct nrf5_info *chip;
1036
1037         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1038         if (res != ERROR_OK)
1039                 return res;
1040
1041         /* For each sector to be erased */
1042         for (unsigned int s = first; s <= last && res == ERROR_OK; s++)
1043                 res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
1044
1045         return res;
1046 }
1047
1048 static void nrf5_free_driver_priv(struct flash_bank *bank)
1049 {
1050         struct nrf5_bank *nbank = bank->driver_priv;
1051         struct nrf5_info *chip = nbank->chip;
1052         if (chip == NULL)
1053                 return;
1054
1055         chip->refcount--;
1056         if (chip->refcount == 0) {
1057                 free(chip);
1058                 bank->driver_priv = NULL;
1059         }
1060 }
1061
1062 static struct nrf5_info *nrf5_get_chip(struct target *target)
1063 {
1064         struct flash_bank *bank_iter;
1065
1066         /* iterate over nrf5 banks of same target */
1067         for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
1068                 if (bank_iter->driver != &nrf5_flash && bank_iter->driver != &nrf51_flash)
1069                         continue;
1070
1071                 if (bank_iter->target != target)
1072                         continue;
1073
1074                 struct nrf5_bank *nbank = bank_iter->driver_priv;
1075                 if (!nbank)
1076                         continue;
1077
1078                 if (nbank->chip)
1079                         return nbank->chip;
1080         }
1081         return NULL;
1082 }
1083
1084 FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
1085 {
1086         struct nrf5_info *chip;
1087         struct nrf5_bank *nbank = NULL;
1088
1089         switch (bank->base) {
1090         case NRF5_FLASH_BASE:
1091         case NRF5_UICR_BASE:
1092                 break;
1093         default:
1094                 LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
1095                 return ERROR_FAIL;
1096         }
1097
1098         chip = nrf5_get_chip(bank->target);
1099         if (!chip) {
1100                 /* Create a new chip */
1101                 chip = calloc(1, sizeof(*chip));
1102                 if (!chip)
1103                         return ERROR_FAIL;
1104
1105                 chip->target = bank->target;
1106         }
1107
1108         switch (bank->base) {
1109         case NRF5_FLASH_BASE:
1110                 nbank = &chip->bank[0];
1111                 break;
1112         case NRF5_UICR_BASE:
1113                 nbank = &chip->bank[1];
1114                 break;
1115         }
1116         assert(nbank != NULL);
1117
1118         chip->refcount++;
1119         nbank->chip = chip;
1120         nbank->probed = false;
1121         bank->driver_priv = nbank;
1122         bank->write_start_alignment = bank->write_end_alignment = 4;
1123
1124         return ERROR_OK;
1125 }
1126
1127 COMMAND_HANDLER(nrf5_handle_mass_erase_command)
1128 {
1129         int res;
1130         struct flash_bank *bank = NULL;
1131         struct target *target = get_current_target(CMD_CTX);
1132
1133         res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1134         if (res != ERROR_OK)
1135                 return res;
1136
1137         assert(bank != NULL);
1138
1139         struct nrf5_info *chip;
1140
1141         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1142         if (res != ERROR_OK)
1143                 return res;
1144
1145         if (chip->features & NRF5_FEATURE_SERIES_51) {
1146                 uint32_t ppfc;
1147                 res = target_read_u32(target, NRF51_FICR_PPFC,
1148                               &ppfc);
1149                 if (res != ERROR_OK) {
1150                         LOG_ERROR("Couldn't read PPFC register");
1151                         return res;
1152                 }
1153
1154                 if ((ppfc & 0xFF) == 0x00) {
1155                         LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
1156                                   "mass erase command won't work.");
1157                         return ERROR_FAIL;
1158                 }
1159         }
1160
1161         res = nrf5_erase_all(chip);
1162         if (res != ERROR_OK) {
1163                 LOG_ERROR("Failed to erase the chip");
1164                 nrf5_protect_check(bank);
1165                 return res;
1166         }
1167
1168         res = nrf5_protect_check(bank);
1169         if (res != ERROR_OK) {
1170                 LOG_ERROR("Failed to check chip's write protection");
1171                 return res;
1172         }
1173
1174         res = get_flash_bank_by_addr(target, NRF5_UICR_BASE, true, &bank);
1175         if (res != ERROR_OK)
1176                 return res;
1177
1178         return ERROR_OK;
1179 }
1180
1181 COMMAND_HANDLER(nrf5_handle_info_command)
1182 {
1183         int res;
1184         struct flash_bank *bank = NULL;
1185         struct target *target = get_current_target(CMD_CTX);
1186
1187         res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1188         if (res != ERROR_OK)
1189                 return res;
1190
1191         assert(bank != NULL);
1192
1193         struct nrf5_info *chip;
1194
1195         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1196         if (res != ERROR_OK)
1197                 return res;
1198
1199         static struct {
1200                 const uint32_t address;
1201                 uint32_t value;
1202         } ficr[] = {
1203                 { .address = NRF5_FICR_CODEPAGESIZE     },
1204                 { .address = NRF5_FICR_CODESIZE },
1205                 { .address = NRF51_FICR_CLENR0          },
1206                 { .address = NRF51_FICR_PPFC            },
1207                 { .address = NRF51_FICR_NUMRAMBLOCK     },
1208                 { .address = NRF51_FICR_SIZERAMBLOCK0   },
1209                 { .address = NRF51_FICR_SIZERAMBLOCK1   },
1210                 { .address = NRF51_FICR_SIZERAMBLOCK2   },
1211                 { .address = NRF51_FICR_SIZERAMBLOCK3   },
1212                 { .address = NRF5_FICR_CONFIGID },
1213                 { .address = NRF5_FICR_DEVICEID0        },
1214                 { .address = NRF5_FICR_DEVICEID1        },
1215                 { .address = NRF5_FICR_ER0              },
1216                 { .address = NRF5_FICR_ER1              },
1217                 { .address = NRF5_FICR_ER2              },
1218                 { .address = NRF5_FICR_ER3              },
1219                 { .address = NRF5_FICR_IR0              },
1220                 { .address = NRF5_FICR_IR1              },
1221                 { .address = NRF5_FICR_IR2              },
1222                 { .address = NRF5_FICR_IR3              },
1223                 { .address = NRF5_FICR_DEVICEADDRTYPE   },
1224                 { .address = NRF5_FICR_DEVICEADDR0      },
1225                 { .address = NRF5_FICR_DEVICEADDR1      },
1226                 { .address = NRF51_FICR_OVERRIDEN       },
1227                 { .address = NRF51_FICR_NRF_1MBIT0      },
1228                 { .address = NRF51_FICR_NRF_1MBIT1      },
1229                 { .address = NRF51_FICR_NRF_1MBIT2      },
1230                 { .address = NRF51_FICR_NRF_1MBIT3      },
1231                 { .address = NRF51_FICR_NRF_1MBIT4      },
1232                 { .address = NRF51_FICR_BLE_1MBIT0      },
1233                 { .address = NRF51_FICR_BLE_1MBIT1      },
1234                 { .address = NRF51_FICR_BLE_1MBIT2      },
1235                 { .address = NRF51_FICR_BLE_1MBIT3      },
1236                 { .address = NRF51_FICR_BLE_1MBIT4      },
1237         }, uicr[] = {
1238                 { .address = NRF51_UICR_CLENR0,         },
1239                 { .address = NRF51_UICR_RBPCONF         },
1240                 { .address = NRF51_UICR_XTALFREQ        },
1241                 { .address = NRF51_UICR_FWID            },
1242         };
1243
1244         for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
1245                 res = target_read_u32(chip->target, ficr[i].address,
1246                                       &ficr[i].value);
1247                 if (res != ERROR_OK) {
1248                         LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
1249                         return res;
1250                 }
1251         }
1252
1253         for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
1254                 res = target_read_u32(chip->target, uicr[i].address,
1255                                       &uicr[i].value);
1256                 if (res != ERROR_OK) {
1257                         LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
1258                         return res;
1259                 }
1260         }
1261
1262         command_print(CMD,
1263                  "\n[factory information control block]\n\n"
1264                  "code page size: %"PRIu32"B\n"
1265                  "code memory size: %"PRIu32"kB\n"
1266                  "code region 0 size: %"PRIu32"kB\n"
1267                  "pre-programmed code: %s\n"
1268                  "number of ram blocks: %"PRIu32"\n"
1269                  "ram block 0 size: %"PRIu32"B\n"
1270                  "ram block 1 size: %"PRIu32"B\n"
1271                  "ram block 2 size: %"PRIu32"B\n"
1272                  "ram block 3 size: %"PRIu32 "B\n"
1273                  "config id: %" PRIx32 "\n"
1274                  "device id: 0x%"PRIx32"%08"PRIx32"\n"
1275                  "encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1276                  "identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1277                  "device address type: 0x%"PRIx32"\n"
1278                  "device address: 0x%"PRIx32"%08"PRIx32"\n"
1279                  "override enable: %"PRIx32"\n"
1280                  "NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1281                  "BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1282                  "\n[user information control block]\n\n"
1283                  "code region 0 size: %"PRIu32"kB\n"
1284                  "read back protection configuration: %"PRIx32"\n"
1285                  "reset value for XTALFREQ: %"PRIx32"\n"
1286                  "firmware id: 0x%04"PRIx32,
1287                  ficr[0].value,
1288                  (ficr[1].value * ficr[0].value) / 1024,
1289                  (ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
1290                  ((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
1291                  ficr[4].value,
1292                  ficr[5].value,
1293                  (ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
1294                  (ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
1295                  (ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
1296                  ficr[9].value,
1297                  ficr[10].value, ficr[11].value,
1298                  ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
1299                  ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
1300                  ficr[20].value,
1301                  ficr[21].value, ficr[22].value,
1302                  ficr[23].value,
1303                  ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
1304                  ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
1305                  (uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
1306                  uicr[1].value & 0xFFFF,
1307                  uicr[2].value & 0xFF,
1308                  uicr[3].value & 0xFFFF);
1309
1310         return ERROR_OK;
1311 }
1312
1313 static const struct command_registration nrf5_exec_command_handlers[] = {
1314         {
1315                 .name           = "mass_erase",
1316                 .handler        = nrf5_handle_mass_erase_command,
1317                 .mode           = COMMAND_EXEC,
1318                 .help           = "Erase all flash contents of the chip.",
1319                 .usage          = "",
1320         },
1321         {
1322                 .name           = "info",
1323                 .handler        = nrf5_handle_info_command,
1324                 .mode           = COMMAND_EXEC,
1325                 .help           = "Show FICR and UICR info.",
1326                 .usage          = "",
1327         },
1328         COMMAND_REGISTRATION_DONE
1329 };
1330
1331 static const struct command_registration nrf5_command_handlers[] = {
1332         {
1333                 .name   = "nrf5",
1334                 .mode   = COMMAND_ANY,
1335                 .help   = "nrf5 flash command group",
1336                 .usage  = "",
1337                 .chain  = nrf5_exec_command_handlers,
1338         },
1339         {
1340                 .name   = "nrf51",
1341                 .mode   = COMMAND_ANY,
1342                 .help   = "nrf51 flash command group",
1343                 .usage  = "",
1344                 .chain  = nrf5_exec_command_handlers,
1345         },
1346         COMMAND_REGISTRATION_DONE
1347 };
1348
1349 const struct flash_driver nrf5_flash = {
1350         .name                   = "nrf5",
1351         .commands               = nrf5_command_handlers,
1352         .flash_bank_command     = nrf5_flash_bank_command,
1353         .info                   = nrf5_info,
1354         .erase                  = nrf5_erase,
1355         .protect                = nrf5_protect,
1356         .write                  = nrf5_write,
1357         .read                   = default_flash_read,
1358         .probe                  = nrf5_probe,
1359         .auto_probe             = nrf5_auto_probe,
1360         .erase_check            = default_flash_blank_check,
1361         .protect_check          = nrf5_protect_check,
1362         .free_driver_priv       = nrf5_free_driver_priv,
1363 };
1364
1365 /* We need to retain the flash-driver name as well as the commands
1366  * for backwards compatability */
1367 const struct flash_driver nrf51_flash = {
1368         .name                   = "nrf51",
1369         .commands               = nrf5_command_handlers,
1370         .flash_bank_command     = nrf5_flash_bank_command,
1371         .info                   = nrf5_info,
1372         .erase                  = nrf5_erase,
1373         .protect                = nrf5_protect,
1374         .write                  = nrf5_write,
1375         .read                   = default_flash_read,
1376         .probe                  = nrf5_probe,
1377         .auto_probe             = nrf5_auto_probe,
1378         .erase_check            = default_flash_blank_check,
1379         .protect_check          = nrf5_protect_check,
1380         .free_driver_priv       = nrf5_free_driver_priv,
1381 };