dc3dc45976b0f9066a01c95a96e5bdc65d58aac9
[fw/openocd] / src / flash / nor / kinetis.c
1 /***************************************************************************
2  *   Copyright (C) 2011 by Mathias Kuester                                 *
3  *   kesmtp@freenet.de                                                     *
4  *                                                                         *
5  *   Copyright (C) 2011 sleep(5) ltd                                       *
6  *   tomas@sleepfive.com                                                   *
7  *                                                                         *
8  *   Copyright (C) 2012 by Christopher D. Kilgour                          *
9  *   techie at whiterocker.com                                             *
10  *                                                                         *
11  *   Copyright (C) 2013 Nemui Trinomius                                    *
12  *   nemuisan_kawausogasuki@live.jp                                        *
13  *                                                                         *
14  *   Copyright (C) 2015 Tomas Vanek                                        *
15  *   vanekt@fbl.cz                                                         *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
29  ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45  * Implementation Notes
46  *
47  * The persistent memories in the Kinetis chip families K10 through
48  * K70 are all manipulated with the Flash Memory Module.  Some
49  * variants call this module the FTFE, others call it the FTFL.  To
50  * indicate that both are considered here, we use FTFX.
51  *
52  * Within the module, according to the chip variant, the persistent
53  * memory is divided into what Freescale terms Program Flash, FlexNVM,
54  * and FlexRAM.  All chip variants have Program Flash.  Some chip
55  * variants also have FlexNVM and FlexRAM, which always appear
56  * together.
57  *
58  * A given Kinetis chip may have 1, 2 or 4 blocks of flash.  Here we map
59  * each block to a separate bank.  Each block size varies by chip and
60  * may be determined by the read-only SIM_FCFG1 register.  The sector
61  * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62  * The sector size may be different for flash and FlexNVM.
63  *
64  * The first half of the flash (1 or 2 blocks) is always Program Flash
65  * and always starts at address 0x00000000.  The "PFLSH" flag, bit 23
66  * of the read-only SIM_FCFG2 register, determines whether the second
67  * half of the flash is also Program Flash or FlexNVM+FlexRAM.  When
68  * PFLSH is set, the second from the first half.  When PFLSH is clear,
69  * the second half of flash is FlexNVM and always starts at address
70  * 0x10000000.  FlexRAM, which is also present when PFLSH is clear,
71  * always starts at address 0x14000000.
72  *
73  * The Flash Memory Module provides a register set where flash
74  * commands are loaded to perform flash operations like erase and
75  * program.  Different commands are available depending on whether
76  * Program Flash or FlexNVM/FlexRAM is being manipulated.  Although
77  * the commands used are quite consistent between flash blocks, the
78  * parameters they accept differ according to the flash sector size.
79  *
80  */
81
82 /* Addressess */
83 #define FCF_ADDRESS     0x00000400
84 #define FCF_FPROT       0x8
85 #define FCF_FSEC        0xc
86 #define FCF_FOPT        0xd
87 #define FCF_FDPROT      0xf
88 #define FCF_SIZE        0x10
89
90 #define FLEXRAM         0x14000000
91
92 #define MSCM_OCMDR0     0x40001400
93 #define FMC_PFB01CR     0x4001f004
94 #define FTFx_FSTAT      0x40020000
95 #define FTFx_FCNFG      0x40020001
96 #define FTFx_FCCOB3     0x40020004
97 #define FTFx_FPROT3     0x40020010
98 #define FTFx_FDPROT     0x40020017
99 #define SIM_SDID        0x40048024
100 #define SIM_SOPT1       0x40047000
101 #define SIM_FCFG1       0x4004804c
102 #define SIM_FCFG2       0x40048050
103 #define WDOG_STCTRH     0x40052000
104 #define SMC_PMCTRL      0x4007E001
105 #define SMC_PMSTAT      0x4007E003
106 #define MCM_PLACR       0xF000300C
107
108 /* Values */
109 #define PM_STAT_RUN             0x01
110 #define PM_STAT_VLPR            0x04
111 #define PM_CTRL_RUNM_RUN        0x00
112
113 /* Commands */
114 #define FTFx_CMD_BLOCKSTAT  0x00
115 #define FTFx_CMD_SECTSTAT   0x01
116 #define FTFx_CMD_LWORDPROG  0x06
117 #define FTFx_CMD_SECTERASE  0x09
118 #define FTFx_CMD_SECTWRITE  0x0b
119 #define FTFx_CMD_MASSERASE  0x44
120 #define FTFx_CMD_PGMPART    0x80
121 #define FTFx_CMD_SETFLEXRAM 0x81
122
123 /* The older Kinetis K series uses the following SDID layout :
124  * Bit 31-16 : 0
125  * Bit 15-12 : REVID
126  * Bit 11-7  : DIEID
127  * Bit 6-4   : FAMID
128  * Bit 3-0   : PINID
129  *
130  * The newer Kinetis series uses the following SDID layout :
131  * Bit 31-28 : FAMID
132  * Bit 27-24 : SUBFAMID
133  * Bit 23-20 : SERIESID
134  * Bit 19-16 : SRAMSIZE
135  * Bit 15-12 : REVID
136  * Bit 6-4   : Reserved (0)
137  * Bit 3-0   : PINID
138  *
139  * We assume that if bits 31-16 are 0 then it's an older
140  * K-series MCU.
141  */
142
143 #define KINETIS_SOPT1_RAMSIZE_MASK  0x0000F000
144 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
145
146 #define KINETIS_SDID_K_SERIES_MASK  0x0000FFFF
147
148 #define KINETIS_SDID_DIEID_MASK 0x00000F80
149
150 #define KINETIS_SDID_DIEID_K22FN128     0x00000680 /* smaller pflash with FTFA */
151 #define KINETIS_SDID_DIEID_K22FN256     0x00000A80
152 #define KINETIS_SDID_DIEID_K22FN512     0x00000E80
153 #define KINETIS_SDID_DIEID_K24FN256     0x00000700
154
155 #define KINETIS_SDID_DIEID_K24FN1M      0x00000300 /* Detect Errata 7534 */
156
157 /* We can't rely solely on the FAMID field to determine the MCU
158  * type since some FAMID values identify multiple MCUs with
159  * different flash sector sizes (K20 and K22 for instance).
160  * Therefore we combine it with the DIEID bits which may possibly
161  * break if Freescale bumps the DIEID for a particular MCU. */
162 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
163 #define KINETIS_K_SDID_K10_M50   0x00000000
164 #define KINETIS_K_SDID_K10_M72   0x00000080
165 #define KINETIS_K_SDID_K10_M100  0x00000100
166 #define KINETIS_K_SDID_K10_M120  0x00000180
167 #define KINETIS_K_SDID_K11               0x00000220
168 #define KINETIS_K_SDID_K12               0x00000200
169 #define KINETIS_K_SDID_K20_M50   0x00000010
170 #define KINETIS_K_SDID_K20_M72   0x00000090
171 #define KINETIS_K_SDID_K20_M100  0x00000110
172 #define KINETIS_K_SDID_K20_M120  0x00000190
173 #define KINETIS_K_SDID_K21_M50   0x00000230
174 #define KINETIS_K_SDID_K21_M120  0x00000330
175 #define KINETIS_K_SDID_K22_M50   0x00000210
176 #define KINETIS_K_SDID_K22_M120  0x00000310
177 #define KINETIS_K_SDID_K30_M72   0x000000A0
178 #define KINETIS_K_SDID_K30_M100  0x00000120
179 #define KINETIS_K_SDID_K40_M72   0x000000B0
180 #define KINETIS_K_SDID_K40_M100  0x00000130
181 #define KINETIS_K_SDID_K50_M72   0x000000E0
182 #define KINETIS_K_SDID_K51_M72   0x000000F0
183 #define KINETIS_K_SDID_K53               0x00000170
184 #define KINETIS_K_SDID_K60_M100  0x00000140
185 #define KINETIS_K_SDID_K60_M150  0x000001C0
186 #define KINETIS_K_SDID_K70_M150  0x000001D0
187
188 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
189 #define KINETIS_SDID_SERIESID_K   0x00000000
190 #define KINETIS_SDID_SERIESID_KL   0x00100000
191 #define KINETIS_SDID_SERIESID_KE   0x00200000
192 #define KINETIS_SDID_SERIESID_KW   0x00500000
193 #define KINETIS_SDID_SERIESID_KV   0x00600000
194
195 #define KINETIS_SDID_SUBFAMID_SHIFT 24
196 #define KINETIS_SDID_SUBFAMID_MASK  0x0F000000
197 #define KINETIS_SDID_SUBFAMID_KX0   0x00000000
198 #define KINETIS_SDID_SUBFAMID_KX1   0x01000000
199 #define KINETIS_SDID_SUBFAMID_KX2   0x02000000
200 #define KINETIS_SDID_SUBFAMID_KX3   0x03000000
201 #define KINETIS_SDID_SUBFAMID_KX4   0x04000000
202 #define KINETIS_SDID_SUBFAMID_KX5   0x05000000
203 #define KINETIS_SDID_SUBFAMID_KX6   0x06000000
204 #define KINETIS_SDID_SUBFAMID_KX7   0x07000000
205 #define KINETIS_SDID_SUBFAMID_KX8   0x08000000
206
207 #define KINETIS_SDID_FAMILYID_SHIFT 28
208 #define KINETIS_SDID_FAMILYID_MASK  0xF0000000
209 #define KINETIS_SDID_FAMILYID_K0X   0x00000000
210 #define KINETIS_SDID_FAMILYID_K1X   0x10000000
211 #define KINETIS_SDID_FAMILYID_K2X   0x20000000
212 #define KINETIS_SDID_FAMILYID_K3X   0x30000000
213 #define KINETIS_SDID_FAMILYID_K4X   0x40000000
214 #define KINETIS_SDID_FAMILYID_K5X   0x50000000
215 #define KINETIS_SDID_FAMILYID_K6X   0x60000000
216 #define KINETIS_SDID_FAMILYID_K7X   0x70000000
217 #define KINETIS_SDID_FAMILYID_K8X   0x80000000
218 #define KINETIS_SDID_FAMILYID_KL8X  0x90000000
219
220 /* The field originally named DIEID has new name/meaning on KE1x */
221 #define KINETIS_SDID_PROJECTID_MASK  KINETIS_SDID_DIEID_MASK
222 #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080
223 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100
224
225 struct kinetis_flash_bank {
226         struct kinetis_chip *k_chip;
227         bool probed;
228         unsigned bank_number;           /* bank number in particular chip */
229         struct flash_bank *bank;
230
231         uint32_t sector_size;
232         uint32_t protection_size;
233         uint32_t prog_base;             /* base address for FTFx operations */
234                                         /* usually same as bank->base for pflash, differs for FlexNVM */
235         uint32_t protection_block;      /* number of first protection block in this bank */
236
237         enum {
238                 FC_AUTO = 0,
239                 FC_PFLASH,
240                 FC_FLEX_NVM,
241                 FC_FLEX_RAM,
242         } flash_class;
243 };
244
245 #define KINETIS_MAX_BANKS 4u
246
247 struct kinetis_chip {
248         struct target *target;
249         bool probed;
250
251         uint32_t sim_sdid;
252         uint32_t sim_fcfg1;
253         uint32_t sim_fcfg2;
254         uint32_t fcfg2_maxaddr0_shifted;
255         uint32_t fcfg2_maxaddr1_shifted;
256
257         unsigned num_pflash_blocks, num_nvm_blocks;
258         unsigned pflash_sector_size, nvm_sector_size;
259         unsigned max_flash_prog_size;
260
261         uint32_t pflash_base;
262         uint32_t pflash_size;
263         uint32_t nvm_base;
264         uint32_t nvm_size;              /* whole FlexNVM */
265         uint32_t dflash_size;           /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
266
267         uint32_t progr_accel_ram;
268
269         enum {
270                 FS_PROGRAM_SECTOR = 1,
271                 FS_PROGRAM_LONGWORD = 2,
272                 FS_PROGRAM_PHRASE = 4,          /* Unsupported */
273                 FS_INVALIDATE_CACHE_K = 8,      /* using FMC->PFB0CR/PFB01CR */
274                 FS_INVALIDATE_CACHE_L = 0x10,   /* using MCM->PLACR */
275                 FS_INVALIDATE_CACHE_MSCM = 0x20,
276                 FS_NO_CMD_BLOCKSTAT = 0x40,
277                 FS_WIDTH_256BIT = 0x80,
278         } flash_support;
279
280         char name[40];
281
282         unsigned num_banks;
283         struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
284 };
285
286 struct kinetis_type {
287         uint32_t sdid;
288         char *name;
289 };
290
291 static const struct kinetis_type kinetis_types_old[] = {
292         { KINETIS_K_SDID_K10_M50,  "MK10D%s5" },
293         { KINETIS_K_SDID_K10_M72,  "MK10D%s7" },
294         { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
295         { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
296         { KINETIS_K_SDID_K11,      "MK11D%s5" },
297         { KINETIS_K_SDID_K12,      "MK12D%s5" },
298
299         { KINETIS_K_SDID_K20_M50,  "MK20D%s5" },
300         { KINETIS_K_SDID_K20_M72,  "MK20D%s7" },
301         { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
302         { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
303         { KINETIS_K_SDID_K21_M50,  "MK21D%s5" },
304         { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
305         { KINETIS_K_SDID_K22_M50,  "MK22D%s5" },
306         { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
307
308         { KINETIS_K_SDID_K30_M72,  "MK30D%s7" },
309         { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
310
311         { KINETIS_K_SDID_K40_M72,  "MK40D%s7" },
312         { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
313
314         { KINETIS_K_SDID_K50_M72,  "MK50D%s7" },
315         { KINETIS_K_SDID_K51_M72,  "MK51D%s7" },
316         { KINETIS_K_SDID_K53,      "MK53D%s10" },
317
318         { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
319         { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
320
321         { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
322 };
323
324
325 #define MDM_AP                  1
326
327 #define MDM_REG_STAT            0x00
328 #define MDM_REG_CTRL            0x04
329 #define MDM_REG_ID              0xfc
330
331 #define MDM_STAT_FMEACK         (1<<0)
332 #define MDM_STAT_FREADY         (1<<1)
333 #define MDM_STAT_SYSSEC         (1<<2)
334 #define MDM_STAT_SYSRES         (1<<3)
335 #define MDM_STAT_FMEEN          (1<<5)
336 #define MDM_STAT_BACKDOOREN     (1<<6)
337 #define MDM_STAT_LPEN           (1<<7)
338 #define MDM_STAT_VLPEN          (1<<8)
339 #define MDM_STAT_LLSMODEXIT     (1<<9)
340 #define MDM_STAT_VLLSXMODEXIT   (1<<10)
341 #define MDM_STAT_CORE_HALTED    (1<<16)
342 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
343 #define MDM_STAT_CORESLEEPING   (1<<18)
344
345 #define MDM_CTRL_FMEIP          (1<<0)
346 #define MDM_CTRL_DBG_DIS        (1<<1)
347 #define MDM_CTRL_DBG_REQ        (1<<2)
348 #define MDM_CTRL_SYS_RES_REQ    (1<<3)
349 #define MDM_CTRL_CORE_HOLD_RES  (1<<4)
350 #define MDM_CTRL_VLLSX_DBG_REQ  (1<<5)
351 #define MDM_CTRL_VLLSX_DBG_ACK  (1<<6)
352 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
353
354 #define MDM_ACCESS_TIMEOUT      500 /* msec */
355
356
357 static bool allow_fcf_writes;
358 static uint8_t fcf_fopt = 0xff;
359 static bool create_banks;
360
361
362 struct flash_driver kinetis_flash;
363 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
364                         uint32_t offset, uint32_t count);
365 static int kinetis_auto_probe(struct flash_bank *bank);
366
367
368 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
369 {
370         int retval;
371         LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
372
373         retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
374         if (retval != ERROR_OK) {
375                 LOG_DEBUG("MDM: failed to queue a write request");
376                 return retval;
377         }
378
379         retval = dap_run(dap);
380         if (retval != ERROR_OK) {
381                 LOG_DEBUG("MDM: dap_run failed");
382                 return retval;
383         }
384
385
386         return ERROR_OK;
387 }
388
389 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
390 {
391         int retval;
392
393         retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
394         if (retval != ERROR_OK) {
395                 LOG_DEBUG("MDM: failed to queue a read request");
396                 return retval;
397         }
398
399         retval = dap_run(dap);
400         if (retval != ERROR_OK) {
401                 LOG_DEBUG("MDM: dap_run failed");
402                 return retval;
403         }
404
405         LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
406         return ERROR_OK;
407 }
408
409 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
410                         uint32_t mask, uint32_t value, uint32_t timeout_ms)
411 {
412         uint32_t val;
413         int retval;
414         int64_t ms_timeout = timeval_ms() + timeout_ms;
415
416         do {
417                 retval = kinetis_mdm_read_register(dap, reg, &val);
418                 if (retval != ERROR_OK || (val & mask) == value)
419                         return retval;
420
421                 alive_sleep(1);
422         } while (timeval_ms() < ms_timeout);
423
424         LOG_DEBUG("MDM: polling timed out");
425         return ERROR_FAIL;
426 }
427
428 /*
429  * This command can be used to break a watchdog reset loop when
430  * connecting to an unsecured target. Unlike other commands, halt will
431  * automatically retry as it does not know how far into the boot process
432  * it is when the command is called.
433  */
434 COMMAND_HANDLER(kinetis_mdm_halt)
435 {
436         struct target *target = get_current_target(CMD_CTX);
437         struct cortex_m_common *cortex_m = target_to_cm(target);
438         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
439         int retval;
440         int tries = 0;
441         uint32_t stat;
442         int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
443
444         if (!dap) {
445                 LOG_ERROR("Cannot perform halt with a high-level adapter");
446                 return ERROR_FAIL;
447         }
448
449         while (true) {
450                 tries++;
451
452                 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
453
454                 alive_sleep(1);
455
456                 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
457                 if (retval != ERROR_OK) {
458                         LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
459                         continue;
460                 }
461
462                 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
463                  * reset with flash ready and without security
464                  */
465                 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
466                                 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
467                         break;
468
469                 if (timeval_ms() >= ms_timeout) {
470                         LOG_ERROR("MDM: halt timed out");
471                         return ERROR_FAIL;
472                 }
473         }
474
475         LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
476
477         target_poll(target);
478         /* enable polling in case kinetis_check_flash_security_status disabled it */
479         jtag_poll_set_enabled(true);
480
481         alive_sleep(100);
482
483         target->reset_halt = true;
484         target->type->assert_reset(target);
485
486         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
487         if (retval != ERROR_OK) {
488                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
489                 return retval;
490         }
491
492         target->type->deassert_reset(target);
493
494         return ERROR_OK;
495 }
496
497 COMMAND_HANDLER(kinetis_mdm_reset)
498 {
499         struct target *target = get_current_target(CMD_CTX);
500         struct cortex_m_common *cortex_m = target_to_cm(target);
501         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
502         int retval;
503
504         if (!dap) {
505                 LOG_ERROR("Cannot perform reset with a high-level adapter");
506                 return ERROR_FAIL;
507         }
508
509         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
510         if (retval != ERROR_OK) {
511                 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
512                 return retval;
513         }
514
515         retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
516         if (retval != ERROR_OK) {
517                 LOG_ERROR("MDM: failed to assert reset");
518                 return retval;
519         }
520
521         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
522         if (retval != ERROR_OK) {
523                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
524                 return retval;
525         }
526
527         return ERROR_OK;
528 }
529
530 /*
531  * This function implements the procedure to mass erase the flash via
532  * SWD/JTAG on Kinetis K and L series of devices as it is described in
533  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
534  * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
535  * the core remains halted after this function completes as suggested
536  * by the application note.
537  */
538 COMMAND_HANDLER(kinetis_mdm_mass_erase)
539 {
540         struct target *target = get_current_target(CMD_CTX);
541         struct cortex_m_common *cortex_m = target_to_cm(target);
542         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
543
544         if (!dap) {
545                 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
546                 return ERROR_FAIL;
547         }
548
549         int retval;
550
551         /*
552          * ... Power on the processor, or if power has already been
553          * applied, assert the RESET pin to reset the processor. For
554          * devices that do not have a RESET pin, write the System
555          * Reset Request bit in the MDM-AP control register after
556          * establishing communication...
557          */
558
559         /* assert SRST if configured */
560         bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
561         if (has_srst)
562                 adapter_assert_reset();
563
564         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
565         if (retval != ERROR_OK && !has_srst) {
566                 LOG_ERROR("MDM: failed to assert reset");
567                 goto deassert_reset_and_exit;
568         }
569
570         /*
571          * ... Read the MDM-AP status register repeatedly and wait for
572          * stable conditions suitable for mass erase:
573          * - mass erase is enabled
574          * - flash is ready
575          * - reset is finished
576          *
577          * Mass erase is started as soon as all conditions are met in 32
578          * subsequent status reads.
579          *
580          * In case of not stable conditions (RESET/WDOG loop in secured device)
581          * the user is asked for manual pressing of RESET button
582          * as a last resort.
583          */
584         int cnt_mass_erase_disabled = 0;
585         int cnt_ready = 0;
586         int64_t ms_start = timeval_ms();
587         bool man_reset_requested = false;
588
589         do {
590                 uint32_t stat = 0;
591                 int64_t ms_elapsed = timeval_ms() - ms_start;
592
593                 if (!man_reset_requested && ms_elapsed > 100) {
594                         LOG_INFO("MDM: Press RESET button now if possible.");
595                         man_reset_requested = true;
596                 }
597
598                 if (ms_elapsed > 3000) {
599                         LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
600                         LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
601                         LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
602                         goto deassert_reset_and_exit;
603                 }
604                 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
605                 if (retval != ERROR_OK) {
606                         cnt_ready = 0;
607                         continue;
608                 }
609
610                 if (!(stat & MDM_STAT_FMEEN)) {
611                         cnt_ready = 0;
612                         cnt_mass_erase_disabled++;
613                         if (cnt_mass_erase_disabled > 10) {
614                                 LOG_ERROR("MDM: mass erase is disabled");
615                                 goto deassert_reset_and_exit;
616                         }
617                         continue;
618                 }
619
620                 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
621                         cnt_ready++;
622                 else
623                         cnt_ready = 0;
624
625         } while (cnt_ready < 32);
626
627         /*
628          * ... Write the MDM-AP control register to set the Flash Mass
629          * Erase in Progress bit. This will start the mass erase
630          * process...
631          */
632         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
633         if (retval != ERROR_OK) {
634                 LOG_ERROR("MDM: failed to start mass erase");
635                 goto deassert_reset_and_exit;
636         }
637
638         /*
639          * ... Read the MDM-AP control register until the Flash Mass
640          * Erase in Progress bit clears...
641          * Data sheed defines erase time <3.6 sec/512kB flash block.
642          * The biggest device has 4 pflash blocks => timeout 16 sec.
643          */
644         retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
645         if (retval != ERROR_OK) {
646                 LOG_ERROR("MDM: mass erase timeout");
647                 goto deassert_reset_and_exit;
648         }
649
650         target_poll(target);
651         /* enable polling in case kinetis_check_flash_security_status disabled it */
652         jtag_poll_set_enabled(true);
653
654         alive_sleep(100);
655
656         target->reset_halt = true;
657         target->type->assert_reset(target);
658
659         /*
660          * ... Negate the RESET signal or clear the System Reset Request
661          * bit in the MDM-AP control register.
662          */
663         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
664         if (retval != ERROR_OK)
665                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
666
667         target->type->deassert_reset(target);
668
669         return retval;
670
671 deassert_reset_and_exit:
672         kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
673         if (has_srst)
674                 adapter_deassert_reset();
675         return retval;
676 }
677
678 static const uint32_t kinetis_known_mdm_ids[] = {
679         0x001C0000,     /* Kinetis-K Series */
680         0x001C0020,     /* Kinetis-L/M/V/E Series */
681         0x001C0030,     /* Kinetis with a Cortex-M7, in time of writing KV58 */
682 };
683
684 /*
685  * This function implements the procedure to connect to
686  * SWD/JTAG on Kinetis K and L series of devices as it is described in
687  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
688  * and L-series MCUs" Section 4.1.1
689  */
690 COMMAND_HANDLER(kinetis_check_flash_security_status)
691 {
692         struct target *target = get_current_target(CMD_CTX);
693         struct cortex_m_common *cortex_m = target_to_cm(target);
694         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
695
696         if (!dap) {
697                 LOG_WARNING("Cannot check flash security status with a high-level adapter");
698                 return ERROR_OK;
699         }
700
701         if (!dap->ops)
702                 return ERROR_OK;        /* too early to check, in JTAG mode ops may not be initialised */
703
704         uint32_t val;
705         int retval;
706
707         /*
708          * ... The MDM-AP ID register can be read to verify that the
709          * connection is working correctly...
710          */
711         retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
712         if (retval != ERROR_OK) {
713                 LOG_ERROR("MDM: failed to read ID register");
714                 return ERROR_OK;
715         }
716
717         if (val == 0)
718                 return ERROR_OK;        /* dap not yet initialised */
719
720         bool found = false;
721         for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
722                 if (val == kinetis_known_mdm_ids[i]) {
723                         found = true;
724                         break;
725                 }
726         }
727
728         if (!found)
729                 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
730
731         /*
732          * ... Read the System Security bit to determine if security is enabled.
733          * If System Security = 0, then proceed. If System Security = 1, then
734          * communication with the internals of the processor, including the
735          * flash, will not be possible without issuing a mass erase command or
736          * unsecuring the part through other means (backdoor key unlock)...
737          */
738         retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
739         if (retval != ERROR_OK) {
740                 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
741                 return ERROR_OK;
742         }
743
744         /*
745          * System Security bit is also active for short time during reset.
746          * If a MCU has blank flash and runs in RESET/WDOG loop,
747          * System Security bit is active most of time!
748          * We should observe Flash Ready bit and read status several times
749          * to avoid false detection of secured MCU
750          */
751         int secured_score = 0, flash_not_ready_score = 0;
752
753         if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
754                 uint32_t stats[32];
755                 int i;
756
757                 for (i = 0; i < 32; i++) {
758                         stats[i] = MDM_STAT_FREADY;
759                         dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
760                 }
761                 retval = dap_run(dap);
762                 if (retval != ERROR_OK) {
763                         LOG_DEBUG("MDM: dap_run failed when validating secured state");
764                         return ERROR_OK;
765                 }
766                 for (i = 0; i < 32; i++) {
767                         if (stats[i] & MDM_STAT_SYSSEC)
768                                 secured_score++;
769                         if (!(stats[i] & MDM_STAT_FREADY))
770                                 flash_not_ready_score++;
771                 }
772         }
773
774         if (flash_not_ready_score <= 8 && secured_score > 24) {
775                 jtag_poll_set_enabled(false);
776
777                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
778                 LOG_WARNING("****                                                          ****");
779                 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that,  ****");
780                 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD    ****");
781                 LOG_WARNING("**** interface will NOT work. In order to restore its         ****");
782                 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase'      ****");
783                 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD.        ****");
784                 LOG_WARNING("****                                                          ****");
785                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
786
787         } else if (flash_not_ready_score > 24) {
788                 jtag_poll_set_enabled(false);
789                 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
790                 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector).  ****");
791                 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected   ****");
792                 LOG_WARNING("**** and configured, use 'reset halt'                           ****");
793                 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running  ****");
794                 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase'         ****");
795
796         } else {
797                 LOG_INFO("MDM: Chip is unsecured. Continuing.");
798                 jtag_poll_set_enabled(true);
799         }
800
801         return ERROR_OK;
802 }
803
804
805 static struct kinetis_chip *kinetis_get_chip(struct target *target)
806 {
807         struct flash_bank *bank_iter;
808         struct kinetis_flash_bank *k_bank;
809
810         /* iterate over all kinetis banks */
811         for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
812                 if (bank_iter->driver != &kinetis_flash
813                     || bank_iter->target != target)
814                         continue;
815
816                 k_bank = bank_iter->driver_priv;
817                 if (!k_bank)
818                         continue;
819
820                 if (k_bank->k_chip)
821                         return k_bank->k_chip;
822         }
823         return NULL;
824 }
825
826 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
827 {
828         struct target *target = bank->target;
829         struct kinetis_chip *k_chip;
830         struct kinetis_flash_bank *k_bank;
831
832         if (CMD_ARGC < 6)
833                 return ERROR_COMMAND_SYNTAX_ERROR;
834
835         LOG_INFO("add flash_bank kinetis %s", bank->name);
836
837         k_chip = kinetis_get_chip(target);
838
839         if (k_chip == NULL) {
840                 k_chip = calloc(sizeof(struct kinetis_chip), 1);
841                 if (k_chip == NULL) {
842                         LOG_ERROR("No memory");
843                         return ERROR_FAIL;
844                 }
845
846                 k_chip->target = target;
847         }
848
849         if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
850                 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
851                 return ERROR_FAIL;
852         }
853
854         bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
855         k_bank->k_chip = k_chip;
856         k_bank->bank_number = k_chip->num_banks;
857         k_bank->bank = bank;
858         k_chip->num_banks++;
859
860         return ERROR_OK;
861 }
862
863
864 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
865 {
866         unsigned bank_idx;
867         unsigned num_blocks;
868         struct kinetis_flash_bank *k_bank;
869         struct flash_bank *bank;
870         char base_name[80], name[80], num[4];
871         char *class, *p;
872
873         num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
874         if (num_blocks > KINETIS_MAX_BANKS) {
875                 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
876                 return ERROR_FAIL;
877         }
878
879         bank = k_chip->banks[0].bank;
880         if (bank && bank->name) {
881                 strncpy(base_name, bank->name, sizeof(base_name));
882                 p = strstr(base_name, ".pflash");
883                 if (p) {
884                         *p = '\0';
885                         if (k_chip->num_pflash_blocks > 1) {
886                                 /* rename first bank if numbering is needed */
887                                 snprintf(name, sizeof(name), "%s.pflash0", base_name);
888                                 free((void *)bank->name);
889                                 bank->name = strdup(name);
890                         }
891                 }
892         } else {
893                 strncpy(base_name, target_name(k_chip->target), sizeof(base_name));
894                 p = strstr(base_name, ".cpu");
895                 if (p)
896                         *p = '\0';
897         }
898
899         for (bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
900                 k_bank = &(k_chip->banks[bank_idx]);
901                 bank = k_bank->bank;
902
903                 if (bank)
904                         continue;
905
906                 num[0] = '\0';
907
908                 if (bank_idx < k_chip->num_pflash_blocks) {
909                         class = "pflash";
910                         if (k_chip->num_pflash_blocks > 1)
911                                 snprintf(num, sizeof(num), "%u", bank_idx);
912                 } else {
913                         class = "flexnvm";
914                         if (k_chip->num_nvm_blocks > 1)
915                                 snprintf(num, sizeof(num), "%u",
916                                          bank_idx - k_chip->num_pflash_blocks);
917                 }
918
919                 bank = calloc(sizeof(struct flash_bank), 1);
920                 if (bank == NULL)
921                         return ERROR_FAIL;
922
923                 bank->target = k_chip->target;
924                 bank->driver = &kinetis_flash;
925                 bank->default_padded_value = bank->erased_value = 0xff;
926
927                 snprintf(name, sizeof(name), "%s.%s%s",
928                          base_name, class, num);
929                 bank->name = strdup(name);
930
931                 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
932                 k_bank->k_chip = k_chip;
933                 k_bank->bank_number = bank_idx;
934                 k_bank->bank = bank;
935                 if (k_chip->num_banks <= bank_idx)
936                         k_chip->num_banks = bank_idx + 1;
937
938                 flash_bank_add(bank);
939         }
940         return ERROR_OK;
941 }
942
943
944 /* Disable the watchdog on Kinetis devices */
945 int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid)
946 {
947         struct working_area *wdog_algorithm;
948         struct armv7m_algorithm armv7m_info;
949         uint16_t wdog;
950         int retval;
951
952         static const uint8_t kinetis_unlock_wdog_code[] = {
953 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
954         };
955
956         /* Decide whether the connected device needs watchdog disabling.
957          * Disable for all Kx and KVx devices, return if it is a KLx */
958
959         if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL)
960                 return ERROR_OK;
961
962         /* The connected device requires watchdog disabling. */
963         retval = target_read_u16(target, WDOG_STCTRH, &wdog);
964         if (retval != ERROR_OK)
965                 return retval;
966
967         if ((wdog & 0x1) == 0) {
968                 /* watchdog already disabled */
969                 return ERROR_OK;
970         }
971         LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog);
972
973         if (target->state != TARGET_HALTED) {
974                 LOG_ERROR("Target not halted");
975                 return ERROR_TARGET_NOT_HALTED;
976         }
977
978         retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm);
979         if (retval != ERROR_OK)
980                 return retval;
981
982         retval = target_write_buffer(target, wdog_algorithm->address,
983                         sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code);
984         if (retval != ERROR_OK) {
985                 target_free_working_area(target, wdog_algorithm);
986                 return retval;
987         }
988
989         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
990         armv7m_info.core_mode = ARM_MODE_THREAD;
991
992         retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address,
993                         wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2),
994                         10000, &armv7m_info);
995
996         if (retval != ERROR_OK)
997                 LOG_ERROR("error executing kinetis wdog unlock algorithm");
998
999         retval = target_read_u16(target, WDOG_STCTRH, &wdog);
1000         if (retval != ERROR_OK)
1001                 return retval;
1002         LOG_INFO("WDOG_STCTRLH = 0x%x", wdog);
1003
1004         target_free_working_area(target, wdog_algorithm);
1005
1006         return retval;
1007 }
1008
1009 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1010 {
1011         int result;
1012         uint32_t sim_sdid;
1013         struct target *target = get_current_target(CMD_CTX);
1014
1015         if (CMD_ARGC > 0)
1016                 return ERROR_COMMAND_SYNTAX_ERROR;
1017
1018         result = target_read_u32(target, SIM_SDID, &sim_sdid);
1019         if (result != ERROR_OK) {
1020                 LOG_ERROR("Failed to read SIMSDID");
1021                 return result;
1022         }
1023
1024         result = kinetis_disable_wdog(target, sim_sdid);
1025         return result;
1026 }
1027
1028
1029 static int kinetis_ftfx_decode_error(uint8_t fstat)
1030 {
1031         if (fstat & 0x20) {
1032                 LOG_ERROR("Flash operation failed, illegal command");
1033                 return ERROR_FLASH_OPER_UNSUPPORTED;
1034
1035         } else if (fstat & 0x10)
1036                 LOG_ERROR("Flash operation failed, protection violated");
1037
1038         else if (fstat & 0x40)
1039                 LOG_ERROR("Flash operation failed, read collision");
1040
1041         else if (fstat & 0x80)
1042                 return ERROR_OK;
1043
1044         else
1045                 LOG_ERROR("Flash operation timed out");
1046
1047         return ERROR_FLASH_OPERATION_FAILED;
1048 }
1049
1050 static int kinetis_ftfx_clear_error(struct target *target)
1051 {
1052         /* reset error flags */
1053         return target_write_u8(target, FTFx_FSTAT, 0x70);
1054 }
1055
1056
1057 static int kinetis_ftfx_prepare(struct target *target)
1058 {
1059         int result, i;
1060         uint8_t fstat;
1061
1062         /* wait until busy */
1063         for (i = 0; i < 50; i++) {
1064                 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1065                 if (result != ERROR_OK)
1066                         return result;
1067
1068                 if (fstat & 0x80)
1069                         break;
1070         }
1071
1072         if ((fstat & 0x80) == 0) {
1073                 LOG_ERROR("Flash controller is busy");
1074                 return ERROR_FLASH_OPERATION_FAILED;
1075         }
1076         if (fstat != 0x80) {
1077                 /* reset error flags */
1078                 result = kinetis_ftfx_clear_error(target);
1079         }
1080         return result;
1081 }
1082
1083 /* Kinetis Program-LongWord Microcodes */
1084 static const uint8_t kinetis_flash_write_code[] = {
1085 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1086 };
1087
1088 /* Program LongWord Block Write */
1089 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1090                 uint32_t offset, uint32_t wcount)
1091 {
1092         struct target *target = bank->target;
1093         uint32_t buffer_size = 2048;            /* Default minimum value */
1094         struct working_area *write_algorithm;
1095         struct working_area *source;
1096         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1097         uint32_t address = k_bank->prog_base + offset;
1098         uint32_t end_address;
1099         struct reg_param reg_params[5];
1100         struct armv7m_algorithm armv7m_info;
1101         int retval;
1102         uint8_t fstat;
1103
1104         /* Increase buffer_size if needed */
1105         if (buffer_size < (target->working_area_size/2))
1106                 buffer_size = (target->working_area_size/2);
1107
1108         /* allocate working area with flash programming code */
1109         if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1110                         &write_algorithm) != ERROR_OK) {
1111                 LOG_WARNING("no working area available, can't do block memory writes");
1112                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1113         }
1114
1115         retval = target_write_buffer(target, write_algorithm->address,
1116                 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1117         if (retval != ERROR_OK)
1118                 return retval;
1119
1120         /* memory buffer */
1121         while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1122                 buffer_size /= 4;
1123                 if (buffer_size <= 256) {
1124                         /* free working area, write algorithm already allocated */
1125                         target_free_working_area(target, write_algorithm);
1126
1127                         LOG_WARNING("No large enough working area available, can't do block memory writes");
1128                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1129                 }
1130         }
1131
1132         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1133         armv7m_info.core_mode = ARM_MODE_THREAD;
1134
1135         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1136         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1137         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1138         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1139         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1140
1141         buf_set_u32(reg_params[0].value, 0, 32, address);
1142         buf_set_u32(reg_params[1].value, 0, 32, wcount);
1143         buf_set_u32(reg_params[2].value, 0, 32, source->address);
1144         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1145         buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
1146
1147         retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1148                                                 0, NULL,
1149                                                 5, reg_params,
1150                                                 source->address, source->size,
1151                                                 write_algorithm->address, 0,
1152                                                 &armv7m_info);
1153
1154         if (retval == ERROR_FLASH_OPERATION_FAILED) {
1155                 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1156
1157                 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1158
1159                 retval = target_read_u8(target, FTFx_FSTAT, &fstat);
1160                 if (retval == ERROR_OK) {
1161                         retval = kinetis_ftfx_decode_error(fstat);
1162
1163                         /* reset error flags */
1164                         target_write_u8(target, FTFx_FSTAT, 0x70);
1165                 }
1166         } else if (retval != ERROR_OK)
1167                 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1168
1169         target_free_working_area(target, source);
1170         target_free_working_area(target, write_algorithm);
1171
1172         destroy_reg_param(&reg_params[0]);
1173         destroy_reg_param(&reg_params[1]);
1174         destroy_reg_param(&reg_params[2]);
1175         destroy_reg_param(&reg_params[3]);
1176         destroy_reg_param(&reg_params[4]);
1177
1178         return retval;
1179 }
1180
1181 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1182 {
1183         int i;
1184
1185         if (allow_fcf_writes) {
1186                 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1187                 return ERROR_FAIL;
1188         }
1189
1190         if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1191                 LOG_ERROR("No protection possible for current bank!");
1192                 return ERROR_FLASH_BANK_INVALID;
1193         }
1194
1195         for (i = first; i < bank->num_prot_blocks && i <= last; i++)
1196                 bank->prot_blocks[i].is_protected = set;
1197
1198         LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1199         LOG_INFO("Do not issue 'flash info' command until protection is written,");
1200         LOG_INFO("doing so would re-read protection status from MCU.");
1201
1202         return ERROR_OK;
1203 }
1204
1205 static int kinetis_protect_check(struct flash_bank *bank)
1206 {
1207         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1208         int result;
1209         int i, b;
1210         uint32_t fprot;
1211
1212         if (k_bank->flash_class == FC_PFLASH) {
1213
1214                 /* read protection register */
1215                 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1216                 if (result != ERROR_OK)
1217                         return result;
1218
1219                 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1220
1221         } else if (k_bank->flash_class == FC_FLEX_NVM) {
1222                 uint8_t fdprot;
1223
1224                 /* read protection register */
1225                 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1226                 if (result != ERROR_OK)
1227                         return result;
1228
1229                 fprot = fdprot;
1230
1231         } else {
1232                 LOG_ERROR("Protection checks for FlexRAM not supported");
1233                 return ERROR_FLASH_BANK_INVALID;
1234         }
1235
1236         b = k_bank->protection_block;
1237         for (i = 0; i < bank->num_prot_blocks; i++) {
1238                 if ((fprot >> b) & 1)
1239                         bank->prot_blocks[i].is_protected = 0;
1240                 else
1241                         bank->prot_blocks[i].is_protected = 1;
1242
1243                 b++;
1244         }
1245
1246         return ERROR_OK;
1247 }
1248
1249
1250 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1251 {
1252         uint32_t fprot = 0xffffffff;
1253         uint8_t fsec = 0xfe;             /* set MCU unsecure */
1254         uint8_t fdprot = 0xff;
1255         int i;
1256         unsigned bank_idx;
1257         unsigned num_blocks;
1258         uint32_t pflash_bit;
1259         uint8_t dflash_bit;
1260         struct flash_bank *bank_iter;
1261         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1262         struct kinetis_chip *k_chip = k_bank->k_chip;
1263
1264         memset(fcf, 0xff, FCF_SIZE);
1265
1266         pflash_bit = 1;
1267         dflash_bit = 1;
1268
1269         /* iterate over all kinetis banks */
1270         /* current bank is bank 0, it contains FCF */
1271         num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1272         for (bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1273                 k_bank = &(k_chip->banks[bank_idx]);
1274                 bank_iter = k_bank->bank;
1275
1276                 if (bank_iter == NULL) {
1277                         LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx);
1278                         continue;
1279                 }
1280
1281                 kinetis_auto_probe(bank_iter);
1282
1283                 if (k_bank->flash_class == FC_PFLASH) {
1284                         for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1285                                 if (bank_iter->prot_blocks[i].is_protected == 1)
1286                                         fprot &= ~pflash_bit;
1287
1288                                 pflash_bit <<= 1;
1289                         }
1290
1291                 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1292                         for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1293                                 if (bank_iter->prot_blocks[i].is_protected == 1)
1294                                         fdprot &= ~dflash_bit;
1295
1296                                 dflash_bit <<= 1;
1297                         }
1298
1299                 }
1300         }
1301
1302         target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1303         fcf[FCF_FSEC] = fsec;
1304         fcf[FCF_FOPT] = fcf_fopt;
1305         fcf[FCF_FDPROT] = fdprot;
1306         return ERROR_OK;
1307 }
1308
1309 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1310                                 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1311                                 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1312                                 uint8_t *ftfx_fstat)
1313 {
1314         uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1315                         fccob7, fccob6, fccob5, fccob4,
1316                         fccobb, fccoba, fccob9, fccob8};
1317         int result;
1318         uint8_t fstat;
1319         int64_t ms_timeout = timeval_ms() + 250;
1320
1321         result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1322         if (result != ERROR_OK)
1323                 return result;
1324
1325         /* start command */
1326         result = target_write_u8(target, FTFx_FSTAT, 0x80);
1327         if (result != ERROR_OK)
1328                 return result;
1329
1330         /* wait for done */
1331         do {
1332                 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1333
1334                 if (result != ERROR_OK)
1335                         return result;
1336
1337                 if (fstat & 0x80)
1338                         break;
1339
1340         } while (timeval_ms() < ms_timeout);
1341
1342         if (ftfx_fstat)
1343                 *ftfx_fstat = fstat;
1344
1345         if ((fstat & 0xf0) != 0x80) {
1346                 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1347                          fstat, command[3], command[2], command[1], command[0],
1348                          command[7], command[6], command[5], command[4],
1349                          command[11], command[10], command[9], command[8]);
1350
1351                 return kinetis_ftfx_decode_error(fstat);
1352         }
1353
1354         return ERROR_OK;
1355 }
1356
1357
1358 static int kinetis_check_run_mode(struct target *target)
1359 {
1360         int result, i;
1361         uint8_t pmctrl, pmstat;
1362
1363         if (target->state != TARGET_HALTED) {
1364                 LOG_ERROR("Target not halted");
1365                 return ERROR_TARGET_NOT_HALTED;
1366         }
1367
1368         result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1369         if (result != ERROR_OK)
1370                 return result;
1371
1372         if (pmstat == PM_STAT_RUN)
1373                 return ERROR_OK;
1374
1375         if (pmstat == PM_STAT_VLPR) {
1376                 /* It is safe to switch from VLPR to RUN mode without changing clock */
1377                 LOG_INFO("Switching from VLPR to RUN mode.");
1378                 pmctrl = PM_CTRL_RUNM_RUN;
1379                 result = target_write_u8(target, SMC_PMCTRL, pmctrl);
1380                 if (result != ERROR_OK)
1381                         return result;
1382
1383                 for (i = 100; i; i--) {
1384                         result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1385                         if (result != ERROR_OK)
1386                                 return result;
1387
1388                         if (pmstat == PM_STAT_RUN)
1389                                 return ERROR_OK;
1390                 }
1391         }
1392
1393         LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1394         LOG_ERROR("Issue a 'reset init' command.");
1395         return ERROR_TARGET_NOT_HALTED;
1396 }
1397
1398
1399 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1400 {
1401         struct target *target = k_chip->target;
1402
1403         if (k_chip->flash_support & FS_INVALIDATE_CACHE_K)
1404                 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1405                 /* Set CINV_WAY bits - request invalidate of all cache ways */
1406                 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1407
1408         else if (k_chip->flash_support & FS_INVALIDATE_CACHE_L)
1409                 target_write_u8(target, MCM_PLACR + 1, 0x04);
1410                 /* set bit CFCC - Clear Flash Controller Cache */
1411
1412         else if (k_chip->flash_support & FS_INVALIDATE_CACHE_MSCM)
1413                 target_write_u32(target, MSCM_OCMDR0, 0x30);
1414                 /* disable data prefetch and flash speculate */
1415
1416         return;
1417 }
1418
1419
1420 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1421 {
1422         int result, i;
1423         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1424
1425         result = kinetis_check_run_mode(bank->target);
1426         if (result != ERROR_OK)
1427                 return result;
1428
1429         /* reset error flags */
1430         result = kinetis_ftfx_prepare(bank->target);
1431         if (result != ERROR_OK)
1432                 return result;
1433
1434         if ((first > bank->num_sectors) || (last > bank->num_sectors))
1435                 return ERROR_FLASH_OPERATION_FAILED;
1436
1437         /*
1438          * FIXME: TODO: use the 'Erase Flash Block' command if the
1439          * requested erase is PFlash or NVM and encompasses the entire
1440          * block.  Should be quicker.
1441          */
1442         for (i = first; i <= last; i++) {
1443                 /* set command and sector address */
1444                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1445                                 0, 0, 0, 0,  0, 0, 0, 0,  NULL);
1446
1447                 if (result != ERROR_OK) {
1448                         LOG_WARNING("erase sector %d failed", i);
1449                         return ERROR_FLASH_OPERATION_FAILED;
1450                 }
1451
1452                 bank->sectors[i].is_erased = 1;
1453
1454                 if (k_bank->prog_base == 0
1455                         && bank->sectors[i].offset <= FCF_ADDRESS
1456                         && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1457                         if (allow_fcf_writes) {
1458                                 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1459                                 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1460                         } else {
1461                                 uint8_t fcf_buffer[FCF_SIZE];
1462
1463                                 kinetis_fill_fcf(bank, fcf_buffer);
1464                                 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1465                                 if (result != ERROR_OK)
1466                                         LOG_WARNING("Flash Configuration Field write failed");
1467                                 bank->sectors[i].is_erased = 0;
1468                         }
1469                 }
1470         }
1471
1472         kinetis_invalidate_flash_cache(k_bank->k_chip);
1473
1474         return ERROR_OK;
1475 }
1476
1477 static int kinetis_make_ram_ready(struct target *target)
1478 {
1479         int result;
1480         uint8_t ftfx_fcnfg;
1481
1482         /* check if ram ready */
1483         result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1484         if (result != ERROR_OK)
1485                 return result;
1486
1487         if (ftfx_fcnfg & (1 << 1))
1488                 return ERROR_OK;        /* ram ready */
1489
1490         /* make flex ram available */
1491         result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1492                                  0, 0, 0, 0,  0, 0, 0, 0,  NULL);
1493         if (result != ERROR_OK)
1494                 return ERROR_FLASH_OPERATION_FAILED;
1495
1496         /* check again */
1497         result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1498         if (result != ERROR_OK)
1499                 return result;
1500
1501         if (ftfx_fcnfg & (1 << 1))
1502                 return ERROR_OK;        /* ram ready */
1503
1504         return ERROR_FLASH_OPERATION_FAILED;
1505 }
1506
1507
1508 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1509                          uint32_t offset, uint32_t count)
1510 {
1511         int result = ERROR_OK;
1512         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1513         struct kinetis_chip *k_chip = k_bank->k_chip;
1514         uint8_t *buffer_aligned = NULL;
1515         /*
1516          * Kinetis uses different terms for the granularity of
1517          * sector writes, e.g. "phrase" or "128 bits".  We use
1518          * the generic term "chunk". The largest possible
1519          * Kinetis "chunk" is 16 bytes (128 bits).
1520          */
1521         uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1522         uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1523
1524         while (count > 0) {
1525                 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1526                 uint32_t align_begin = offset % prog_section_chunk_bytes;
1527                 uint32_t align_end;
1528                 uint32_t size_aligned;
1529                 uint16_t chunk_count;
1530                 uint8_t ftfx_fstat;
1531
1532                 if (size > count)
1533                         size = count;
1534
1535                 align_end = (align_begin + size) % prog_section_chunk_bytes;
1536                 if (align_end)
1537                         align_end = prog_section_chunk_bytes - align_end;
1538
1539                 size_aligned = align_begin + size + align_end;
1540                 chunk_count = size_aligned / prog_section_chunk_bytes;
1541
1542                 if (size != size_aligned) {
1543                         /* aligned section: the first, the last or the only */
1544                         if (!buffer_aligned)
1545                                 buffer_aligned = malloc(prog_size_bytes);
1546
1547                         memset(buffer_aligned, 0xff, size_aligned);
1548                         memcpy(buffer_aligned + align_begin, buffer, size);
1549
1550                         result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1551                                                 4, size_aligned / 4, buffer_aligned);
1552
1553                         LOG_DEBUG("section @ %08" PRIx32 " aligned begin %" PRIu32 ", end %" PRIu32,
1554                                         bank->base + offset, align_begin, align_end);
1555                 } else
1556                         result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1557                                                 4, size_aligned / 4, buffer);
1558
1559                 LOG_DEBUG("write section @ %08" PRIx32 " with length %" PRIu32 " bytes",
1560                           bank->base + offset, size);
1561
1562                 if (result != ERROR_OK) {
1563                         LOG_ERROR("target_write_memory failed");
1564                         break;
1565                 }
1566
1567                 /* execute section-write command */
1568                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1569                                 k_bank->prog_base + offset - align_begin,
1570                                 chunk_count>>8, chunk_count, 0, 0,
1571                                 0, 0, 0, 0,  &ftfx_fstat);
1572
1573                 if (result != ERROR_OK) {
1574                         LOG_ERROR("Error writing section at %08" PRIx32, bank->base + offset);
1575                         break;
1576                 }
1577
1578                 if (ftfx_fstat & 0x01) {
1579                         LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1580                         if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1581                                         && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1582                                 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1583                                 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1584                                 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1585                                 LOG_ERROR("or set 'kinetis fcf_source write'");
1586                         }
1587                 }
1588
1589                 buffer += size;
1590                 offset += size;
1591                 count -= size;
1592         }
1593
1594         free(buffer_aligned);
1595         return result;
1596 }
1597
1598
1599 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1600                          uint32_t offset, uint32_t count)
1601 {
1602         int result, fallback = 0;
1603         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1604         struct kinetis_chip *k_chip = k_bank->k_chip;
1605
1606         if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1607                 /* fallback to longword write */
1608                 fallback = 1;
1609                 LOG_INFO("This device supports Program Longword execution only.");
1610         } else {
1611                 result = kinetis_make_ram_ready(bank->target);
1612                 if (result != ERROR_OK) {
1613                         fallback = 1;
1614                         LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1615                 }
1616         }
1617
1618         LOG_DEBUG("flash write @ %08" PRIx32, bank->base + offset);
1619
1620         if (fallback == 0) {
1621                 /* program section command */
1622                 kinetis_write_sections(bank, buffer, offset, count);
1623         } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1624                 /* program longword command, not supported in FTFE */
1625                 uint8_t *new_buffer = NULL;
1626
1627                 /* check word alignment */
1628                 if (offset & 0x3) {
1629                         LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1630                         return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1631                 }
1632
1633                 if (count & 0x3) {
1634                         uint32_t old_count = count;
1635                         count = (old_count | 3) + 1;
1636                         new_buffer = malloc(count);
1637                         if (new_buffer == NULL) {
1638                                 LOG_ERROR("odd number of bytes to write and no memory "
1639                                         "for padding buffer");
1640                                 return ERROR_FAIL;
1641                         }
1642                         LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1643                                 "and padding with 0xff", old_count, count);
1644                         memset(new_buffer + old_count, 0xff, count - old_count);
1645                         buffer = memcpy(new_buffer, buffer, old_count);
1646                 }
1647
1648                 uint32_t words_remaining = count / 4;
1649
1650                 kinetis_disable_wdog(bank->target, k_chip->sim_sdid);
1651
1652                 /* try using a block write */
1653                 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1654
1655                 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1656                         /* if block write failed (no sufficient working area),
1657                          * we use normal (slow) single word accesses */
1658                         LOG_WARNING("couldn't use block writes, falling back to single "
1659                                 "memory accesses");
1660
1661                         while (words_remaining) {
1662                                 uint8_t ftfx_fstat;
1663
1664                                 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1665
1666                                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset,
1667                                                 buffer[3], buffer[2], buffer[1], buffer[0],
1668                                                 0, 0, 0, 0,  &ftfx_fstat);
1669
1670                                 if (result != ERROR_OK) {
1671                                         LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset);
1672                                         break;
1673                                 }
1674
1675                                 if (ftfx_fstat & 0x01)
1676                                         LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1677
1678                                 buffer += 4;
1679                                 offset += 4;
1680                                 words_remaining--;
1681                         }
1682                 }
1683                 free(new_buffer);
1684         } else {
1685                 LOG_ERROR("Flash write strategy not implemented");
1686                 return ERROR_FLASH_OPERATION_FAILED;
1687         }
1688
1689         kinetis_invalidate_flash_cache(k_chip);
1690         return result;
1691 }
1692
1693
1694 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1695                          uint32_t offset, uint32_t count)
1696 {
1697         int result;
1698         bool set_fcf = false;
1699         int sect = 0;
1700         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1701
1702         result = kinetis_check_run_mode(bank->target);
1703         if (result != ERROR_OK)
1704                 return result;
1705
1706         /* reset error flags */
1707         result = kinetis_ftfx_prepare(bank->target);
1708         if (result != ERROR_OK)
1709                 return result;
1710
1711         if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1712                 if (bank->sectors[1].offset <= FCF_ADDRESS)
1713                         sect = 1;       /* 1kb sector, FCF in 2nd sector */
1714
1715                 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1716                         && offset + count > bank->sectors[sect].offset)
1717                         set_fcf = true; /* write to any part of sector with FCF */
1718         }
1719
1720         if (set_fcf) {
1721                 uint8_t fcf_buffer[FCF_SIZE];
1722                 uint8_t fcf_current[FCF_SIZE];
1723
1724                 kinetis_fill_fcf(bank, fcf_buffer);
1725
1726                 if (offset < FCF_ADDRESS) {
1727                         /* write part preceding FCF */
1728                         result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1729                         if (result != ERROR_OK)
1730                                 return result;
1731                 }
1732
1733                 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1734                 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1735                         set_fcf = false;
1736
1737                 if (set_fcf) {
1738                         /* write FCF if differs from flash - eliminate multiple writes */
1739                         result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1740                         if (result != ERROR_OK)
1741                                 return result;
1742                 }
1743
1744                 LOG_WARNING("Flash Configuration Field written.");
1745                 LOG_WARNING("Reset or power off the device to make settings effective.");
1746
1747                 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1748                         uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1749                         /* write part after FCF */
1750                         result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1751                 }
1752                 return result;
1753
1754         } else
1755                 /* no FCF fiddling, normal write */
1756                 return kinetis_write_inner(bank, buffer, offset, count);
1757 }
1758
1759
1760 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
1761 {
1762         int result;
1763         uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
1764         uint8_t fcfg2_pflsh;
1765         uint32_t ee_size = 0;
1766         uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
1767         uint32_t pflash_size_m;
1768         unsigned num_blocks = 0;
1769         unsigned maxaddr_shift = 13;
1770         struct target *target = k_chip->target;
1771
1772         unsigned familyid = 0, subfamid = 0;
1773         unsigned cpu_mhz = 120;
1774         unsigned idx;
1775         bool use_nvm_marking = false;
1776         char flash_marking[8], nvm_marking[2];
1777         char name[40];
1778
1779         k_chip->probed = false;
1780         k_chip->pflash_sector_size = 0;
1781         k_chip->pflash_base = 0;
1782         k_chip->nvm_base = 0x10000000;
1783         k_chip->progr_accel_ram = FLEXRAM;
1784
1785         name[0] = '\0';
1786
1787         result = target_read_u32(target, SIM_SDID, &k_chip->sim_sdid);
1788         if (result != ERROR_OK)
1789                 return result;
1790
1791         if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
1792                 /* older K-series MCU */
1793                 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
1794
1795                 switch (mcu_type) {
1796                 case KINETIS_K_SDID_K10_M50:
1797                 case KINETIS_K_SDID_K20_M50:
1798                         /* 1kB sectors */
1799                         k_chip->pflash_sector_size = 1<<10;
1800                         k_chip->nvm_sector_size = 1<<10;
1801                         num_blocks = 2;
1802                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1803                         break;
1804                 case KINETIS_K_SDID_K10_M72:
1805                 case KINETIS_K_SDID_K20_M72:
1806                 case KINETIS_K_SDID_K30_M72:
1807                 case KINETIS_K_SDID_K30_M100:
1808                 case KINETIS_K_SDID_K40_M72:
1809                 case KINETIS_K_SDID_K40_M100:
1810                 case KINETIS_K_SDID_K50_M72:
1811                         /* 2kB sectors, 1kB FlexNVM sectors */
1812                         k_chip->pflash_sector_size = 2<<10;
1813                         k_chip->nvm_sector_size = 1<<10;
1814                         num_blocks = 2;
1815                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1816                         k_chip->max_flash_prog_size = 1<<10;
1817                         break;
1818                 case KINETIS_K_SDID_K10_M100:
1819                 case KINETIS_K_SDID_K20_M100:
1820                 case KINETIS_K_SDID_K11:
1821                 case KINETIS_K_SDID_K12:
1822                 case KINETIS_K_SDID_K21_M50:
1823                 case KINETIS_K_SDID_K22_M50:
1824                 case KINETIS_K_SDID_K51_M72:
1825                 case KINETIS_K_SDID_K53:
1826                 case KINETIS_K_SDID_K60_M100:
1827                         /* 2kB sectors */
1828                         k_chip->pflash_sector_size = 2<<10;
1829                         k_chip->nvm_sector_size = 2<<10;
1830                         num_blocks = 2;
1831                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1832                         break;
1833                 case KINETIS_K_SDID_K21_M120:
1834                 case KINETIS_K_SDID_K22_M120:
1835                         /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
1836                         k_chip->pflash_sector_size = 4<<10;
1837                         k_chip->max_flash_prog_size = 1<<10;
1838                         k_chip->nvm_sector_size = 4<<10;
1839                         num_blocks = 2;
1840                         k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1841                         break;
1842                 case KINETIS_K_SDID_K10_M120:
1843                 case KINETIS_K_SDID_K20_M120:
1844                 case KINETIS_K_SDID_K60_M150:
1845                 case KINETIS_K_SDID_K70_M150:
1846                         /* 4kB sectors */
1847                         k_chip->pflash_sector_size = 4<<10;
1848                         k_chip->nvm_sector_size = 4<<10;
1849                         num_blocks = 4;
1850                         k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1851                         break;
1852                 default:
1853                         LOG_ERROR("Unsupported K-family FAMID");
1854                 }
1855
1856                 for (idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
1857                         if (kinetis_types_old[idx].sdid == mcu_type) {
1858                                 strcpy(name, kinetis_types_old[idx].name);
1859                                 use_nvm_marking = true;
1860                                 break;
1861                         }
1862                 }
1863
1864         } else {
1865                 /* Newer K-series or KL series MCU */
1866                 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
1867                 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
1868
1869                 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
1870                 case KINETIS_SDID_SERIESID_K:
1871                         use_nvm_marking = true;
1872                         switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1873                         case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
1874                                 /* K02FN64, K02FN128: FTFA, 2kB sectors */
1875                                 k_chip->pflash_sector_size = 2<<10;
1876                                 num_blocks = 1;
1877                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K;
1878                                 cpu_mhz = 100;
1879                                 break;
1880
1881                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
1882                                 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
1883                                 uint32_t sopt1;
1884                                 result = target_read_u32(target, SIM_SOPT1, &sopt1);
1885                                 if (result != ERROR_OK)
1886                                         return result;
1887
1888                                 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
1889                                                 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
1890                                         /* MK24FN1M */
1891                                         k_chip->pflash_sector_size = 4<<10;
1892                                         num_blocks = 2;
1893                                         k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1894                                         k_chip->max_flash_prog_size = 1<<10;
1895                                         subfamid = 4; /* errata 1N83J fix */
1896                                         break;
1897                                 }
1898                                 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
1899                                         || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
1900                                         || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
1901                                         /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
1902                                         k_chip->pflash_sector_size = 2<<10;
1903                                         /* autodetect 1 or 2 blocks */
1904                                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K;
1905                                         break;
1906                                 }
1907                                 LOG_ERROR("Unsupported Kinetis K22 DIEID");
1908                                 break;
1909                         }
1910                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
1911                                 k_chip->pflash_sector_size = 4<<10;
1912                                 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
1913                                         /* K24FN256 - smaller pflash with FTFA */
1914                                         num_blocks = 1;
1915                                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K;
1916                                         break;
1917                                 }
1918                                 /* K24FN1M without errata 7534 */
1919                                 num_blocks = 2;
1920                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1921                                 k_chip->max_flash_prog_size = 1<<10;
1922                                 break;
1923
1924                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1:     /* errata 7534 - should be K63 */
1925                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2:     /* errata 7534 - should be K64 */
1926                                 subfamid += 2; /* errata 7534 fix */
1927                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
1928                                 /* K63FN1M0 */
1929                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
1930                                 /* K64FN1M0, K64FX512 */
1931                                 k_chip->pflash_sector_size = 4<<10;
1932                                 k_chip->nvm_sector_size = 4<<10;
1933                                 k_chip->max_flash_prog_size = 1<<10;
1934                                 num_blocks = 2;
1935                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1936                                 break;
1937
1938                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
1939                                 /* K26FN2M0 */
1940                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
1941                                 /* K66FN2M0, K66FX1M0 */
1942                                 k_chip->pflash_sector_size = 4<<10;
1943                                 k_chip->nvm_sector_size = 4<<10;
1944                                 k_chip->max_flash_prog_size = 1<<10;
1945                                 num_blocks = 4;
1946                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K;
1947                                 cpu_mhz = 180;
1948                                 break;
1949
1950                         case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
1951                         case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
1952                         case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
1953                                 /* K80FN256, K81FN256, K82FN256 */
1954                                 k_chip->pflash_sector_size = 4<<10;
1955                                 num_blocks = 1;
1956                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K | FS_NO_CMD_BLOCKSTAT;
1957                                 cpu_mhz = 150;
1958                                 break;
1959
1960                         case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
1961                         case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
1962                                 /* KL81Z128, KL82Z128 */
1963                                 k_chip->pflash_sector_size = 2<<10;
1964                                 num_blocks = 1;
1965                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L | FS_NO_CMD_BLOCKSTAT;
1966                                 use_nvm_marking = false;
1967                                 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
1968                                          subfamid);
1969                                 break;
1970
1971                         default:
1972                                 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
1973                         }
1974
1975                         if (name[0] == '\0')
1976                                 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
1977                                          familyid, subfamid, cpu_mhz / 10);
1978                         break;
1979
1980                 case KINETIS_SDID_SERIESID_KL:
1981                         /* KL-series */
1982                         k_chip->pflash_sector_size = 1<<10;
1983                         k_chip->nvm_sector_size = 1<<10;
1984                         /* autodetect 1 or 2 blocks */
1985                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L;
1986
1987                         cpu_mhz = 48;
1988                         if (subfamid == 3 && (familyid == 1 || familyid == 2))
1989                                 subfamid = 7;
1990                         snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
1991                                  familyid, subfamid, cpu_mhz / 10);
1992                         break;
1993
1994                 case KINETIS_SDID_SERIESID_KV:
1995                         /* KV-series */
1996                         switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1997                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
1998                                 /* KV10: FTFA, 1kB sectors */
1999                                 k_chip->pflash_sector_size = 1<<10;
2000                                 num_blocks = 1;
2001                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L;
2002                                 strcpy(name, "MKV10Z%s7");
2003                                 break;
2004
2005                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2006                                 /* KV11: FTFA, 2kB sectors */
2007                                 k_chip->pflash_sector_size = 2<<10;
2008                                 num_blocks = 1;
2009                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L;
2010                                 strcpy(name, "MKV11Z%s7");
2011                                 break;
2012
2013                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2014                                 /* KV30: FTFA, 2kB sectors, 1 block */
2015                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2016                                 /* KV31: FTFA, 2kB sectors, 2 blocks */
2017                                 k_chip->pflash_sector_size = 2<<10;
2018                                 /* autodetect 1 or 2 blocks */
2019                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K;
2020                                 break;
2021
2022                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2023                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2024                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2025                                 /* KV4x: FTFA, 4kB sectors */
2026                                 k_chip->pflash_sector_size = 4<<10;
2027                                 num_blocks = 1;
2028                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K;
2029                                 cpu_mhz = 168;
2030                                 break;
2031
2032                         case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2033                         case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2034                                 /* KV5x: FTFE, 8kB sectors */
2035                                 k_chip->pflash_sector_size = 8<<10;
2036                                 k_chip->max_flash_prog_size = 1<<10;
2037                                 num_blocks = 1;
2038                                 maxaddr_shift = 14;
2039                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT;
2040                                 k_chip->pflash_base = 0x10000000;
2041                                 k_chip->progr_accel_ram = 0x18000000;
2042                                 cpu_mhz = 240;
2043                                 break;
2044
2045                         default:
2046                                 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2047                         }
2048
2049                         if (name[0] == '\0')
2050                                 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2051                                          familyid, subfamid, cpu_mhz / 10);
2052                         break;
2053
2054                 case KINETIS_SDID_SERIESID_KE:
2055                         /* KE1x-series */
2056                         switch (k_chip->sim_sdid &
2057                                 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2058                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ:
2059                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ:
2060                                 /* KE1xZ: FTFE, 2kB sectors */
2061                                 k_chip->pflash_sector_size = 2<<10;
2062                                 k_chip->nvm_sector_size = 2<<10;
2063                                 k_chip->max_flash_prog_size = 1<<9;
2064                                 num_blocks = 2;
2065                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_L;
2066
2067                                 cpu_mhz = 72;
2068                                 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2069                                          familyid, subfamid, cpu_mhz / 10);
2070                                 break;
2071
2072                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF:
2073                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF:
2074                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF:
2075                                 /* KE1xF: FTFE, 4kB sectors */
2076                                 k_chip->pflash_sector_size = 4<<10;
2077                                 k_chip->nvm_sector_size = 2<<10;
2078                                 k_chip->max_flash_prog_size = 1<<10;
2079                                 num_blocks = 2;
2080                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_MSCM;
2081
2082                                 cpu_mhz = 168;
2083                                 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2084                                          familyid, subfamid, cpu_mhz / 10);
2085                                 break;
2086
2087                         default:
2088                                 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2089                         }
2090                         break;
2091
2092                 default:
2093                         LOG_ERROR("Unsupported K-series");
2094                 }
2095         }
2096
2097         if (k_chip->pflash_sector_size == 0) {
2098                 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2099                 return ERROR_FLASH_OPER_UNSUPPORTED;
2100         }
2101
2102         result = target_read_u32(target, SIM_FCFG1, &k_chip->sim_fcfg1);
2103         if (result != ERROR_OK)
2104                 return result;
2105
2106         result = target_read_u32(target, SIM_FCFG2, &k_chip->sim_fcfg2);
2107         if (result != ERROR_OK)
2108                 return result;
2109
2110         LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2111                         k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2112
2113         fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2114         fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2115         fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2116         fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2117
2118         fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2119         k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2120         k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2121
2122         if (num_blocks == 0)
2123                 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2124         else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2) {
2125                 num_blocks = 1;
2126                 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2127         } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2128                 num_blocks = 2;
2129                 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2130         }
2131
2132         /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2133         if (!fcfg2_pflsh) {
2134                 switch (fcfg1_nvmsize) {
2135                 case 0x03:
2136                 case 0x05:
2137                 case 0x07:
2138                 case 0x09:
2139                 case 0x0b:
2140                         k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2141                         break;
2142                 case 0x0f:
2143                         if (k_chip->pflash_sector_size >= 4<<10)
2144                                 k_chip->nvm_size = 512<<10;
2145                         else
2146                                 /* K20_100 */
2147                                 k_chip->nvm_size = 256<<10;
2148                         break;
2149                 default:
2150                         k_chip->nvm_size = 0;
2151                         break;
2152                 }
2153
2154                 switch (fcfg1_eesize) {
2155                 case 0x00:
2156                 case 0x01:
2157                 case 0x02:
2158                 case 0x03:
2159                 case 0x04:
2160                 case 0x05:
2161                 case 0x06:
2162                 case 0x07:
2163                 case 0x08:
2164                 case 0x09:
2165                         ee_size = (16 << (10 - fcfg1_eesize));
2166                         break;
2167                 default:
2168                         ee_size = 0;
2169                         break;
2170                 }
2171
2172                 switch (fcfg1_depart) {
2173                 case 0x01:
2174                 case 0x02:
2175                 case 0x03:
2176                 case 0x04:
2177                 case 0x05:
2178                 case 0x06:
2179                         k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2180                         break;
2181                 case 0x08:
2182                         k_chip->dflash_size = 0;
2183                         break;
2184                 case 0x09:
2185                 case 0x0a:
2186                 case 0x0b:
2187                 case 0x0c:
2188                 case 0x0d:
2189                         k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2190                         break;
2191                 default:
2192                         k_chip->dflash_size = k_chip->nvm_size;
2193                         break;
2194                 }
2195         }
2196
2197         switch (fcfg1_pfsize) {
2198         case 0x03:
2199         case 0x05:
2200         case 0x07:
2201         case 0x09:
2202         case 0x0b:
2203         case 0x0d:
2204                 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2205                 break;
2206         case 0x0f:
2207                 /* a peculiar case: Freescale states different sizes for 0xf
2208                  * K02P64M100SFARM      128 KB ... duplicate of code 0x7
2209                  * K22P121M120SF8RM     256 KB ... duplicate of code 0x9
2210                  * K22P121M120SF7RM     512 KB ... duplicate of code 0xb
2211                  * K22P100M120SF5RM     1024 KB ... duplicate of code 0xd
2212                  * K26P169M180SF5RM     2048 KB ... the only unique value
2213                  * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2214                  * Checking fcfg2_maxaddr0 in bank probe is pointless then
2215                  */
2216                 if (fcfg2_pflsh)
2217                         k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2218                 else
2219                         k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2220                 if (k_chip->pflash_size != 2048<<10)
2221                         LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10);
2222
2223                 break;
2224         default:
2225                 k_chip->pflash_size = 0;
2226                 break;
2227         }
2228
2229         if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2230                 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2231                 /* Program section size is equal to sector size by default */
2232         }
2233
2234         k_chip->num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
2235         k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2236
2237         if (use_nvm_marking) {
2238                 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2239                 nvm_marking[1] = '\0';
2240         } else
2241                 nvm_marking[0] = '\0';
2242
2243         pflash_size_k = k_chip->pflash_size / 1024;
2244         pflash_size_m = pflash_size_k / 1024;
2245         if (pflash_size_m)
2246                 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2247         else
2248                 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2249
2250         snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2251         LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2252         LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2253         if (k_chip->num_nvm_blocks) {
2254                 nvm_size_k = k_chip->nvm_size / 1024;
2255                 dflash_size_k = k_chip->dflash_size / 1024;
2256                 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2257                          k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2258         }
2259
2260         k_chip->probed = true;
2261
2262         if (create_banks)
2263                 kinetis_create_missing_banks(k_chip);
2264
2265         return ERROR_OK;
2266 }
2267
2268 static int kinetis_probe(struct flash_bank *bank)
2269 {
2270         int result, i;
2271         uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2272         unsigned num_blocks, first_nvm_bank;
2273         uint32_t size_k;
2274         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2275         struct kinetis_chip *k_chip = k_bank->k_chip;
2276
2277         k_bank->probed = false;
2278
2279         if (!k_chip->probed) {
2280                 result = kinetis_probe_chip(k_chip);
2281                 if (result != ERROR_OK)
2282                         return result;
2283         }
2284
2285         num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2286         first_nvm_bank = k_chip->num_pflash_blocks;
2287
2288         if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2289                 /* pflash, banks start at address zero */
2290                 k_bank->flash_class = FC_PFLASH;
2291                 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2292                 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2293                 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2294                 k_bank->sector_size = k_chip->pflash_sector_size;
2295                 /* pflash is divided into 32 protection areas for
2296                  * parts with more than 32K of PFlash. For parts with
2297                  * less the protection unit is set to 1024 bytes */
2298                 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2299                 bank->num_prot_blocks = 32 / k_chip->num_pflash_blocks;
2300                 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2301
2302                 size_k = bank->size / 1024;
2303                 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u",
2304                          k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2305
2306         } else if (k_bank->bank_number < num_blocks) {
2307                 /* nvm, banks start at address 0x10000000 */
2308                 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2309                 uint32_t limit;
2310
2311                 k_bank->flash_class = FC_FLEX_NVM;
2312                 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2313                 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2314                 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2315                 k_bank->sector_size = k_chip->nvm_sector_size;
2316                 if (k_chip->dflash_size == 0) {
2317                         k_bank->protection_size = 0;
2318                 } else {
2319                         for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2320                                 ;
2321                         if (i == 1)
2322                                 k_bank->protection_size = k_chip->dflash_size / 8;      /* data flash size = 2^^n */
2323                         else
2324                                 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2325                 }
2326                 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2327                 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2328
2329                 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2330                 if (k_chip->dflash_size > bank->size * nvm_ord)
2331                         limit = k_chip->dflash_size - bank->size * nvm_ord;
2332                 else
2333                         limit = 0;
2334
2335                 if (bank->size > limit) {
2336                         bank->size = limit;
2337                         LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
2338                                 k_bank->bank_number, limit);
2339                 }
2340
2341                 size_k = bank->size / 1024;
2342                 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u",
2343                          k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2344
2345         } else {
2346                 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
2347                                 k_bank->bank_number, num_blocks);
2348                 return ERROR_FLASH_BANK_INVALID;
2349         }
2350
2351         fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2352         fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2353         fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2354
2355         if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2356                 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2357                                 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2358
2359         if (fcfg2_pflsh) {
2360                 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2361                         LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2362                                 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2363         } else {
2364                 if (k_bank->bank_number == first_nvm_bank
2365                                 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2366                         LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2367                                 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2368         }
2369
2370         if (bank->sectors) {
2371                 free(bank->sectors);
2372                 bank->sectors = NULL;
2373         }
2374         if (bank->prot_blocks) {
2375                 free(bank->prot_blocks);
2376                 bank->prot_blocks = NULL;
2377         }
2378
2379         if (k_bank->sector_size == 0) {
2380                 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
2381                 return ERROR_FLASH_BANK_INVALID;
2382         }
2383
2384         bank->num_sectors = bank->size / k_bank->sector_size;
2385
2386         if (bank->num_sectors > 0) {
2387                 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2388                 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2389                 if (!bank->sectors)
2390                         return ERROR_FAIL;
2391
2392                 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2393                 if (!bank->prot_blocks)
2394                         return ERROR_FAIL;
2395
2396         } else {
2397                 bank->num_prot_blocks = 0;
2398         }
2399
2400         k_bank->probed = true;
2401
2402         return ERROR_OK;
2403 }
2404
2405 static int kinetis_auto_probe(struct flash_bank *bank)
2406 {
2407         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2408
2409         if (k_bank && k_bank->probed)
2410                 return ERROR_OK;
2411
2412         return kinetis_probe(bank);
2413 }
2414
2415 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2416 {
2417         const char *bank_class_names[] = {
2418                 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2419         };
2420
2421         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2422         struct kinetis_chip *k_chip = k_bank->k_chip;
2423         uint32_t size_k = bank->size / 1024;
2424
2425         snprintf(buf, buf_size,
2426                 "%s %s: %" PRIu32 "k %s bank %s at 0x%08" PRIx32,
2427                 bank->driver->name, k_chip->name,
2428                 size_k, bank_class_names[k_bank->flash_class],
2429                 bank->name, bank->base);
2430
2431         return ERROR_OK;
2432 }
2433
2434 static int kinetis_blank_check(struct flash_bank *bank)
2435 {
2436         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2437         struct kinetis_chip *k_chip = k_bank->k_chip;
2438         int result;
2439
2440         /* suprisingly blank check does not work in VLPR and HSRUN modes */
2441         result = kinetis_check_run_mode(bank->target);
2442         if (result != ERROR_OK)
2443                 return result;
2444
2445         /* reset error flags */
2446         result = kinetis_ftfx_prepare(bank->target);
2447         if (result != ERROR_OK)
2448                 return result;
2449
2450         if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2451                 bool block_dirty = true;
2452                 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2453                 uint8_t ftfx_fstat;
2454
2455                 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2456                         uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2457                         /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2458                         if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2459                                 use_block_cmd = false;
2460                 }
2461
2462                 if (use_block_cmd) {
2463                         /* check if whole bank is blank */
2464                         result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base,
2465                                                          0, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
2466
2467                         if (result != ERROR_OK)
2468                                 kinetis_ftfx_clear_error(bank->target);
2469                         else if ((ftfx_fstat & 0x01) == 0)
2470                                 block_dirty = false;
2471                 }
2472
2473                 if (block_dirty) {
2474                         /* the whole bank is not erased, check sector-by-sector */
2475                         int i;
2476                         for (i = 0; i < bank->num_sectors; i++) {
2477                                 /* normal margin */
2478                                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2479                                                 k_bank->prog_base + bank->sectors[i].offset,
2480                                                 1, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
2481
2482                                 if (result == ERROR_OK) {
2483                                         bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2484                                 } else {
2485                                         LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2486                                         kinetis_ftfx_clear_error(bank->target);
2487                                         bank->sectors[i].is_erased = -1;
2488                                 }
2489                         }
2490                 } else {
2491                         /* the whole bank is erased, update all sectors */
2492                         int i;
2493                         for (i = 0; i < bank->num_sectors; i++)
2494                                 bank->sectors[i].is_erased = 1;
2495                 }
2496         } else {
2497                 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2498                 return ERROR_FLASH_OPERATION_FAILED;
2499         }
2500
2501         return ERROR_OK;
2502 }
2503
2504
2505 COMMAND_HANDLER(kinetis_nvm_partition)
2506 {
2507         int result;
2508         unsigned bank_idx;
2509         unsigned num_blocks, first_nvm_bank;
2510         unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2511         enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2512         bool enable;
2513         uint8_t load_flex_ram = 1;
2514         uint8_t ee_size_code = 0x3f;
2515         uint8_t flex_nvm_partition_code = 0;
2516         uint8_t ee_split = 3;
2517         struct target *target = get_current_target(CMD_CTX);
2518         struct kinetis_chip *k_chip;
2519         uint32_t sim_fcfg1;
2520
2521         if (CMD_ARGC >= 2) {
2522                 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2523                         sz_type = DF_SIZE;
2524                 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2525                         sz_type = EEBKP_SIZE;
2526
2527                 par = strtoul(CMD_ARGV[1], NULL, 10);
2528                 while (par >> (log2 + 3))
2529                         log2++;
2530         }
2531         switch (sz_type) {
2532         case SHOW_INFO:
2533                 result = target_read_u32(target, SIM_FCFG1, &sim_fcfg1);
2534                 if (result != ERROR_OK)
2535                         return result;
2536
2537                 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2538                 switch (flex_nvm_partition_code) {
2539                 case 0:
2540                         command_print(CMD_CTX, "No EEPROM backup, data flash only");
2541                         break;
2542                 case 1:
2543                 case 2:
2544                 case 3:
2545                 case 4:
2546                 case 5:
2547                 case 6:
2548                         command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2549                         break;
2550                 case 8:
2551                         command_print(CMD_CTX, "No data flash, EEPROM backup only");
2552                         break;
2553                 case 0x9:
2554                 case 0xA:
2555                 case 0xB:
2556                 case 0xC:
2557                 case 0xD:
2558                 case 0xE:
2559                         command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2560                         break;
2561                 case 0xf:
2562                         command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)");
2563                         break;
2564                 default:
2565                         command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2566                 }
2567                 return ERROR_OK;
2568
2569         case DF_SIZE:
2570                 flex_nvm_partition_code = 0x8 | log2;
2571                 break;
2572
2573         case EEBKP_SIZE:
2574                 flex_nvm_partition_code = log2;
2575                 break;
2576         }
2577
2578         if (CMD_ARGC == 3)
2579                 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2580         else if (CMD_ARGC >= 4) {
2581                 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2582                 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2583         }
2584
2585         enable = ee1 + ee2 > 0;
2586         if (enable) {
2587                 for (log2 = 2; ; log2++) {
2588                         if (ee1 + ee2 == (16u << 10) >> log2)
2589                                 break;
2590                         if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2591                                 LOG_ERROR("Unsupported EEPROM size");
2592                                 return ERROR_FLASH_OPERATION_FAILED;
2593                         }
2594                 }
2595
2596                 if (ee1 * 3 == ee2)
2597                         ee_split = 1;
2598                 else if (ee1 * 7 == ee2)
2599                         ee_split = 0;
2600                 else if (ee1 != ee2) {
2601                         LOG_ERROR("Unsupported EEPROM sizes ratio");
2602                         return ERROR_FLASH_OPERATION_FAILED;
2603                 }
2604
2605                 ee_size_code = log2 | ee_split << 4;
2606         }
2607
2608         if (CMD_ARGC >= 5)
2609                 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2610         if (enable)
2611                 load_flex_ram = 0;
2612
2613         LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2614                  flex_nvm_partition_code, ee_size_code);
2615
2616         result = kinetis_check_run_mode(target);
2617         if (result != ERROR_OK)
2618                 return result;
2619
2620         /* reset error flags */
2621         result = kinetis_ftfx_prepare(target);
2622         if (result != ERROR_OK)
2623                 return result;
2624
2625         result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2626                                       ee_size_code, flex_nvm_partition_code, 0, 0,
2627                                       0, 0, 0, 0,  NULL);
2628         if (result != ERROR_OK)
2629                 return result;
2630
2631         command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU.");
2632
2633         k_chip = kinetis_get_chip(target);
2634         if (k_chip) {
2635                 first_nvm_bank = k_chip->num_pflash_blocks;
2636                 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2637                 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
2638                         k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
2639                 k_chip->probed = false;
2640         }
2641
2642         command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size.");
2643         return ERROR_OK;
2644 }
2645
2646 COMMAND_HANDLER(kinetis_fcf_source_handler)
2647 {
2648         if (CMD_ARGC > 1)
2649                 return ERROR_COMMAND_SYNTAX_ERROR;
2650
2651         if (CMD_ARGC == 1) {
2652                 if (strcmp(CMD_ARGV[0], "write") == 0)
2653                         allow_fcf_writes = true;
2654                 else if (strcmp(CMD_ARGV[0], "protection") == 0)
2655                         allow_fcf_writes = false;
2656                 else
2657                         return ERROR_COMMAND_SYNTAX_ERROR;
2658         }
2659
2660         if (allow_fcf_writes) {
2661                 command_print(CMD_CTX, "Arbitrary Flash Configuration Field writes enabled.");
2662                 command_print(CMD_CTX, "Protection info writes to FCF disabled.");
2663                 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
2664         } else {
2665                 command_print(CMD_CTX, "Protection info writes to Flash Configuration Field enabled.");
2666                 command_print(CMD_CTX, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
2667         }
2668
2669         return ERROR_OK;
2670 }
2671
2672 COMMAND_HANDLER(kinetis_fopt_handler)
2673 {
2674         if (CMD_ARGC > 1)
2675                 return ERROR_COMMAND_SYNTAX_ERROR;
2676
2677         if (CMD_ARGC == 1)
2678                 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
2679         else
2680                 command_print(CMD_CTX, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
2681
2682         return ERROR_OK;
2683 }
2684
2685 COMMAND_HANDLER(kinetis_create_banks_handler)
2686 {
2687         if (CMD_ARGC > 0)
2688                 return ERROR_COMMAND_SYNTAX_ERROR;
2689
2690         create_banks = true;
2691
2692         return ERROR_OK;
2693 }
2694
2695
2696 static const struct command_registration kinetis_security_command_handlers[] = {
2697         {
2698                 .name = "check_security",
2699                 .mode = COMMAND_EXEC,
2700                 .help = "Check status of device security lock",
2701                 .usage = "",
2702                 .handler = kinetis_check_flash_security_status,
2703         },
2704         {
2705                 .name = "halt",
2706                 .mode = COMMAND_EXEC,
2707                 .help = "Issue a halt via the MDM-AP",
2708                 .usage = "",
2709                 .handler = kinetis_mdm_halt,
2710         },
2711         {
2712                 .name = "mass_erase",
2713                 .mode = COMMAND_EXEC,
2714                 .help = "Issue a complete flash erase via the MDM-AP",
2715                 .usage = "",
2716                 .handler = kinetis_mdm_mass_erase,
2717         },
2718         {       .name = "reset",
2719                 .mode = COMMAND_EXEC,
2720                 .help = "Issue a reset via the MDM-AP",
2721                 .usage = "",
2722                 .handler = kinetis_mdm_reset,
2723         },
2724         COMMAND_REGISTRATION_DONE
2725 };
2726
2727 static const struct command_registration kinetis_exec_command_handlers[] = {
2728         {
2729                 .name = "mdm",
2730                 .mode = COMMAND_ANY,
2731                 .help = "MDM-AP command group",
2732                 .usage = "",
2733                 .chain = kinetis_security_command_handlers,
2734         },
2735         {
2736                 .name = "disable_wdog",
2737                 .mode = COMMAND_EXEC,
2738                 .help = "Disable the watchdog timer",
2739                 .usage = "",
2740                 .handler = kinetis_disable_wdog_handler,
2741         },
2742         {
2743                 .name = "nvm_partition",
2744                 .mode = COMMAND_EXEC,
2745                 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
2746                         " set two EEPROM sizes in bytes and FlexRAM loading during reset",
2747                 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
2748                 .handler = kinetis_nvm_partition,
2749         },
2750         {
2751                 .name = "fcf_source",
2752                 .mode = COMMAND_EXEC,
2753                 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
2754                         " Mode 'protection' is safe from unwanted locking of the device.",
2755                 .usage = "['protection'|'write']",
2756                 .handler = kinetis_fcf_source_handler,
2757         },
2758         {
2759                 .name = "fopt",
2760                 .mode = COMMAND_EXEC,
2761                 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
2762                 .usage = "[num]",
2763                 .handler = kinetis_fopt_handler,
2764         },
2765         {
2766                 .name = "create_banks",
2767                 .mode = COMMAND_CONFIG,
2768                 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
2769                 .handler = kinetis_create_banks_handler,
2770         },
2771         COMMAND_REGISTRATION_DONE
2772 };
2773
2774 static const struct command_registration kinetis_command_handler[] = {
2775         {
2776                 .name = "kinetis",
2777                 .mode = COMMAND_ANY,
2778                 .help = "Kinetis flash controller commands",
2779                 .usage = "",
2780                 .chain = kinetis_exec_command_handlers,
2781         },
2782         COMMAND_REGISTRATION_DONE
2783 };
2784
2785
2786
2787 struct flash_driver kinetis_flash = {
2788         .name = "kinetis",
2789         .commands = kinetis_command_handler,
2790         .flash_bank_command = kinetis_flash_bank_command,
2791         .erase = kinetis_erase,
2792         .protect = kinetis_protect,
2793         .write = kinetis_write,
2794         .read = default_flash_read,
2795         .probe = kinetis_probe,
2796         .auto_probe = kinetis_auto_probe,
2797         .erase_check = kinetis_blank_check,
2798         .protect_check = kinetis_protect_check,
2799         .info = kinetis_info,
2800 };