]> git.gag.com Git - fw/openocd/blob - src/flash/nor/nrf5.c
flash/nor/nrf5: fix protection setting on nRF51
[fw/openocd] / src / flash / nor / nrf5.c
1 /***************************************************************************
2  *   Copyright (C) 2013 Synapse Product Development                        *
3  *   Andrey Smirnov <andrew.smironv@gmail.com>                             *
4  *   Angus Gratton <gus@projectgus.com>                                    *
5  *   Erdem U. Altunyurt <spamjunkeater@gmail.com>                          *
6  *                                                                         *
7  *   This program is free software; you can redistribute it and/or modify  *
8  *   it under the terms of the GNU General Public License as published by  *
9  *   the Free Software Foundation; either version 2 of the License, or     *
10  *   (at your option) any later version.                                   *
11  *                                                                         *
12  *   This program is distributed in the hope that it will be useful,       *
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
15  *   GNU General Public License for more details.                          *
16  *                                                                         *
17  *   You should have received a copy of the GNU General Public License     *
18  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
19  ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "imp.h"
26 #include <target/algorithm.h>
27 #include <target/armv7m.h>
28 #include <helper/types.h>
29 #include <helper/time_support.h>
30
31 /* Both those values are constant across the current spectrum ofr nRF5 devices */
32 #define WATCHDOG_REFRESH_REGISTER       0x40010600
33 #define WATCHDOG_REFRESH_VALUE          0x6e524635
34
35 enum {
36         NRF5_FLASH_BASE = 0x00000000,
37 };
38
39 enum nrf5_ficr_registers {
40         NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
41
42 #define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
43
44         NRF5_FICR_CODEPAGESIZE          = NRF5_FICR_REG(0x010),
45         NRF5_FICR_CODESIZE              = NRF5_FICR_REG(0x014),
46
47         NRF51_FICR_CLENR0               = NRF5_FICR_REG(0x028),
48         NRF51_FICR_PPFC                 = NRF5_FICR_REG(0x02C),
49         NRF51_FICR_NUMRAMBLOCK          = NRF5_FICR_REG(0x034),
50         NRF51_FICR_SIZERAMBLOCK0        = NRF5_FICR_REG(0x038),
51         NRF51_FICR_SIZERAMBLOCK1        = NRF5_FICR_REG(0x03C),
52         NRF51_FICR_SIZERAMBLOCK2        = NRF5_FICR_REG(0x040),
53         NRF51_FICR_SIZERAMBLOCK3        = NRF5_FICR_REG(0x044),
54
55         NRF5_FICR_CONFIGID              = NRF5_FICR_REG(0x05C),
56         NRF5_FICR_DEVICEID0             = NRF5_FICR_REG(0x060),
57         NRF5_FICR_DEVICEID1             = NRF5_FICR_REG(0x064),
58         NRF5_FICR_ER0                   = NRF5_FICR_REG(0x080),
59         NRF5_FICR_ER1                   = NRF5_FICR_REG(0x084),
60         NRF5_FICR_ER2                   = NRF5_FICR_REG(0x088),
61         NRF5_FICR_ER3                   = NRF5_FICR_REG(0x08C),
62         NRF5_FICR_IR0                   = NRF5_FICR_REG(0x090),
63         NRF5_FICR_IR1                   = NRF5_FICR_REG(0x094),
64         NRF5_FICR_IR2                   = NRF5_FICR_REG(0x098),
65         NRF5_FICR_IR3                   = NRF5_FICR_REG(0x09C),
66         NRF5_FICR_DEVICEADDRTYPE        = NRF5_FICR_REG(0x0A0),
67         NRF5_FICR_DEVICEADDR0           = NRF5_FICR_REG(0x0A4),
68         NRF5_FICR_DEVICEADDR1           = NRF5_FICR_REG(0x0A8),
69
70         NRF51_FICR_OVERRIDEN            = NRF5_FICR_REG(0x0AC),
71         NRF51_FICR_NRF_1MBIT0           = NRF5_FICR_REG(0x0B0),
72         NRF51_FICR_NRF_1MBIT1           = NRF5_FICR_REG(0x0B4),
73         NRF51_FICR_NRF_1MBIT2           = NRF5_FICR_REG(0x0B8),
74         NRF51_FICR_NRF_1MBIT3           = NRF5_FICR_REG(0x0BC),
75         NRF51_FICR_NRF_1MBIT4           = NRF5_FICR_REG(0x0C0),
76         NRF51_FICR_BLE_1MBIT0           = NRF5_FICR_REG(0x0EC),
77         NRF51_FICR_BLE_1MBIT1           = NRF5_FICR_REG(0x0F0),
78         NRF51_FICR_BLE_1MBIT2           = NRF5_FICR_REG(0x0F4),
79         NRF51_FICR_BLE_1MBIT3           = NRF5_FICR_REG(0x0F8),
80         NRF51_FICR_BLE_1MBIT4           = NRF5_FICR_REG(0x0FC),
81
82         /* Following registers are available on nRF52 and on nRF51 since rev 3 */
83         NRF5_FICR_INFO_PART                     = NRF5_FICR_REG(0x100),
84         NRF5_FICR_INFO_VARIANT          = NRF5_FICR_REG(0x104),
85         NRF5_FICR_INFO_PACKAGE          = NRF5_FICR_REG(0x108),
86         NRF5_FICR_INFO_RAM                      = NRF5_FICR_REG(0x10C),
87         NRF5_FICR_INFO_FLASH            = NRF5_FICR_REG(0x110),
88 };
89
90 enum nrf5_uicr_registers {
91         NRF5_UICR_BASE = 0x10001000, /* User Information
92                                        * Configuration Registers */
93
94 #define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
95
96         NRF51_UICR_CLENR0       = NRF5_UICR_REG(0x000),
97         NRF51_UICR_RBPCONF      = NRF5_UICR_REG(0x004),
98         NRF51_UICR_XTALFREQ     = NRF5_UICR_REG(0x008),
99         NRF51_UICR_FWID         = NRF5_UICR_REG(0x010),
100 };
101
102 enum nrf5_nvmc_registers {
103         NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
104                                        * Controller Registers */
105
106 #define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
107
108         NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
109         NRF5_NVMC_CONFIG        = NRF5_NVMC_REG(0x504),
110         NRF5_NVMC_ERASEPAGE     = NRF5_NVMC_REG(0x508),
111         NRF5_NVMC_ERASEALL      = NRF5_NVMC_REG(0x50C),
112         NRF5_NVMC_ERASEUICR     = NRF5_NVMC_REG(0x514),
113
114         NRF5_BPROT_BASE = 0x40000000,
115 };
116
117 enum nrf5_nvmc_config_bits {
118         NRF5_NVMC_CONFIG_REN = 0x00,
119         NRF5_NVMC_CONFIG_WEN = 0x01,
120         NRF5_NVMC_CONFIG_EEN = 0x02,
121
122 };
123
124 struct nrf52_ficr_info {
125         uint32_t part;
126         uint32_t variant;
127         uint32_t package;
128         uint32_t ram;
129         uint32_t flash;
130 };
131
132 enum nrf5_features {
133         NRF5_FEATURE_SERIES_51  = 1 << 0,
134         NRF5_FEATURE_SERIES_52  = 1 << 1,
135         NRF5_FEATURE_BPROT              = 1 << 2,
136         NRF5_FEATURE_ACL_PROT   = 1 << 3,
137 };
138
139 struct nrf5_device_spec {
140         uint16_t hwid;
141         const char *part;
142         const char *variant;
143         const char *build_code;
144         unsigned int flash_size_kb;
145         enum nrf5_features features;
146 };
147
148 struct nrf5_info {
149         uint32_t refcount;
150
151         struct nrf5_bank {
152                 struct nrf5_info *chip;
153                 bool probed;
154         } bank[2];
155         struct target *target;
156
157         /* chip identification stored in nrf5_probe() for use in nrf5_info() */
158         bool ficr_info_valid;
159         struct nrf52_ficr_info ficr_info;
160         const struct nrf5_device_spec *spec;
161         uint32_t hwid;
162         enum nrf5_features features;
163         unsigned int flash_size_kb;
164         unsigned int ram_size_kb;
165 };
166
167 #define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
168 {                                                   \
169 .hwid          = (id),                              \
170 .part          = pt,                                \
171 .variant       = var,                               \
172 .build_code    = bcode,                             \
173 .flash_size_kb = (fsize),                           \
174 .features      = NRF5_FEATURE_SERIES_51,            \
175 }
176
177 #define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize, features) \
178 {                                                   \
179 .hwid          = (id),                              \
180 .part          = pt,                                \
181 .variant       = var,                               \
182 .build_code    = bcode,                             \
183 .flash_size_kb = (fsize),                           \
184 .features      = features,                          \
185 }
186
187 /* The known devices table below is derived from the "nRF5x series
188  * compatibility matrix" documents, which can be found in the "DocLib" of
189  * nordic:
190  *
191  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
192  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
193  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
194  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
195  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
196  * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
197  *
198  * Up to date with Matrix v2.0, plus some additional HWIDs.
199  *
200  * The additional HWIDs apply where the build code in the matrix is
201  * shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
202  * for x==0, x!=0 means different (unspecified) HWIDs.
203  */
204 static const struct nrf5_device_spec nrf5_known_devices_table[] = {
205         /* nRF51822 Devices (IC rev 1). */
206         NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
207         NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA",    128),
208         NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0",    128),
209         NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA",    256),
210         NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0",    256),
211
212         /* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
213            with built-in jlink seem to use engineering samples not listed
214            in the nRF51 Series Compatibility Matrix V1.0. */
215         NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB",    256),
216
217         /* nRF51822 Devices (IC rev 2). */
218         NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0",   256),
219         NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0",   256),
220         NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0",    256),
221         NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2",    256),
222         NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3",    256),
223         NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0",    128),
224         NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0",   256),
225         NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0",   256),
226         NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00",   256),
227
228         /* nRF51822 Devices (IC rev 3). */
229         NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0",    256),
230         NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2",    256),
231         NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0",    128),
232         NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0",    256),
233         NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1",    256),
234         NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0",    128),
235         NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0",    256),
236         NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0",    256),
237         NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1",    256),
238
239         /* nRF51422 Devices (IC rev 1). */
240         NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA",    256),
241         NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0",    256),
242         NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A",   256),
243
244         /* nRF51422 Devices (IC rev 2). */
245         NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA",   256),
246         NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0",    256),
247         NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00",   128),
248         NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0",    256),
249
250         /* nRF51422 Devices (IC rev 3). */
251         NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0",    256),
252         NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0",    128),
253         NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0",    256),
254         NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1",    256),
255         NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0",    128),
256         NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0",    256),
257         NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0",    256),
258
259         /* The driver fully autodetects nRF52 series devices by FICR INFO,
260          * no need for nRF52xxx HWIDs in this table */
261 #if 0
262         /* nRF52810 Devices */
263         NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0",    192,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
264         NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0",    192,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
265
266         /* nRF52832 Devices */
267         NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
268         NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
269         NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0",    512,  NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
270
271         /* nRF52840 Devices */
272         NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0",    1024, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_ACL_PROT),
273 #endif
274 };
275
276 struct nrf5_device_package {
277         uint32_t package;
278         const char *code;
279 };
280
281 /* Newer devices have FICR INFO.PACKAGE.
282  * This table converts its value to two character code */
283 static const struct nrf5_device_package nrf5_packages_table[] = {
284         { 0x2000, "QF" },
285         { 0x2001, "CH" },
286         { 0x2002, "CI" },
287         { 0x2005, "CK" },
288 };
289
290 const struct flash_driver nrf5_flash, nrf51_flash;
291
292 static int nrf5_bank_is_probed(struct flash_bank *bank)
293 {
294         struct nrf5_bank *nbank = bank->driver_priv;
295
296         assert(nbank != NULL);
297
298         return nbank->probed;
299 }
300 static int nrf5_probe(struct flash_bank *bank);
301
302 static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
303 {
304         if (bank->target->state != TARGET_HALTED) {
305                 LOG_ERROR("Target not halted");
306                 return ERROR_TARGET_NOT_HALTED;
307         }
308
309         struct nrf5_bank *nbank = bank->driver_priv;
310         *chip = nbank->chip;
311
312         int probed = nrf5_bank_is_probed(bank);
313         if (probed < 0)
314                 return probed;
315         else if (!probed)
316                 return nrf5_probe(bank);
317         else
318                 return ERROR_OK;
319 }
320
321 static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
322 {
323         uint32_t ready;
324         int res;
325         int timeout_ms = 340;
326         int64_t ts_start = timeval_ms();
327
328         do {
329                 res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
330                 if (res != ERROR_OK) {
331                         LOG_ERROR("Couldn't read NVMC_READY register");
332                         return res;
333                 }
334
335                 if (ready == 0x00000001)
336                         return ERROR_OK;
337
338                 keep_alive();
339
340         } while ((timeval_ms()-ts_start) < timeout_ms);
341
342         LOG_DEBUG("Timed out waiting for NVMC_READY");
343         return ERROR_FLASH_BUSY;
344 }
345
346 static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
347 {
348         int res;
349         res = target_write_u32(chip->target,
350                                NRF5_NVMC_CONFIG,
351                                NRF5_NVMC_CONFIG_EEN);
352
353         if (res != ERROR_OK) {
354                 LOG_ERROR("Failed to enable erase operation");
355                 return res;
356         }
357
358         /*
359           According to NVMC examples in Nordic SDK busy status must be
360           checked after writing to NVMC_CONFIG
361          */
362         res = nrf5_wait_for_nvmc(chip);
363         if (res != ERROR_OK)
364                 LOG_ERROR("Erase enable did not complete");
365
366         return res;
367 }
368
369 static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
370 {
371         int res;
372         res = target_write_u32(chip->target,
373                                NRF5_NVMC_CONFIG,
374                                NRF5_NVMC_CONFIG_WEN);
375
376         if (res != ERROR_OK) {
377                 LOG_ERROR("Failed to enable write operation");
378                 return res;
379         }
380
381         /*
382           According to NVMC examples in Nordic SDK busy status must be
383           checked after writing to NVMC_CONFIG
384          */
385         res = nrf5_wait_for_nvmc(chip);
386         if (res != ERROR_OK)
387                 LOG_ERROR("Write enable did not complete");
388
389         return res;
390 }
391
392 static int nrf5_nvmc_read_only(struct nrf5_info *chip)
393 {
394         int res;
395         res = target_write_u32(chip->target,
396                                NRF5_NVMC_CONFIG,
397                                NRF5_NVMC_CONFIG_REN);
398
399         if (res != ERROR_OK) {
400                 LOG_ERROR("Failed to enable read-only operation");
401                 return res;
402         }
403         /*
404           According to NVMC examples in Nordic SDK busy status must be
405           checked after writing to NVMC_CONFIG
406          */
407         res = nrf5_wait_for_nvmc(chip);
408         if (res != ERROR_OK)
409                 LOG_ERROR("Read only enable did not complete");
410
411         return res;
412 }
413
414 static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
415                                uint32_t erase_register, uint32_t erase_value)
416 {
417         int res;
418
419         res = nrf5_nvmc_erase_enable(chip);
420         if (res != ERROR_OK)
421                 goto error;
422
423         res = target_write_u32(chip->target,
424                                erase_register,
425                                erase_value);
426         if (res != ERROR_OK)
427                 goto set_read_only;
428
429         res = nrf5_wait_for_nvmc(chip);
430         if (res != ERROR_OK)
431                 goto set_read_only;
432
433         return nrf5_nvmc_read_only(chip);
434
435 set_read_only:
436         nrf5_nvmc_read_only(chip);
437 error:
438         LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
439                   erase_register, erase_value);
440         return ERROR_FAIL;
441 }
442
443 static int nrf5_protect_check_bprot(struct flash_bank *bank)
444 {
445         struct nrf5_bank *nbank = bank->driver_priv;
446         struct nrf5_info *chip = nbank->chip;
447
448         assert(chip != NULL);
449
450         static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
451         uint32_t bprot_reg = 0;
452         int res;
453
454         for (unsigned int i = 0; i < bank->num_sectors; i++) {
455                 unsigned int bit = i % 32;
456                 if (bit == 0) {
457                         unsigned int n_reg = i / 32;
458                         if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
459                                 break;
460
461                         res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
462                         if (res != ERROR_OK)
463                                 return res;
464                 }
465                 bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
466         }
467         return ERROR_OK;
468 }
469
470 static int nrf5_protect_check(struct flash_bank *bank)
471 {
472         int res;
473         uint32_t clenr0;
474
475         /* UICR cannot be write protected so just return early */
476         if (bank->base == NRF5_UICR_BASE)
477                 return ERROR_OK;
478
479         struct nrf5_bank *nbank = bank->driver_priv;
480         struct nrf5_info *chip = nbank->chip;
481
482         assert(chip != NULL);
483
484         if (chip->features & NRF5_FEATURE_BPROT)
485                 return nrf5_protect_check_bprot(bank);
486
487         if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
488                 LOG_WARNING("Flash protection of this nRF device is not supported");
489                 return ERROR_FLASH_OPER_UNSUPPORTED;
490         }
491
492         res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
493                               &clenr0);
494         if (res != ERROR_OK) {
495                 LOG_ERROR("Couldn't read code region 0 size[FICR]");
496                 return res;
497         }
498
499         if (clenr0 == 0xFFFFFFFF) {
500                 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
501                                       &clenr0);
502                 if (res != ERROR_OK) {
503                         LOG_ERROR("Couldn't read code region 0 size[UICR]");
504                         return res;
505                 }
506         }
507
508         for (unsigned int i = 0; i < bank->num_sectors; i++)
509                 bank->sectors[i].is_protected =
510                         clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
511
512         return ERROR_OK;
513 }
514
515 static int nrf5_protect_clenr0(struct flash_bank *bank, int set, unsigned int first,
516                 unsigned int last)
517 {
518         int res;
519         uint32_t clenr0, ppfc;
520         struct nrf5_bank *nbank = bank->driver_priv;
521         struct nrf5_info *chip = nbank->chip;
522
523         if (first != 0) {
524                 LOG_ERROR("Code region 0 must start at the beginning of the bank");
525                 return ERROR_FAIL;
526         }
527
528         res = target_read_u32(chip->target, NRF51_FICR_PPFC,
529                               &ppfc);
530         if (res != ERROR_OK) {
531                 LOG_ERROR("Couldn't read PPFC register");
532                 return res;
533         }
534
535         if ((ppfc & 0xFF) == 0x00) {
536                 LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
537                 return ERROR_FAIL;
538         }
539
540         res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
541                               &clenr0);
542         if (res != ERROR_OK) {
543                 LOG_ERROR("Couldn't read code region 0 size from UICR");
544                 return res;
545         }
546
547         if (!set || clenr0 != 0xFFFFFFFF) {
548                 LOG_ERROR("You need to perform chip erase before changing the protection settings");
549                 return ERROR_FAIL;
550         }
551
552         res = nrf5_nvmc_write_enable(chip);
553         if (res != ERROR_OK)
554                 goto error;
555
556         clenr0 = bank->sectors[last].offset + bank->sectors[last].size;
557         res = target_write_u32(chip->target, NRF51_UICR_CLENR0, clenr0);
558
559         int res2 = nrf5_wait_for_nvmc(chip);
560
561         if (res == ERROR_OK)
562                 res = res2;
563
564         if (res == ERROR_OK)
565                 LOG_INFO("A reset or power cycle is required for the new protection settings to take effect.");
566         else
567                 LOG_ERROR("Couldn't write code region 0 size to UICR");
568
569 error:
570         nrf5_nvmc_read_only(chip);
571
572         nrf5_protect_check(bank);
573
574         return res;
575 }
576
577 static int nrf5_protect(struct flash_bank *bank, int set, unsigned int first,
578                 unsigned int last)
579 {
580         int res;
581         struct nrf5_info *chip;
582
583         /* UICR cannot be write protected so just bail out early */
584         if (bank->base == NRF5_UICR_BASE) {
585                 LOG_ERROR("UICR page does not support protection");
586                 return ERROR_FLASH_OPER_UNSUPPORTED;
587         }
588
589         res = nrf5_get_probed_chip_if_halted(bank, &chip);
590         if (res != ERROR_OK)
591                 return res;
592
593         if (chip->features & NRF5_FEATURE_SERIES_51)
594                 return nrf5_protect_clenr0(bank, set, first, last);
595
596         LOG_ERROR("Flash protection setting is not supported on this nRF5 device");
597         return ERROR_FLASH_OPER_UNSUPPORTED;
598 }
599
600 static bool nrf5_info_variant_to_str(uint32_t variant, char *bf)
601 {
602         uint8_t b[4];
603
604         h_u32_to_be(b, variant);
605         if (isalnum(b[0]) && isalnum(b[1]) && isalnum(b[2]) && isalnum(b[3])) {
606                 memcpy(bf, b, 4);
607                 bf[4] = 0;
608                 return true;
609         }
610
611         strcpy(bf, "xxxx");
612         return false;
613 }
614
615 static const char *nrf5_decode_info_package(uint32_t package)
616 {
617         for (size_t i = 0; i < ARRAY_SIZE(nrf5_packages_table); i++) {
618                 if (nrf5_packages_table[i].package == package)
619                         return nrf5_packages_table[i].code;
620         }
621         return "xx";
622 }
623
624 static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
625 {
626         struct nrf5_bank *nbank = bank->driver_priv;
627         struct nrf5_info *chip = nbank->chip;
628         int res;
629
630         if (chip->spec) {
631                 res = snprintf(buf, buf_size,
632                                 "nRF%s-%s(build code: %s)",
633                                 chip->spec->part, chip->spec->variant, chip->spec->build_code);
634
635         } else if (chip->ficr_info_valid) {
636                 char variant[5];
637                 nrf5_info_variant_to_str(chip->ficr_info.variant, variant);
638                 res = snprintf(buf, buf_size,
639                                 "nRF%" PRIx32 "-%s%.2s(build code: %s)",
640                                 chip->ficr_info.part,
641                                 nrf5_decode_info_package(chip->ficr_info.package),
642                                 variant, &variant[2]);
643
644         } else {
645                 res = snprintf(buf, buf_size, "nRF51xxx (HWID 0x%08" PRIx32 ")",
646                                 chip->hwid);
647         }
648         if (res <= 0)
649                 return ERROR_FAIL;
650
651         snprintf(buf + res, buf_size - res, " %ukB Flash, %ukB RAM",
652                                 chip->flash_size_kb, chip->ram_size_kb);
653         return ERROR_OK;
654 }
655
656 static int nrf5_read_ficr_info(struct nrf5_info *chip)
657 {
658         int res;
659         struct target *target = chip->target;
660
661         chip->ficr_info_valid = false;
662
663         res = target_read_u32(target, NRF5_FICR_INFO_PART, &chip->ficr_info.part);
664         if (res != ERROR_OK) {
665                 LOG_DEBUG("Couldn't read FICR INFO.PART register");
666                 return res;
667         }
668
669         uint32_t series = chip->ficr_info.part & 0xfffff000;
670         switch (series) {
671         case 0x51000:
672                 chip->features = NRF5_FEATURE_SERIES_51;
673                 break;
674
675         case 0x52000:
676                 chip->features = NRF5_FEATURE_SERIES_52;
677
678                 switch (chip->ficr_info.part) {
679                 case 0x52810:
680                 case 0x52832:
681                         chip->features |= NRF5_FEATURE_BPROT;
682                         break;
683
684                 case 0x52840:
685                         chip->features |= NRF5_FEATURE_ACL_PROT;
686                         break;
687                 }
688                 break;
689
690         default:
691                 LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
692                                 PRIx32, chip->ficr_info.part);
693                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
694         }
695
696         /* Now we know the device has FICR INFO filled by something relevant:
697          * Although it is not documented, the tested nRF51 rev 3 devices
698          * have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
699          * VARIANT and PACKAGE coding is unknown for a nRF51 device.
700          * nRF52 devices have FICR INFO documented and always filled. */
701
702         res = target_read_u32(target, NRF5_FICR_INFO_VARIANT, &chip->ficr_info.variant);
703         if (res != ERROR_OK)
704                 return res;
705
706         res = target_read_u32(target, NRF5_FICR_INFO_PACKAGE, &chip->ficr_info.package);
707         if (res != ERROR_OK)
708                 return res;
709
710         res = target_read_u32(target, NRF5_FICR_INFO_RAM, &chip->ficr_info.ram);
711         if (res != ERROR_OK)
712                 return res;
713
714         res = target_read_u32(target, NRF5_FICR_INFO_FLASH, &chip->ficr_info.flash);
715         if (res != ERROR_OK)
716                 return res;
717
718         chip->ficr_info_valid = true;
719         return ERROR_OK;
720 }
721
722 static int nrf5_get_ram_size(struct target *target, uint32_t *ram_size)
723 {
724         int res;
725
726         *ram_size = 0;
727
728         uint32_t numramblock;
729         res = target_read_u32(target, NRF51_FICR_NUMRAMBLOCK, &numramblock);
730         if (res != ERROR_OK) {
731                 LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
732                 return res;
733         }
734
735         if (numramblock < 1 || numramblock > 4) {
736                 LOG_DEBUG("FICR NUMRAMBLOCK strange value %" PRIx32, numramblock);
737                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
738         }
739
740         for (unsigned int i = 0; i < numramblock; i++) {
741                 uint32_t sizeramblock;
742                 res = target_read_u32(target, NRF51_FICR_SIZERAMBLOCK0 + sizeof(uint32_t)*i, &sizeramblock);
743                 if (res != ERROR_OK) {
744                         LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
745                         return res;
746                 }
747                 if (sizeramblock < 1024 || sizeramblock > 65536)
748                         LOG_DEBUG("FICR SIZERAMBLOCK strange value %" PRIx32, sizeramblock);
749                 else
750                         *ram_size += sizeramblock;
751         }
752         return res;
753 }
754
755 static int nrf5_probe(struct flash_bank *bank)
756 {
757         int res;
758         struct nrf5_bank *nbank = bank->driver_priv;
759         struct nrf5_info *chip = nbank->chip;
760         struct target *target = chip->target;
761
762         res = target_read_u32(target, NRF5_FICR_CONFIGID, &chip->hwid);
763         if (res != ERROR_OK) {
764                 LOG_ERROR("Couldn't read CONFIGID register");
765                 return res;
766         }
767
768         chip->hwid &= 0xFFFF;   /* HWID is stored in the lower two
769                          * bytes of the CONFIGID register */
770
771         /* guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
772         chip->features = NRF5_FEATURE_SERIES_51;
773
774         /* Don't bail out on error for the case that some old engineering
775          * sample has FICR INFO registers unreadable. We can proceed anyway. */
776         (void)nrf5_read_ficr_info(chip);
777
778         chip->spec = NULL;
779         for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
780                 if (chip->hwid == nrf5_known_devices_table[i].hwid) {
781                         chip->spec = &nrf5_known_devices_table[i];
782                         chip->features = chip->spec->features;
783                         break;
784                 }
785         }
786
787         if (chip->spec && chip->ficr_info_valid) {
788                 /* check if HWID table gives the same part as FICR INFO */
789                 if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
790                         LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
791                                                 PRIx32, chip->hwid, chip->ficr_info.part);
792         }
793
794         if (chip->ficr_info_valid) {
795                 chip->ram_size_kb = chip->ficr_info.ram;
796         } else {
797                 uint32_t ram_size;
798                 nrf5_get_ram_size(target, &ram_size);
799                 chip->ram_size_kb = ram_size / 1024;
800         }
801
802         /* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
803         uint32_t flash_page_size;
804         res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
805                                 &flash_page_size);
806         if (res != ERROR_OK) {
807                 LOG_ERROR("Couldn't read code page size");
808                 return res;
809         }
810
811         /* Note the register name is misleading,
812          * NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
813         uint32_t num_sectors;
814         res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
815         if (res != ERROR_OK) {
816                 LOG_ERROR("Couldn't read code memory size");
817                 return res;
818         }
819
820         chip->flash_size_kb = num_sectors * flash_page_size / 1024;
821
822         if (!chip->bank[0].probed && !chip->bank[1].probed) {
823                 char buf[80];
824                 nrf5_info(bank, buf, sizeof(buf));
825                 if (!chip->spec && !chip->ficr_info_valid) {
826                         LOG_INFO("Unknown device: %s", buf);
827                 } else {
828                         LOG_INFO("%s", buf);
829                 }
830         }
831
832         free(bank->sectors);
833
834         if (bank->base == NRF5_FLASH_BASE) {
835                 /* Sanity check */
836                 if (chip->spec && chip->flash_size_kb != chip->spec->flash_size_kb)
837                         LOG_WARNING("Chip's reported Flash capacity does not match expected one");
838                 if (chip->ficr_info_valid && chip->flash_size_kb != chip->ficr_info.flash)
839                         LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
840
841                 bank->num_sectors = num_sectors;
842                 bank->size = num_sectors * flash_page_size;
843
844                 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
845                 if (!bank->sectors)
846                         return ERROR_FAIL;
847
848                 nrf5_protect_check(bank);
849
850                 chip->bank[0].probed = true;
851
852         } else {
853                 bank->num_sectors = 1;
854                 bank->size = flash_page_size;
855
856                 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
857                 if (!bank->sectors)
858                         return ERROR_FAIL;
859
860                 bank->sectors[0].is_protected = 0;
861
862                 chip->bank[1].probed = true;
863         }
864
865         return ERROR_OK;
866 }
867
868 static int nrf5_auto_probe(struct flash_bank *bank)
869 {
870         int probed = nrf5_bank_is_probed(bank);
871
872         if (probed < 0)
873                 return probed;
874         else if (probed)
875                 return ERROR_OK;
876         else
877                 return nrf5_probe(bank);
878 }
879
880 static int nrf5_erase_all(struct nrf5_info *chip)
881 {
882         LOG_DEBUG("Erasing all non-volatile memory");
883         return nrf5_nvmc_generic_erase(chip,
884                                         NRF5_NVMC_ERASEALL,
885                                         0x00000001);
886 }
887
888 static int nrf5_erase_page(struct flash_bank *bank,
889                                                         struct nrf5_info *chip,
890                                                         struct flash_sector *sector)
891 {
892         int res;
893
894         LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
895
896         if (bank->base == NRF5_UICR_BASE) {
897                 if (chip->features & NRF5_FEATURE_SERIES_51) {
898                         uint32_t ppfc;
899                         res = target_read_u32(chip->target, NRF51_FICR_PPFC,
900                                       &ppfc);
901                         if (res != ERROR_OK) {
902                                 LOG_ERROR("Couldn't read PPFC register");
903                                 return res;
904                         }
905
906                         if ((ppfc & 0xFF) == 0xFF) {
907                                 /* We can't erase the UICR.  Double-check to
908                                    see if it's already erased before complaining. */
909                                 default_flash_blank_check(bank);
910                                 if (sector->is_erased == 1)
911                                         return ERROR_OK;
912
913                                 LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
914                                 return ERROR_FAIL;
915                         }
916                 }
917
918                 res = nrf5_nvmc_generic_erase(chip,
919                                                NRF5_NVMC_ERASEUICR,
920                                                0x00000001);
921
922
923         } else {
924                 res = nrf5_nvmc_generic_erase(chip,
925                                                NRF5_NVMC_ERASEPAGE,
926                                                sector->offset);
927         }
928
929         return res;
930 }
931
932 /* Start a low level flash write for the specified region */
933 static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
934 {
935         struct target *target = chip->target;
936         uint32_t buffer_size = 8192;
937         struct working_area *write_algorithm;
938         struct working_area *source;
939         struct reg_param reg_params[6];
940         struct armv7m_algorithm armv7m_info;
941         int retval = ERROR_OK;
942
943         static const uint8_t nrf5_flash_write_code[] = {
944 #include "../../../contrib/loaders/flash/nrf5/nrf5.inc"
945         };
946
947         LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
948         assert(bytes % 4 == 0);
949
950         /* allocate working area with flash programming code */
951         if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
952                         &write_algorithm) != ERROR_OK) {
953                 LOG_WARNING("no working area available, falling back to slow memory writes");
954
955                 for (; bytes > 0; bytes -= 4) {
956                         retval = target_write_memory(target, address, 4, 1, buffer);
957                         if (retval != ERROR_OK)
958                                 return retval;
959
960                         retval = nrf5_wait_for_nvmc(chip);
961                         if (retval != ERROR_OK)
962                                 return retval;
963
964                         address += 4;
965                         buffer += 4;
966                 }
967
968                 return ERROR_OK;
969         }
970
971         retval = target_write_buffer(target, write_algorithm->address,
972                                 sizeof(nrf5_flash_write_code),
973                                 nrf5_flash_write_code);
974         if (retval != ERROR_OK)
975                 return retval;
976
977         /* memory buffer */
978         while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
979                 buffer_size /= 2;
980                 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
981                 if (buffer_size <= 256) {
982                         /* free working area, write algorithm already allocated */
983                         target_free_working_area(target, write_algorithm);
984
985                         LOG_WARNING("No large enough working area available, can't do block memory writes");
986                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
987                 }
988         }
989
990         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
991         armv7m_info.core_mode = ARM_MODE_THREAD;
992
993         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
994         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer start */
995         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer end */
996         init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
997         init_reg_param(&reg_params[4], "r6", 32, PARAM_OUT);    /* watchdog refresh value */
998         init_reg_param(&reg_params[5], "r7", 32, PARAM_OUT);    /* watchdog refresh register address */
999
1000         buf_set_u32(reg_params[0].value, 0, 32, bytes);
1001         buf_set_u32(reg_params[1].value, 0, 32, source->address);
1002         buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
1003         buf_set_u32(reg_params[3].value, 0, 32, address);
1004         buf_set_u32(reg_params[4].value, 0, 32, WATCHDOG_REFRESH_VALUE);
1005         buf_set_u32(reg_params[5].value, 0, 32, WATCHDOG_REFRESH_REGISTER);
1006
1007         retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
1008                         0, NULL,
1009                         ARRAY_SIZE(reg_params), reg_params,
1010                         source->address, source->size,
1011                         write_algorithm->address, 0,
1012                         &armv7m_info);
1013
1014         target_free_working_area(target, source);
1015         target_free_working_area(target, write_algorithm);
1016
1017         destroy_reg_param(&reg_params[0]);
1018         destroy_reg_param(&reg_params[1]);
1019         destroy_reg_param(&reg_params[2]);
1020         destroy_reg_param(&reg_params[3]);
1021         destroy_reg_param(&reg_params[4]);
1022         destroy_reg_param(&reg_params[5]);
1023
1024         return retval;
1025 }
1026
1027 static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
1028                                         uint32_t offset, uint32_t count)
1029 {
1030         struct nrf5_info *chip;
1031
1032         int res = nrf5_get_probed_chip_if_halted(bank, &chip);
1033         if (res != ERROR_OK)
1034                 return res;
1035
1036         assert(offset % 4 == 0);
1037         assert(count % 4 == 0);
1038
1039         res = nrf5_nvmc_write_enable(chip);
1040         if (res != ERROR_OK)
1041                 goto error;
1042
1043         res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
1044         if (res != ERROR_OK)
1045                 goto error;
1046
1047         return nrf5_nvmc_read_only(chip);
1048
1049 error:
1050         nrf5_nvmc_read_only(chip);
1051         LOG_ERROR("Failed to write to nrf5 flash");
1052         return res;
1053 }
1054
1055 static int nrf5_erase(struct flash_bank *bank, unsigned int first,
1056                 unsigned int last)
1057 {
1058         int res;
1059         struct nrf5_info *chip;
1060
1061         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1062         if (res != ERROR_OK)
1063                 return res;
1064
1065         /* For each sector to be erased */
1066         for (unsigned int s = first; s <= last && res == ERROR_OK; s++)
1067                 res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
1068
1069         return res;
1070 }
1071
1072 static void nrf5_free_driver_priv(struct flash_bank *bank)
1073 {
1074         struct nrf5_bank *nbank = bank->driver_priv;
1075         struct nrf5_info *chip = nbank->chip;
1076         if (chip == NULL)
1077                 return;
1078
1079         chip->refcount--;
1080         if (chip->refcount == 0) {
1081                 free(chip);
1082                 bank->driver_priv = NULL;
1083         }
1084 }
1085
1086 static struct nrf5_info *nrf5_get_chip(struct target *target)
1087 {
1088         struct flash_bank *bank_iter;
1089
1090         /* iterate over nrf5 banks of same target */
1091         for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
1092                 if (bank_iter->driver != &nrf5_flash && bank_iter->driver != &nrf51_flash)
1093                         continue;
1094
1095                 if (bank_iter->target != target)
1096                         continue;
1097
1098                 struct nrf5_bank *nbank = bank_iter->driver_priv;
1099                 if (!nbank)
1100                         continue;
1101
1102                 if (nbank->chip)
1103                         return nbank->chip;
1104         }
1105         return NULL;
1106 }
1107
1108 FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
1109 {
1110         struct nrf5_info *chip;
1111         struct nrf5_bank *nbank = NULL;
1112
1113         switch (bank->base) {
1114         case NRF5_FLASH_BASE:
1115         case NRF5_UICR_BASE:
1116                 break;
1117         default:
1118                 LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
1119                 return ERROR_FAIL;
1120         }
1121
1122         chip = nrf5_get_chip(bank->target);
1123         if (!chip) {
1124                 /* Create a new chip */
1125                 chip = calloc(1, sizeof(*chip));
1126                 if (!chip)
1127                         return ERROR_FAIL;
1128
1129                 chip->target = bank->target;
1130         }
1131
1132         switch (bank->base) {
1133         case NRF5_FLASH_BASE:
1134                 nbank = &chip->bank[0];
1135                 break;
1136         case NRF5_UICR_BASE:
1137                 nbank = &chip->bank[1];
1138                 break;
1139         }
1140         assert(nbank != NULL);
1141
1142         chip->refcount++;
1143         nbank->chip = chip;
1144         nbank->probed = false;
1145         bank->driver_priv = nbank;
1146         bank->write_start_alignment = bank->write_end_alignment = 4;
1147
1148         return ERROR_OK;
1149 }
1150
1151 COMMAND_HANDLER(nrf5_handle_mass_erase_command)
1152 {
1153         int res;
1154         struct flash_bank *bank = NULL;
1155         struct target *target = get_current_target(CMD_CTX);
1156
1157         res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1158         if (res != ERROR_OK)
1159                 return res;
1160
1161         assert(bank != NULL);
1162
1163         struct nrf5_info *chip;
1164
1165         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1166         if (res != ERROR_OK)
1167                 return res;
1168
1169         if (chip->features & NRF5_FEATURE_SERIES_51) {
1170                 uint32_t ppfc;
1171                 res = target_read_u32(target, NRF51_FICR_PPFC,
1172                               &ppfc);
1173                 if (res != ERROR_OK) {
1174                         LOG_ERROR("Couldn't read PPFC register");
1175                         return res;
1176                 }
1177
1178                 if ((ppfc & 0xFF) == 0x00) {
1179                         LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
1180                                   "mass erase command won't work.");
1181                         return ERROR_FAIL;
1182                 }
1183         }
1184
1185         res = nrf5_erase_all(chip);
1186         if (res != ERROR_OK) {
1187                 LOG_ERROR("Failed to erase the chip");
1188                 nrf5_protect_check(bank);
1189                 return res;
1190         }
1191
1192         res = nrf5_protect_check(bank);
1193         if (res != ERROR_OK) {
1194                 LOG_ERROR("Failed to check chip's write protection");
1195                 return res;
1196         }
1197
1198         res = get_flash_bank_by_addr(target, NRF5_UICR_BASE, true, &bank);
1199         if (res != ERROR_OK)
1200                 return res;
1201
1202         return ERROR_OK;
1203 }
1204
1205 COMMAND_HANDLER(nrf5_handle_info_command)
1206 {
1207         int res;
1208         struct flash_bank *bank = NULL;
1209         struct target *target = get_current_target(CMD_CTX);
1210
1211         res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1212         if (res != ERROR_OK)
1213                 return res;
1214
1215         assert(bank != NULL);
1216
1217         struct nrf5_info *chip;
1218
1219         res = nrf5_get_probed_chip_if_halted(bank, &chip);
1220         if (res != ERROR_OK)
1221                 return res;
1222
1223         static struct {
1224                 const uint32_t address;
1225                 uint32_t value;
1226         } ficr[] = {
1227                 { .address = NRF5_FICR_CODEPAGESIZE     },
1228                 { .address = NRF5_FICR_CODESIZE },
1229                 { .address = NRF51_FICR_CLENR0          },
1230                 { .address = NRF51_FICR_PPFC            },
1231                 { .address = NRF51_FICR_NUMRAMBLOCK     },
1232                 { .address = NRF51_FICR_SIZERAMBLOCK0   },
1233                 { .address = NRF51_FICR_SIZERAMBLOCK1   },
1234                 { .address = NRF51_FICR_SIZERAMBLOCK2   },
1235                 { .address = NRF51_FICR_SIZERAMBLOCK3   },
1236                 { .address = NRF5_FICR_CONFIGID },
1237                 { .address = NRF5_FICR_DEVICEID0        },
1238                 { .address = NRF5_FICR_DEVICEID1        },
1239                 { .address = NRF5_FICR_ER0              },
1240                 { .address = NRF5_FICR_ER1              },
1241                 { .address = NRF5_FICR_ER2              },
1242                 { .address = NRF5_FICR_ER3              },
1243                 { .address = NRF5_FICR_IR0              },
1244                 { .address = NRF5_FICR_IR1              },
1245                 { .address = NRF5_FICR_IR2              },
1246                 { .address = NRF5_FICR_IR3              },
1247                 { .address = NRF5_FICR_DEVICEADDRTYPE   },
1248                 { .address = NRF5_FICR_DEVICEADDR0      },
1249                 { .address = NRF5_FICR_DEVICEADDR1      },
1250                 { .address = NRF51_FICR_OVERRIDEN       },
1251                 { .address = NRF51_FICR_NRF_1MBIT0      },
1252                 { .address = NRF51_FICR_NRF_1MBIT1      },
1253                 { .address = NRF51_FICR_NRF_1MBIT2      },
1254                 { .address = NRF51_FICR_NRF_1MBIT3      },
1255                 { .address = NRF51_FICR_NRF_1MBIT4      },
1256                 { .address = NRF51_FICR_BLE_1MBIT0      },
1257                 { .address = NRF51_FICR_BLE_1MBIT1      },
1258                 { .address = NRF51_FICR_BLE_1MBIT2      },
1259                 { .address = NRF51_FICR_BLE_1MBIT3      },
1260                 { .address = NRF51_FICR_BLE_1MBIT4      },
1261         }, uicr[] = {
1262                 { .address = NRF51_UICR_CLENR0,         },
1263                 { .address = NRF51_UICR_RBPCONF         },
1264                 { .address = NRF51_UICR_XTALFREQ        },
1265                 { .address = NRF51_UICR_FWID            },
1266         };
1267
1268         for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
1269                 res = target_read_u32(chip->target, ficr[i].address,
1270                                       &ficr[i].value);
1271                 if (res != ERROR_OK) {
1272                         LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
1273                         return res;
1274                 }
1275         }
1276
1277         for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
1278                 res = target_read_u32(chip->target, uicr[i].address,
1279                                       &uicr[i].value);
1280                 if (res != ERROR_OK) {
1281                         LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
1282                         return res;
1283                 }
1284         }
1285
1286         command_print(CMD,
1287                  "\n[factory information control block]\n\n"
1288                  "code page size: %"PRIu32"B\n"
1289                  "code memory size: %"PRIu32"kB\n"
1290                  "code region 0 size: %"PRIu32"kB\n"
1291                  "pre-programmed code: %s\n"
1292                  "number of ram blocks: %"PRIu32"\n"
1293                  "ram block 0 size: %"PRIu32"B\n"
1294                  "ram block 1 size: %"PRIu32"B\n"
1295                  "ram block 2 size: %"PRIu32"B\n"
1296                  "ram block 3 size: %"PRIu32 "B\n"
1297                  "config id: %" PRIx32 "\n"
1298                  "device id: 0x%"PRIx32"%08"PRIx32"\n"
1299                  "encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1300                  "identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1301                  "device address type: 0x%"PRIx32"\n"
1302                  "device address: 0x%"PRIx32"%08"PRIx32"\n"
1303                  "override enable: %"PRIx32"\n"
1304                  "NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1305                  "BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1306                  "\n[user information control block]\n\n"
1307                  "code region 0 size: %"PRIu32"kB\n"
1308                  "read back protection configuration: %"PRIx32"\n"
1309                  "reset value for XTALFREQ: %"PRIx32"\n"
1310                  "firmware id: 0x%04"PRIx32,
1311                  ficr[0].value,
1312                  (ficr[1].value * ficr[0].value) / 1024,
1313                  (ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
1314                  ((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
1315                  ficr[4].value,
1316                  ficr[5].value,
1317                  (ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
1318                  (ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
1319                  (ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
1320                  ficr[9].value,
1321                  ficr[10].value, ficr[11].value,
1322                  ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
1323                  ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
1324                  ficr[20].value,
1325                  ficr[21].value, ficr[22].value,
1326                  ficr[23].value,
1327                  ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
1328                  ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
1329                  (uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
1330                  uicr[1].value & 0xFFFF,
1331                  uicr[2].value & 0xFF,
1332                  uicr[3].value & 0xFFFF);
1333
1334         return ERROR_OK;
1335 }
1336
1337 static const struct command_registration nrf5_exec_command_handlers[] = {
1338         {
1339                 .name           = "mass_erase",
1340                 .handler        = nrf5_handle_mass_erase_command,
1341                 .mode           = COMMAND_EXEC,
1342                 .help           = "Erase all flash contents of the chip.",
1343                 .usage          = "",
1344         },
1345         {
1346                 .name           = "info",
1347                 .handler        = nrf5_handle_info_command,
1348                 .mode           = COMMAND_EXEC,
1349                 .help           = "Show FICR and UICR info.",
1350                 .usage          = "",
1351         },
1352         COMMAND_REGISTRATION_DONE
1353 };
1354
1355 static const struct command_registration nrf5_command_handlers[] = {
1356         {
1357                 .name   = "nrf5",
1358                 .mode   = COMMAND_ANY,
1359                 .help   = "nrf5 flash command group",
1360                 .usage  = "",
1361                 .chain  = nrf5_exec_command_handlers,
1362         },
1363         {
1364                 .name   = "nrf51",
1365                 .mode   = COMMAND_ANY,
1366                 .help   = "nrf51 flash command group",
1367                 .usage  = "",
1368                 .chain  = nrf5_exec_command_handlers,
1369         },
1370         COMMAND_REGISTRATION_DONE
1371 };
1372
1373 const struct flash_driver nrf5_flash = {
1374         .name                   = "nrf5",
1375         .commands               = nrf5_command_handlers,
1376         .flash_bank_command     = nrf5_flash_bank_command,
1377         .info                   = nrf5_info,
1378         .erase                  = nrf5_erase,
1379         .protect                = nrf5_protect,
1380         .write                  = nrf5_write,
1381         .read                   = default_flash_read,
1382         .probe                  = nrf5_probe,
1383         .auto_probe             = nrf5_auto_probe,
1384         .erase_check            = default_flash_blank_check,
1385         .protect_check          = nrf5_protect_check,
1386         .free_driver_priv       = nrf5_free_driver_priv,
1387 };
1388
1389 /* We need to retain the flash-driver name as well as the commands
1390  * for backwards compatibility */
1391 const struct flash_driver nrf51_flash = {
1392         .name                   = "nrf51",
1393         .commands               = nrf5_command_handlers,
1394         .flash_bank_command     = nrf5_flash_bank_command,
1395         .info                   = nrf5_info,
1396         .erase                  = nrf5_erase,
1397         .protect                = nrf5_protect,
1398         .write                  = nrf5_write,
1399         .read                   = default_flash_read,
1400         .probe                  = nrf5_probe,
1401         .auto_probe             = nrf5_auto_probe,
1402         .erase_check            = default_flash_blank_check,
1403         .protect_check          = nrf5_protect_check,
1404         .free_driver_priv       = nrf5_free_driver_priv,
1405 };