nrf5: Refresh the watchdog while flashing
[fw/openocd] / src / flash / nor / nrf5.c
1 /***************************************************************************
2  *   Copyright (C) 2013 Synapse Product Development                        *
3  *   Andrey Smirnov <andrew.smironv@gmail.com>                             *
4  *   Angus Gratton <gus@projectgus.com>                                    *
5  *   Erdem U. Altunyurt <spamjunkeater@gmail.com>                          *
6  *                                                                         *
7  *   This program is free software; you can redistribute it and/or modify  *
8  *   it under the terms of the GNU General Public License as published by  *
9  *   the Free Software Foundation; either version 2 of the License, or     *
10  *   (at your option) any later version.                                   *
11  *                                                                         *
12  *   This program is distributed in the hope that it will be useful,       *
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
15  *   GNU General Public License for more details.                          *
16  *                                                                         *
17  *   You should have received a copy of the GNU General Public License     *
18  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
19  ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "imp.h"
26 #include <target/algorithm.h>
27 #include <target/armv7m.h>
28 #include <helper/types.h>
29 #include <helper/time_support.h>
30
31 /* Both those values are constant across the current spectrum ofr nRF5 devices */
32 #define WATCHDOG_REFRESH_REGISTER       0x40010600
33 #define WATCHDOG_REFRESH_VALUE          0x6e524635
34
35 enum {
36         NRF5_FLASH_BASE = 0x00000000,
37 };
38
39 enum nrf5_ficr_registers {
40         NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
41
42 #define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
43
44         NRF5_FICR_CODEPAGESIZE          = NRF5_FICR_REG(0x010),
45         NRF5_FICR_CODESIZE              = NRF5_FICR_REG(0x014),
46
47         NRF51_FICR_CLENR0               = NRF5_FICR_REG(0x028),
48         NRF51_FICR_PPFC                 = NRF5_FICR_REG(0x02C),
49         NRF51_FICR_NUMRAMBLOCK          = NRF5_FICR_REG(0x034),
50         NRF51_FICR_SIZERAMBLOCK0        = NRF5_FICR_REG(0x038),
51         NRF51_FICR_SIZERAMBLOCK1        = NRF5_FICR_REG(0x03C),
52         NRF51_FICR_SIZERAMBLOCK2        = NRF5_FICR_REG(0x040),
53         NRF51_FICR_SIZERAMBLOCK3        = NRF5_FICR_REG(0x044),
54
55         NRF5_FICR_CONFIGID              = NRF5_FICR_REG(0x05C),
56         NRF5_FICR_DEVICEID0             = NRF5_FICR_REG(0x060),
57         NRF5_FICR_DEVICEID1             = NRF5_FICR_REG(0x064),
58         NRF5_FICR_ER0                   = NRF5_FICR_REG(0x080),
59         NRF5_FICR_ER1                   = NRF5_FICR_REG(0x084),
60         NRF5_FICR_ER2                   = NRF5_FICR_REG(0x088),
61         NRF5_FICR_ER3                   = NRF5_FICR_REG(0x08C),
62         NRF5_FICR_IR0                   = NRF5_FICR_REG(0x090),
63         NRF5_FICR_IR1                   = NRF5_FICR_REG(0x094),
64         NRF5_FICR_IR2                   = NRF5_FICR_REG(0x098),
65         NRF5_FICR_IR3                   = NRF5_FICR_REG(0x09C),
66         NRF5_FICR_DEVICEADDRTYPE        = NRF5_FICR_REG(0x0A0),
67         NRF5_FICR_DEVICEADDR0           = NRF5_FICR_REG(0x0A4),
68         NRF5_FICR_DEVICEADDR1           = NRF5_FICR_REG(0x0A8),
69
70         NRF51_FICR_OVERRIDEN            = NRF5_FICR_REG(0x0AC),
71         NRF51_FICR_NRF_1MBIT0           = NRF5_FICR_REG(0x0B0),
72         NRF51_FICR_NRF_1MBIT1           = NRF5_FICR_REG(0x0B4),
73         NRF51_FICR_NRF_1MBIT2           = NRF5_FICR_REG(0x0B8),
74         NRF51_FICR_NRF_1MBIT3           = NRF5_FICR_REG(0x0BC),
75         NRF51_FICR_NRF_1MBIT4           = NRF5_FICR_REG(0x0C0),
76         NRF51_FICR_BLE_1MBIT0           = NRF5_FICR_REG(0x0EC),
77         NRF51_FICR_BLE_1MBIT1           = NRF5_FICR_REG(0x0F0),
78         NRF51_FICR_BLE_1MBIT2           = NRF5_FICR_REG(0x0F4),
79         NRF51_FICR_BLE_1MBIT3           = NRF5_FICR_REG(0x0F8),
80         NRF51_FICR_BLE_1MBIT4           = NRF5_FICR_REG(0x0FC),
81
82         /* Following registers are available on nRF52 and on nRF51 since rev 3 */
83         NRF5_FICR_INFO_PART                     = NRF5_FICR_REG(0x100),
84         NRF5_FICR_INFO_VARIANT          = NRF5_FICR_REG(0x104),
85         NRF5_FICR_INFO_PACKAGE          = NRF5_FICR_REG(0x108),
86         NRF5_FICR_INFO_RAM                      = NRF5_FICR_REG(0x10C),
87         NRF5_FICR_INFO_FLASH            = NRF5_FICR_REG(0x110),
88 };
89
90 enum nrf5_uicr_registers {
91         NRF5_UICR_BASE = 0x10001000, /* User Information
92                                        * Configuration Regsters */
93
94 #define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
95
96         NRF51_UICR_CLENR0       = NRF5_UICR_REG(0x000),
97         NRF51_UICR_RBPCONF      = NRF5_UICR_REG(0x004),
98         NRF51_UICR_XTALFREQ     = NRF5_UICR_REG(0x008),
99         NRF51_UICR_FWID         = NRF5_UICR_REG(0x010),
100 };
101
102 enum nrf5_nvmc_registers {
103         NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
104                                        * Controller Registers */
105
106 #define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
107
108         NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
109         NRF5_NVMC_CONFIG        = NRF5_NVMC_REG(0x504),
110         NRF5_NVMC_ERASEPAGE     = NRF5_NVMC_REG(0x508),
111         NRF5_NVMC_ERASEALL      = NRF5_NVMC_REG(0x50C),
112         NRF5_NVMC_ERASEUICR     = NRF5_NVMC_REG(0x514),
113
114         NRF5_BPROT_BASE = 0x40000000,
115 };
116
117 enum nrf5_nvmc_config_bits {
118         NRF5_NVMC_CONFIG_REN = 0x00,
119         NRF5_NVMC_CONFIG_WEN = 0x01,
120         NRF5_NVMC_CONFIG_EEN = 0x02,
121
122 };
123
124 struct nrf52_ficr_info {
125         uint32_t part;
126         uint32_t variant;
127         uint32_t package;
128         uint32_t ram;
129         uint32_t flash;
130 };
131
132 enum nrf5_features {
133         NRF5_FEATURE_SERIES_51  = 1 << 0,
134         NRF5_FEATURE_SERIES_52  = 1 << 1,
135         NRF5_FEATURE_BPROT              = 1 << 2,
136         NRF5_FEATURE_ACL_PROT   = 1 << 3,
137 };
138
139 struct nrf5_device_spec {
140         uint16_t hwid;
141         const char *part;
142         const char *variant;
143         const char *build_code;
144         unsigned int flash_size_kb;
145         enum nrf5_features features;
146 };
147
148 struct nrf5_info {
149         uint32_t refcount;
150
151         struct nrf5_bank {
152                 struct nrf5_info *chip;
153                 bool probed;
154         } bank[2];
155         struct target *target;
156
157         /* chip identification stored in nrf5_probe() for use in nrf5_info() */
158         bool ficr_info_valid;
159         struct nrf52_ficr_info ficr_info;
160         const struct nrf5_device_spec *spec;
161         uint32_t hwid;
162         enum nrf5_features features;
163         unsigned int flash_size_kb;
164         unsigned int ram_size_kb;
165 };
166
167 #define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
168 {                                                   \
169 .hwid          = (id),                              \
170 .part          = pt,                                \
171 .variant       = var,                               \
172 .build_code    = bcode,                             \
173 .flash_size_kb = (fsize),                           \
174 .features      = NRF5_FEATURE_SERIES_51,            \
175 }
176
177 #define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize, features) \
178 {                                                   \
179 .hwid          = (id),                              \
180 .part          = pt,                                \
181 .variant       = var,                               \
182 .build_code    = bcode,                             \
183 .flash_size_kb = (fsize),                           \
184 .features      = features,                          \
185 }
186
187 /* The known devices table below is derived from the "nRF5x series
188  * compatibility matrix" documents, which can be found in the "DocLib" of
189  * nordic:
190  *
191  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
192  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
193  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
194  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
195  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
196  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
197  *
198  * Up to date with Matrix v2.0, plus some additional HWIDs.
199  *
200  * The additional HWIDs apply where the build code in the matrix is
201  * shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
202  * for x==0, x!=0 means different (unspecified) HWIDs.
203  */
204 static const struct nrf5_device_spec nrf5_known_devices_table[] = {
205         /* nRF51822 Devices (IC rev 1). */
206         NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
207         NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA",    128),
208         NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0",    128),
209         NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA",    256),
210         NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0",    256),
211
212         /* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
213            with built-in jlink seem to use engineering samples not listed
214            in the nRF51 Series Compatibility Matrix V1.0. */
215         NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB",    256),
216
217         /* nRF51822 Devices (IC rev 2). */
218         NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0",   256),
219         NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0",   256),
220         NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0",    256),
221         NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2",    256),
222         NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3",    256),
223         NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0",    128),
224         NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0",   256),
225         NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0",   256),
226         NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00",   256),
227
228         /* nRF51822 Devices (IC rev 3). */
229         NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0",    256),
230         NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2",    256),
231         NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0",    128),
232         NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0",    256),
233         NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1",    256),
234         NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0",    128),
235         NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0",    256),
236         NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0",    256),
237         NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1",    256),
238
239         /* nRF51422 Devices (IC rev 1). */
240         NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA",    256),
241         NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0",    256),
242         NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A",   256),
243
244         /* nRF51422 Devices (IC rev 2). */
245         NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA",   256),
246         NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0",    256),
247         NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00",   128),
248         NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0",    256),
249
250         /* nRF51422 Devices (IC rev 3). */
251         NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0",    256),
252         NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0",    128),
253         NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0",    256),
254         NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1",    256),
255         NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0",    128),
256         NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0",    256),
257         NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0",    256),
258
259         /* The driver fully autodects nRF52 series devices by FICR INFO,
260          * no need for nRF52xxx HWIDs in this table */
261 #if 0
262         /* nRF52810 Devices */
263         NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0",    192,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
264         NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0",    192,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
265
266         /* nRF52832 Devices */
267         NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
268         NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
269         NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
270
271         /* nRF52840 Devices */
272         NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0",    1024, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_ACL_PROT),
273 #endif
274 };
275
276 struct nrf5_device_package {
277         uint32_t package;
278         const char *code;
279 };
280
281 /* Newer devices have FICR INFO.PACKAGE.
282  * This table converts its value to two character code */
283 static const struct nrf5_device_package nrf5_packages_table[] = {
284         { 0x2000, "QF" },
285         { 0x2001, "CH" },
286         { 0x2002, "CI" },
287         { 0x2005, "CK" },
288 };
289
290 const struct flash_driver nrf5_flash, nrf51_flash;
291
292 static int nrf5_bank_is_probed(struct flash_bank *bank)
293 {
294         struct nrf5_bank *nbank = bank->driver_priv;
295
296         assert(nbank != NULL);
297
298         return nbank->probed;
299 }
300 static int nrf5_probe(struct flash_bank *bank);
301
302 static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
303 {
304         if (bank->target->state != TARGET_HALTED) {
305                 LOG_ERROR("Target not halted");
306                 return ERROR_TARGET_NOT_HALTED;
307         }
308
309         struct nrf5_bank *nbank = bank->driver_priv;
310         *chip = nbank->chip;
311
312         int probed = nrf5_bank_is_probed(bank);
313         if (probed < 0)
314                 return probed;
315         else if (!probed)
316                 return nrf5_probe(bank);
317         else
318                 return ERROR_OK;
319 }
320
321 static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
322 {
323         uint32_t ready;
324         int res;
325         int timeout_ms = 340;
326         int64_t ts_start = timeval_ms();
327
328         do {
329                 res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
330                 if (res != ERROR_OK) {
331                         LOG_ERROR("Couldn't read NVMC_READY register");
332                         return res;
333                 }
334
335                 if (ready == 0x00000001)
336                         return ERROR_OK;
337
338                 keep_alive();
339
340         } while ((timeval_ms()-ts_start) < timeout_ms);
341
342         LOG_DEBUG("Timed out waiting for NVMC_READY");
343         return ERROR_FLASH_BUSY;
344 }
345
346 static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
347 {
348         int res;
349         res = target_write_u32(chip->target,
350                                NRF5_NVMC_CONFIG,
351                                NRF5_NVMC_CONFIG_EEN);
352
353         if (res != ERROR_OK) {
354                 LOG_ERROR("Failed to enable erase operation");
355                 return res;
356         }
357
358         /*
359           According to NVMC examples in Nordic SDK busy status must be
360           checked after writing to NVMC_CONFIG
361          */
362         res = nrf5_wait_for_nvmc(chip);
363         if (res != ERROR_OK)
364                 LOG_ERROR("Erase enable did not complete");
365
366         return res;
367 }
368
369 static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
370 {
371         int res;
372         res = target_write_u32(chip->target,
373                                NRF5_NVMC_CONFIG,
374                                NRF5_NVMC_CONFIG_WEN);
375
376         if (res != ERROR_OK) {
377                 LOG_ERROR("Failed to enable write operation");
378                 return res;
379         }
380
381         /*
382           According to NVMC examples in Nordic SDK busy status must be
383           checked after writing to NVMC_CONFIG
384          */
385         res = nrf5_wait_for_nvmc(chip);
386         if (res != ERROR_OK)
387                 LOG_ERROR("Write enable did not complete");
388
389         return res;
390 }
391
392 static int nrf5_nvmc_read_only(struct nrf5_info *chip)
393 {
394         int res;
395         res = target_write_u32(chip->target,
396                                NRF5_NVMC_CONFIG,
397                                NRF5_NVMC_CONFIG_REN);
398
399         if (res != ERROR_OK) {
400                 LOG_ERROR("Failed to enable read-only operation");
401                 return res;
402         }
403         /*
404           According to NVMC examples in Nordic SDK busy status must be
405           checked after writing to NVMC_CONFIG
406          */
407         res = nrf5_wait_for_nvmc(chip);
408         if (res != ERROR_OK)
409                 LOG_ERROR("Read only enable did not complete");
410
411         return res;
412 }
413
414 static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
415                                uint32_t erase_register, uint32_t erase_value)
416 {
417         int res;
418
419         res = nrf5_nvmc_erase_enable(chip);
420         if (res != ERROR_OK)
421                 goto error;
422
423         res = target_write_u32(chip->target,
424                                erase_register,
425                                erase_value);
426         if (res != ERROR_OK)
427                 goto set_read_only;
428
429         res = nrf5_wait_for_nvmc(chip);
430         if (res != ERROR_OK)
431                 goto set_read_only;
432
433         return nrf5_nvmc_read_only(chip);
434
435 set_read_only:
436         nrf5_nvmc_read_only(chip);
437 error:
438         LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
439                   erase_register, erase_value);
440         return ERROR_FAIL;
441 }
442
443 static int nrf5_protect_check_bprot(struct flash_bank *bank)
444 {
445         struct nrf5_bank *nbank = bank->driver_priv;
446         struct nrf5_info *chip = nbank->chip;
447
448         assert(chip != NULL);
449
450         static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
451         uint32_t bprot_reg = 0;
452         int res;
453
454         for (int i = 0; i < bank->num_sectors; i++) {
455                 unsigned int bit = i % 32;
456                 if (bit == 0) {
457                         unsigned int n_reg = i / 32;
458                         if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
459                                 break;
460
461                         res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
462                         if (res != ERROR_OK)
463                                 return res;
464                 }
465                 bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
466         }
467         return ERROR_OK;
468 }
469
470 static int nrf5_protect_check(struct flash_bank *bank)
471 {
472         int res;
473         uint32_t clenr0;
474
475         /* UICR cannot be write protected so just return early */
476         if (bank->base == NRF5_UICR_BASE)
477                 return ERROR_OK;
478
479         struct nrf5_bank *nbank = bank->driver_priv;
480         struct nrf5_info *chip = nbank->chip;
481
482         assert(chip != NULL);
483
484         if (chip->features & NRF5_FEATURE_BPROT)
485                 return nrf5_protect_check_bprot(bank);
486
487         if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
488                 LOG_WARNING("Flash protection of this nRF device is not supported");
489                 return ERROR_FLASH_OPER_UNSUPPORTED;
490         }
491
492         res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
493                               &clenr0);
494         if (res != ERROR_OK) {
495                 LOG_ERROR("Couldn't read code region 0 size[FICR]");
496                 return res;
497         }
498
499         if (clenr0 == 0xFFFFFFFF) {
500                 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
501                                       &clenr0);
502                 if (res != ERROR_OK) {
503                         LOG_ERROR("Couldn't read code region 0 size[UICR]");
504                         return res;
505                 }
506         }
507
508         for (int i = 0; i < bank->num_sectors; i++)
509                 bank->sectors[i].is_protected =
510                         clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
511
512         return ERROR_OK;
513 }
514
515 static int nrf5_protect(struct flash_bank *bank, int set, int first, int last)
516 {
517         int res;
518         uint32_t clenr0, ppfc;
519         struct nrf5_info *chip;
520
521         /* UICR cannot be write protected so just bail out early */
522         if (bank->base == NRF5_UICR_BASE)
523                 return ERROR_FAIL;
524
525         res = nrf5_get_probed_chip_if_halted(bank, &chip);
526         if (res != ERROR_OK)
527                 return res;
528
529         if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
530                 LOG_ERROR("Flash protection setting of this nRF device is not supported");
531                 return ERROR_FLASH_OPER_UNSUPPORTED;
532         }
533
534         if (first != 0) {
535                 LOG_ERROR("Code region 0 must start at the begining of the bank");
536                 return ERROR_FAIL;
537         }
538
539         res = target_read_u32(chip->target, NRF51_FICR_PPFC,
540                               &ppfc);
541         if (res != ERROR_OK) {
542                 LOG_ERROR("Couldn't read PPFC register");
543                 return res;
544         }
545
546         if ((ppfc & 0xFF) == 0x00) {
547                 LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
548                 return ERROR_FAIL;
549         }
550
551         res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
552                               &clenr0);
553         if (res != ERROR_OK) {
554                 LOG_ERROR("Couldn't read code region 0 size[UICR]");
555                 return res;
556         }
557
558         if (clenr0 == 0xFFFFFFFF) {
559                 res = target_write_u32(chip->target, NRF51_UICR_CLENR0,
560                                        clenr0);
561                 if (res != ERROR_OK) {
562                         LOG_ERROR("Couldn't write code region 0 size[UICR]");
563                         return res;
564                 }
565
566         } else {
567                 LOG_ERROR("You need to perform chip erase before changing the protection settings");
568         }
569
570         nrf5_protect_check(bank);
571
572         return ERROR_OK;
573 }
574
575 static bool nrf5_info_variant_to_str(uint32_t variant, char *bf)
576 {
577         uint8_t b[4];
578
579         h_u32_to_be(b, variant);
580         if (isalnum(b[0]) && isalnum(b[1]) && isalnum(b[2]) && isalnum(b[3])) {
581                 memcpy(bf, b, 4);
582                 bf[4] = 0;
583                 return true;
584         }
585
586         strcpy(bf, "xxxx");
587         return false;
588 }
589
590 static const char *nrf5_decode_info_package(uint32_t package)
591 {
592         for (size_t i = 0; i < ARRAY_SIZE(nrf5_packages_table); i++) {
593                 if (nrf5_packages_table[i].package == package)
594                         return nrf5_packages_table[i].code;
595         }
596         return "xx";
597 }
598
599 static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
600 {
601         struct nrf5_bank *nbank = bank->driver_priv;
602         struct nrf5_info *chip = nbank->chip;
603         int res;
604
605         if (chip->spec) {
606                 res = snprintf(buf, buf_size,
607                                 "nRF%s-%s(build code: %s)",
608                                 chip->spec->part, chip->spec->variant, chip->spec->build_code);
609
610         } else if (chip->ficr_info_valid) {
611                 char variant[5];
612                 nrf5_info_variant_to_str(chip->ficr_info.variant, variant);
613                 res = snprintf(buf, buf_size,
614                                 "nRF%" PRIx32 "-%s%.2s(build code: %s)",
615                                 chip->ficr_info.part,
616                                 nrf5_decode_info_package(chip->ficr_info.package),
617                                 variant, &variant[2]);
618
619         } else {
620                 res = snprintf(buf, buf_size, "nRF51xxx (HWID 0x%08" PRIx32 ")",
621                                 chip->hwid);
622         }
623         if (res <= 0)
624                 return ERROR_FAIL;
625
626         snprintf(buf + res, buf_size - res, " %ukB Flash, %ukB RAM",
627                                 chip->flash_size_kb, chip->ram_size_kb);
628         return ERROR_OK;
629 }
630
631 static int nrf5_read_ficr_info(struct nrf5_info *chip)
632 {
633         int res;
634         struct target *target = chip->target;
635
636         chip->ficr_info_valid = false;
637
638         res = target_read_u32(target, NRF5_FICR_INFO_PART, &chip->ficr_info.part);
639         if (res != ERROR_OK) {
640                 LOG_DEBUG("Couldn't read FICR INFO.PART register");
641                 return res;
642         }
643
644         uint32_t series = chip->ficr_info.part & 0xfffff000;
645         switch (series) {
646         case 0x51000:
647                 chip->features = NRF5_FEATURE_SERIES_51;
648                 break;
649
650         case 0x52000:
651                 chip->features = NRF5_FEATURE_SERIES_52;
652
653                 switch (chip->ficr_info.part) {
654                 case 0x52810:
655                 case 0x52832:
656                         chip->features |= NRF5_FEATURE_BPROT;
657                         break;
658
659                 case 0x52840:
660                         chip->features |= NRF5_FEATURE_ACL_PROT;
661                         break;
662                 }
663                 break;
664
665         default:
666                 LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
667                                 PRIx32, chip->ficr_info.part);
668                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
669         }
670
671         /* Now we know the device has FICR INFO filled by something relevant:
672          * Although it is not documented, the tested nRF51 rev 3 devices
673          * have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
674          * VARIANT and PACKAGE coding is unknown for a nRF51 device.
675          * nRF52 devices have FICR INFO documented and always filled. */
676
677         res = target_read_u32(target, NRF5_FICR_INFO_VARIANT, &chip->ficr_info.variant);
678         if (res != ERROR_OK)
679                 return res;
680
681         res = target_read_u32(target, NRF5_FICR_INFO_PACKAGE, &chip->ficr_info.package);
682         if (res != ERROR_OK)
683                 return res;
684
685         res = target_read_u32(target, NRF5_FICR_INFO_RAM, &chip->ficr_info.ram);
686         if (res != ERROR_OK)
687                 return res;
688
689         res = target_read_u32(target, NRF5_FICR_INFO_FLASH, &chip->ficr_info.flash);
690         if (res != ERROR_OK)
691                 return res;
692
693         chip->ficr_info_valid = true;
694         return ERROR_OK;
695 }
696
697 static int nrf5_get_ram_size(struct target *target, uint32_t *ram_size)
698 {
699         int res;
700
701         *ram_size = 0;
702
703         uint32_t numramblock;
704         res = target_read_u32(target, NRF51_FICR_NUMRAMBLOCK, &numramblock);
705         if (res != ERROR_OK) {
706                 LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
707                 return res;
708         }
709
710         if (numramblock < 1 || numramblock > 4) {
711                 LOG_DEBUG("FICR NUMRAMBLOCK strange value %" PRIx32, numramblock);
712                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
713         }
714
715         for (unsigned int i = 0; i < numramblock; i++) {
716                 uint32_t sizeramblock;
717                 res = target_read_u32(target, NRF51_FICR_SIZERAMBLOCK0 + sizeof(uint32_t)*i, &sizeramblock);
718                 if (res != ERROR_OK) {
719                         LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
720                         return res;
721                 }
722                 if (sizeramblock < 1024 || sizeramblock > 65536)
723                         LOG_DEBUG("FICR SIZERAMBLOCK strange value %" PRIx32, sizeramblock);
724                 else
725                         *ram_size += sizeramblock;
726         }
727         return res;
728 }
729
730 static int nrf5_probe(struct flash_bank *bank)
731 {
732         int res;
733         struct nrf5_bank *nbank = bank->driver_priv;
734         struct nrf5_info *chip = nbank->chip;
735         struct target *target = chip->target;
736
737         res = target_read_u32(target, NRF5_FICR_CONFIGID, &chip->hwid);
738         if (res != ERROR_OK) {
739                 LOG_ERROR("Couldn't read CONFIGID register");
740                 return res;
741         }
742
743         chip->hwid &= 0xFFFF;   /* HWID is stored in the lower two
744                          * bytes of the CONFIGID register */
745
746         /* guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
747         chip->features = NRF5_FEATURE_SERIES_51;
748
749         /* Don't bail out on error for the case that some old engineering
750          * sample has FICR INFO registers unreadable. We can proceed anyway. */
751         (void)nrf5_read_ficr_info(chip);
752
753         chip->spec = NULL;
754         for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
755                 if (chip->hwid == nrf5_known_devices_table[i].hwid) {
756                         chip->spec = &nrf5_known_devices_table[i];
757                         chip->features = chip->spec->features;
758                         break;
759                 }
760         }
761
762         if (chip->spec && chip->ficr_info_valid) {
763                 /* check if HWID table gives the same part as FICR INFO */
764                 if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
765                         LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
766                                                 PRIx32, chip->hwid, chip->ficr_info.part);
767         }
768
769         if (chip->ficr_info_valid) {
770                 chip->ram_size_kb = chip->ficr_info.ram;
771         } else {
772                 uint32_t ram_size;
773                 nrf5_get_ram_size(target, &ram_size);
774                 chip->ram_size_kb = ram_size / 1024;
775         }
776
777         /* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
778         uint32_t flash_page_size;
779         res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
780                                 &flash_page_size);
781         if (res != ERROR_OK) {
782                 LOG_ERROR("Couldn't read code page size");
783                 return res;
784         }
785
786         /* Note the register name is misleading,
787          * NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
788         uint32_t num_sectors;
789         res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
790         if (res != ERROR_OK) {
791                 LOG_ERROR("Couldn't read code memory size");
792                 return res;
793         }
794
795         chip->flash_size_kb = num_sectors * flash_page_size / 1024;
796
797         if (!chip->bank[0].probed && !chip->bank[1].probed) {
798                 char buf[80];
799                 nrf5_info(bank, buf, sizeof(buf));
800                 if (!chip->spec && !chip->ficr_info_valid) {
801                         LOG_INFO("Unknown device: %s", buf);
802                 } else {
803                         LOG_INFO("%s", buf);
804                 }
805         }
806
807         free(bank->sectors);
808
809         if (bank->base == NRF5_FLASH_BASE) {
810                 /* Sanity check */
811                 if (chip->spec && chip->flash_size_kb != chip->spec->flash_size_kb)
812                         LOG_WARNING("Chip's reported Flash capacity does not match expected one");
813                 if (chip->ficr_info_valid && chip->flash_size_kb != chip->ficr_info.flash)
814                         LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
815
816                 bank->num_sectors = num_sectors;
817                 bank->size = num_sectors * flash_page_size;
818
819                 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
820                 if (!bank->sectors)
821                         return ERROR_FAIL;
822
823                 nrf5_protect_check(bank);
824
825                 chip->bank[0].probed = true;
826
827         } else {
828                 bank->num_sectors = 1;
829                 bank->size = flash_page_size;
830
831                 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
832                 if (!bank->sectors)
833                         return ERROR_FAIL;
834
835                 bank->sectors[0].is_protected = 0;
836
837                 chip->bank[1].probed = true;
838         }
839
840         return ERROR_OK;
841 }
842
843 static int nrf5_auto_probe(struct flash_bank *bank)
844 {
845         int probed = nrf5_bank_is_probed(bank);
846
847         if (probed < 0)
848                 return probed;
849         else if (probed)
850                 return ERROR_OK;
851         else
852                 return nrf5_probe(bank);
853 }
854
855 static int nrf5_erase_all(struct nrf5_info *chip)
856 {
857         LOG_DEBUG("Erasing all non-volatile memory");
858         return nrf5_nvmc_generic_erase(chip,
859                                         NRF5_NVMC_ERASEALL,
860                                         0x00000001);
861 }
862
863 static int nrf5_erase_page(struct flash_bank *bank,
864                                                         struct nrf5_info *chip,
865                                                         struct flash_sector *sector)
866 {
867         int res;
868
869         LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
870
871         if (bank->base == NRF5_UICR_BASE) {
872                 if (chip->features & NRF5_FEATURE_SERIES_51) {
873                         uint32_t ppfc;
874                         res = target_read_u32(chip->target, NRF51_FICR_PPFC,
875                                       &ppfc);
876                         if (res != ERROR_OK) {
877                                 LOG_ERROR("Couldn't read PPFC register");
878                                 return res;
879                         }
880
881                         if ((ppfc & 0xFF) == 0xFF) {
882                                 /* We can't erase the UICR.  Double-check to
883                                    see if it's already erased before complaining. */
884                                 default_flash_blank_check(bank);
885                                 if (sector->is_erased == 1)
886                                         return ERROR_OK;
887
888                                 LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
889                                 return ERROR_FAIL;
890                         }
891                 }
892
893                 res = nrf5_nvmc_generic_erase(chip,
894                                                NRF5_NVMC_ERASEUICR,
895                                                0x00000001);
896
897
898         } else {
899                 res = nrf5_nvmc_generic_erase(chip,
900                                                NRF5_NVMC_ERASEPAGE,
901                                                sector->offset);
902         }
903
904         return res;
905 }
906
907 /* Start a low level flash write for the specified region */
908 static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
909 {
910         struct target *target = chip->target;
911         uint32_t buffer_size = 8192;
912         struct working_area *write_algorithm;
913         struct working_area *source;
914         struct reg_param reg_params[6];
915         struct armv7m_algorithm armv7m_info;
916         int retval = ERROR_OK;
917
918         static const uint8_t nrf5_flash_write_code[] = {
919 #include "../../../contrib/loaders/flash/nrf5/nrf5.inc"
920         };
921
922         LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
923         assert(bytes % 4 == 0);
924
925         /* allocate working area with flash programming code */
926         if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
927                         &write_algorithm) != ERROR_OK) {
928                 LOG_WARNING("no working area available, falling back to slow memory writes");
929
930                 for (; bytes > 0; bytes -= 4) {
931                         retval = target_write_memory(target, address, 4, 1, buffer);
932                         if (retval != ERROR_OK)
933                                 return retval;
934
935                         retval = nrf5_wait_for_nvmc(chip);
936                         if (retval != ERROR_OK)
937                                 return retval;
938
939                         address += 4;
940                         buffer += 4;
941                 }
942
943                 return ERROR_OK;
944         }
945
946         retval = target_write_buffer(target, write_algorithm->address,
947                                 sizeof(nrf5_flash_write_code),
948                                 nrf5_flash_write_code);
949         if (retval != ERROR_OK)
950                 return retval;
951
952         /* memory buffer */
953         while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
954                 buffer_size /= 2;
955                 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
956                 if (buffer_size <= 256) {
957                         /* free working area, write algorithm already allocated */
958                         target_free_working_area(target, write_algorithm);
959
960                         LOG_WARNING("No large enough working area available, can't do block memory writes");
961                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
962                 }
963         }
964
965         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
966         armv7m_info.core_mode = ARM_MODE_THREAD;
967
968         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
969         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer start */
970         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer end */
971         init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
972         init_reg_param(&reg_params[4], "r6", 32, PARAM_OUT);    /* watchdog refresh value */
973         init_reg_param(&reg_params[5], "r7", 32, PARAM_OUT);    /* watchdog refresh register address */
974
975         buf_set_u32(reg_params[0].value, 0, 32, bytes);
976         buf_set_u32(reg_params[1].value, 0, 32, source->address);
977         buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
978         buf_set_u32(reg_params[3].value, 0, 32, address);
979         buf_set_u32(reg_params[4].value, 0, 32, WATCHDOG_REFRESH_VALUE);
980         buf_set_u32(reg_params[5].value, 0, 32, WATCHDOG_REFRESH_REGISTER);
981
982         retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
983                         0, NULL,
984                         ARRAY_SIZE(reg_params), reg_params,
985                         source->address, source->size,
986                         write_algorithm->address, 0,
987                         &armv7m_info);
988
989         target_free_working_area(target, source);
990         target_free_working_area(target, write_algorithm);
991
992         destroy_reg_param(&reg_params[0]);
993         destroy_reg_param(&reg_params[1]);
994         destroy_reg_param(&reg_params[2]);
995         destroy_reg_param(&reg_params[3]);
996         destroy_reg_param(&reg_params[4]);
997         destroy_reg_param(&reg_params[5]);
998
999         return retval;
1000 }
1001
1002 static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
1003                                         uint32_t offset, uint32_t count)
1004 {
1005         struct nrf5_info *chip;
1006
1007         int res = nrf5_get_probed_chip_if_halted(bank, &chip);
1008         if (res != ERROR_OK)
1009                 return res;
1010
1011         assert(offset % 4 == 0);
1012         assert(count % 4 == 0);
1013
1014         res = nrf5_nvmc_write_enable(chip);
1015         if (res != ERROR_OK)
1016                 goto error;
1017
1018         res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
1019         if (res != ERROR_OK)
1020                 goto error;
1021
1022         return nrf5_nvmc_read_only(chip);
1023
1024 error:
1025         nrf5_nvmc_read_only(chip);
1026         LOG_ERROR("Failed to write to nrf5 flash");
1027         return res;
1028 }
1029
1030 static int nrf5_erase(struct flash_bank *bank, int first, int last)
1031 {
1032         int res;
1033         struct nrf5_info *chip;
1034
1035         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1036         if (res != ERROR_OK)
1037                 return res;
1038
1039         /* For each sector to be erased */
1040         for (int s = first; s <= last && res == ERROR_OK; s++)
1041                 res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
1042
1043         return res;
1044 }
1045
1046 static void nrf5_free_driver_priv(struct flash_bank *bank)
1047 {
1048         struct nrf5_bank *nbank = bank->driver_priv;
1049         struct nrf5_info *chip = nbank->chip;
1050         if (chip == NULL)
1051                 return;
1052
1053         chip->refcount--;
1054         if (chip->refcount == 0) {
1055                 free(chip);
1056                 bank->driver_priv = NULL;
1057         }
1058 }
1059
1060 static struct nrf5_info *nrf5_get_chip(struct target *target)
1061 {
1062         struct flash_bank *bank_iter;
1063
1064         /* iterate over nrf5 banks of same target */
1065         for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
1066                 if (bank_iter->driver != &nrf5_flash && bank_iter->driver != &nrf51_flash)
1067                         continue;
1068
1069                 if (bank_iter->target != target)
1070                         continue;
1071
1072                 struct nrf5_bank *nbank = bank_iter->driver_priv;
1073                 if (!nbank)
1074                         continue;
1075
1076                 if (nbank->chip)
1077                         return nbank->chip;
1078         }
1079         return NULL;
1080 }
1081
1082 FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
1083 {
1084         struct nrf5_info *chip;
1085         struct nrf5_bank *nbank = NULL;
1086
1087         switch (bank->base) {
1088         case NRF5_FLASH_BASE:
1089         case NRF5_UICR_BASE:
1090                 break;
1091         default:
1092                 LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
1093                 return ERROR_FAIL;
1094         }
1095
1096         chip = nrf5_get_chip(bank->target);
1097         if (!chip) {
1098                 /* Create a new chip */
1099                 chip = calloc(1, sizeof(*chip));
1100                 if (!chip)
1101                         return ERROR_FAIL;
1102
1103                 chip->target = bank->target;
1104         }
1105
1106         switch (bank->base) {
1107         case NRF5_FLASH_BASE:
1108                 nbank = &chip->bank[0];
1109                 break;
1110         case NRF5_UICR_BASE:
1111                 nbank = &chip->bank[1];
1112                 break;
1113         }
1114         assert(nbank != NULL);
1115
1116         chip->refcount++;
1117         nbank->chip = chip;
1118         nbank->probed = false;
1119         bank->driver_priv = nbank;
1120         bank->write_start_alignment = bank->write_end_alignment = 4;
1121
1122         return ERROR_OK;
1123 }
1124
1125 COMMAND_HANDLER(nrf5_handle_mass_erase_command)
1126 {
1127         int res;
1128         struct flash_bank *bank = NULL;
1129         struct target *target = get_current_target(CMD_CTX);
1130
1131         res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1132         if (res != ERROR_OK)
1133                 return res;
1134
1135         assert(bank != NULL);
1136
1137         struct nrf5_info *chip;
1138
1139         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1140         if (res != ERROR_OK)
1141                 return res;
1142
1143         if (chip->features & NRF5_FEATURE_SERIES_51) {
1144                 uint32_t ppfc;
1145                 res = target_read_u32(target, NRF51_FICR_PPFC,
1146                               &ppfc);
1147                 if (res != ERROR_OK) {
1148                         LOG_ERROR("Couldn't read PPFC register");
1149                         return res;
1150                 }
1151
1152                 if ((ppfc & 0xFF) == 0x00) {
1153                         LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
1154                                   "mass erase command won't work.");
1155                         return ERROR_FAIL;
1156                 }
1157         }
1158
1159         res = nrf5_erase_all(chip);
1160         if (res != ERROR_OK) {
1161                 LOG_ERROR("Failed to erase the chip");
1162                 nrf5_protect_check(bank);
1163                 return res;
1164         }
1165
1166         res = nrf5_protect_check(bank);
1167         if (res != ERROR_OK) {
1168                 LOG_ERROR("Failed to check chip's write protection");
1169                 return res;
1170         }
1171
1172         res = get_flash_bank_by_addr(target, NRF5_UICR_BASE, true, &bank);
1173         if (res != ERROR_OK)
1174                 return res;
1175
1176         return ERROR_OK;
1177 }
1178
1179 COMMAND_HANDLER(nrf5_handle_info_command)
1180 {
1181         int res;
1182         struct flash_bank *bank = NULL;
1183         struct target *target = get_current_target(CMD_CTX);
1184
1185         res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1186         if (res != ERROR_OK)
1187                 return res;
1188
1189         assert(bank != NULL);
1190
1191         struct nrf5_info *chip;
1192
1193         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1194         if (res != ERROR_OK)
1195                 return res;
1196
1197         static struct {
1198                 const uint32_t address;
1199                 uint32_t value;
1200         } ficr[] = {
1201                 { .address = NRF5_FICR_CODEPAGESIZE     },
1202                 { .address = NRF5_FICR_CODESIZE },
1203                 { .address = NRF51_FICR_CLENR0          },
1204                 { .address = NRF51_FICR_PPFC            },
1205                 { .address = NRF51_FICR_NUMRAMBLOCK     },
1206                 { .address = NRF51_FICR_SIZERAMBLOCK0   },
1207                 { .address = NRF51_FICR_SIZERAMBLOCK1   },
1208                 { .address = NRF51_FICR_SIZERAMBLOCK2   },
1209                 { .address = NRF51_FICR_SIZERAMBLOCK3   },
1210                 { .address = NRF5_FICR_CONFIGID },
1211                 { .address = NRF5_FICR_DEVICEID0        },
1212                 { .address = NRF5_FICR_DEVICEID1        },
1213                 { .address = NRF5_FICR_ER0              },
1214                 { .address = NRF5_FICR_ER1              },
1215                 { .address = NRF5_FICR_ER2              },
1216                 { .address = NRF5_FICR_ER3              },
1217                 { .address = NRF5_FICR_IR0              },
1218                 { .address = NRF5_FICR_IR1              },
1219                 { .address = NRF5_FICR_IR2              },
1220                 { .address = NRF5_FICR_IR3              },
1221                 { .address = NRF5_FICR_DEVICEADDRTYPE   },
1222                 { .address = NRF5_FICR_DEVICEADDR0      },
1223                 { .address = NRF5_FICR_DEVICEADDR1      },
1224                 { .address = NRF51_FICR_OVERRIDEN       },
1225                 { .address = NRF51_FICR_NRF_1MBIT0      },
1226                 { .address = NRF51_FICR_NRF_1MBIT1      },
1227                 { .address = NRF51_FICR_NRF_1MBIT2      },
1228                 { .address = NRF51_FICR_NRF_1MBIT3      },
1229                 { .address = NRF51_FICR_NRF_1MBIT4      },
1230                 { .address = NRF51_FICR_BLE_1MBIT0      },
1231                 { .address = NRF51_FICR_BLE_1MBIT1      },
1232                 { .address = NRF51_FICR_BLE_1MBIT2      },
1233                 { .address = NRF51_FICR_BLE_1MBIT3      },
1234                 { .address = NRF51_FICR_BLE_1MBIT4      },
1235         }, uicr[] = {
1236                 { .address = NRF51_UICR_CLENR0,         },
1237                 { .address = NRF51_UICR_RBPCONF         },
1238                 { .address = NRF51_UICR_XTALFREQ        },
1239                 { .address = NRF51_UICR_FWID            },
1240         };
1241
1242         for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
1243                 res = target_read_u32(chip->target, ficr[i].address,
1244                                       &ficr[i].value);
1245                 if (res != ERROR_OK) {
1246                         LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
1247                         return res;
1248                 }
1249         }
1250
1251         for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
1252                 res = target_read_u32(chip->target, uicr[i].address,
1253                                       &uicr[i].value);
1254                 if (res != ERROR_OK) {
1255                         LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
1256                         return res;
1257                 }
1258         }
1259
1260         command_print(CMD,
1261                  "\n[factory information control block]\n\n"
1262                  "code page size: %"PRIu32"B\n"
1263                  "code memory size: %"PRIu32"kB\n"
1264                  "code region 0 size: %"PRIu32"kB\n"
1265                  "pre-programmed code: %s\n"
1266                  "number of ram blocks: %"PRIu32"\n"
1267                  "ram block 0 size: %"PRIu32"B\n"
1268                  "ram block 1 size: %"PRIu32"B\n"
1269                  "ram block 2 size: %"PRIu32"B\n"
1270                  "ram block 3 size: %"PRIu32 "B\n"
1271                  "config id: %" PRIx32 "\n"
1272                  "device id: 0x%"PRIx32"%08"PRIx32"\n"
1273                  "encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1274                  "identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1275                  "device address type: 0x%"PRIx32"\n"
1276                  "device address: 0x%"PRIx32"%08"PRIx32"\n"
1277                  "override enable: %"PRIx32"\n"
1278                  "NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1279                  "BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1280                  "\n[user information control block]\n\n"
1281                  "code region 0 size: %"PRIu32"kB\n"
1282                  "read back protection configuration: %"PRIx32"\n"
1283                  "reset value for XTALFREQ: %"PRIx32"\n"
1284                  "firmware id: 0x%04"PRIx32,
1285                  ficr[0].value,
1286                  (ficr[1].value * ficr[0].value) / 1024,
1287                  (ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
1288                  ((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
1289                  ficr[4].value,
1290                  ficr[5].value,
1291                  (ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
1292                  (ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
1293                  (ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
1294                  ficr[9].value,
1295                  ficr[10].value, ficr[11].value,
1296                  ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
1297                  ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
1298                  ficr[20].value,
1299                  ficr[21].value, ficr[22].value,
1300                  ficr[23].value,
1301                  ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
1302                  ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
1303                  (uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
1304                  uicr[1].value & 0xFFFF,
1305                  uicr[2].value & 0xFF,
1306                  uicr[3].value & 0xFFFF);
1307
1308         return ERROR_OK;
1309 }
1310
1311 static const struct command_registration nrf5_exec_command_handlers[] = {
1312         {
1313                 .name           = "mass_erase",
1314                 .handler        = nrf5_handle_mass_erase_command,
1315                 .mode           = COMMAND_EXEC,
1316                 .help           = "Erase all flash contents of the chip.",
1317                 .usage          = "",
1318         },
1319         {
1320                 .name           = "info",
1321                 .handler        = nrf5_handle_info_command,
1322                 .mode           = COMMAND_EXEC,
1323                 .help           = "Show FICR and UICR info.",
1324                 .usage          = "",
1325         },
1326         COMMAND_REGISTRATION_DONE
1327 };
1328
1329 static const struct command_registration nrf5_command_handlers[] = {
1330         {
1331                 .name   = "nrf5",
1332                 .mode   = COMMAND_ANY,
1333                 .help   = "nrf5 flash command group",
1334                 .usage  = "",
1335                 .chain  = nrf5_exec_command_handlers,
1336         },
1337         {
1338                 .name   = "nrf51",
1339                 .mode   = COMMAND_ANY,
1340                 .help   = "nrf51 flash command group",
1341                 .usage  = "",
1342                 .chain  = nrf5_exec_command_handlers,
1343         },
1344         COMMAND_REGISTRATION_DONE
1345 };
1346
1347 const struct flash_driver nrf5_flash = {
1348         .name                   = "nrf5",
1349         .commands               = nrf5_command_handlers,
1350         .flash_bank_command     = nrf5_flash_bank_command,
1351         .info                   = nrf5_info,
1352         .erase                  = nrf5_erase,
1353         .protect                = nrf5_protect,
1354         .write                  = nrf5_write,
1355         .read                   = default_flash_read,
1356         .probe                  = nrf5_probe,
1357         .auto_probe             = nrf5_auto_probe,
1358         .erase_check            = default_flash_blank_check,
1359         .protect_check          = nrf5_protect_check,
1360         .free_driver_priv       = nrf5_free_driver_priv,
1361 };
1362
1363 /* We need to retain the flash-driver name as well as the commands
1364  * for backwards compatability */
1365 const struct flash_driver nrf51_flash = {
1366         .name                   = "nrf51",
1367         .commands               = nrf5_command_handlers,
1368         .flash_bank_command     = nrf5_flash_bank_command,
1369         .info                   = nrf5_info,
1370         .erase                  = nrf5_erase,
1371         .protect                = nrf5_protect,
1372         .write                  = nrf5_write,
1373         .read                   = default_flash_read,
1374         .probe                  = nrf5_probe,
1375         .auto_probe             = nrf5_auto_probe,
1376         .erase_check            = default_flash_blank_check,
1377         .protect_check          = nrf5_protect_check,
1378         .free_driver_priv       = nrf5_free_driver_priv,
1379 };