flash: fix kinetis driver typos
[fw/openocd] / src / flash / nor / kinetis.c
1 /***************************************************************************
2  *   Copyright (C) 2011 by Mathias Kuester                                 *
3  *   kesmtp@freenet.de                                                     *
4  *                                                                         *
5  *   Copyright (C) 2011 sleep(5) ltd                                       *
6  *   tomas@sleepfive.com                                                   *
7  *                                                                         *
8  *   Copyright (C) 2012 by Christopher D. Kilgour                          *
9  *   techie at whiterocker.com                                             *
10  *                                                                         *
11  *   Copyright (C) 2013 Nemui Trinomius                                    *
12  *   nemuisan_kawausogasuki@live.jp                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
28  ***************************************************************************/
29
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "imp.h"
35 #include <helper/binarybuffer.h>
36 #include <target/algorithm.h>
37 #include <target/armv7m.h>
38 #include <target/cortex_m.h>
39
40 /*
41  * Implementation Notes
42  *
43  * The persistent memories in the Kinetis chip families K10 through
44  * K70 are all manipulated with the Flash Memory Module.  Some
45  * variants call this module the FTFE, others call it the FTFL.  To
46  * indicate that both are considered here, we use FTFX.
47  *
48  * Within the module, according to the chip variant, the persistent
49  * memory is divided into what Freescale terms Program Flash, FlexNVM,
50  * and FlexRAM.  All chip variants have Program Flash.  Some chip
51  * variants also have FlexNVM and FlexRAM, which always appear
52  * together.
53  *
54  * A given Kinetis chip may have 2 or 4 blocks of flash.  Here we map
55  * each block to a separate bank.  Each block size varies by chip and
56  * may be determined by the read-only SIM_FCFG1 register.  The sector
57  * size within each bank/block varies by the chip granularity as
58  * described below.
59  *
60  * Kinetis offers four different of flash granularities applicable
61  * across the chip families.  The granularity is apparently reflected
62  * by at least the reference manual suffix.  For example, for chip
63  * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
64  * where the "3" indicates there are four flash blocks with 4kiB
65  * sectors.  All possible granularities are indicated below.
66  *
67  * The first half of the flash (1 or 2 blocks, depending on the
68  * granularity) is always Program Flash and always starts at address
69  * 0x00000000.  The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
70  * register, determines whether the second half of the flash is also
71  * Program Flash or FlexNVM+FlexRAM.  When PFLSH is set, the second
72  * half of flash is Program Flash and is contiguous in the memory map
73  * from the first half.  When PFLSH is clear, the second half of flash
74  * is FlexNVM and always starts at address 0x10000000.  FlexRAM, which
75  * is also present when PFLSH is clear, always starts at address
76  * 0x14000000.
77  *
78  * The Flash Memory Module provides a register set where flash
79  * commands are loaded to perform flash operations like erase and
80  * program.  Different commands are available depending on whether
81  * Program Flash or FlexNVM/FlexRAM is being manipulated.  Although
82  * the commands used are quite consistent between flash blocks, the
83  * parameters they accept differ according to the flash granularity.
84  * Some Kinetis chips have different granularity between Program Flash
85  * and FlexNVM/FlexRAM, so flash command arguments may differ between
86  * blocks in the same chip.
87  *
88  */
89
90 static const struct {
91         unsigned pflash_sector_size_bytes;
92         unsigned nvm_sector_size_bytes;
93         unsigned num_blocks;
94 } kinetis_flash_params[4] = {
95         { 1<<10, 1<<10, 2 },
96         { 2<<10, 1<<10, 2 },
97         { 2<<10, 2<<10, 2 },
98         { 4<<10, 4<<10, 4 }
99 };
100
101 /* Addressess */
102 #define FLEXRAM         0x14000000
103 #define FTFx_FSTAT      0x40020000
104 #define FTFx_FCNFG      0x40020001
105 #define FTFx_FCCOB3     0x40020004
106 #define FTFx_FPROT3     0x40020010
107 #define SIM_SDID        0x40048024
108 #define SIM_FCFG1       0x4004804c
109 #define SIM_FCFG2       0x40048050
110
111 /* Commands */
112 #define FTFx_CMD_BLOCKSTAT  0x00
113 #define FTFx_CMD_SECTSTAT   0x01
114 #define FTFx_CMD_LWORDPROG  0x06
115 #define FTFx_CMD_SECTERASE  0x09
116 #define FTFx_CMD_SECTWRITE  0x0b
117 #define FTFx_CMD_SETFLEXRAM 0x81
118 #define FTFx_CMD_MASSERASE  0x44
119
120 /* The Kinetis K series uses the following SDID layout :
121  * Bit 31-16 : 0
122  * Bit 15-12 : REVID
123  * Bit 11-7  : DIEID
124  * Bit 6-4   : FAMID
125  * Bit 3-0   : PINID
126  *
127  * The Kinetis KL series uses the following SDID layout :
128  * Bit 31-28 : FAMID
129  * Bit 27-24 : SUBFAMID
130  * Bit 23-20 : SERIESID
131  * Bit 19-16 : SRAMSIZE
132  * Bit 15-12 : REVID
133  * Bit 6-4   : Reserved (0)
134  * Bit 3-0   : PINID
135  *
136  * SERIESID should be 1 for the KL-series so we assume that if
137  * bits 31-16 are 0 then it's a K-series MCU.
138  */
139
140 #define KINETIS_SDID_K_SERIES_MASK  0x0000FFFF
141
142 #define KINETIS_SDID_DIEID_MASK 0x00000F80
143 #define KINETIS_SDID_DIEID_K_A  0x00000100
144 #define KINETIS_SDID_DIEID_K_B  0x00000200
145 #define KINETIS_SDID_DIEID_KL   0x00000000
146
147 /* We can't rely solely on the FAMID field to determine the MCU
148  * type since some FAMID values identify multiple MCUs with
149  * different flash sector sizes (K20 and K22 for instance).
150  * Therefore we combine it with the DIEID bits which may possibly
151  * break if Freescale bumps the DIEID for a particular MCU. */
152 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
153 #define KINETIS_K_SDID_K10_M50   0x00000000
154 #define KINETIS_K_SDID_K10_M72   0x00000080
155 #define KINETIS_K_SDID_K10_M100  0x00000100
156 #define KINETIS_K_SDID_K10_M120  0x00000180
157 #define KINETIS_K_SDID_K11               0x00000220
158 #define KINETIS_K_SDID_K12               0x00000200
159 #define KINETIS_K_SDID_K20_M50   0x00000010
160 #define KINETIS_K_SDID_K20_M72   0x00000090
161 #define KINETIS_K_SDID_K20_M100  0x00000110
162 #define KINETIS_K_SDID_K20_M120  0x00000190
163 #define KINETIS_K_SDID_K21_M50   0x00000230
164 #define KINETIS_K_SDID_K21_M120  0x00000330
165 #define KINETIS_K_SDID_K22_M50   0x00000210
166 #define KINETIS_K_SDID_K22_M120  0x00000310
167 #define KINETIS_K_SDID_K30_M72   0x000000A0
168 #define KINETIS_K_SDID_K30_M100  0x00000120
169 #define KINETIS_K_SDID_K40_M72   0x000000B0
170 #define KINETIS_K_SDID_K40_M100  0x00000130
171 #define KINETIS_K_SDID_K50_M72   0x000000E0
172 #define KINETIS_K_SDID_K51_M72   0x000000F0
173 #define KINETIS_K_SDID_K53               0x00000170
174 #define KINETIS_K_SDID_K60_M100  0x00000140
175 #define KINETIS_K_SDID_K60_M150  0x000001C0
176 #define KINETIS_K_SDID_K70_M150  0x000001D0
177
178 #define KINETIS_KL_SDID_SERIESID_MASK 0x00F00000
179 #define KINETIS_KL_SDID_SERIESID_KL   0x00100000
180
181 struct kinetis_flash_bank {
182         unsigned granularity;
183         unsigned bank_ordinal;
184         uint32_t sector_size;
185         uint32_t protection_size;
186         uint32_t klxx;
187
188         uint32_t sim_sdid;
189         uint32_t sim_fcfg1;
190         uint32_t sim_fcfg2;
191
192         enum {
193                 FC_AUTO = 0,
194                 FC_PFLASH,
195                 FC_FLEX_NVM,
196                 FC_FLEX_RAM,
197         } flash_class;
198 };
199
200
201
202 #define MDM_REG_STAT            0x00
203 #define MDM_REG_CTRL            0x04
204 #define MDM_REG_ID              0xfc
205
206 #define MDM_STAT_FMEACK         (1<<0)
207 #define MDM_STAT_FREADY         (1<<1)
208 #define MDM_STAT_SYSSEC         (1<<2)
209 #define MDM_STAT_SYSRES         (1<<3)
210 #define MDM_STAT_FMEEN          (1<<5)
211 #define MDM_STAT_BACKDOOREN     (1<<6)
212 #define MDM_STAT_LPEN           (1<<7)
213 #define MDM_STAT_VLPEN          (1<<8)
214 #define MDM_STAT_LLSMODEXIT     (1<<9)
215 #define MDM_STAT_VLLSXMODEXIT   (1<<10)
216 #define MDM_STAT_CORE_HALTED    (1<<16)
217 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
218 #define MDM_STAT_CORESLEEPING   (1<<18)
219
220 #define MEM_CTRL_FMEIP          (1<<0)
221 #define MEM_CTRL_DBG_DIS        (1<<1)
222 #define MEM_CTRL_DBG_REQ        (1<<2)
223 #define MEM_CTRL_SYS_RES_REQ    (1<<3)
224 #define MEM_CTRL_CORE_HOLD_RES  (1<<4)
225 #define MEM_CTRL_VLLSX_DBG_REQ  (1<<5)
226 #define MEM_CTRL_VLLSX_DBG_ACK  (1<<6)
227 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
228
229 #define MDM_ACCESS_TIMEOUT      3000 /* iterations */
230
231 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
232 {
233         int retval;
234         LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
235
236         retval = dap_queue_ap_write(dap, reg, value);
237         if (retval != ERROR_OK) {
238                 LOG_DEBUG("MDM: failed to queue a write request");
239                 return retval;
240         }
241
242         retval = dap_run(dap);
243         if (retval != ERROR_OK) {
244                 LOG_DEBUG("MDM: dap_run failed");
245                 return retval;
246         }
247
248
249         return ERROR_OK;
250 }
251
252 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
253 {
254         int retval;
255         retval = dap_queue_ap_read(dap, reg, result);
256         if (retval != ERROR_OK) {
257                 LOG_DEBUG("MDM: failed to queue a read request");
258                 return retval;
259         }
260
261         retval = dap_run(dap);
262         if (retval != ERROR_OK) {
263                 LOG_DEBUG("MDM: dap_run failed");
264                 return retval;
265         }
266
267         LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
268         return ERROR_OK;
269 }
270
271 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value)
272 {
273         uint32_t val;
274         int retval;
275         int timeout = MDM_ACCESS_TIMEOUT;
276
277         do {
278                 retval = kinetis_mdm_read_register(dap, reg, &val);
279                 if (retval != ERROR_OK || (val & mask) == value)
280                         return retval;
281
282                 alive_sleep(1);
283         } while (timeout--);
284
285         LOG_DEBUG("MDM: polling timed out");
286         return ERROR_FAIL;
287 }
288
289 /*
290  * This function implements the procedure to mass erase the flash via
291  * SWD/JTAG on Kinetis K and L series of devices as it is described in
292  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
293  * and L-series MCUs" Section 4.2.1
294  */
295 COMMAND_HANDLER(kinetis_mdm_mass_erase)
296 {
297         struct target *target = get_current_target(CMD_CTX);
298         struct cortex_m_common *cortex_m = target_to_cm(target);
299         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
300
301         if (!dap) {
302                 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
303                 return ERROR_FAIL;
304         }
305
306         int retval;
307         const uint8_t original_ap = dap->ap_current;
308
309         /*
310          * ... Power on the processor, or if power has already been
311          * applied, assert the RESET pin to reset the processor. For
312          * devices that do not have a RESET pin, write the System
313          * Reset Request bit in the MDM-AP control register after
314          * establishing communication...
315          */
316         dap_ap_select(dap, 1);
317
318         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MEM_CTRL_SYS_RES_REQ);
319         if (retval != ERROR_OK)
320                 return retval;
321
322         /*
323          * ... Read the MDM-AP status register until the Flash Ready bit sets...
324          */
325         retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT,
326                                            MDM_STAT_FREADY | MDM_STAT_SYSRES,
327                                            MDM_STAT_FREADY);
328         if (retval != ERROR_OK) {
329                 LOG_ERROR("MDM : flash ready timeout");
330                 return retval;
331         }
332
333         /*
334          * ... Write the MDM-AP control register to set the Flash Mass
335          * Erase in Progress bit. This will start the mass erase
336          * process...
337          */
338         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL,
339                                             MEM_CTRL_SYS_RES_REQ | MEM_CTRL_FMEIP);
340         if (retval != ERROR_OK)
341                 return retval;
342
343         /* As a sanity check make sure that device started mass erase procedure */
344         retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT,
345                                            MDM_STAT_FMEACK, MDM_STAT_FMEACK);
346         if (retval != ERROR_OK)
347                 return retval;
348
349         /*
350          * ... Read the MDM-AP control register until the Flash Mass
351          * Erase in Progress bit clears...
352          */
353         retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL,
354                                            MEM_CTRL_FMEIP,
355                                            0);
356         if (retval != ERROR_OK)
357                 return retval;
358
359         /*
360          * ... Negate the RESET signal or clear the System Reset Request
361          * bit in the MDM-AP control register...
362          */
363         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
364         if (retval != ERROR_OK)
365                 return retval;
366
367         dap_ap_select(dap, original_ap);
368         return ERROR_OK;
369 }
370
371 static const uint32_t kinetis_known_mdm_ids[] = {
372         0x001C0000,     /* Kinetis-K Series */
373         0x001C0020,     /* Kinetis-L/M/V/E Series */
374 };
375
376 /*
377  * This function implements the procedure to connect to
378  * SWD/JTAG on Kinetis K and L series of devices as it is described in
379  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
380  * and L-series MCUs" Section 4.1.1
381  */
382 COMMAND_HANDLER(kinetis_check_flash_security_status)
383 {
384         struct target *target = get_current_target(CMD_CTX);
385         struct cortex_m_common *cortex_m = target_to_cm(target);
386         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
387
388         if (!dap) {
389                 LOG_WARNING("Cannot check flash security status with a high-level adapter");
390                 return ERROR_OK;
391         }
392
393         uint32_t val;
394         int retval;
395         const uint8_t origninal_ap = dap->ap_current;
396
397         dap_ap_select(dap, 1);
398
399
400         /*
401          * ... The MDM-AP ID register can be read to verify that the
402          * connection is working correctly...
403          */
404         retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
405         if (retval != ERROR_OK) {
406                 LOG_ERROR("MDM: failed to read ID register");
407                 goto fail;
408         }
409
410         bool found = false;
411         for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
412                 if (val == kinetis_known_mdm_ids[i]) {
413                         found = true;
414                         break;
415                 }
416         }
417
418         if (!found)
419                 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
420
421         /*
422          * ... Read the MDM-AP status register until the Flash Ready bit sets...
423          */
424         retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT,
425                                            MDM_STAT_FREADY,
426                                            MDM_STAT_FREADY);
427         if (retval != ERROR_OK) {
428                 LOG_ERROR("MDM: flash ready timeout");
429                 goto fail;
430         }
431
432         /*
433          * ... Read the System Security bit to determine if security is enabled.
434          * If System Security = 0, then proceed. If System Security = 1, then
435          * communication with the internals of the processor, including the
436          * flash, will not be possible without issuing a mass erase command or
437          * unsecuring the part through other means (backdoor key unlock)...
438          */
439         retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
440         if (retval != ERROR_OK) {
441                 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
442                 goto fail;
443         }
444
445         if (val & MDM_STAT_SYSSEC) {
446                 jtag_poll_set_enabled(false);
447
448                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
449                 LOG_WARNING("****                                                          ****");
450                 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that,  ****");
451                 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD    ****");
452                 LOG_WARNING("**** interface will NOT work. In order to restore its         ****");
453                 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase'      ****");
454                 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD.        ****");
455                 LOG_WARNING("****                                                          ****");
456                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
457         } else {
458                 LOG_INFO("MDM: Chip is unsecured. Continuing.");
459                 jtag_poll_set_enabled(true);
460         }
461
462         dap_ap_select(dap, origninal_ap);
463
464         return ERROR_OK;
465
466 fail:
467         LOG_ERROR("MDM: Failed to check security status of the MCU. Cannot proceed further");
468         jtag_poll_set_enabled(false);
469         return retval;
470 }
471
472 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
473 {
474         struct kinetis_flash_bank *bank_info;
475
476         if (CMD_ARGC < 6)
477                 return ERROR_COMMAND_SYNTAX_ERROR;
478
479         LOG_INFO("add flash_bank kinetis %s", bank->name);
480
481         bank_info = malloc(sizeof(struct kinetis_flash_bank));
482
483         memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
484
485         bank->driver_priv = bank_info;
486
487         return ERROR_OK;
488 }
489
490 /* Kinetis Program-LongWord Microcodes */
491 static const uint8_t kinetis_flash_write_code[] = {
492         /* Params:
493          * r0 - workarea buffer
494         * r1 - target address
495         * r2 - wordcount
496         * Clobbered:
497         * r4 - tmp
498         * r5 - tmp
499         * r6 - tmp
500         * r7 - tmp
501         */
502
503                                                         /* .L1: */
504                                                 /* for(register uint32_t i=0;i<wcount;i++){ */
505         0x04, 0x1C,                                     /* mov    r4, r0          */
506         0x00, 0x23,                                     /* mov    r3, #0          */
507                                                         /* .L2: */
508         0x0E, 0x1A,                                     /* sub    r6, r1, r0      */
509         0xA6, 0x19,                                     /* add    r6, r4, r6      */
510         0x93, 0x42,                                     /* cmp    r3, r2          */
511         0x16, 0xD0,                                     /* beq    .L9             */
512                                                         /* .L5: */
513                                                 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
514         0x0B, 0x4D,                                     /* ldr    r5, .L10        */
515         0x2F, 0x78,                                     /* ldrb   r7, [r5]        */
516         0x7F, 0xB2,                                     /* sxtb   r7, r7          */
517         0x00, 0x2F,                                     /* cmp    r7, #0          */
518         0xFA, 0xDA,                                     /* bge    .L5             */
519                                                 /* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
520         0x70, 0x27,                                     /* mov    r7, #112        */
521         0x2F, 0x70,                                     /* strb   r7, [r5]        */
522                                                 /* FTFx_FCCOB3 = faddr; */
523         0x09, 0x4F,                                     /* ldr    r7, .L10+4      */
524         0x3E, 0x60,                                     /* str    r6, [r7]        */
525         0x06, 0x27,                                     /* mov    r7, #6          */
526                                                 /* FTFx_FCCOB0 = 0x06;  */
527         0x08, 0x4E,                                     /* ldr    r6, .L10+8      */
528         0x37, 0x70,                                     /* strb   r7, [r6]        */
529                                                 /* FTFx_FCCOB7 = *pLW;  */
530         0x80, 0xCC,                                     /* ldmia  r4!, {r7}       */
531         0x08, 0x4E,                                     /* ldr    r6, .L10+12     */
532         0x37, 0x60,                                     /* str    r7, [r6]        */
533                                                 /* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
534         0x80, 0x27,                                     /* mov    r7, #128        */
535         0x2F, 0x70,                                     /* strb   r7, [r5]        */
536                                                         /* .L4: */
537                                                 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
538         0x2E, 0x78,                                     /* ldrb    r6, [r5]       */
539         0x77, 0xB2,                                     /* sxtb    r7, r6         */
540         0x00, 0x2F,                                     /* cmp     r7, #0         */
541         0xFB, 0xDA,                                     /* bge     .L4            */
542         0x01, 0x33,                                     /* add     r3, r3, #1     */
543         0xE4, 0xE7,                                     /* b       .L2            */
544                                                         /* .L9: */
545         0x00, 0xBE,                                     /* bkpt #0                */
546                                                         /* .L10: */
547         0x00, 0x00, 0x02, 0x40,         /* .word    1073872896    */
548         0x04, 0x00, 0x02, 0x40,         /* .word    1073872900    */
549         0x07, 0x00, 0x02, 0x40,         /* .word    1073872903    */
550         0x08, 0x00, 0x02, 0x40,         /* .word    1073872904    */
551 };
552
553 /* Program LongWord Block Write */
554 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
555                 uint32_t offset, uint32_t wcount)
556 {
557         struct target *target = bank->target;
558         uint32_t buffer_size = 2048;            /* Default minimum value */
559         struct working_area *write_algorithm;
560         struct working_area *source;
561         uint32_t address = bank->base + offset;
562         struct reg_param reg_params[3];
563         struct armv7m_algorithm armv7m_info;
564         int retval = ERROR_OK;
565
566         /* Params:
567          * r0 - workarea buffer
568          * r1 - target address
569          * r2 - wordcount
570          * Clobbered:
571          * r4 - tmp
572          * r5 - tmp
573          * r6 - tmp
574          * r7 - tmp
575          */
576
577         /* Increase buffer_size if needed */
578         if (buffer_size < (target->working_area_size/2))
579                 buffer_size = (target->working_area_size/2);
580
581         LOG_INFO("Kinetis: FLASH Write ...");
582
583         /* check code alignment */
584         if (offset & 0x1) {
585                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
586                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
587         }
588
589         /* allocate working area with flash programming code */
590         if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
591                         &write_algorithm) != ERROR_OK) {
592                 LOG_WARNING("no working area available, can't do block memory writes");
593                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
594         }
595
596         retval = target_write_buffer(target, write_algorithm->address,
597                 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
598         if (retval != ERROR_OK)
599                 return retval;
600
601         /* memory buffer */
602         while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
603                 buffer_size /= 4;
604                 if (buffer_size <= 256) {
605                         /* free working area, write algorithm already allocated */
606                         target_free_working_area(target, write_algorithm);
607
608                         LOG_WARNING("No large enough working area available, can't do block memory writes");
609                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
610                 }
611         }
612
613         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
614         armv7m_info.core_mode = ARM_MODE_THREAD;
615
616         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
617         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* faddr */
618         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
619
620         /* write code buffer and use Flash programming code within kinetis       */
621         /* Set breakpoint to 0 with time-out of 1000 ms                          */
622         while (wcount > 0) {
623                 uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
624
625                 retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
626                 if (retval != ERROR_OK)
627                         break;
628
629                 buf_set_u32(reg_params[0].value, 0, 32, source->address);
630                 buf_set_u32(reg_params[1].value, 0, 32, address);
631                 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
632
633                 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
634                                 write_algorithm->address, 0, 100000, &armv7m_info);
635                 if (retval != ERROR_OK) {
636                         LOG_ERROR("Error executing kinetis Flash programming algorithm");
637                         retval = ERROR_FLASH_OPERATION_FAILED;
638                         break;
639                 }
640
641                 buffer += thisrun_count * 4;
642                 address += thisrun_count * 4;
643                 wcount -= thisrun_count;
644         }
645
646         target_free_working_area(target, source);
647         target_free_working_area(target, write_algorithm);
648
649         destroy_reg_param(&reg_params[0]);
650         destroy_reg_param(&reg_params[1]);
651         destroy_reg_param(&reg_params[2]);
652
653         return retval;
654 }
655
656 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
657 {
658         LOG_WARNING("kinetis_protect not supported yet");
659         /* FIXME: TODO */
660
661         if (bank->target->state != TARGET_HALTED) {
662                 LOG_ERROR("Target not halted");
663                 return ERROR_TARGET_NOT_HALTED;
664         }
665
666         return ERROR_FLASH_BANK_INVALID;
667 }
668
669 static int kinetis_protect_check(struct flash_bank *bank)
670 {
671         struct kinetis_flash_bank *kinfo = bank->driver_priv;
672
673         if (bank->target->state != TARGET_HALTED) {
674                 LOG_ERROR("Target not halted");
675                 return ERROR_TARGET_NOT_HALTED;
676         }
677
678         if (kinfo->flash_class == FC_PFLASH) {
679                 int result;
680                 uint8_t buffer[4];
681                 uint32_t fprot, psec;
682                 int i, b;
683
684                 /* read protection register */
685                 result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
686
687                 if (result != ERROR_OK)
688                         return result;
689
690                 fprot = target_buffer_get_u32(bank->target, buffer);
691
692                 /*
693                  * Every bit protects 1/32 of the full flash (not necessarily
694                  * just this bank), but we enforce the bank ordinals for
695                  * PFlash to start at zero.
696                  */
697                 b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
698                 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
699                         if ((fprot >> b) & 1)
700                                 bank->sectors[i].is_protected = 0;
701                         else
702                                 bank->sectors[i].is_protected = 1;
703
704                         psec += bank->sectors[i].size;
705
706                         if (psec >= kinfo->protection_size) {
707                                 psec = 0;
708                                 b++;
709                         }
710                 }
711         } else {
712                 LOG_ERROR("Protection checks for FlexNVM not yet supported");
713                 return ERROR_FLASH_BANK_INVALID;
714         }
715
716         return ERROR_OK;
717 }
718
719 static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
720                                 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
721                                 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
722                                 uint8_t *ftfx_fstat)
723 {
724         uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
725                         fccob7, fccob6, fccob5, fccob4,
726                         fccobb, fccoba, fccob9, fccob8};
727         int result, i;
728         uint8_t buffer;
729
730         /* wait for done */
731         for (i = 0; i < 50; i++) {
732                 result =
733                         target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
734
735                 if (result != ERROR_OK)
736                         return result;
737
738                 if (buffer & 0x80)
739                         break;
740
741                 buffer = 0x00;
742         }
743
744         if (buffer != 0x80) {
745                 /* reset error flags */
746                 buffer = 0x30;
747                 result =
748                         target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
749                 if (result != ERROR_OK)
750                         return result;
751         }
752
753         result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
754
755         if (result != ERROR_OK)
756                 return result;
757
758         /* start command */
759         buffer = 0x80;
760         result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
761         if (result != ERROR_OK)
762                 return result;
763
764         /* wait for done */
765         for (i = 0; i < 240; i++) { /* Need longtime for "Mass Erase" Command Nemui Changed */
766                 result =
767                         target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
768
769                 if (result != ERROR_OK)
770                         return result;
771
772                 if (*ftfx_fstat & 0x80)
773                         break;
774         }
775
776         if ((*ftfx_fstat & 0xf0) != 0x80) {
777                 LOG_ERROR
778                         ("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
779                          *ftfx_fstat, command[3], command[2], command[1], command[0],
780                          command[7], command[6], command[5], command[4],
781                          command[11], command[10], command[9], command[8]);
782                 return ERROR_FLASH_OPERATION_FAILED;
783         }
784
785         return ERROR_OK;
786 }
787
788 static int kinetis_mass_erase(struct flash_bank *bank)
789 {
790         uint8_t ftfx_fstat;
791
792         if (bank->target->state != TARGET_HALTED) {
793                 LOG_ERROR("Target not halted");
794                 return ERROR_TARGET_NOT_HALTED;
795         }
796
797         LOG_INFO("Execute Erase All Blocks");
798         return kinetis_ftfx_command(bank, FTFx_CMD_MASSERASE, 0,
799                                     0, 0, 0, 0,  0, 0, 0, 0,  &ftfx_fstat);
800 }
801
802 COMMAND_HANDLER(kinetis_securing_test)
803 {
804         int result;
805         uint8_t ftfx_fstat;
806         struct target *target = get_current_target(CMD_CTX);
807         struct flash_bank *bank = NULL;
808
809         result = get_flash_bank_by_addr(target, 0x00000000, true, &bank);
810         if (result != ERROR_OK)
811                 return result;
812
813         assert(bank != NULL);
814
815         if (target->state != TARGET_HALTED) {
816                 LOG_ERROR("Target not halted");
817                 return ERROR_TARGET_NOT_HALTED;
818         }
819
820         return kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + 0x00000400,
821                                       0, 0, 0, 0,  0, 0, 0, 0,  &ftfx_fstat);
822 }
823
824 static int kinetis_erase(struct flash_bank *bank, int first, int last)
825 {
826         int result, i;
827
828         if (bank->target->state != TARGET_HALTED) {
829                 LOG_ERROR("Target not halted");
830                 return ERROR_TARGET_NOT_HALTED;
831         }
832
833         if ((first > bank->num_sectors) || (last > bank->num_sectors))
834                 return ERROR_FLASH_OPERATION_FAILED;
835
836         if ((first == 0) && (last == (bank->num_sectors - 1)))
837                 return kinetis_mass_erase(bank);
838
839         /*
840          * FIXME: TODO: use the 'Erase Flash Block' command if the
841          * requested erase is PFlash or NVM and encompasses the entire
842          * block.  Should be quicker.
843          */
844         for (i = first; i <= last; i++) {
845                 uint8_t ftfx_fstat;
846                 /* set command and sector address */
847                 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
848                                 0, 0, 0, 0,  0, 0, 0, 0,  &ftfx_fstat);
849
850                 if (result != ERROR_OK) {
851                         LOG_WARNING("erase sector %d failed", i);
852                         return ERROR_FLASH_OPERATION_FAILED;
853                 }
854
855                 bank->sectors[i].is_erased = 1;
856         }
857
858         if (first == 0) {
859                 LOG_WARNING
860                         ("flash configuration field erased, please reset the device");
861         }
862
863         return ERROR_OK;
864 }
865
866 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
867                          uint32_t offset, uint32_t count)
868 {
869         unsigned int i, result, fallback = 0;
870         uint8_t buf[8];
871         uint32_t wc;
872         struct kinetis_flash_bank *kinfo = bank->driver_priv;
873         uint8_t *new_buffer = NULL;
874
875         if (bank->target->state != TARGET_HALTED) {
876                 LOG_ERROR("Target not halted");
877                 return ERROR_TARGET_NOT_HALTED;
878         }
879
880         if (kinfo->klxx) {
881                 /* fallback to longword write */
882                 fallback = 1;
883                 LOG_WARNING("Kinetis L Series supports Program Longword execution only.");
884                 LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
885
886         } else if (kinfo->flash_class == FC_FLEX_NVM) {
887                 uint8_t ftfx_fstat;
888
889                 LOG_DEBUG("flash write into FlexNVM @%08" PRIX32, offset);
890
891                 /* make flex ram available */
892                 result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0,  0, 0, 0, 0,  &ftfx_fstat);
893
894                 if (result != ERROR_OK)
895                         return ERROR_FLASH_OPERATION_FAILED;
896
897                 /* check if ram ready */
898                 result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
899
900                 if (result != ERROR_OK)
901                         return result;
902
903                 if (!(buf[0] & (1 << 1))) {
904                         /* fallback to longword write */
905                         fallback = 1;
906
907                         LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", buf[0]);
908                 }
909         } else {
910                 LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
911         }
912
913
914         /* program section command */
915         if (fallback == 0) {
916                 /*
917                  * Kinetis uses different terms for the granularity of
918                  * sector writes, e.g. "phrase" or "128 bits".  We use
919                  * the generic term "chunk". The largest possible
920                  * Kinetis "chunk" is 16 bytes (128 bits).
921                  */
922                 unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
923                 /* assume the NVM sector size is half the FlexRAM size */
924                 unsigned prog_size_bytes = MIN(kinfo->sector_size,
925                                 kinetis_flash_params[kinfo->granularity].nvm_sector_size_bytes);
926                 for (i = 0; i < count; i += prog_size_bytes) {
927                         uint8_t residual_buffer[16];
928                         uint8_t ftfx_fstat;
929                         uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
930                         uint32_t residual_wc = 0;
931
932                         /*
933                          * Assume the word count covers an entire
934                          * sector.
935                          */
936                         wc = prog_size_bytes / 4;
937
938                         /*
939                          * If bytes to be programmed are less than the
940                          * full sector, then determine the number of
941                          * full-words to program, and put together the
942                          * residual buffer so that a full "section"
943                          * may always be programmed.
944                          */
945                         if ((count - i) < prog_size_bytes) {
946                                 /* number of bytes to program beyond full section */
947                                 unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
948
949                                 /* number of complete words to copy directly from buffer */
950                                 wc = (count - i) / 4;
951
952                                 /* number of total sections to write, including residual */
953                                 section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
954
955                                 /* any residual bytes delivers a whole residual section */
956                                 residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
957
958                                 /* clear residual buffer then populate residual bytes */
959                                 (void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
960                                 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
961                         }
962
963                         LOG_DEBUG("write section @ %08" PRIX32 " with length %" PRIu32 " bytes",
964                                   offset + i, (uint32_t)wc*4);
965
966                         /* write data to flexram as whole-words */
967                         result = target_write_memory(bank->target, FLEXRAM, 4, wc,
968                                         buffer + i);
969
970                         if (result != ERROR_OK) {
971                                 LOG_ERROR("target_write_memory failed");
972                                 return result;
973                         }
974
975                         /* write the residual words to the flexram */
976                         if (residual_wc) {
977                                 result = target_write_memory(bank->target,
978                                                 FLEXRAM+4*wc,
979                                                 4, residual_wc,
980                                                 residual_buffer);
981
982                                 if (result != ERROR_OK) {
983                                         LOG_ERROR("target_write_memory failed");
984                                         return result;
985                                 }
986                         }
987
988                         /* execute section-write command */
989                         result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
990                                         section_count>>8, section_count, 0, 0,
991                                         0, 0, 0, 0,  &ftfx_fstat);
992
993                         if (result != ERROR_OK)
994                                 return ERROR_FLASH_OPERATION_FAILED;
995                 }
996         }
997         /* program longword command, not supported in "SF3" devices */
998         else if ((kinfo->granularity != 3) || (kinfo->klxx)) {
999
1000                 if (count & 0x3) {
1001                         uint32_t old_count = count;
1002                         count = (old_count | 3) + 1;
1003                         new_buffer = malloc(count);
1004                         if (new_buffer == NULL) {
1005                                 LOG_ERROR("odd number of bytes to write and no memory "
1006                                         "for padding buffer");
1007                                 return ERROR_FAIL;
1008                         }
1009                         LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1010                                 "and padding with 0xff", old_count, count);
1011                         memset(new_buffer, 0xff, count);
1012                         buffer = memcpy(new_buffer, buffer, old_count);
1013                 }
1014
1015                 uint32_t words_remaining = count / 4;
1016
1017                 /* try using a block write */
1018                 int retval = kinetis_write_block(bank, buffer, offset, words_remaining);
1019
1020                 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1021                         /* if block write failed (no sufficient working area),
1022                          * we use normal (slow) single word accesses */
1023                         LOG_WARNING("couldn't use block writes, falling back to single "
1024                                 "memory accesses");
1025
1026                         for (i = 0; i < count; i += 4) {
1027                                 uint8_t ftfx_fstat;
1028
1029                                 LOG_DEBUG("write longword @ %08" PRIX32, (uint32_t)(offset + i));
1030
1031                                 uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
1032                                 memcpy(padding, buffer + i, MIN(4, count-i));
1033
1034                                 result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
1035                                                 padding[3], padding[2], padding[1], padding[0],
1036                                                 0, 0, 0, 0,  &ftfx_fstat);
1037
1038                                 if (result != ERROR_OK)
1039                                         return ERROR_FLASH_OPERATION_FAILED;
1040                         }
1041                 }
1042
1043         } else {
1044                 LOG_ERROR("Flash write strategy not implemented");
1045                 return ERROR_FLASH_OPERATION_FAILED;
1046         }
1047
1048         return ERROR_OK;
1049 }
1050
1051 static int kinetis_read_part_info(struct flash_bank *bank)
1052 {
1053         int result, i;
1054         uint32_t offset = 0;
1055         uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
1056         uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
1057         unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
1058                 first_nvm_bank = 0, reassign = 0;
1059         struct target *target = bank->target;
1060         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1061
1062         result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
1063         if (result != ERROR_OK)
1064                 return result;
1065
1066         kinfo->klxx = 0;
1067
1068         /* K-series MCU? */
1069         if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
1070                 uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
1071
1072                 switch (mcu_type) {
1073                 case KINETIS_K_SDID_K10_M50:
1074                 case KINETIS_K_SDID_K20_M50:
1075                         /* 1kB sectors */
1076                         granularity = 0;
1077                         break;
1078                 case KINETIS_K_SDID_K10_M72:
1079                 case KINETIS_K_SDID_K20_M72:
1080                 case KINETIS_K_SDID_K30_M72:
1081                 case KINETIS_K_SDID_K30_M100:
1082                 case KINETIS_K_SDID_K40_M72:
1083                 case KINETIS_K_SDID_K40_M100:
1084                 case KINETIS_K_SDID_K50_M72:
1085                         /* 2kB sectors, 1kB FlexNVM sectors */
1086                         granularity = 1;
1087                         break;
1088                 case KINETIS_K_SDID_K10_M100:
1089                 case KINETIS_K_SDID_K20_M100:
1090                 case KINETIS_K_SDID_K11:
1091                 case KINETIS_K_SDID_K12:
1092                 case KINETIS_K_SDID_K21_M50:
1093                 case KINETIS_K_SDID_K22_M50:
1094                 case KINETIS_K_SDID_K51_M72:
1095                 case KINETIS_K_SDID_K53:
1096                 case KINETIS_K_SDID_K60_M100:
1097                         /* 2kB sectors */
1098                         granularity = 2;
1099                         break;
1100                 case KINETIS_K_SDID_K10_M120:
1101                 case KINETIS_K_SDID_K20_M120:
1102                 case KINETIS_K_SDID_K21_M120:
1103                 case KINETIS_K_SDID_K22_M120:
1104                 case KINETIS_K_SDID_K60_M150:
1105                 case KINETIS_K_SDID_K70_M150:
1106                         /* 4kB sectors */
1107                         granularity = 3;
1108                         break;
1109                 default:
1110                         LOG_ERROR("Unsupported K-family FAMID");
1111                         return ERROR_FLASH_OPER_UNSUPPORTED;
1112                 }
1113         }
1114         /* KL-series? */
1115         else if ((kinfo->sim_sdid & KINETIS_KL_SDID_SERIESID_MASK) == KINETIS_KL_SDID_SERIESID_KL) {
1116                 kinfo->klxx = 1;
1117                 granularity = 0;
1118         } else {
1119                 LOG_ERROR("MCU is unsupported");
1120                 return ERROR_FLASH_OPER_UNSUPPORTED;
1121         }
1122
1123         result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
1124         if (result != ERROR_OK)
1125                 return result;
1126
1127         result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
1128         if (result != ERROR_OK)
1129                 return result;
1130         fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
1131
1132         LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
1133                         kinfo->sim_fcfg1, kinfo->sim_fcfg2);
1134
1135         fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
1136         fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
1137         fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
1138
1139         /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
1140         if (!fcfg2_pflsh) {
1141                 switch (fcfg1_nvmsize) {
1142                 case 0x03:
1143                 case 0x07:
1144                 case 0x09:
1145                 case 0x0b:
1146                         nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
1147                         break;
1148                 case 0x0f:
1149                         if (granularity == 3)
1150                                 nvm_size = 512<<10;
1151                         else
1152                                 nvm_size = 256<<10;
1153                         break;
1154                 default:
1155                         nvm_size = 0;
1156                         break;
1157                 }
1158
1159                 switch (fcfg1_eesize) {
1160                 case 0x00:
1161                 case 0x01:
1162                 case 0x02:
1163                 case 0x03:
1164                 case 0x04:
1165                 case 0x05:
1166                 case 0x06:
1167                 case 0x07:
1168                 case 0x08:
1169                 case 0x09:
1170                         ee_size = (16 << (10 - fcfg1_eesize));
1171                         break;
1172                 default:
1173                         ee_size = 0;
1174                         break;
1175                 }
1176         }
1177
1178         switch (fcfg1_pfsize) {
1179         case 0x03:
1180         case 0x05:
1181         case 0x07:
1182         case 0x09:
1183         case 0x0b:
1184         case 0x0d:
1185                 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
1186                 break;
1187         case 0x0f:
1188                 if (granularity == 3)
1189                         pf_size = 1024<<10;
1190                 else if (fcfg2_pflsh)
1191                         pf_size = 512<<10;
1192                 else
1193                         pf_size = 256<<10;
1194                 break;
1195         default:
1196                 pf_size = 0;
1197                 break;
1198         }
1199
1200         LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
1201                   nvm_size, pf_size, ee_size, fcfg2_pflsh);
1202         if (kinfo->klxx)
1203                 num_blocks = 1;
1204         else
1205                 num_blocks = kinetis_flash_params[granularity].num_blocks;
1206
1207         num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
1208         first_nvm_bank = num_pflash_blocks;
1209         num_nvm_blocks = num_blocks - num_pflash_blocks;
1210
1211         LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
1212                         num_blocks, num_pflash_blocks, num_nvm_blocks);
1213
1214         /*
1215          * If the flash class is already assigned, verify the
1216          * parameters.
1217          */
1218         if (kinfo->flash_class != FC_AUTO) {
1219                 if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
1220                         LOG_WARNING("Flash ordinal/bank number mismatch");
1221                         reassign = 1;
1222                 } else if (kinfo->granularity != granularity) {
1223                         LOG_WARNING("Flash granularity mismatch");
1224                         reassign = 1;
1225                 } else {
1226                         switch (kinfo->flash_class) {
1227                         case FC_PFLASH:
1228                                 if (kinfo->bank_ordinal >= first_nvm_bank) {
1229                                         LOG_WARNING("Class mismatch, bank %d is not PFlash", bank->bank_number);
1230                                         reassign = 1;
1231                                 } else if (bank->size != (pf_size / num_pflash_blocks)) {
1232                                         LOG_WARNING("PFlash size mismatch");
1233                                         reassign = 1;
1234                                 } else if (bank->base !=
1235                                          (0x00000000 + bank->size * kinfo->bank_ordinal)) {
1236                                         LOG_WARNING("PFlash address range mismatch");
1237                                         reassign = 1;
1238                                 } else if (kinfo->sector_size !=
1239                                                 kinetis_flash_params[granularity].pflash_sector_size_bytes) {
1240                                         LOG_WARNING("PFlash sector size mismatch");
1241                                         reassign = 1;
1242                                 } else {
1243                                         LOG_DEBUG("PFlash bank %d already configured okay",
1244                                                   kinfo->bank_ordinal);
1245                                 }
1246                                 break;
1247                         case FC_FLEX_NVM:
1248                                 if ((kinfo->bank_ordinal >= num_blocks) ||
1249                                                 (kinfo->bank_ordinal < first_nvm_bank)) {
1250                                         LOG_WARNING("Class mismatch, bank %d is not FlexNVM", bank->bank_number);
1251                                         reassign = 1;
1252                                 } else if (bank->size != (nvm_size / num_nvm_blocks)) {
1253                                         LOG_WARNING("FlexNVM size mismatch");
1254                                         reassign = 1;
1255                                 } else if (bank->base !=
1256                                                 (0x10000000 + bank->size * kinfo->bank_ordinal)) {
1257                                         LOG_WARNING("FlexNVM address range mismatch");
1258                                         reassign = 1;
1259                                 } else if (kinfo->sector_size !=
1260                                                 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
1261                                         LOG_WARNING("FlexNVM sector size mismatch");
1262                                         reassign = 1;
1263                                 } else {
1264                                         LOG_DEBUG("FlexNVM bank %d already configured okay",
1265                                                   kinfo->bank_ordinal);
1266                                 }
1267                                 break;
1268                         case FC_FLEX_RAM:
1269                                 if (kinfo->bank_ordinal != num_blocks) {
1270                                         LOG_WARNING("Class mismatch, bank %d is not FlexRAM", bank->bank_number);
1271                                         reassign = 1;
1272                                 } else if (bank->size != ee_size) {
1273                                         LOG_WARNING("FlexRAM size mismatch");
1274                                         reassign = 1;
1275                                 } else if (bank->base != FLEXRAM) {
1276                                         LOG_WARNING("FlexRAM address mismatch");
1277                                         reassign = 1;
1278                                 } else if (kinfo->sector_size !=
1279                                          kinetis_flash_params[granularity].nvm_sector_size_bytes) {
1280                                         LOG_WARNING("FlexRAM sector size mismatch");
1281                                         reassign = 1;
1282                                 } else {
1283                                         LOG_DEBUG("FlexRAM bank %d already configured okay", kinfo->bank_ordinal);
1284                                 }
1285                                 break;
1286
1287                         default:
1288                                 LOG_WARNING("Unknown or inconsistent flash class");
1289                                 reassign = 1;
1290                                 break;
1291                         }
1292                 }
1293         } else {
1294                 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
1295                 reassign = 1;
1296         }
1297
1298         if (!reassign)
1299                 return ERROR_OK;
1300
1301         kinfo->granularity = granularity;
1302
1303         if ((unsigned)bank->bank_number < num_pflash_blocks) {
1304                 /* pflash, banks start at address zero */
1305                 kinfo->flash_class = FC_PFLASH;
1306                 bank->size = (pf_size / num_pflash_blocks);
1307                 bank->base = 0x00000000 + bank->size * bank->bank_number;
1308                 kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
1309                 kinfo->protection_size = pf_size / 32;
1310         } else if ((unsigned)bank->bank_number < num_blocks) {
1311                 /* nvm, banks start at address 0x10000000 */
1312                 kinfo->flash_class = FC_FLEX_NVM;
1313                 bank->size = (nvm_size / num_nvm_blocks);
1314                 bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
1315                 kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
1316                 kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
1317         } else if ((unsigned)bank->bank_number == num_blocks) {
1318                 LOG_ERROR("FlexRAM support not yet implemented");
1319                 return ERROR_FLASH_OPER_UNSUPPORTED;
1320         } else {
1321                 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
1322                                 bank->bank_number, num_blocks);
1323                 return ERROR_FLASH_BANK_INVALID;
1324         }
1325
1326         if (bank->sectors) {
1327                 free(bank->sectors);
1328                 bank->sectors = NULL;
1329         }
1330
1331         bank->num_sectors = bank->size / kinfo->sector_size;
1332         assert(bank->num_sectors > 0);
1333         bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
1334
1335         for (i = 0; i < bank->num_sectors; i++) {
1336                 bank->sectors[i].offset = offset;
1337                 bank->sectors[i].size = kinfo->sector_size;
1338                 offset += kinfo->sector_size;
1339                 bank->sectors[i].is_erased = -1;
1340                 bank->sectors[i].is_protected = 1;
1341         }
1342
1343         return ERROR_OK;
1344 }
1345
1346 static int kinetis_probe(struct flash_bank *bank)
1347 {
1348         if (bank->target->state != TARGET_HALTED) {
1349                 LOG_WARNING("Cannot communicate... target not halted.");
1350                 return ERROR_TARGET_NOT_HALTED;
1351         }
1352
1353         return kinetis_read_part_info(bank);
1354 }
1355
1356 static int kinetis_auto_probe(struct flash_bank *bank)
1357 {
1358         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1359
1360         if (kinfo->sim_sdid)
1361                 return ERROR_OK;
1362
1363         return kinetis_probe(bank);
1364 }
1365
1366 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
1367 {
1368         const char *bank_class_names[] = {
1369                 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
1370         };
1371
1372         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1373
1374         (void) snprintf(buf, buf_size,
1375                         "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
1376                         bank->driver->name, bank_class_names[kinfo->flash_class],
1377                         bank->name, bank->base);
1378
1379         return ERROR_OK;
1380 }
1381
1382 static int kinetis_blank_check(struct flash_bank *bank)
1383 {
1384         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1385
1386         if (bank->target->state != TARGET_HALTED) {
1387                 LOG_ERROR("Target not halted");
1388                 return ERROR_TARGET_NOT_HALTED;
1389         }
1390
1391         if (kinfo->flash_class == FC_PFLASH) {
1392                 int result;
1393                 uint8_t ftfx_fstat;
1394
1395                 /* check if whole bank is blank */
1396                 result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
1397
1398                 if (result != ERROR_OK)
1399                         return result;
1400
1401                 if (ftfx_fstat & 0x01) {
1402                         /* the whole bank is not erased, check sector-by-sector */
1403                         int i;
1404                         for (i = 0; i < bank->num_sectors; i++) {
1405                                 /* normal margin */
1406                                 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
1407                                                 1, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
1408
1409                                 if (result == ERROR_OK) {
1410                                         bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
1411                                 } else {
1412                                         LOG_DEBUG("Ignoring errored PFlash sector blank-check");
1413                                         bank->sectors[i].is_erased = -1;
1414                                 }
1415                         }
1416                 } else {
1417                         /* the whole bank is erased, update all sectors */
1418                         int i;
1419                         for (i = 0; i < bank->num_sectors; i++)
1420                                 bank->sectors[i].is_erased = 1;
1421                 }
1422         } else {
1423                 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
1424                 return ERROR_FLASH_OPERATION_FAILED;
1425         }
1426
1427         return ERROR_OK;
1428 }
1429
1430 static const struct command_registration kinetis_securtiy_command_handlers[] = {
1431         {
1432                 .name = "check_security",
1433                 .mode = COMMAND_EXEC,
1434                 .help = "",
1435                 .usage = "",
1436                 .handler = kinetis_check_flash_security_status,
1437         },
1438         {
1439                 .name = "mass_erase",
1440                 .mode = COMMAND_EXEC,
1441                 .help = "",
1442                 .usage = "",
1443                 .handler = kinetis_mdm_mass_erase,
1444         },
1445         {
1446                 .name = "test_securing",
1447                 .mode = COMMAND_EXEC,
1448                 .help = "",
1449                 .usage = "",
1450                 .handler = kinetis_securing_test,
1451         },
1452         COMMAND_REGISTRATION_DONE
1453 };
1454
1455 static const struct command_registration kinetis_exec_command_handlers[] = {
1456         {
1457                 .name = "mdm",
1458                 .mode = COMMAND_ANY,
1459                 .help = "",
1460                 .usage = "",
1461                 .chain = kinetis_securtiy_command_handlers,
1462         },
1463         COMMAND_REGISTRATION_DONE
1464 };
1465
1466 static const struct command_registration kinetis_command_handler[] = {
1467         {
1468                 .name = "kinetis",
1469                 .mode = COMMAND_ANY,
1470                 .help = "kinetis NAND flash controller commands",
1471                 .usage = "",
1472                 .chain = kinetis_exec_command_handlers,
1473         },
1474         COMMAND_REGISTRATION_DONE
1475 };
1476
1477
1478
1479 struct flash_driver kinetis_flash = {
1480         .name = "kinetis",
1481         .commands = kinetis_command_handler,
1482         .flash_bank_command = kinetis_flash_bank_command,
1483         .erase = kinetis_erase,
1484         .protect = kinetis_protect,
1485         .write = kinetis_write,
1486         .read = default_flash_read,
1487         .probe = kinetis_probe,
1488         .auto_probe = kinetis_auto_probe,
1489         .erase_check = kinetis_blank_check,
1490         .protect_check = kinetis_protect_check,
1491         .info = kinetis_info,
1492 };